

Public Utility Commission

3930 Fairview Industrial Dr. SE Salem, OR 97302 Mailing Address: PO Box 1088 Salem, OR 97308-1088 Consumer Services 1-800-522-2404 Local: (503) 378-6600 Administrative Services (503) 373-7394

November 4, 2014

Via Electronic Filing

OREGON PUBLIC UTILITY COMMISSION ATTENTION: FILING CENTER PO BOX 1088 SALEM OR 97308-1088

RE: <u>Docket No. UM 1610</u> – In the Matter of PUBLIC UTILITY COMMISSION OF OREGON Staff Investigation Into Qualifying Facility Contracting and Pricing.

Enclosed for electronic filing in the above-captioned docket is the Public Utility Commission Staff's Opening Testimony.

/s/ Kay Barnes Kay Barnes Filing on Behalf of Public Utility Commission Staff (503) 378-5763 Email: kay.barnes@state.or.us

c: UM 1610 Service List (parties)

PUBLIC UTILITY COMMISSION OF OREGON

UM 1610

STAFF OPENING TESTIMONY OF

BRITTANY ANDRUS

In the Matter of PUBLIC UTILITY COMMISSION OF OREGON Staff Investigation Into Qualifying Facility Contracting and Pricing.

November 4, 2014

CASE: UM 1610 WITNESS: BRITTANY ANDRUS

PUBLIC UTILITY COMMISSION OF OREGON

STAFF EXHIBIT 300

Opening Testimony

November 4, 2014

1	Q.	Please state your name, occupation, and business address.
2	Α.	My name is Brittany Andrus. My business address is 3930 Fairview Industrial
3		Dr. SE., Salem, Oregon 97302-1166.
4	Q.	Please describe your educational background and work experience.
5	Α.	My Witness Qualification Statement is found in Exhibit Staff/301.
6	Q.	What is the purpose of your testimony?
7	Α.	I provide testimony on the capacity payment to solar qualifying facilities (QFs)
8		receiving renewable avoided cost payments.
9	Q.	Did you prepare an exhibit for this docket?
10	Α.	Yes. I prepared Exhibit Staff/302, which is an Excel spreadsheet showing the
11		Staff-proposed calculations for capacity payments to QFs.
12	Q.	What led to the implementation of standard renewable avoided cost
13		prices?
14	Α.	In 2011, the Commission ordered Portland General Electric Company ("PGE")
15		and PacifiCorp to offer standard avoided cost prices and contract terms to
16		renewable QFs that are based on the costs of avoiding a renewable resource.
17		(Order No. 11-505.) PGE and PacifiCorp subsequently filed standard
18		renewable avoided cost prices ¹ and forms of contracts to comply with the
19		Commission's order, but the proposed prices and contract terms did not
20		become effective. The Commission held the implementation of the renewable
21		standard avoided cost prices in abeyance pending its investigation in this

¹ The term "standard renewable avoided cost prices" is used to differentiate the published avoided cost prices and contract terms for renewable QFs 10 MW and below from the negotiated rates used for larger facilities.

1

2

docket. In February 2014, the Commission issued Order No. 14-058, again requiring PGE and PacifiCorp to file standard avoided cost prices and forms of contracts for renewable resources, but with some changes in the methodology ordered in Order No. 11-505.

With respect to the capacity contribution adjustment, the Commission stated, "[w]e agree on the need to adjust for capacity contribution of each resource type and adopt Staff's proposed method for calculating capacity adjustments, as set forth in Staff/102-103, using input estimates derived from the utility's acknowledged IRP. We direct the parties to address issues regarding calculation methodology in future utility IRPs." Staff/102-103 contains example calculations for adjusting the capacity payment to QF resources based on their contributions to meeting peak load, as compared to the avoided resource. For standard avoided cost prices, the avoided resource is a combined-cycle combustion turbine (CCCT). For renewable avoided cost prices, the avoided resource is the utility's next renewable resource acquisition in its IRP, currently wind for PacifiCorp and PGE.

Each of the three electric utilities made filings to comply with Order No. 14-058.
PacifiCorp's and PGE's filings included both standard avoided cost prices and
standard renewable avoided cost prices for wind, solar and baseload QFs.
Idaho Power's filing included only standard avoided cost prices, because they
are not required as of yet to comply with RPS annual requirements.

Q. Why are avoided cost prices for wind, solar, and baseload QFs different?

1

A. Standard avoided cost prices and standard renewable avoided cost prices reflect an estimate of the costs of either a CCCT or a renewable resource that will be avoided by the utility due to its purchases from the QF. These include the avoided cost to produce energy, as well as the avoided cost to provide capacity during the period of resource deficiency as determined in the utility's IRP. QFs of different resource types provide different levels of capacity; therefore, the extent to which the different resources allow utilities to avoid the purchase or acquisition of capacity is different for each resource. In Order No. 14-058, the Commission ordered that avoided cost prices reflect these differences.²

Q. How is the avoided cost of capacity calculated in avoided cost pricing?

A. The total fixed costs of a single-cycle combustion turbine (SCCT) provide the basis for valuing capacity. SCCT costs are used for valuing capacity in marginal cost studies and for establishing the capacity-related portion of CCCT costs.

Q. How is the payment for capacity calculated for avoided cost prices?

A. The initial, or "basis," step is to spread the capacity-related portion of CCCT costs (based on the fixed costs of an SCCT) on an on-peak dollars-per-MWh basis, because it is assumed that all capacity costs are incurred to meet on-peak load requirements.³ The capacity-related per-MWh price is added to the

² Order No. 14-058 at 15.

³ The hours used in establishing that price are the year's total of sixteen-hour daily, Monday-through-Saturday-less-holidays, time intervals.

on-peak per-MWh energy price to obtain the full, or composite, on-peak per-MWh price.

 Q. Please describe the capacity payment adjustment methodology adopted in Order No. 14-058 to account for the different levels of capacity provided by different resource types.

A. For QFs receiving *standard* avoided costs, resource types whose expected contribution to meeting peak load is below that of an SCCT receive an on-peak capacity payment that is reduced accordingly. The capacity payment is adjusted by multiplying the capital cost allocated to capacity for the avoided resource (the capacity-related portion of CCCT costs, which is the costs of an SCCT), expressed in a dollars-per-MWh, by a "contribution to peak" factor (CTP) for the QF. This CTP factor is sourced from the utility's acknowledged IRP for the specific type of QF generation (wind, solar solar, or baseload, e.g., geothermal), and represents the portion of the QF's capacity that is assumed to be available to meet peak loads. For a baseload QF, the CTP factor is assumed to be equivalent to that of the avoided resource. For wind and solar resources, the CTP factor is significantly lower. The result of this multiplication is the QF capacity adjustment amount, which is added to the on-peak hour energy prices.

For the standard *renewable* avoided cost prices, the capacity contribution adjustment begins with the assumed CTP factor of the avoided renewable resource, which is currently wind. The avoided renewable resource CTP is embedded in the energy payment, which is based on the total fixed costs of

1

2

3

4

5

6

7

8

9

10

wind on a dollar-per-MWh basis. The QF incremental capacity CTP factor is calculated by subtracting the CTP of the avoided resource (wind) from the CTP of the QF type (wind, solar, or baseload, e.g., geothermal) sourced from the utility's acknowledged IRP. The incremental capacity CTP factor is multiplied by the price for capacity, which is that same "basis" on-peak dollars-per-MWh defined in the answer on page 4. The result of this multiplication is the QF capacity contribution *adjustment* amount, which is added to the on-peak-hour energy price.

Q. Why is Staff proposing a change to how the capacity payment is calculated?

11 A. In April 2014, Obsidian Renewables filed a Motion for Clarification, requesting 12 that the Commission clarify how the Capacity Adder described in Staff/103, 13 Bless/2 will be applied to solar QF resources electing standard renewable 14 avoided cost prices. In a ruling dated June 10, 2014, the Administrative Law 15 Judge (ALJ) granted the request for clarification and directed parties to address 16 the methodology applicable to renewable solar QF resources, raised by 17 Obsidian's Motion for Reconsideration, in the investigations currently taking 18 place for PacifiCorp's and Idaho Power's UM 14-058 compliance filings. 19 In the interest of implementing standard renewable avoided cost prices in a 20 timely manner, parties to UM 1610 agreed to ask the ALJ to address the 21 capacity contribution calculation in Phase II of UM 1610, rather in the 22 compliance phase of Phase I.

21

22

1

Q. What is the issue regarding the calculation of the capacity contribution payments for solar QFs that Obsidian identified in its April 2014 motion? A. Under the current method, solar QFs would be undercompensated for the value of capacity due to the way the total payment related to the capacity contribution payment is calculated. Currently, the capacity contribution payment is based on the hours that the avoided resource is expected to operate, not on the hours that the solar QF is expected to operate. Because the solar QF is expected to be available for fewer hours than the avoided resource, the result is an underpayment to the QF. Ideally, the amount of compensation to a QF should be directly proportional to its contribution (or availability) during on-peak hours. However, under the current methodology when one applies the solar capacity payment to the hours in which a solar QF resource is likely to generate, and 13 compares that dollar amount to the dollars that would be received by the 14 avoided resource, the difference is disproportionate compared to the relative 15 CTP of a solar resource as compared to the avoided resource. 16 Q. What factor or factors drive this under-compensation? 17 A. Staff /103, Bless 2 adjusts the CTP by comparing the avoided renewable 18 resource to a solar resource. However, the adjustment is applied to a dollars-19 per-MWh rate for capacity. Because of this, an assumed availability is 20 embedded in the calculation. The following is the representative calculation

contained in Staff /103, Bless/ 2, "Renewable Avoided Cost Prices: Solar QF Resource," for the year 2018:

С	C D		F	G
Cap	acity	S	Solar QF Resourc	e
		QF		
Capital Cost	Renewable Proxy	Resource	QF Incremental	
Allocated	Resource	Contribution	Capacity	QF Capacity
to Capacity	Contribution to	to Peak	Contribution to	Adder
(On-Peak Hours)	Peak		Peak	
\$/MWh	%	%	%	\$/MWh
			= E - D	= C x F
\$24.48	5%	30%	25%	\$6.12

The "QF Capacity Adder" of \$6.12 is applied to all on-peak hours in which the QF resource type generates. The adder is developed by starting with "Capital Cost Allocated to Capacity (On-Peak Hours)," a volumetric rate of \$24.48. This dollar-per-MWh rate is calculated for a capacity resource for which a 91.8 percent capacity factor in on-peak hours is assumed. In this example, based on the capacity payments above, one MW of solar would receive less than nine percent of the annual dollars than that of a MW of avoided capacity, rather than receiving 25 percent:

					Т	otal of
				On-Peak	A	Annual
		Annual	On-Peak	Capacity	С	apacity
	\$/MWh	Hours	Hours %	Factor	Ра	yments
1 MW Avoided Capacity	\$ 24.48	8,760	56.1%	91.8%	\$	110,439
1 MW Solar Capacity	\$ 6.12	8,760	56.1%	32.7%	\$	9,835
Solar Capacit		8.9%				

11 12 13

14

15

A substantial number of on-peak hours (defined by the North American Electric Reliability Corporation (NERC) as 6:00 a.m. to 10:00 p.m. Monday through Saturday, except certain holidays) are in the morning or evening, when the sun is not shining. Because of this, it is simply impossible for a solar QF to

1 2

10

generate during these hours. Therefore, payment for capacity based on a volumetric rate which assumes availability during most or all peak hours is inappropriate when applied to a resource that is incapable of generating in the number of hours on which the volumetric rate is based.

- Q. What does Staff propose to correct the capacity contribution adjustment payment to solar QFs receiving the standard renewable avoided cost prices?
- A. Staff's proposal has two steps: First, determine the value of capacity on a dollars-per-MW basis. This step is analogous to determining an annual revenue requirement for a capacity resource. Second, determine how to pay those dollars over the course of a year on a dollars-per-MWh basis. This is the rate, or price, design step.

Q. Please describe the components of the first step.

A. In order to remove the hours component in the capacity valuation, it is necessary to go back a step and determine the value of avoided capacity to the utility on a dollars-per-MW basis. This value represents the annual fixed costs per MW per year of a single-cycle combustion turbine over the life of the facility. This cost per MW represents the full value of a resource that can be considered as "pure capacity." Due to the intermittent nature of their generation, wind and solar resources cannot provide pure capacity, but instead will provide a portion of this capacity. The portion of capacity provided by the renewable resource, its CTP, is represented as a percentage of the full value. The value of capacity that is actually avoided by a renewable generator is then

3

4

5

6

7

8

9

10

11

12

equal to the CTP percentage multiplied by the full capacity value. The relative capacity value of one renewable generator compared to another can be calculated by taking the difference of their respective CTP percentages and multiplying the difference by the full capacity value.

Q. Can you give an example of how this calculation would work?

A. Yes. The following is an example in which wind is the avoided resource, and the total annual value per MW of capacity is \$140,320.⁴ By applying the difference in CTP to that dollar amount, an annual capacity value for a solar QF is \$13,190. This amount is equal to the difference in CTP between the solar generation and the avoided resource (i.e., wind) times the value per MW of the single cycle combined cycle combustion turbine capacity resource (or 9.4 percent x \$140,320).

Co	ntributions to P			
	(CTP)	Capacity Value		
			Simple Cycle	
			CT Fixed	Annual
Wind	Solar	Difference	Costs	Capacity Value
%	%	%	\$/MW-yr	per MW
а	b	c = b - a	d	e = c * d
4.2%	13.6%	9.4%	\$140,320	\$13,190

Q. Please describe the components of the second step.

17 18

the QF. There are multiple options for designing the capacity portion of the

over a set number of on-peak hours in which the capacity payment is made to

A. The second step spreads the quantity of dollars determined in the first step

⁴ The representative inputs for this example are based on the 2024 Total Resource Fixed Costs from PacifiCorp's Replacement Compliance Filing for Avoided Cost Prices (Schedule 37), and Standard Contracts, filed on August 11, 2014, in compliance with Order No. 14-058, approved August 19, 2014.

1

2

3

4

5

6

7

8

9

10

11

12

13

Currently, the volumetric payment for capacity is added to the energy payment in each NERC on-peak hour of the year for MWhs generated in those hours. Another approach is to make those payments in the hours in which the capacity is most needed.

Q. How would the most needed hours be determined?

- A. These hours could be defined as those with the highest loss of load probability (LOLP). They could also be defined as the on-peak hours in the month or the months of the utility's system peak. LOLP hours and system peak months are defined in IRPs, and they are unique to each utility.
- **Q.** Please give an example of how this second step would work in practice.
- A. The following shows the NERC-designated on-peak hours for the listed months for the annual option, and for two versions of the monthly option:

	Option 1	Option 2		
			4-Month	
		2-Month	Coincidental	
		Coincidental	Peak	
		Peak	(Jul/Aug/	
	Annual	(Jul/Aug)	Dec/Jan)	
On-Peak Hours	4,912	832	1,659	

14

15

Q. How are the on-peak capacity factors calculated?

A. For these illustrations of Staff's proposed methodology, the on-peak capacity
 factors are calculated using monthly generation profile data for a solar facility
 from PV Watts®, a program produced by the National Renewable Energy
 Laboratory's Renewable Resource Data Center. The expected output for the
 month, months, or year must be adjusted to account for the proportion of

5

6

7

8 9 10

11

12

NERC on-peak hours within the hours that solar is expected to generate during the respective timeframes. This adjustment is necessary in order to achieve the correct total of capacity payments as the adder to the energy payments in NERC-defined on-peak hours. Staff's expectation is that in practice, the inputs to this method would be from the utility's most recent acknowledged IRP. The following table shows the calculation of the on-peak factor for the twomonths' peak option.

		3-year	3-year			On-peak	Energy	Monthly
	Energy	Average	Average	16-Hour	Monthly	Hours % of	Generated	On-Peak
	Generated	Total	On-Peak	Block	Capacity	16-Hour	On-peak	Capacity
	MWh	Hours	Hours	Hours	Factor	Block Hours	MWh	Factor
	f	g	h	i	j = f*g	k = h/i	l = f*k	m = l/h
July	188	744	411	496	25.3%	82.8%	156	37.9%
August	182	744	421	496	24.5%	84.9%	155	36.7%
					2 Month (37.3%		

Using these inputs, the following calculations would result in the capacity contribution adjustment that would be expected to pay the target capacity dollars over the course of a year.

	O	ption 1			C	Option 2	
				Example	Based on Two	o-month CP: July	and August
		On-Peak				On-Peak	
		Capacity	Capacity			Capacity	
Annual	On-Peak	Payment	Total of	Hours in	On-Peak	Payment	Total of
On-Peak	Capacity	All Months	Capacity	Utility's CP	Capacity	July and August	Capacity
Hours	Factor	\$/MWh	Payments	Months	Factor	\$/MWh	Payments
f	g	h = e / (f * g)	i=f*g*h	j	k	= I / (j * k)	= m * (k * l)
4,912	27.5%	\$ 9.76	\$ 13,190	832	37.3%	\$ 42.49	\$ 13,190

13 14 15

16

17

Q. What are the advantages and disadvantages of each option?

A. Option 1 is consistent with the current payment structure of paying on each on-

peak hour of the year, so administratively it is the simplest. A disadvantage is

UM 1610 Opening Testimony

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

that it pays QFs for capacity in all on-peak hours, including in months in which it is not needed. Conversely, Option 2 provides an incentive for the QF to perform in those most-valued months, which better matches the hours in which the capacity will likely be needed. A minor disadvantage of Option 2 is that implementing this pricing structure could entail changes to current language in standard QF power purchase agreements, in the schedules of avoided cost prices, and to utility billing and payment systems and procedures.

Q. Does Staff see a similar issue with the other avoided cost calculations?

A. Any methodology in which a number of hours of operation is assumed as part of the capacity factor calculation will have the potential for a mismatch between that assumption and the number of hours in which the QF will be able to generate. In Order No. 14-058, the Commission ordered a capacity contribution adjustment for the standard avoided cost price calculation. Staff intends to testify regarding the need to modify the methodology for calculating the capacity contribution adjustment for other avoided cost prices later in this docket.

Q. If the Commission adopted either of Staff's proposed options, how would it be implemented?

A. Inputs for CTP and for the number of on-peak hours in which the renewable resource type generates would come from the utilities' acknowledged IRPs.
 Both assumptions would be based on the characteristics of the same resource, e.g., a single-axis tracking utility-scale PV solar facility. The payment would be

UM 1610 Opening Testimony

the same regardless of where the QF is located or the individual characteristics

of the QF.

Q. Does this conclude your opening testimony?

A. Yes.

1

2

3

4

CASE: UM 1610 WITNESS: BRITTANY ANDRUS

PUBLIC UTILITY COMMISSION OF OREGON

STAFF EXHIBIT 301

Witness Qualification Statement

November 4, 2014

Staff/301 Andrus/1

WITNESS QUALIFICATION STATEMENT

NAME:	Brittany Andrus
EMPLOYER:	Public Utility Commission of Oregon
TITLE:	Senior Utility Analyst Energy, Resources and Planning
ADDRESS:	3930 Fairview Industrial Dr. SE Salem, Oregon, 97302-1166
EDUCATION:	M.B.A. Portland State University, Portland, Oregon
	B.A. English Michigan State University, East Lansing, Michigan
EXPERIENCE:	I have been employed at the Oregon Public Utility Commission since 2011. My current responsibilities include research, analysis and technical support for electric company proceedings, with an emphasis on resource planning, power costs, and qualifying facilities under PURPA.
	I was previously employed for 17 years by the Bonneville Power Administration, a wholesale power marketing agency within the federal Department of Energy. My duties included energy efficiency planning and program management, long term load and revenue forecasting, long term power sales contracts, rate impact analysis, short term load forecasting, power and transmission scheduling, and management of load forecasting data and processes.

CASE: UM 1610 WITNESS: BRITTANY ANDRUS

PUBLIC UTILITY COMMISSION OF OREGON

STAFF EXHIBIT 302

Exhibit in Support Of Opening Testimony

November 4, 2014

Exhibit 302 Calculation of Capacity Payment for Renewable Avoided Cost Prices

Cor	ntributions to (CTP)	Capacity	Value	
			Simple Cycle	Annual
			CT Fixed	Capacity
Wind	Solar	Difference	Costs	Value per
%	%	%	\$/MW-yr	MW
а	b	c = b - a	d	e = c * d
4.2%	13.6%	9.4%	\$140,320	\$13,190

Step 1. Determine Value of QF Capacity

Step 2. Determine hours over which to spread capacity payments and calculate capacity price (rate)

Option 1: Pay on on-peak hours for all months

Option 2: Pay on on-peak hours only in the months of the utility's coincidental peaks (CP)

Option 1	Option 2				
Annual	2-Month	4-Month CP			
On-Peak	CP On-Peak	(Jul/Aug/			
Hours	Hours	Dec/Jan)			
4,912	832	1,659			

	O	ption 1			C	Option 2		
				Example	Example Based on Two-month CP: July and August			
On-Peak						On-Peak		
		Capacity		On-Peak Capacity				
Annual	On-Peak	Payment	Total of	Hours in	On-Peak	Payment	Total of	
On-Peak	Capacity	All Months	Capacity	Utility's CP	Capacity	July and August	Capacity	
Hours	Factor \$/MWh Payment		Payments	Months	Factor	\$/MWh	Payments	
f	gg	h = e / (f * g)	i = f * g * h	j	k	= I / (j * k)	= m * (k * l)	
4,912	27.5%	\$ 9.76	\$ 13,190	832	37.3%	\$ 42.49	\$ 13,190	

Calculation of On-Peak Capacity Factor for Option 2

			3-year					
			Average			On-peak Hours	Energy	Monthly
	Energy	3-year	No. of	No. of	Monthly	% of	Generated	On-Peak
	Generated	Average	On-Peak	16-Hr Block	Capacity	16-Hr Block	On-Peak	Capacity
	MWh	No. of Hours	Hours	Hours	Factor	Hours	MWh	Factor
	n	0	р	q	r = n / o	s = p / q	t = n * s	u = t / p
July	188	744	411	496	25.3%	82.8%	156	37.9%
August	182	744	421	496	24.5%	84.9%	155	36.7%
			832	2 Month (Jul/Aug) weighted avg CF:				37.3%

CERTIFICATE OF SERVICE

UM 1610

I certify that I have, this day, served the foregoing document upon all parties of record in this proceeding by delivering a copy in person or by mailing a copy properly addressed with first class postage prepaid, or by electronic mail pursuant to OAR 860-001-0180, to the following parties or attorneys of parties.

Dated this 4th day of November, 2014 at Salem, Oregon

300 re

Kay Barnes Public Utility Commission 3930 Fairview Industrial Drive SE Salem, Oregon 97302 Telephone: (503) 378-5763

UM 1610 SERVICE LIST

THOMAS H NELSON (C) (W) ATTORNEY AT LAW	PO BOX 1211 WELCHES OR 97067-1211 nelson@thnelson.com
*OREGON DEPARTMENT OF ENERGY	
KACIA BROCKMAN (C) (W) SENIOR ENERGY POLICY ANALYST	625 MARION ST NE SALEM OR 97301-3737 kacia.brockman@state.or.us
MATT KRUMENAUER (C) (W) SENIOR POLICY ANALYST	625 MARION ST NE SALEM OR 97301 matt.krumenauer@state.or.us
*OREGON DEPARTMENT OF JUSTICE	
RENEE M FRANCE (C) (W) SENIOR ASSISTANT ATTORNEY GENERAL	NATURAL RESOURCES SECTION 1162 COURT ST NE SALEM OR 97301-4096 renee.m.france@doj.state.or.us
ANNALA, CAREY, BAKER, ET AL., PC	
WILL K CAREY (W)	PO BOX 325 HOOD RIVER OR 97031 wcarey@gorge.net
ASSOCIATION OF OR COUNTIES	
MIKE MCARTHUR (W) EXECUTIVE DIRECTOR	PO BOX 12729 SALEM OR 97309 mmcarthur@aocweb.org
CABLE HUSTON BENEDICT HAAGENSEN & LLOYD LLP	
RICHARD LORENZ (C) (W)	1001 SW FIFTH AVE - STE 2000 PORTLAND OR 97204-1136 rlorenz@cablehuston.com
CHAD M STOKES (W)	1001 SW 5TH - STE 2000 PORTLAND OR 97204-1136 cstokes@cablehuston.com
CITIZENS' UTILITY BOARD OF OREGON	
OPUC DOCKETS (W)	610 SW BROADWAY, STE 400 PORTLAND OR 97205 dockets@oregoncub.org
ROBERT JENKS (C) (W)	610 SW BROADWAY, STE 400 PORTLAND OR 97205 bob@oregoncub.org
G. CATRIONA MCCRACKEN (C) (W)	610 SW BROADWAY, STE 400 PORTLAND OR 97205 catriona@oregoncub.org
CITY OF PORTLAND - PLANNING & SUSTAINABILITY	

DAVID TOOZE (W)	1900 SW 4TH STE 7100
	PORTLAND OR 97201 david.tooze@portlandoregon.gov
CLEANTECH LAW PARTNERS PC	
DIANE HENKELS (C) (W)	6228 SW HOOD PORTLAND OR 97239 dhenkels@cleantechlawpartners.com
DAVISON VAN CLEVE PC	
S BRADLEY VAN CLEVE (C) (W)	333 SW TAYLOR - STE 400 PORTLAND OR 97204 bvc@dvclaw.com
DAVISON VAN CLEVE, PC	
TYLER C PEPPLE (C) (W)	333 SW TAYLOR SUITE 400 PORTLAND OR 97204 tcp@dvclaw.com
ENERGY TRUST OF OREGON	
THAD ROTH (W)	421 SW OAK STE 300 PORTLAND OR 97204 thad.roth@energytrust.org
JOHN M VOLKMAN (W)	421 SW OAK ST #300 PORTLAND OR 97204 john.volkman@energytrust.org
EXELON BUSINESS SERVICES COMPANY, LLC	
PAUL D ACKERMAN (W)	100 CONSTELLATION WAY STE 500C BALTIMORE MD 21202 paul.ackerman@constellation.com
EXELON WIND LLC	
JOHN HARVEY (C) (W)	4601 WESTOWN PARKWAY, STE 300 WEST DES MOINES IA 50266 john.harvey@exeloncorp.com
IDAHO POWER COMPANY	
JULIA HILTON (C) (W)	PO BOX 70 BOISE ID 83707-0070 jhilton@idahopower.com
DONOVAN E WALKER (C) (W)	PO BOX 70 BOISE ID 83707-0070 dwalker@idahopower.com
LOVINGER KAUFMANN LLP	
KENNETH KAUFMANN (C) (W)	825 NE MULTNOMAH STE 925 PORTLAND OR 97232-2150 kaufmann@lklaw.com
JEFFREY S LOVINGER (C) (W)	825 NE MULTNOMAH STE 925 PORTLAND OR 97232-2150 lovinger@lklaw.com
LOYD FERY FARMS LLC	

LOYD FERY (W)	11022 RAINWATER LANE SE AUMSVILLE OR 97325 dlchain@wvi.com
MCDOWELL RACKNER & GIBSON PC	
LISA F RACKNER (C) (W)	419 SW 11TH AVE., SUITE 400 PORTLAND OR 97205 dockets@mcd-law.com
NORTHWEST ENERGY SYSTEMS COMPANY LLC	
DAREN ANDERSON (W)	1800 NE 8TH ST., STE 320 BELLEVUE WA 98004-1600 da@thenescogroup.com
OBSIDIAN RENEWABLES, LLC	
DAVID BROWN (W)	5 CENTERPOINT DR, STE 590 LAKE OSWEGO OR 97035 dbrown@obsidianfinance.com
TODD GREGORY (W)	5 CENTERPOINTE DR, STE 590 LAKE OSWEGO OR 97035 tgregory@obsidianrenewables.com
ONE ENERGY RENEWABLES	
BILL EDDIE (C) (W)	206 NE 28TH AVE, STE 202 PORTLAND OR 97232 bill@oneenergyrenewables.com
OREGON SOLAR ENERGY INDUSTRIES ASSOC.	
OSEIA DOCKETS (W)	PO BOX 14927 PORTLAND OR 97293-0927 dockets@oseia.org
OREGONIANS FOR RENEWABLE ENERGY POLICY	
KATHLEEN NEWMAN (W)	1553 NE GREENSWORD DR HILLSBORO OR 97214 k.a.newman@frontier.com
MARK PETE PENGILLY (W)	PO BOX 10221 PORTLAND OR 97296 mpengilly@gmail.com
PACIFIC POWER	
R. BRYCE DALLEY (C) (W)	825 NE MULTNOMAH ST., STE 2000 PORTLAND OR 97232 bryce.dalley@pacificorp.com
DUSTIN T TILL (C) (W)	825 NE MULTNOMAH ST STE 1800 PORTLAND OR 97232 dustin.till@pacificorp.com
PACIFICORP, DBA PACIFIC POWER	
OREGON DOCKETS (W)	825 NE MULTNOMAH ST, STE 2000 PORTLAND OR 97232 oregondockets@pacificorp.com
PORTLAND GENERAL ELECTRIC	
V. DENISE SAUNDERS (W)	121 SW SALMON ST 1WTC1301 PORTLAND OR 97204 denise.saunders@pgn.com
JAY TINKER (C) (W)	121 SW SALMON ST 1WTC-0702 PORTLAND OR 97204 pge.opuc.filings@pgn.com

PORTLAND GENERAL ELECTRIC COMPANY	
J RICHARD GEORGE (C) (W)	121 SW SALMON ST 1WTC1301 PORTLAND OR 97204 richard.george@pgn.com
PUBLIC UTILITY COMMISSION OF OREGON	
BRITTANY ANDRUS (C) (W)	PO BOX 1088 SALEM OR 97308-1088 brittany.andrus@state.or.us
PUC STAFFDEPARTMENT OF JUSTICE	
STEPHANIE S ANDRUS (C) (W)	BUSINESS ACTIVITIES SECTION 1162 COURT ST NE SALEM OR 97301-4096 stephanie.andrus@state.or.us
RENEWABLE ENERGY COALITION	
JOHN LOWE	12050 SW TREMONT ST PORTLAND OR 97225-5430 jravenesanmarcos@yahoo.com
RENEWABLE NORTHWEST	
RENEWABLE NW DOCKETS (W)	421 SW 6TH AVE., STE. 1125 PORTLAND OR 97204 dockets@renewablenw.org
MEGAN DECKER (C) (W)	421 SW 6TH AVE #1125 PORTLAND OR 97204-1629 megan@renewablenw.org
RICHARDSON ADAMS, PLLC	
GREGORY M. ADAMS (C) (W)	PO BOX 7218 BOISE ID 83702 greg@richardsonadams.com
PETER J RICHARDSON (C) (W)	PO BOX 7218 BOISE ID 83707 peter@richardsonadams.com
ROUSH HYDRO INC	
TONI ROUSH (W)	366 E WATER STAYTON OR 97383 tmroush@wvi.com
SANGER LAW PC	
IRION A SANGER (W)	1117 SE 53RD AVE PORTLAND OR 97215 irion@sanger-law.com
SMALL BUSINESS UTILITY ADVOCATES	
JAMES BIRKELUND (C) (W)	548 MARKET ST STE 11200 SAN FRANCISCO CA 94104 james@utilityadvocates.org
STOLL BERNE	
DAVID A LOKTING (W)	209 SW OAK STREET, SUITE 500 PORTLAND OR 97204 dlokting@stollberne.com