

Portland General Electric Company 121 SW Salmon Street • Portland, Oregon 97204 PortlandGeneral.com

November 16, 2012

Via Electronic Filing and US Mail puc.filingcenter@state.or.us

Oregon Public Utility Commission Attention: Filing Center 550 Capitol Street NE, #215 PO Box 2148 Salem OR 97308-2148

Re: UM 1182 Phase II In the Matter of PORTLAND GENERAL ELECTRIC COMPANY'S DIRECT TESTIMONY

Attention Filing Center:

Enclosed for filing in the above-captioned docket please find the following:

Original and five copies of Direct Testimony of:

• Darrington Outama, Ty Bettis, Jaisen Mody and Patrick G. Hager (PGE / 100-102) Three copies on CD of:

• Work Papers (non-confidential)

These documents are being filed electronically with the Filing Center. Hard copies will be sent via US Mail. An extra copy of this cover letter is enclosed. Please date stamp the extra copy and return it to me in the envelope provided.

Sincerel

Patrick G. Hager Manager, Regulatory Affairs

PGH:jlt encl. cc: UM 1182 Service List

CERTIFICATE OF SERVICE

I hereby certify that I have this day caused **PORTLAND GENERAL ELECTRIC COMPANY'S DIRECT TESTIMONY (PGE / 100-102)** to be served by electronic mail to those parties whose email addresses appear on the attached service list from OPUC Docket No. UM 1182.

DATED at Portland, Oregon, this 16th day of November, 2012.

Patrick G. Hager Manager, Regulatory Affairs Portland General Electric Company 121 SW Salmon St., 1WTC0702 Portland, OR 97204 503-464-7580 Telephone 503-464-7651 Fax patrick.hager@pgn.com

SERVICE LIST – OPUC DOCKET # UM 1182

Janet L. Prewitt, Assistant AG	Matt Hale, Manager – Energy Technology
DEPARTMENT OF JUSTICE	OREGON DEPARTMENT OF ENERGY
janet.prewitt@doj.state.or.us	matt.hale@state.or.us
(*Waived Paper Service)	(*Waived Paper Service)
Vijay A. Satyal, Senior Policy Analyst	Ann L. Fisher, Attorney at Law
OREGON DEPARTMENT OF ENERGY	AF LEGAL & CONSULTING SERVICES
vijay.a.satyal@state.or.us	energlaw@aol.com
(*Waived Paper Service)	(*Waived Paper Service)
David J. Meyer, Vice President & General Counsel	Patrick Ehrbar, Mgr Rates & Tariffs
AVISTA CORPORATION	AVISTA CORPORATION
david.meyer@avistacorp.com	pat.ehrbar@avistacorp.com
(*Waived Paper Service)	(*Waived Paper Service)
Michael Parvinen, Mgr Regulatory Affairs	Dennis Haider, Executive VP
CASCADE NATURAL GAS	CASCADE NATURAL GAS
michael.parvinen@cngc.com	Dennis.haider@mdu.com
(*Waived Paper Service)	(*Waived Paper Service)
Gordon Feighner, Utility Analyst	Bob Jenks, Executive Director
CITIZENS' UTILITY BOARD	CITIZENS' UTILITY BOARD
gordon@oregoncub.org	bob@oregoncub.org
(*Waived Paper Service)	(*Waived Paper Service)
G. Catriona McCracken, Staff Attorney	Irion A. Sanger
CITIZENS' UTILITY BOARD	DAVISON VAN CLEVE
catriona@oregoncub.org	ias@dvclaw.com
(*Waived Paper Service)	(*Waived Paper Service)
S. Bradley Van Cleve	John W. Stephens
DAVISON VAN CLEVE	ESLER STEPHENS & BUCKLEY
mail@dvclaw.com; bvc@dvclaw.com	stephens@eslerstephens.com
(*Waived Paper Service)	mec@eslerstephens.com
	(*Waived Paper Service)
Christa Bearry	Lisa Nordstrom
IDAHO POWER COMPANY	IDAHO POWER COMPANY
cbearry@idahopower.com	Inordstrom@idahopower.com
(*Waived Paper Service)	(*Waived Paper Service)
Ann L. Fisher, Attorney at Law	Lisa F. Rackner, Attorney
LEGAL & CONSULTING SERVICES	McDOWELL RACKNER & GIBSON, PC
ann@annfisherlaw.com	dockets@mcd-law.com
	(*Waived Paper Service)
David E. Hamilton	Alex Miller, Director – Regulatory Affairs
NORRIS & STEVENS	NORTHWEST NATURAL GAS COMPANY
davidh@norrstev.com	Alex.miller@nwnatural.com
(*Waived Paper Service)	(*Waived Paper Service)

Wendy Gerlitz	Robert D. Kahn
NORTHWEST ENERGY COALITION	NW INDEPENDENT POWER PRODUCERS
wendy@nwenergy.org	Rkahn@nippc.org
(*Waived Paper Service)	rkahn@rdkco.com
	(*Waived Paper Service)
Mary Wiencke	Natalie L. Hocken
PACIFICORP	PACIFICORP
mary.wiencke@pacificorp.com	natalie.hocken@pacificorp.com
(*Waived Paper Service)	(*Waived Paper Service)
Oregon Dockets	Maury Galbraith
PACIFICORP	PUBLIC UTILITY COMMISSION OF OREGON
oregondockets@pacificorp.com	Maury.galbraith@state.or.us
(*Waived Paper Service)	(*Waived Paper Service)
Michael T. Weirich, Assistant AG	Megan Walseth Decker, Senior Staff Counsel
DEPARTMENT OF JUSTICE	RENEWABLE NORTHWEST PROJECT
Business Activities Section	megan@rnp.org
michael.weirich@state.or.us	(*Waived Paper Service)
(*Waived Paper Service)	
Gregory M. Adams	William A. Monsen
RICHARDSON & O'LEARY	MRW & ASSOCIATES, LLC
greg@richardsonandoleary.com	wam@mrwassoc.com
(*Waived Paper Service)	(*Waived Paper Service)

BEFORE THE PUBLIC UTILITY COMMISSION

OF THE STATE OF OREGON

UM 1182 Phase II

PORTLAND GENERAL ELECTRIC COMPANY

Direct Testimony and Exhibits

November 16, 2012

UM 1182 / PGE / 100 Outama - Bettis - Mody - Hager

BEFORE THE PUBLIC UTILITY COMMISSION

OF THE STATE OF OREGON

UM 1182 Phase II

PORTLAND GENERAL ELECTRIC COMPANY

Direct Testimony and Exhibits of

Darrington Outama Ty Bettis Jaisen Mody Patrick G. Hager

Portland General Electric

November 16, 2012

Table of Contents

I.	Purpose and History of Current Phase of the Docket 1										
II.	Summary of Testimony										
III.	RFP Process and Framework	10									
IV.	Analysis of Four Identified Issues	16									
A.	Heat Rate Degradation	16									
B.	Cost Under-Runs and Over-Runs	20									
C.	Capacity Factors for Wind Resources	25									
D.	Counterparty Risk	29									
V.	Summary and Conclusions	35									
VI.	Witness Qualifications	37									
List of	List of Exhibits										

		I. Purpose and History of Current Phase of the Docket
1	Q.	Please state your names and positions at Portland General Electric (PGE).
2	A.	My name is Darrington Outama. I am currently a manager in Origination, Structuring,
3		and Strategic Analysis.
4		My name is Ty Bettis. I am the manager of Merchant Transmission and Resource
5		Integration.
6		My name is Jaisen Mody. I am the general manager of the Generation Projects
7		department.
8		My name is Patrick G. Hager. I am the manager of Regulatory Affairs.
9		Our qualifications are provided in the last section of our testimony.
10	Q.	What is the purpose of your testimony?
11	A.	The primary purpose of our testimony is to address the four items that the Commission
12		has identified for Phase II of this docket - heat rate degradation, cost over- and under-
13		runs, wind capacity factors, and counterparty risk. In particular, for the four items
14		identified, we review whether improvements can be made to the analytic framework and
15		methodologies used to evaluate and compare utility ownership of resources and power
16		purchases from independent power producers (IPP).
17	Q.	Please provide a brief summary of the history of this docket.
18	A.	In Order No. 11-001, the Commission reopened Docket UM 1182 to further examine
19		issues related to the Competitive Bidding Guidelines adopted by the Commission in
20		Order No. 06-446. ¹ The Commission identified three specific issues to be addressed.

¹ In the Matter of the Public Utility Commission of Oregon Investigation Regarding Performance-Based Ratemaking Mechanisms to Address Potential Build v. Buy Bias, Docket No. UM 1276, Order No. 11-001 at 6 (Jan 3, 2011).

This phase of the docket addresses the third issue: a "determination of the appropriate 1 analytic framework and methodologies to use to evaluate and compare resource 2 ownership to purchasing power from an independent power producer (Guideline 10(d))."² 3 At a workshop on November 18, 2011, the parties agreed on a list of twelve factors that 4 might be appropriate for consideration in evaluating the risks and advantages of utility-5 owned resources compared to those offered by other bidders, such as independent power 6 producers (IPPs), in a competitive bid evaluation process. The parties then participated 7 in another workshop on February 9, 2012, during which they unsuccessfully tried to 8 reach agreement on identifying three factors, from the original twelve, for in-depth 9 consideration. As indicated in the February 22, 2012, Staff Status Report, the parties 10 agreed to submit comments with their respective recommendations on how the 11 Commission should proceed in this docket. After parties submitted comments, the 12 Administrative Law Judge (ALJ) issued a ruling on May 30, adopting Staff's 13 recommendation that the parties initially address three issues from the twelve issue list: 14 cost over-runs and under-runs, counterparty risk, and heat rate degradation. In response 15 to Northwest and Intermountain Power Producers Coalition's (NIPPC) request, the ALJ 16 certified the May 30 ruling to the Commission. In Order No. 12-324, the Commission 17 affirmed the ALJ ruling with the modification to add a fourth issue (wind capacity 18 factor). 19

20

Q. What is the purpose of this phase of the docket?

22

21

A. The focus is on the appropriate methodology to compare the risks, costs, and benefits of utility ownership and purchasing power from an IPP. In particular, the Commission

² ALJ Prehearing Conference Memorandum at 1 (Jan 26, 2011).

opened the second phase to examine the competitive bidding guidelines, namely
 guideline 10(d). Specifically, the Commission stated:

"We want a more comprehensive accounting and comparison of all 3 of the relevant risks, including consideration of construction risks, 4 operation and performance risks, and environmental regulatory risks. We 5 also want more in-depth analysis of all of these risks. We invite comment 6 on the analytic framework and methodologies that should be used to 7 evaluate and compare resource ownership to purchasing power from an 8 independent power producer." Order No. 12-324 at 1 (quoting from Order 9 No. 11-001 at 6). 10

The Commission's immediate concern in this phase of the docket is whether the analytic framework and methodologies used can be improved in four areas: (1) heat rate degradation assumptions, (2) cost over/under-runs, (3) wind capacity factor assumptions, and (4) counterparty risk.

Q. Has the Commission identified any demonstrated biases in analyzing and scoring competitive bids?

A. No. The Commission concluded that the current ratemaking framework could potentially result in bias because the utility earns a return on its own capital investments and not on power purchased from IPPs. (Order No. 11-001). However, the Commission was careful to note that there had been no evidence showing that any bias in analyzing and scoring competitive bids had led to higher cost power for customers. Indeed, the purpose behind reopening this docket was to determine whether competitive bids were being evaluated appropriately and whether the parties could demonstrate any improvements in the analytic framework and evaluation process for reviewing competitive bids.
 (Order No. 11-001).

3 Q. How is your testimony organized?

A. Section I is this description of the purpose and history of the docket. In section II, we
summarize our testimony. In section III, we outline our competitive bid evaluation
methodology and process. In section IV, we address in detail each of the four items that
are the focus of this phase. In section V, we provide a summary and our conclusions.
We provide our qualifications in section V1.

II. Summary of Testimony

1Q.Do you have an overall recommendation concerning the framework for the2Commission's examination of competitive bidding guidelines in this phase of the3docket?

A. Yes. Ultimately, the debate should not be about the difference between utility-owned 4 versus contract resources. Rather, an effective request for proposal (RFP) bid evaluation 5 process (and any adjustments to the scoring methodology in this process) should be 6 designed solely for the purpose of identifying and accounting for specific resource and 7 bid characteristics. That is, each bid should be scored to capture costs, risks, and benefits 8 to utility customers based on the individual characteristics of that bid, and not on 9 perceived or potential attributes associated with a bid or resource classification 10 (e.g., utility-owned versus IPP owned). Since each electric generation resource, 11 operating environment, proposal, and bidder are unique, the RFP process must be both 12 rigorous and flexible enough to assess bid-specific characteristics and identify and score 13 key areas where risk and value differences exist. If a given bid provides customer 14 protection from risks or a reduced cost, its score should reflect those benefits. 15 Conversely, if a bid does not provide the risk protection or reflects higher costs, its score 16 should reflect that as well. 17

Moreover, PGE believes that these objectives can be best accomplished through the current basic framework whereby the utilities work with stakeholders, OPUC Staff, and the Independent Evaluator to establish scoring criteria and methodologies for each RFP that both meet the Commission's competitive bidding guidelines, as well as the objectives and criteria set forth in the utility's IRP Action Plan. In order for any future

- improvements to the RFP bid evaluation process to remain durable over time, this basic
 framework should be retained.
- **3 Q. Do you have any other recommendations?**

A. Yes, PGE has two additional recommendations. First, we should avoid generic
approaches such as the application of universal adders or bid scoring adjustments based
on ownership structure, as doing so would not recognize the unique nature of each bidder
and proposal. Applying a uniform adder or bid scoring adjustment would not improve
the evaluation methodology and has the potential to prevent the selection of least cost and
least risk generating resources for our customers.

In addition, we must also be careful to assess the validity of any potential new bid 10 evaluation methodology that is based on data that may not be relevant with respect to the 11 timeframe and location. To be both accurate and relevant, any data used to evaluate RFP 12 13 scoring methodologies should reflect the current operating and commercial environment for Northwest utilities and IPPs, as well as the existing Oregon regulatory and policy 14 framework for utility competitive bidding and ratemaking processes. Using historical 15 data that are not relevant to current practice or data from other areas of the country that 16 are not representative of conditions in Oregon would lack analytical rigor and would not 17 provide useful insights about the relative differences between bids for utility owned and 18 contract resources. 19

20

Q. What conclusions do you reach regarding the four items being evaluated?

A. For two of the four items (heat rate degradation, and wind capacity factors), our assessment indicates that PGE's RFP evaluation processes and methodologies provide a fair and appropriate approach for evaluating and comparing bid proposals. Thus, we

1

conclude that there is not sufficient justification for change. For the other two items, cost estimates and counter-party risk, we provide recommendations for improvements to the evaluation practice.

4

3

Q. What conclusions have you reached related to Heat Rate Degradation?

A. With respect to life cycle plant heat rate degradation, we conclude that life cycle heat rate
degradation should be included in utility bid evaluation methodology for any bids where
the heat rate is not otherwise guaranteed by the bidder. PGE's competitive bid evaluation
methodology appropriately considers heat rate degradation for utility owned generation
by including the long-run degraded average heat rate for bid price analysis.

10 Q. What do you conclude with respect to construction cost over- and under-runs?

First, we conclude that the market for power plant construction has advanced and A. 11 standardized significantly over the last few years and, consequently, that construction 12 cost risk cannot be accurately assessed simply by considering whether the project is 13 utility-owned or an IPP. As a result of this market evolution, the risk of construction 14 cost over-runs to utility customers is largely eliminated. Consequently, we suggest a 15 methodology whereby any bid that includes an overall plant construction cost guarantee 16 (wrap) either by the seller or by a third-party such as an Engineering, Procurement & 17 Construction (EPC) firm should receive a higher bid score than a proposal that does not 18 provide such protections. 19

20 Moreover, PGE has seen no evidence to suggest a tendency toward cost overruns 21 for utility-owned plants. In fact, recent PGE bids have consistently come in under 22 budget. These lower costs benefit customers.

23 Q. What do you conclude regarding wind capacity factors?

UM 1182 Phase II / PGE / 100 Outama - Bettis - Mody - Hager / 8

A. Regional wind plant generation capacity is growing rapidly. Because of wind power's short operating history, wind industry participants are continuously re-evaluating the performance of wind plants, as well as their impact on the electric systems to which they are interconnected, with respect to predictability and production variability. Recently, the industry has significantly advanced the state of the art in wind forecasting methodology.

We will show that, on a going forward basis, the industry can expect forecasts of 6 wind plant capacity factors to be more accurate for both utility-owned and IPP-owned 7 projects. Further, we anticipate no systematic tendency to over- or under-forecast wind 8 capacity factors in the future. Because all bidders will effectively be relying on the same 9 set of wind forecast tools and experts, there is no reason to differentiate between a 10 utility's proposal and an IPP proposal. We will also discuss the limitations in past wind 11 capacity factor forecasts, how they affect both IPP and utility-owned projects; what the 12 wind industry has learned from its recent experience and, going forward, why we can 13 expect better forecasts of expected wind production from all bidders. 14

Moreover, we will point out that RFP evaluations do not consider either (i) the benefits to ratepayers if a utility-build project generates more wind than forecasted or (ii) the loss of value to the utility and its customers if a PPA generates less than forecasted. We suggest that instead of attempting to score an RFP bid based on a wind forecast, which by definition is imprecise, the better course is to ensure that RFP bids and the bid evaluation procedures utilize sound and credible forecasting tools.

21

Q. What will this testimony demonstrate for counter-party risk?

1 A. We will show that, while PGE's bid evaluation methodology incorporates some of the 2 factors that make up counterparty risk, the methodology could be improved by 3 incorporating additional elements.

.

.

III. RFP Process and Framework

1 Q. What are the primary goals of the resource procurement process?

A. OPUC Order No. 06-446 articulated five goals of the competitive bidding process:
(1) provide the opportunity to minimize long-term energy costs, subject to economic,
legal and institutional constraints; (2) complement Oregon's integrated resource planning
process; (3) not unduly constrain utility management's prerogative to acquire new
resources; (4) be flexible, allowing the contracting parties to negotiate mutually
beneficial exchange agreements; and (5) be understandable and fair.

8 Q. Is it a goal of the evaluation process to reduce each bid (regardless of who owns the 9 resource producing the power) to a common point system based on the costs and 10 risks of each bid?

11 A. Yes. The goal of the evaluation process and criteria is to take into consideration each 12 bid resource's specific characteristics. Each bid is first scored individually based solely 13 on the bid's characteristics and then evaluated as part of the overall utility portfolio to 14 capture the full system costs to customers. A bid's score should reflect the costs and risk 15 of each bid to our customers.

Q. Has the Commission issued guidance to ensure that the RFP process is conducted in a transparent and unbiased manner?

A. Yes, the Commission adopted Competitive Bidding Guidelines in OPUC Order
 No. 06-446. The guidelines are designed to ensure a fair process. Two guidelines in
 particular provide a process to ensure that bids are evaluated appropriately in the utility's
 RFP. These established guidelines are the RFP Design (Guideline 6) and the RFP
 Approval (Guideline 7). Under these guidelines, the utility provides a draft RFP,

UM 1182 Phase II / PGE / 100 Outama - Bettis - Mody - Hager / 11

conducts workshops for stakeholders and bidders to explain the RFP, and answers any
 questions pertaining to the draft RFP.

Furthermore, parties can file comments with the Commission to recommend 3 changes to the draft RFP. The utility is required to consult with an independent 4 evaluator (IE) in preparing the RFP and the IE provides a vehicle for bidder 5 communications along with an assessment of the RFP to the Commission. Through this 6 process, the Commission is able to ensure that the RFP is aligned with the utility's 7 acknowledged IRP, that the RFP satisfies the Commission's competitive bidding 8 guidelines, and that the bidding process is fair and objective. The IE is chosen through a 9 competitive and open solicitation that seeks industry expertise in the energy industry and 10 **RFP** solicitations. 11

12 Q. Do these guidelines foster the accurate scoring and evaluation of competitive bids?

A. Yes. As stated above, the Competitive Guidelines allow opportunities for parties to review and comment on the utility's draft RFP. The Commission considers comments and may impose any modifications and/or conditions deemed necessary to have a final RFP that is fair and objective.

17 Q. Does the role of the IE also promote the likelihood that the RFP process is 18 conducted appropriately and that bids are evaluated accurately?

A. Yes. The Commission selects or approves an IE for every RFP. As stated in the RFP Guidelines (Order No. 06-446), the IE is to oversee the RFP process to ensure that it is conducted fairly and properly. The IE performs the following functions: (1) checking to ensure that the utility's scoring of the bids and its selection of the short-lists are reasonable; (2) working with the utility to reconcile or resolve any scoring differences

UM 1182 Phase II / PGE / 100 Outama - Bettis - Mody - Hager / 12

between the utility's and the IE's bid scoring and evaluation; (3) preparing a final report 1 for the Commission, once the utility has selected a short-list for acknowledgement; 2 and (4) participating in the RFP short-list acknowledgment proceeding if the utility elects 3 to seek short-list acknowledgment. (Guidelines 10, 11 and 13). Additionally, in 4 accordance with the modification of Guideline 13 in Order No. 11-340, the role of the IE 5 can be expanded to include the RFP bid negotiations and final resource selection, should 6 Staff make such a recommendation to the Commission at the time the final short-list is 7 acknowledged. (Order No. 11-340 at 4). Under Guideline 10, if the RFP includes self-bid 8 benchmark options, the IE will independently score the utility's Benchmark Resource and 9 all, or a sample of, the bids to determine whether the selections for the initial and final 10 short-lists are reasonable. 11

12

Q.

13

Does PGE's RFP process lead to selection of projects that minimize the cost and risk to PGE's customers?

Α. Yes. As stated above, the issue in this docket is whether the evaluation process and 14 methodologies accurately score competing bids during the resource selection process. 15 PGE uses a scoring framework in its RFPs which appropriately accounts for the costs, 16 risks and benefits to customers of each bid. PGE's general scoring framework has been 17 thoroughly vetted with stakeholders in its last two RFPs and was developed with input 18 from Commission Staff and the IE. Expected cost per MWh constitutes the majority of 19 the potential score and risk and other characteristics make up the remainder. Specifically, 20 financial analysis (cost) has accounted for 50% to 60% of the score. Non-price factors 21 have constituted the remaining 40% to 50% of the possible score. These non-price 22

1		factors include items such as permitting, project financing, fuel supply, electricit
2		transmission, developer / seller credit, and plant characteristics.
3		PGE continually reviews its bid selection process with regard to ensuring that th
4		value and risks of each bid are accounted for.
5	Q.	Have the IEs concluded that PGE's evaluation methodology and process are fai
6		and unbiased?
7	A.	Yes. PGE's evaluation methodology and process have appropriately scored bids based o
8		their individual characteristics, creating a level playing field for all participants:
9		• "The RFP evaluation process and modeling treated all bidders fairly." (Find
10		Report of the Independent Evaluator at 2, Portland General Electric Company'
11		Request for Proposals for Renewable Energy Resources, OPUC Docket UM 134
12		(January 28, 2009))
13		• "We believe PGE conducted the RFP fairly and without bias towards or agains
14		any bidder or type of generation. The criteria and evaluation used to establish th
15		Final Short- list was fully reviewed by the IE, and we found it to be consistentl
16		applied to all bids." (Final Report of the Independent Evaluator at 26, Portlan
17		General Electric Company's Request for Proposals for Renewable Energ
18		Resource, OPUC Docket UM 1345 (January 28, 2009)).
19		• " in our view, the bid evaluation criteria did not contain undue biase
20		supporting company ownership in projects and actually the criteria may have ever
21		been slightly biased against such an option." (Portland General Electri
22		Company Request for Proposals for Power Supply Resources Final Report of th

Independent Observer, Merrimack Energy Group, Inc., OPUC Docket UM 1080 1 2 at 29 (September 6, 2004)). "The evaluation process was a very fair and comprehensive process. In our view, 3 the level of effort and diligence exhibited by members of the evaluation team was 4 extraordinary." (Portland General Electric Company Request for Proposals for 5 Power Supply Resources Final Report of the Independent Observer, OPUC 6 7 Docket UM 1080 at 55 (September 6, 2004)). How does PGE select which bids make the final short list? Q. 8 The final short list is comprised of the highest scoring bids. 9 A. The scoring process involves three distinct phases: 10 Phase I: Each bid is reviewed to determine if it meets the pre-established minimum. 11 threshold requirements. 12 Phase II: Initial Price and Non-Price scores are then determined based on information 13 submitted by the bidders. The resulting ranking forms the basis upon which 14 the initial short list of bids is compiled. Typically, the initial short list will 15 include multiple bids which in the aggregate, represent more than the amount 16 of energy requested in the RFP. 17 Phase III: Determination of the final Short-List is compiled using a two-step process: 18 1. PGE conducts due diligence to confirm the bid's credit and 19 transmission / fuel transport arrangements. 20 2. For bids that remain on the shortlist after PGE has conducted the due 21 diligence described in Step 1 of Phase III, PGE performs a portfolio 22 based analysis to assess the full system cost impact to customers 23

1		when combining multiple bids into the Company's existing portfolio.
2		This step captures any synergies resulting from a combination of
3		bids.
4		Typically, the bids selected for the final short list constitute more than the amount
5		of resource requested in the RFP to allow for the fact that some shortlisted bidders may
6		withdraw from the process or that the parties may not successfully close the negotiations.
7	Q.	Do the scoring criteria assign additional points for ownership to the detriment
8		of PPAs?
9	A.	No. Instead, the scoring criteria are designed to evaluate bids that have the potential to
10		offer the lowest combination of costs and risks from the customers' point of view. The
11		criteria do not assign points based on ownership, but rather, the costs, risks and benefits
12		associated with each structure. For any given factor considered, bids for either utility
13		ownership or IPP ownership could, based on the bid characteristics, receive the maximum
14		score.
15	Q.	How does PGE select the winning bid(s)?
16	A.	PGE uses the scoring process described above to compile a final short list of bids. From
17		this Final Short List, PGE proceeds with negotiations and then selects the winning bid(s)
18		that represent the overall long-term value for customers in meeting their energy and
19		reliability needs given associated risks.

UM 1182 Phase II / PGE / 100 Outama - Bettis - Mody - Hager / 16

IV. Analysis of Four Identified Issues

A. Heat Rate Degradation

1 Q. Please explain gas plant heat rate degradation.

A. A gas-fired plant's heat rate is the rate at which the plant converts gas to electricity. The heat rate is usually measured as the ratio of British thermal units of natural gas consumed to kilowatt-hours of electricity generated (Btus per kWh). This ratio is one indicator of how well the plant is performing and is one of the main parameters we use to calculate the cost to operate the plant. Consequently, an accurate estimate of the heat rate is required for an accurate cost estimate and bid.

Like all machinery, and similar to an automobile, a gas plant's level of performance will vary over time; the level of performance may decline in the interval between scheduled maintenance and then recover after the scheduled maintenance. A bid's estimate of life cycle heat rate degradation should reflect both the decline in performance and the recovery achievable with proper maintenance.

13 Q. Why is this important in the competitive bid evaluation process?

A. In assessing the economic value of a bid, it is important to consider its heat rate
 throughout the applicable term because this ultimately impacts the cost of the bid. This
 requires an evaluation of heat rate degradation and periodic efficiency recovery from
 maintenance over the life of the plant.

18 Q. Does PGE include heat rate degradation in its evaluation methodology and process?

A. Yes. For its Benchmark projects, PGE includes heat rate degradation in its bid, and also
 includes the cost of a Long Term Service Agreement (LTSA) needed to maintain the
 projected heat rate over the life of the plant.

1

Q. Is heat rate degradation considered for other bidders?

A. Yes. Degraded heat rate information is obtained from equipment vendors, regardless of
who is developing the project. These data include the details and costs of an LTSA
consistent with the life cycle heat rate assumptions.

5 (

Q. Do IPP Tolling Agreements (PPAs) offer guaranteed heat rates?

A. In the current market, bidders offering tolling agreements are not committing to a long run guaranteed heat rate. Current offers typically include a provision for resetting the
 offered heat rate on an annual basis after an annual plant performance test.

9 Q. How are heat rates and heat rate degradation determined?

Typically, the turbine manufacturer will provide an estimate of a "new and clean" heat 10 А. rate and an estimate of "non-recoverable" heat rate degradation. The non-recoverable 11 degradation is the deterioration in plant performance that cannot be reversed with 12 maintenance and will usually be incurred during the first year (approximately) of plant 13 These performance parameters (new and clean heat rate and percent 14 operation. degradation) are typically highly accurate and often form the basis of performance 15 guarantees from the manufacturer. 16

17 Q. What other information is required to evaluate the heat rate assumptions in a bid?

A. The bid should incorporate the long run average level of heat rate degradation beyond the
 non-recoverable amount of heat rate degradation and the details of a maintenance plan
 that is consistent with the assumed long-run level of degradation.

21 Q. Did PGE follow this procedure in preparing its bid for the Port Westward plant?

- 22 A. Yes. PGE included in the bid the long run average heat rate degradation and the costs of
- the LTSA agreement consistent with the recoverable performance.

Q. How does PGE ensure its projects are maintained and are capable of operating
 efficiently?

A. PGE enters into LTSAs with the Original Equipment Manufacturer (OEM). An LTSA
provides for parts and labor certainty for maintenance outages <u>while mitigating cost</u>
<u>risks</u>. It also provides outage guarantees and ensures that the gas turbine is maintained to
the highest standards. The LTSA costs are used for calculating and predicting our
yearly O&M numbers and are included in our benchmark bids.

For example, PGE has LTSAs for the Coyote Springs and Port Westward 8 generating plants. Both these LTSAs include performing maintenance on the gas turbine 9 at recommended intervals in accordance with the OEM's recommendations. The 10 maintenance intervals include periodic combustion and turbine maintenance followed by 11 an outage termed "Major Maintenance". During this major maintenance, the service 12 provider opens, inspects and repairs or replaces all of the compressor and gas turbine 13 Gas turbine components can also be upgraded to current technologies 14 components. during this outage which could result in improved plant performance. This allows the 15 plant to recover most or all of the recoverable heat rate degradation the plant had suffered 16 over the intervening operating period. PGE plants also utilize water washes and on-line 17 cleaning to reduce degradation. 18

Q. Has Port Westward's actual heat rate performance to date been consistent with the assumptions made in PGE's bid?

A. Yes. Realized heat rates to date have improved from the long-run average heat rate
 assumed in PGE's Port Westward bid, meaning that the heat rate degradation forecasts

for the Port Westward bid were higher than the actual heat rate experienced. This has
 resulted in lower power costs for customers.

3 Q. What conclusions have you reached related to Heat Rate Degradation?

A. We conclude that life cycle heat rate degradation should be included in utility bid
evaluation methodology for any bids where the bidder provides no heat rate. PGE's
evaluation methodology appropriately considers heat rate degradation for ownership
proposals tied to specific generation units and scores the bids accordingly. Using this
scoring methodology, the impact of heat rate degradation is directly captured in the cost
of the resource, and is also therefore included in the bid overall bid score.

More specifically, PGE's scoring methodology utilizes the long-run degraded 10 average heat rate for bid price analysis. This long-run average is based on technical 11 12 information available from turbine manufacturers who predict life cycle plant heat rate degradation due to operations, as well as periodic heat rate recovery resulting from unit 13 service / maintenance in accordance with the provisions in typical manufacturer LTSAs -14 like those currently in place for PGE's Port Westward and Coyote plants. This approach 15 of using detailed heat rate performance projections to establish the expected long-run 16 degraded average heat rate effectively sets tight boundaries on the potential deviation of 17 actual plant heat rate results from initial estimates used in RFP evaluation. As a result, 18 the risk that bid generation fails to achieve the "as bid" heat rate is minimized. 19

For utilities in Oregon, on a prospective basis, we need only consider the long-run behavior of heat rates for gas-fired plants since, with the exception of biomass, other large scale thermal plants are effectively prohibited by current state policy. 1Q.Does PGE's process for scoring utility benchmark bids need to be modified to2account for a downward bias in estimates of life-cycle heat rates?

A. No. PGE data show that its bids for benchmark projects incorporate heat rate degradation, and may actually overestimate the amount of heat rate degradation of its plants. Further, the information that the Independent Evaluator (IE) needs in order to audit the utility's heat rate assumptions is readily available. Specifically, the turbine manufacturer's base estimates for a gas plant provide an independent forecast that can be used for this audit.

B. Cost Under-Runs and Over-Runs

9 Q. How have changes in the power plant market affected the risk of cost over-runs 10 faced by consumers?

The market for power plant engineering, procurement and construction has advanced and A. 11 standardized significantly over the last few years in such a manner that this issue is 12 effectively diffused for both utility-owned and IPP projects. These advancements include 13 readily available products and contract features that substantially mitigate the risk of 14 construction cost over-runs incurred by project owners for power plants. One of the 15 major advancements is the availability of cost guarantees for major components and plant 16 construction from large turbine manufacturers and Engineering, Procurement & 17 18 Construction (EPC) firms. These guarantees essentially shift construction cost over-runs away from the plant owner to the third-party manufacturer and EPC companies and 19 largely eliminate cost overrun risk to utility customers. The turbine manufacturers and 20 EPC contractors are also typically very large and well-funded entities, so the risk that 21 they would not be able to stand behind the obligations associated with the construction 22

1	,	cost guarantees is also very low. Accordingly, for any proposal that includes major
2		component and plant construction cost guarantees (utility owned or IPP), the likelihood
3		that plant construction costs actually paid would materially exceed the cost estimates at
4		the time of bid evaluation is low.
5	Q.	With current EPC practices, should we expect the actual costs of building a power
6		plant to depart materially from the cost estimate submitted with the bid?
7	A.	No. Under current EPC practices, a large fraction of total construction cost is covered by
8		cost guarantees provided either by the equipment manufacturer and / or the EPC
9		contractor. The residual risk in the cost estimate is very small. PGE uses the fixed price
10		lump sum approach for large projects where the fixed price is obtained in a competitive
11		bidding process. Such a fixed price contract insures against the many uncertainties
12		(for example, material and project cost escalation) that could occur during project
13		execution.
14	Q.	Please discuss the types of construction cost guarantees that are typical of current
15		contracting practice.
16	А.	For a gas plant, PGE can expect to write a detailed specification that is reviewed by our
17		operation and maintenance team. This specification would address plant design,
18		equipment procurement, construction, commissioning and startup. The contractor then
19		provides a fixed price bid backed with contractual guarantees. No other price adders are
20		permitted except for approved change orders. PGE project management team then
21		manages the change order rate to below industry standards during project execution.
22	Q.	How does PGE manage EPC cost?

UM 1182 Phase II – Opening Testimony

.

A. PGE hires experienced and qualified EPC contractors, and uses commercially proven generation technologies. This development expertise is combined with the company's internal and external experts in project management. By managing project development in this manner, PGE has been able to keep both owner requested and contractor requested change orders below the industry average. For Port Westward the change order rate was below 2% and for Biglow Canyon it was 1%.

7 Q. Do you have a recommendation on how to improve bid evaluation / scoring?

Yes. Despite our assessment that this risk can be substantially mitigated through readily 8 Α. available products, PGE agrees that construction cost risk should be included in the bid 9 evaluation process. We would suggest an approach whereby any bid that includes an 10 overall plant construction cost guarantee (wrap) either by the seller or by a third-party 11 such as a first tier EPC contractor should receive a higher bid score than a proposal that 12 does not provide such protections. Further, any bid that provides a guarantee and/or 13 14 contract protections for cost increases that are limited in amount, therefore leaving a material residual risk of cost increases with the plant owner, would receive a lower score 15 than a bid providing a full guarantee. An appropriate scoring methodology for this item 16 should also consider whether the construction cost guarantor has the financial ability to 17 stand behind the potential liability associated with the guarantee. 18

Q. Are there any other factors that you would consider incorporating into the bid evaluation regarding this item?

A. Yes. While construction cost and performance guarantees substantially mitigate cost
 over-run risk faced by PGE's customers, ownership proposals still permit customers to
 benefit from cost savings if actual plant construction costs are lower than the projected

UM 1182 Phase II / PGE / 100 Outama - Bettis - Mody - Hager / 23

cost at the time of bid evaluation. When PGE completes a utility ownership project under budget, the cost savings flow to customers through a reduction in energy costs. While we recognize that end effects are not among the issues to be examined in this phase of the docket, we believe that the residual value and optionality associated with owning a generation project offers the potential for considerable additional value beyond the projected useful life to the plant owner (or in the case of a utility, to its customers), and that this value should be incorporated in the evaluation and selection of new resources.

8 In addition, the current regulatory framework also provides utilities with strong 9 incentives to avoid cost over-runs and seek third party construction price guarantees; 10 given that rate recovery mechanisms offer multiple layers of prudency review and 11 customer protections.

Q. Do customers similarly benefit if an IPP plant is built at less than the assumed cost in the IPP bid?

A. No. If an IPP plant is built at less than the cost assumed in the IPP bid, all of the benefits go to the IPP. The point of comparing the impact of these "under budget" scenarios is that the evaluation methodology and process requires no adjustment as long as there is no evidence of a systematic trend of cost over-runs or cost under-runs for utility ownership projects.

Q. Does PGE's experience with utility ownership projects support PGE's approach of not assessing a premium or penalty against utility-owned projects?

A. Yes. The initial cost estimate for Port Westward was \$298.2 million. However, the estimate PGE filed in UE 180 was \$285.2 million and the final installed cost of \$279 million represented a net cost savings for customers of 6.4%.

- 1 Q. Was PGE's experience with the Biglow Canyon plants similar?
- 2 A. Yes.
- The cost estimate for Phase I of Biglow Canyon was \$261 million. The final
 installed cost of \$256.5 million represented a net cost savings of 1.7%.
 The cost estimate for Phase II of Biglow Canyon was \$325.5 million. The
- updated estimate was \$321 million and the final installed cost of \$318.4 million
 represented a net cost savings of 2.2%.
- The cost estimate for Phase III of Biglow Canyon was \$428.4 million. PGE and
 parties settled on a \$34.6 million reduction in rate base and the final installed cost
 of \$383.7 million represented a net cost savings of 10.4%.
- Q. In light of this, should PGE change its procedures for evaluating cost estimates in
 bids?
- A. Yes. While PGE's practice in scoring bids evaluates construction costs, modifying the approach to account for whether or not a bid includes a full wrap or cost guarantee would reduce the risk of material cost over-runs to PGE's customers.
- 16 Q. Did PGE receive performance guarantees when it built its Port Westward plant?

A. Yes. For example, after signing a fixed price contract with Black & Veatch for the Port
Westward plant, the market for gas turbines and combined cycle plants improved
significantly causing market prices to increase. However, PGE's contract insulated the
Company and our customers from market price increases as we had locked in a price
guarantee. The project subsequently came in under budget.

1	Q.	Knowing PGE has historically brought plants on-line at costs lower than the
2		estimate in PGE's bid, is it logical to apply a uniform average capacity cost adder to
3		PGE's future benchmark bids?
4	A.	No. To apply a price adder as a method to recognize risks that have not been experienced
5		by the utility's customers, but are based on generic industry experience, makes no logical
6		sense.
		C. Capacity Factors for Wind Resources
7	0	Has there been a change in best practices within the wind industry regarding wind
7	Q.	
8		plant availability numbers in production estimates? If so, what has brought on this
9		change?
10	А.	Yes. The U.S. wind industry has discovered factors that affect wind turbine availability
11		that are unique to the U.S. For instance, the typical size of a wind plant (or farm) in the
12		U.S. is much larger than a wind plant in Europe. This size difference affects maintenance
13		schedules, curtailment impacts, and the effect of cutouts due to high wind speeds. Other
14		factors, such as geography and turbine size can also affect availability. The current gross
15		availability number used for production estimates in the U.S. is 95.3%.
16	Q.	Are there any other factors that might result in a difference between the production
17		estimate and the actual generation of a wind farm?
18	A.	Yes. The wind industry has discovered other factors that can cumulatively affect the
19		difference between the production estimate and actual production. One major factor is
20		the impact of the wake created by the turbines themselves. Wind farm layouts are created
21		to maximize the output of the plant by minimizing intra-farm wakes. Feeders, or lines of
22		turbines, are lined up perpendicular to the prevailing wind in order to capture as much of

the energy from the wind as possible without creating a wake on the next turbine in line.
When the wind shifts and comes in parallel to the feeder, a wake is created down the line
of turbines that reduces the output of the entire feeder. This wake effect can also be
caused by new wind plants that are upwind from existing wind plants.

5 Other factors that can contribute to the difference between the production estimate 6 and actual generation are weather-related (such as icing on the blades, sand and grit 7 build-up, and lightning strikes), biological interference (gophers, avian), and a lack of 8 high quality, long-term reference sites.

9 Q. What effect have these changes had on the development of annual wind production
10 estimates for wind farms?

A. According to a presentation made by Michael Brower of AWS (see PGE Exhibit 101), 11 which compared annual wind production assessments made pre-2008 to actual 12 production, the US wind industry has underperformed by approximately 10%. The 13 presentation also discussed GL GH's history of underperformance. Both companies 14 have publicly stated that their current assessment capabilities have improved significantly 15 in recent years due to improved analytical techniques and more plant operating 16 Using an improved assessment methodology (see PGE Exhibit 102), experience. 17 GL GH reran the same 152 wind farm years they used to verify their past assessment 18 accuracy. This new assessment methodology has reduced underperformance 19 expectations from 9% to 0%. 20

22

21

Q. Do these improvements in the current production estimate development process undermine the idea of applying a bid adder to utility-owned wind?

1	A.	Yes. There is no need to penalize the utility-owned wind plant bids to compensate for an
2		underperformance in historical production estimates. The wind industry has adjusted and
3		matured in this regard and to apply an adder going forward would simply be over-
4		compensating for a problem that has since been resolved.
5	Q.	Please describe the risks to consumers if the actual capacity factor for a Utility
6		Owned Generation (UOG) wind plant is less than projected in the bid.
7	A.	If the UOG wind plant underperforms compared to the forecast, then the average cost per
8		MWh from the project would be higher and the project would produce fewer Renewable
9		Energy Certificates (RECs) than projected. Depending on the treatment in cost recovery
10		proceedings at the Commission, these costs may be passed on to customers.
11	Q.	Are the risks associated with a lower-than-forecasted capacity factor balanced by
12		potential benefits to customers if the actual capacity factor for a Utility Owned wind
13		plant is greater than projected in the bid?
14	A.	Yes, our customers would benefit in this scenario. If a UOG wind plant performs better
15		than forecasted, the average cost per MWh from the project would be lower and the
16		project would produce more RECs and energy than projected. The additional RECs
17		would either reduce the need to purchase or produce RECs in the future or, if sold, would
18		produce incremental revenue. Our customers would benefit from the cost savings or
19		incremental revenue through PGE's ratemaking processes, (AUT and PCAM).
20	0	Are PPAs similar in terms of the potential countervailing risks and benefits from
in V	Q.	Are TTAS similar in terms of the potential countervaling risks and benefits from

1	А.	Yes,	custo	mers	still	face	risk	when	wind	ca	pacity	factors	are	less	than	forecas	ted.
2		Howe	ever,	it is	less	clear	that	custom	ers w	rill	benefit	when	wind	cap	acity	factors	are
3		greate	er tha	n fore	ecaste	ed.											

4 Q. Please explain.

5 A. Under a fixed price PPA contract, when the wind plant underperforms the IPP's capacity 6 forecast, customers could face cost risk if the utility needs to purchase RECs or 7 replacement qualified green energy in order to meet its RPS requirements. Additionally, 8 customers could face cost risk if the utility needs to purchase additional energy to meet 9 its load requirements due to receiving less wind energy than forecast when market energy 10 prices are higher than the PPA energy price.

Q. Please describe the impact on customers if the actual capacity factor for a PPA wind plant is greater than projected in the bid.

A. Under a fixed price PPA, the utility and its consumers would purchase more energy and would receive more RECs than expected. The excess energy production and contract payments may or may not be a benefit to customers. If the PPA price is higher than the short-term market price for electricity (which is likely in today's environment), power costs would be greater than expected.

Q. What is your recommendation regarding scoring and evaluation of UOG and PPA wind projects?

A. As previously stated, we believe that each bid should be scored based on that bid's characteristics and the costs and risks it would impose on consumers. Given that the wind industry in the United States has improved its forecasting methodology and that both PPA and utility-owned wind projects impose risks and provide benefits to consumers, we believe that no bid premium for a utility-owned project is warranted.

D. Counterparty Risk

3

1

2

Q. How does PGE define counterparty risk?

Counterparty risk refers to the risk associated with the counterparty's failure to execute 4 Α. the transaction and/or nonperformance of its contract obligations. There are two primary 5 aspects of counterparty risk, both of which can have significant impacts on the utility and 6 its customers. The first is the risk that a counterparty will become unwilling or unable to 7 perform some or all of the provisions of a specific contract due to a change in external 8 environment or circumstance that adversely impacts the economics of the transaction. 9 This risk is referred to as transaction-specific risk. For example, in the case of 10 unexpected capital additions, there may be a risk that an IPP has the contractual ability to 11 terminate, renegotiate, or pass the cost through to the buyer under a PPA if a major non-12 elective capital addition is required on the generation resource underlying the PPA.³ 13 Even in the absence of such contractual rights, it would be important to evaluate the risk 14 that, if the cost of a capital addition is large enough, the counterparty could elect to 15 breach the agreement, initiate a legal dispute or be forced to file for bankruptcy. In other 16 words, because IPPs are typically not regulated by the Commission, an IPP's guarantee to 17 keep the utility and its customers insulated from any unexpected cost or supply deviations 18 is only as good as the level of collateral offered by the counterparty or its parent company 19 at any particular time and the ability of the utility to perfect its security rights in a legal 2021 proceeding. Even if a selling counterparty was large enough and exhibited the financial

³ Costs determined as prudent that are passed through to the utility, as buyer, would subsequently be passed through to customers.

UM 1182 Phase II / PGE / 100 Outama - Bettis - Mody - Hager / 30

wherewithal to insulate a purchasing utility from all of the risks associated with the generation and delivery of electricity, no prudent organization would do so. If adverse circumstances encountered by the seller / generation owner resulted in significant financial losses due to continued contract performance, elective or forced default would likely occur.

Another possibility is a situation where a counterparty encounters a problem with 6 7 the development or construction of a new generation project (e.g., inability to obtain all necessary permits or acquire acceptable financing), and is able to avoid performance 8 9 requirements and/or damages through a condition precedent clause (these are common provisions in contracts associated with generation projects that are not yet built). Similar 10 contractual rights that excuse performance exist for significant and unforeseen problems 11 that could be encountered for a contract with an existing generator (e.g., force majeure). 12 Another example is a no-damages provision that excuses performance, provides for a 13 14 change in pricing and/or allows for a no-damages termination if a significant, unforeseen event such as a change in environmental law or regulation is encountered. This type of 15 provision is becoming more common in long-term wholesale energy contracts to address 16 17 the potential for significant changes in future environmental regulations (e.g. regulations pertaining to CO₂ and greenhouse gas emissions). 18

19 20 The second primary area of counterparty exposure is financial risk – the risk that a counterparty will no longer be able to fulfill many or all of its contract obligations due to

insolvency or a material deterioration of the organization's financial condition.⁴ This 1 type of counterparty risk is commonly referred to as "Credit Risk." 2

Q. Does PGE currently include counterparty risk in its bid scoring? 3

To some extent. In its scoring and evaluation criteria PGE considers Credit Risk which is 4 Α. only one component of Counterparty Risk. PGE also accounted for a limited aspect of 5 counter-party risk (experience of the project development team) in our 2007 Renewable 6 RFP scoring. 7

However, this scoring element does not capture the risk that the counter party will 8 not be able to fulfill its obligations due to insolvency or a material deterioration of its 9 financial condition or other changed circumstances. We do not score and evaluate these 10 11 other types of counterparty risk.

12 Credit risk, which is another element of counterparty risk, refers to the risk associated with the counterparty's financial strength. Specifically, PGE's bid scoring 13 criteria consider the creditworthiness ("credit evaluation") of a bidder based on its ratings 14 from the main ratings agencies (S&P, Moody's, Fitch, or DBRS) and the finance ability 15 of the project ("development viability"). 16

How does PGE consider credit risk in the bid scoring? Q. 17

18 Α. The overall financial strength of the bidder has to meet a certain threshold to qualify. Bidders must be at least investment grade as rated by one or more of the major credit 19 rating agencies. Alternatively, bidders can meet this requirement through the issuance of 20 a parental guarantee from an investment grade entity or a Letter of Credit issued by a

21

⁴ It is common that an IPP will form a limited liability corporation (LLC) and place the assets underlying a PPA in the LLC. By doing so, the IPP / parent company is protected should the LLC fail.

1 qualified financial institution. Once this threshold is met, the bid can proceed to the 2 scoring stage where a bid's score is based on its credit rating.

Q. Why should credit risk be assessed twice, once as a threshold issue and again in the scoring criteria?

A. Since credit plays a crucial role in an entity's ability to bring a project to fruition and
meet the ongoing operational and performance requirements of a contract, seller credit is
a critical issue and must be considered on a threshold basis. There would be no reason to
score a bid if the credit threshold were not met. Scoring credit risk allows those
qualifying bids to be differentiated based on their relative credit profile.

The credit threshold can be met if the bidding entity is rated as investment grade 10 or through a parental guarantee. In addition, PGE provides alternatives for non-11 investment grade companies to meet the threshold. If credit was only treated as a 12 threshold issue, the scoring criteria would essentially assess the credit risk of an "AAA" 13 senior unsecured debt rated multinational-corporation as the same credit risk profile of a 14 small start-up with a Letter of Credit issued by a qualified financial institution. That 15 The additional granularity of scoring beyond threshold would not be appropriate. 16 requirements enables us to differentiate bidder credit profiles and associated risk to 17 customers. 18

Q. Do PPAs typically contain provisions that protect PGE and customers from the risk of a seller's default?

A. Only partially. We must also keep in mind that wholesale energy contracts provide for a monetary remedy (financial damages); thus, the remedy will not be available for the purchaser to compel the seller to continue to deliver electricity or capacity in accordance with the terms of the agreement. Since typical PPA credit and collateral provisions only
 account for a portion of the full financial risk of replacing a long-term, significant
 contract, utility customers would ultimately bear both the supply and financial risk of
 counterparty performance failure and default.

5

Q. Are there other provisions in RFPs that directly impact counterparty risks?

Yes. Consistent with the Commission's Competitive Bidding Guidelines, bidders can Α. 6 modify or delete PPA contract provisions. Bidders could also state that language of 7 certain provisions will be determined during contract negotiations. Since these 8 provisions are only finalized during final contract negotiations, it means that contract 9 provisions and customer protections that PGE believed are included in a PPA bid, and on 10 which basis the bid is scored, may not be included in the final contract. As a result, the 11 score on which a PPA was selected for the final short list may not correctly reflect its 12 costs and risks. 13

14

Q.

Do you have a proposal to remedy this issue?

A. Yes. We recommend that key provisions in PPAs should be non-bypassable. That is,
 counterparties would not be able to modify key provisions that impact counterparty risk.

17 Q. Does the scoring differentiate between ownership structures?

A. Only in a specific circumstance. The threshold and total scoring criteria is the same for all bids regardless of ownership structure (utility or IPP). There is an exception made for sellers that are not investment grade who are selling an existing asset. Because that risk profile is so finite, the threshold is waived, but not the scoring criteria.

22 Q. How would PGE propose to fix this discrepancy in counterparty risk?

UM 1182 Phase II – Opening Testimony

A. PGE would propose that Ownership bids be allocated the maximum credit risk score and
 that additional elements of counterparty risk should be added to the scoring criteria.

- APAN

UM 1182 Phase II / PGE / 100 Outama - Bettis - Mody - Hager / 35

V. Summary and Conclusions

1 Q. Please summarize the key element of a fair RFP bid evaluation process.

A. A fair and effective RFP bid evaluation process should be able to identify and account for
specific resource and bid characteristics. That is, each bid should be scored as to costs,
risks and benefits to its customers based on the individual characteristics of that bid, not
on perceived or potential attributes associated with a bid or resource classification
(e.g., utility owned versus IPP owned).

7 Q. Please summarize your conclusions regarding PGE's RFP bid evaluation process.

8 A. We conclude that PGE's bid evaluation and selection methodology appropriately 9 accounts for the costs, risks and benefits that bids would impose on utility customers. 10 However, we believe that scoring of construction cost risk and counterparty risk could be 11 augmented as described above.

12 Q. Please summarize your recommendations to the Commission.

First, we recommend that the Commission continue to maintain its focus on potential 13 Α. improvements in the analytic framework and process for RFP bid evaluation. The debate 14 should not center on utility-owned generation versus contract resources, but rather the 15 objective should be to improve the evaluation and scoring process to ensure that bids are 16 appropriately scored and the proposals which represent the best combination of cost and 17 risk for customers (based on IRP requirements) are selected. Any improvements in the 18 evaluation methodology should be sensitive to the fact-specific nature of the process and 19 20 should avoid a one-size-fits all "adder" approach.

UM 1182 Phase II – Opening Testimony

UM 1182 Phase II / PGE / 100 Outama - Bettis - Mody - Hager / 36

1 Second, we recommend no change in PGE's evaluation methodology for two of 2 the four factors: (heat rate degradation, and wind capacity factor). We recommend some 3 potential improvements for counterparty risk and construction cost estimates.

Finally, if the Commission finds that improvements are needed for any of the four issues identified for this phase of the docket, we recommend an approach whereby the Commission directs the IOUs to work with the IE and Staff to develop scoring criteria to address the costs, risks and benefits imposed on utility customers for each specific issue. This approach would ensure that the RFP bid evaluation and scoring process remain flexible and adaptable to recognize the differences in each RFP (e.g., renewable versus thermal) and each utility's IRP Action Plan requirements.

VI. Witness Qualifications

1 Q. Mr. Outama, please state your educational background and experience.

A. I received a Bachelor of Science degree in Accounting and Finance from University of
Washington in 1996. I have over 15 years of experience with PGE working in
accounting, financial planning, risk management and power operations. I am currently
managing the Origination, Structuring and Strategic Analysis groups. In addition, since
2011, I have led the effort to complete PGE's Request for Proposal to procure resource to
meet customers' needs as identified in the acknowledged 2009 IRP.

8 Q. Mr. Bettis, please describe your qualifications.

9 А. I graduated from Warner Pacific College in 1997 with a Bachelor of Science degree in Business Administration. I received my Master of Science degree in Management and 10 Organizational Leadership from Warner Pacific in 2009. I have been employed by 11 Portland General Electric Company (PGE) for over 23 years. I am currently the Manager 12 of Merchant Transmission and Resource Integration for Portland General Electric 13 Merchant. I currently serve on the Board of Directors of the Utility Variable-Generation 14 Integration Group and represent PGE on the NW Wind Integration Forum Technical 15 Working Group. 16

17 Q. Mr. Mody, please describe your qualifications.

A. I am the General Manager of the Generation Projects department, the group responsible
 for managing the development of large generation projects. I have over 38 years of
 experience in management, operations, design and construction of Power Plants. I am a
 registered Professional Engineer in Oregon and hold a M.S. degree in Mechanical
 Engineering from the University of Washington.

UM 1182 Phase II – Opening Testimony

1

Mr. Hager, please describe your qualifications. Q.

A. I received a Bachelor of Science degree in Economics from Santa Clara University in 2 1975 and a Master of Arts degree in Economics from the University of California at 3 Davis in 1978. In 1995, I passed the examination for the Certified Rate of Return 4 Analyst (CRRA). In 2000, I obtained the Chartered Financial Analyst (CFA) 5 designation. 6

I have taught several introductory and intermediate classes in economics at the 7 University of California at Davis and at California State University Sacramento. In 8 addition, I taught intermediate finance classes at Portland State University. Between 9 1996 and 2004, I served on the Board of Directors for the Society of Utility and 10 Regulatory Financial Analysts. Between 2002 and 2007, I served on the Advantis Credit 11 Union Audit Committee and I now serve on the Board of Directors. 12

I have been employed at PGE since 1984, beginning as a business analyst. I have 13 worked in a variety of positions at PGE since 1984, including power supply. My current 14 position is Manager, Regulatory Affairs. 15

Q. Does this conclude your testimony? 16

A. Yes. 17

UM 1182 Phase II / PGE / 100 Outama - Bettis - Mody - Hager / 39

List of Exhibits

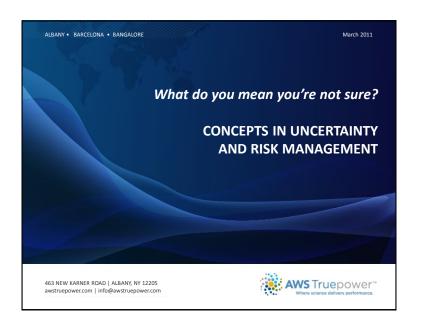
.

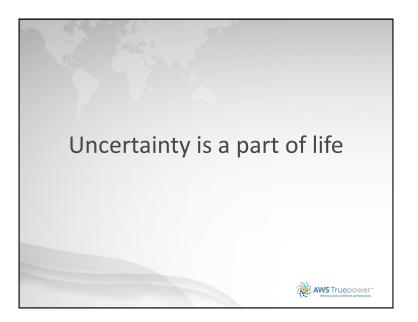
<u>PGE Exhibit</u>	Description
101	AWS Truepower Risk Management Presentation
102	GL Actual vs Predicted Performance Presentation

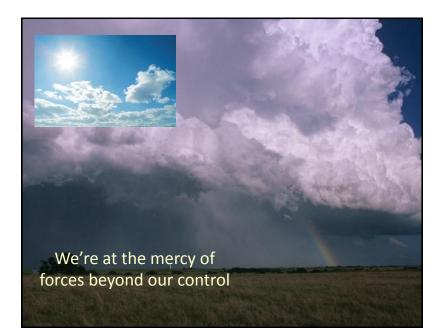
UM 1182

Exhibit 101

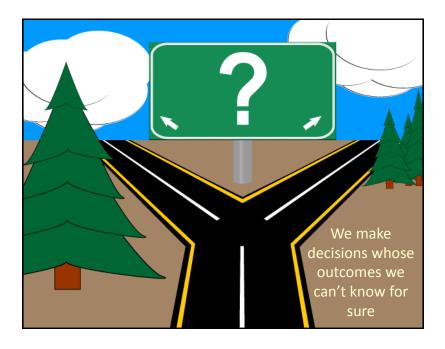
Provided in Electronic Format (CD) Only

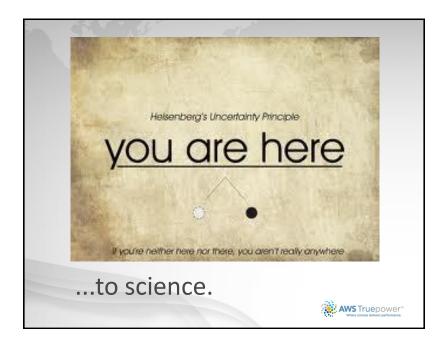

AWS Truepower Risk Management Presentation

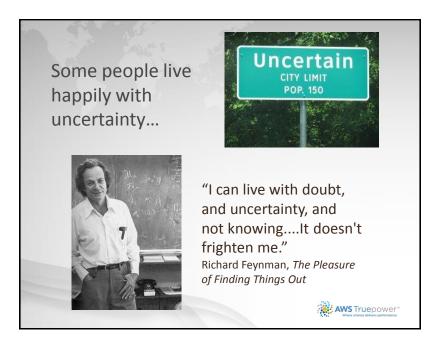

UM 1182

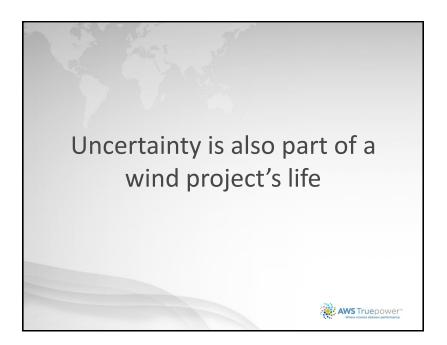

Exhibit 102

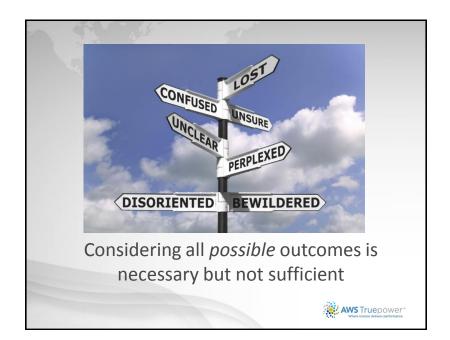
Provided in Electronic Format (CD) Only

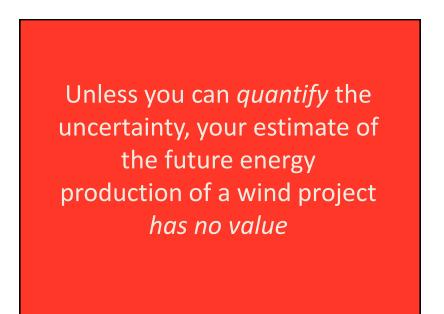

GL Actual vs Predicted Performance Presentation

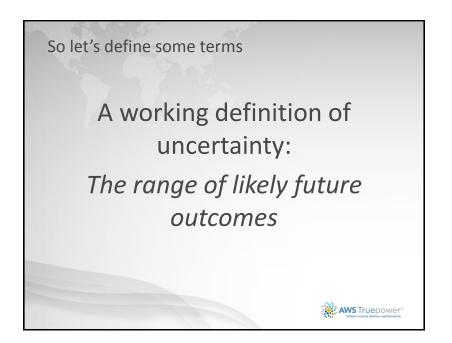


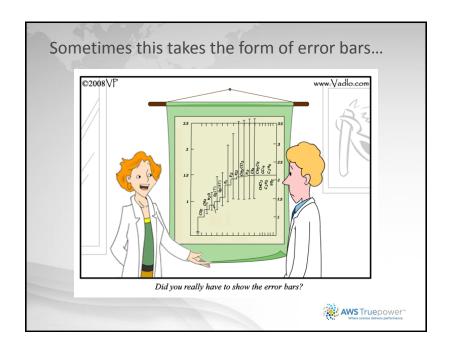


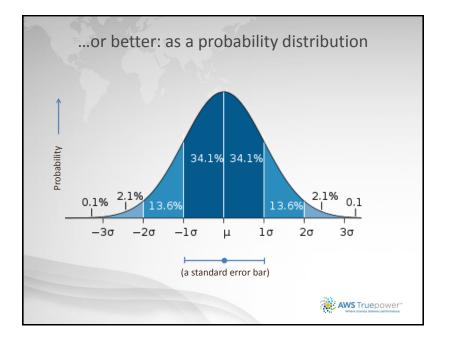


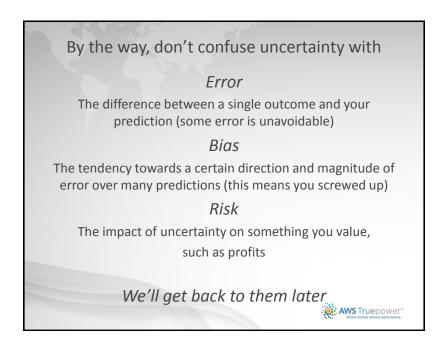


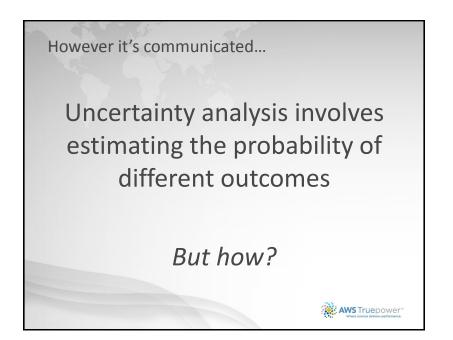


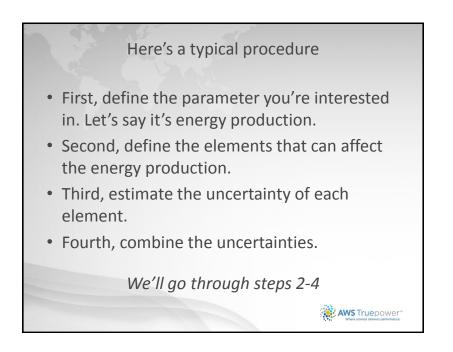


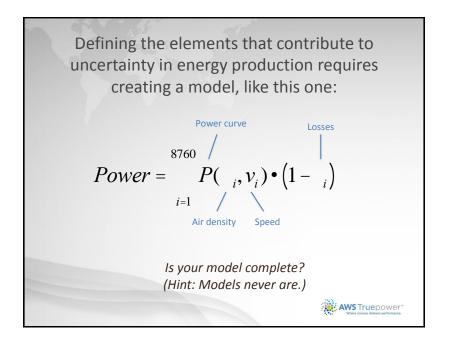


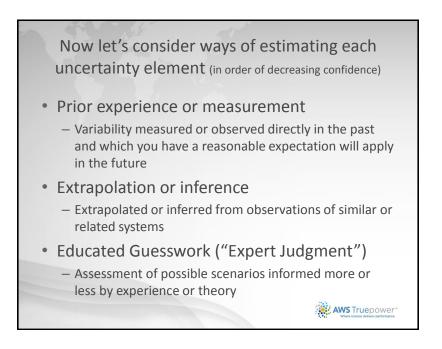


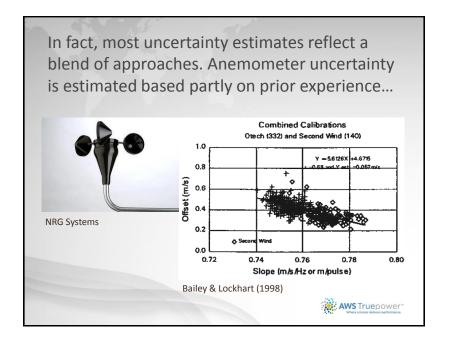


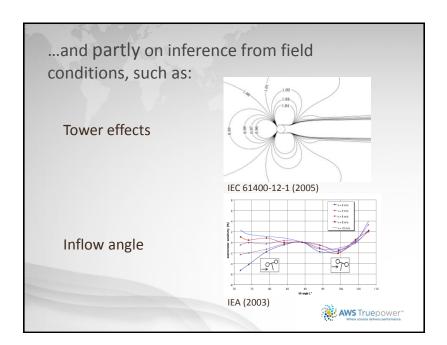


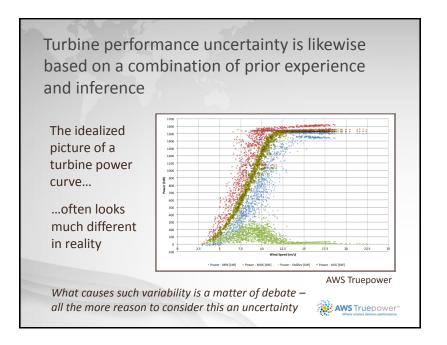


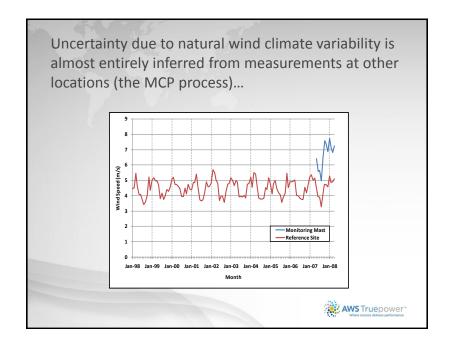


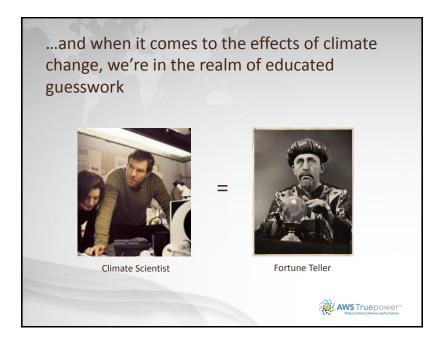


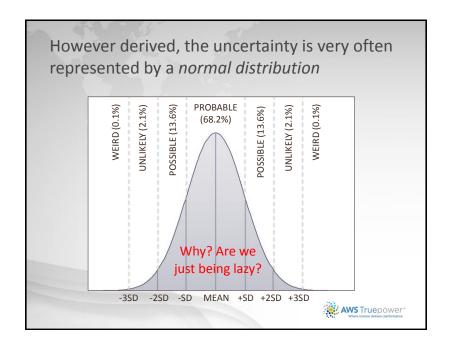


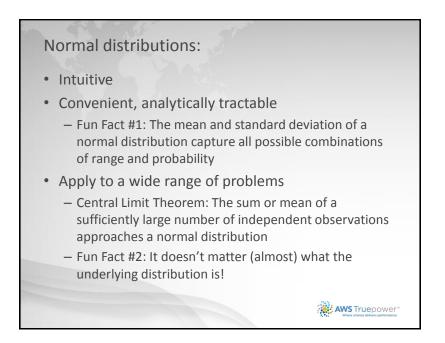


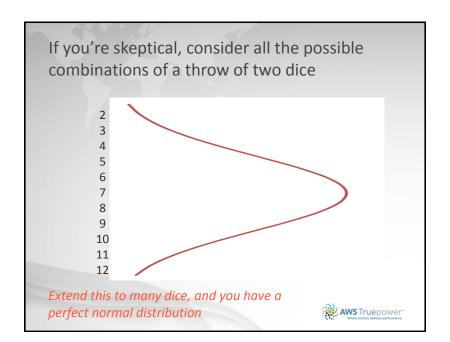


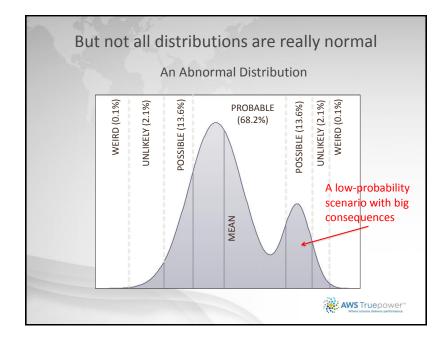


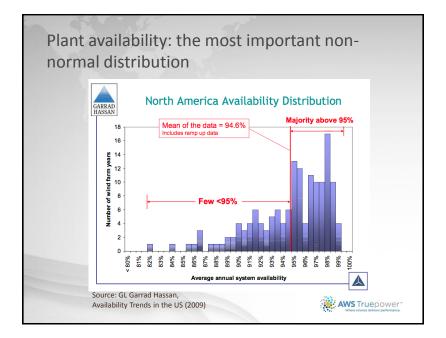


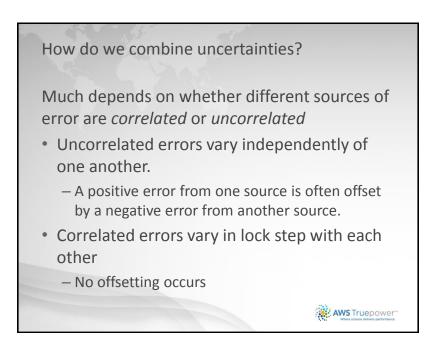


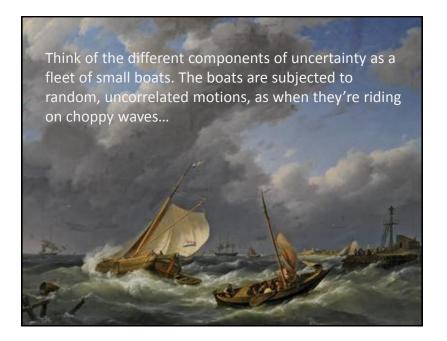




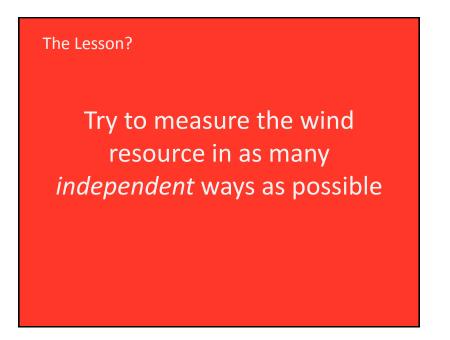


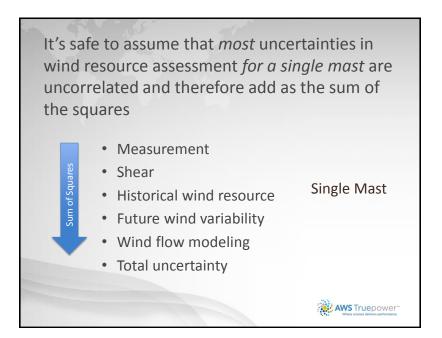


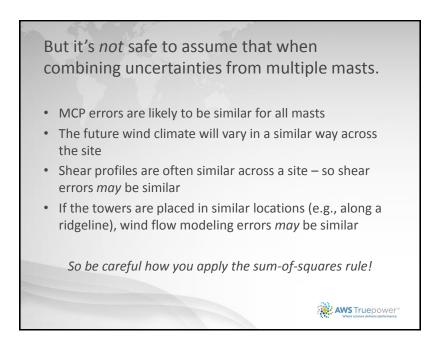






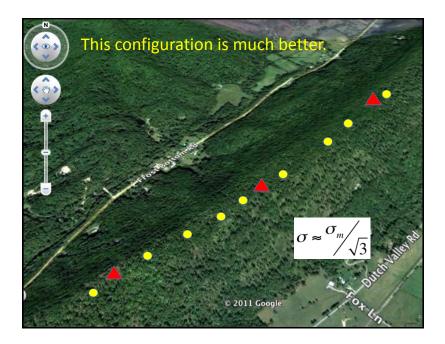


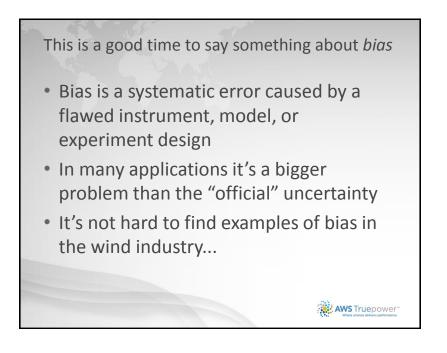


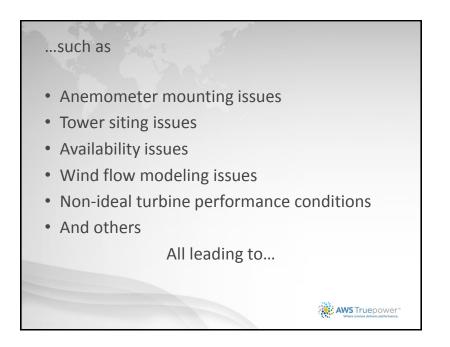

A Big Impact
Different correlated uncertainties add linearly

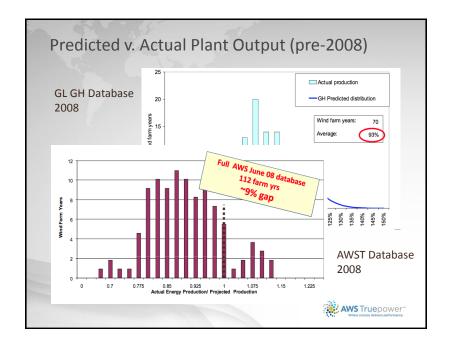
$$2\% + 2\% = 4\%$$

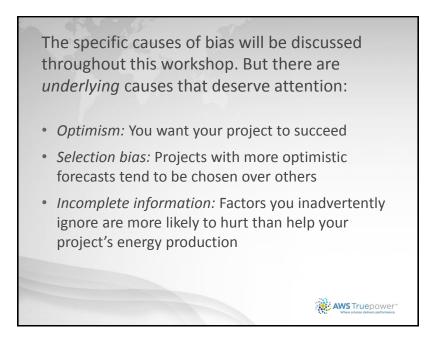
Different uncorrelated uncertainties add as the
"sum of the squares"
 $\sqrt{2\%^2 + 2\%^2} = 2.8\%$

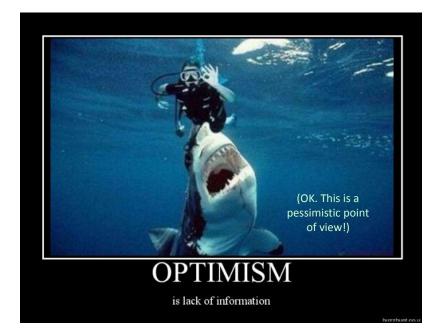


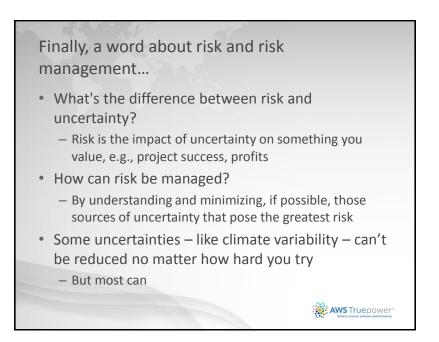




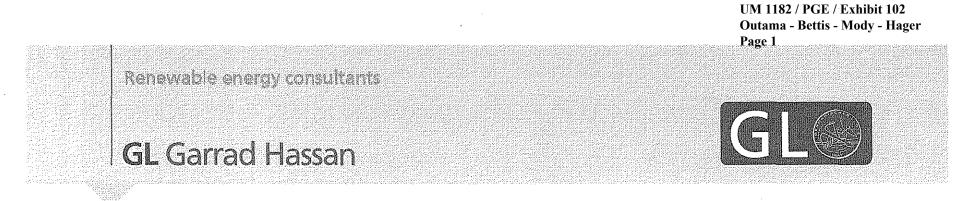


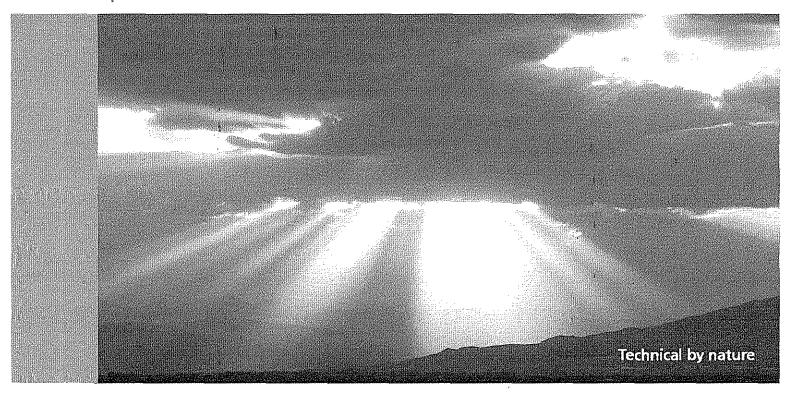






12/14/2011




12/14/2011

The main goal of wind resource assessment is to minimize project risk within the budget and time constraints of the development process.

You can only do this if you first understand and quantify the uncertainty.

Actual vs. Predicted performance – Validating pre construction energy estimates September 2012

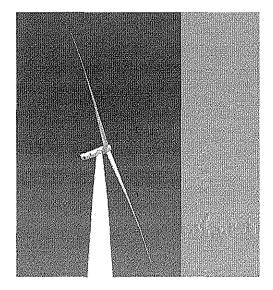
www.gl-garradhassan.com

Summary

This presentation provides an update to our 2010 study examining the performance of GL Garrad Hassan (GL GH) predictions against actual wind farm production. In our 2010 validation study, we discussed the history and evolution of GL GH wind assessments and focused on the methodology improvements we have made over time. We made a commitment to continue to validate our assessment methodology and improve the quality and accuracy of our methods. With production data from 125 wind farms totaling 14,000 MW and 382 wind farm years in North America, this current presentation discusses the updates since our 2010 study and reiterates that the GL GH wind assessment methodology is accurate and robust.

GL GH has performed long-term energy production assessments for over 170,000 MW of proposed wind farms internationally and 80,000 MW in North America. In order to assess the accuracy of these predictions, GL GH maintains an internal database which allows the actual wind farm production to be compared with pre-construction estimates. Using the information within this database, GL GH has investigated how these constructed wind farms have performed in relation to the original GL GH pre-construction predictions.

In this presentation, we focus on what has changed since our 2010 validation study. We also examine how projects constructed in the last few years compare to GL GH predictions, in order to show how the accuracy of GL GH assessments has improved. Finally, with the most recent methodology refinements made in 2011, we conclude that GL GH predictions using current methods show no bias in comparison to the actual performance of North American wind farms.



Overview

∛ History & Evolution

 \mathcal{T} Current Status of GL GH Assessment Validation

∛ Conclusions

GL GH Experience

ightarrow Conducted Wind Assessments of over 170,000 MW Globally

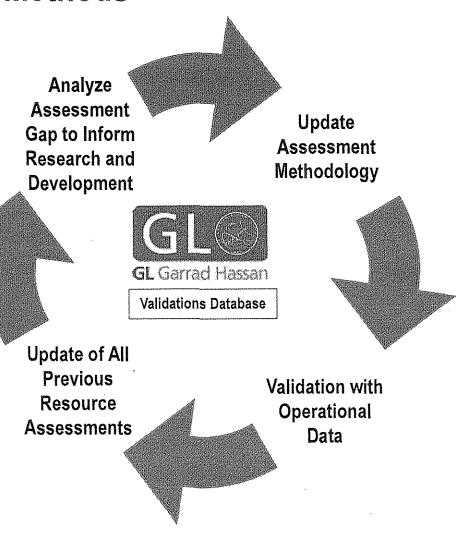
- Over 80,000 MW assessed in the US and Canada
- Of these 80,000 MW, over 34,000 MW are now operating in the US and Canada

γ Performed Technical Due Diligence on over 40,000 MW Globally

- Over 27,000 MW assessed in the US and Canada
- Expert insight into the financing and construction process

YPerformed Operational Energy Assessments on over 30,000 MW Globally

- Over 12,000 MW assessed in the US and Canada
- Increased resolution on individual project performance characteristics
- Improved understanding of differences between pre-construction wind assessment and operational performance


Using Feedback to Improve Methods

Y Perform Detailed Forensics on SCADA Data from Operating Projects

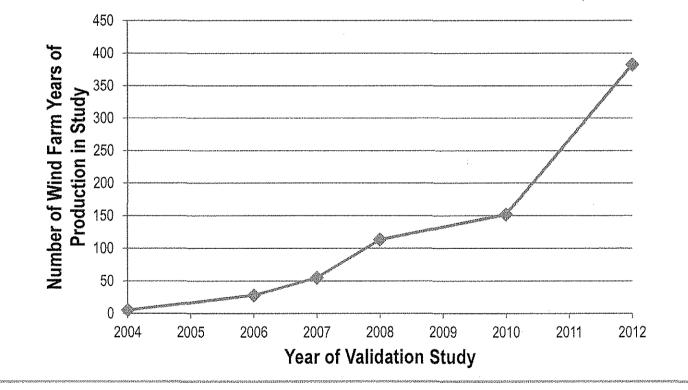
- Evaluate availability
 - Determine cause of downtime
 - Categorize availability losses
 - Identify trends (by technology, by time, by region, etc.)
- Evaluate turbine power performance
- Examine wind flow modeling and wake loss calculations

Υ GL GH Has Conducted Analyses of Wind Farm SCADA Data on Over 30,000 MW

 Υ This Feedback is Used to Validate and Refine Methods

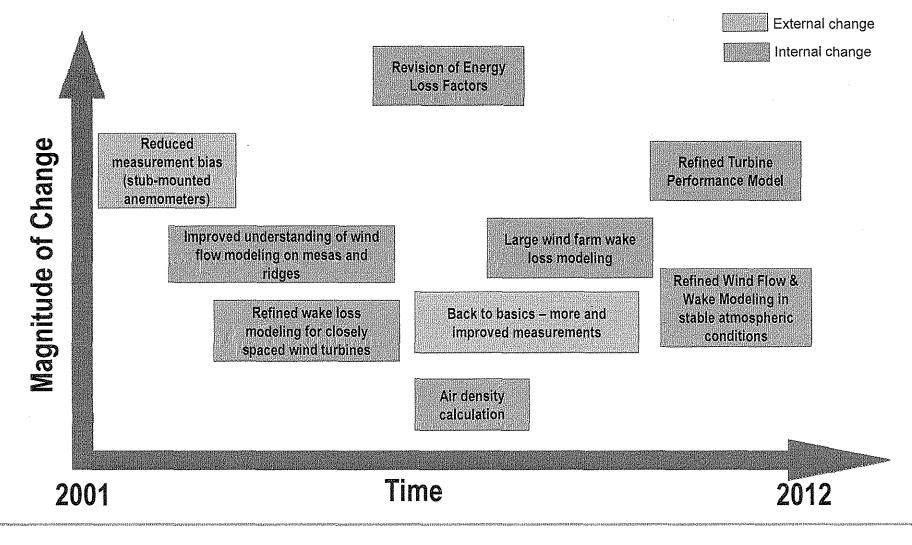
GL GH has a long history of validating production assessments

2004: The first validation presentation at AWEA WINDPOWER 2004 in Chicago


2006: AWEA Finance Workshop in New York

2007: AWEA Wind Resource Assessment Workshop in Portland

2008: AWEA WINDPOWER in Houston


2010: S&P Project & Infrastructure Finance Conference in New York (and others)

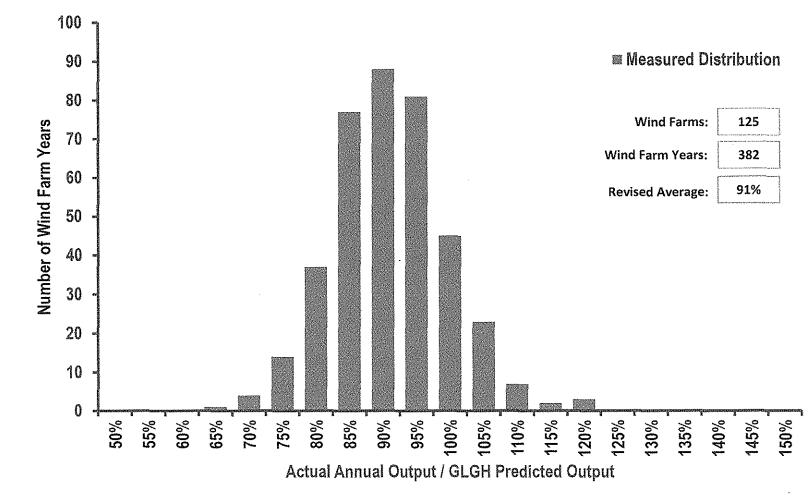
2012: AWEA Wind Resource Assessment Workshop in Pittsburgh

Evolution of GL GH Energy Production Assessments

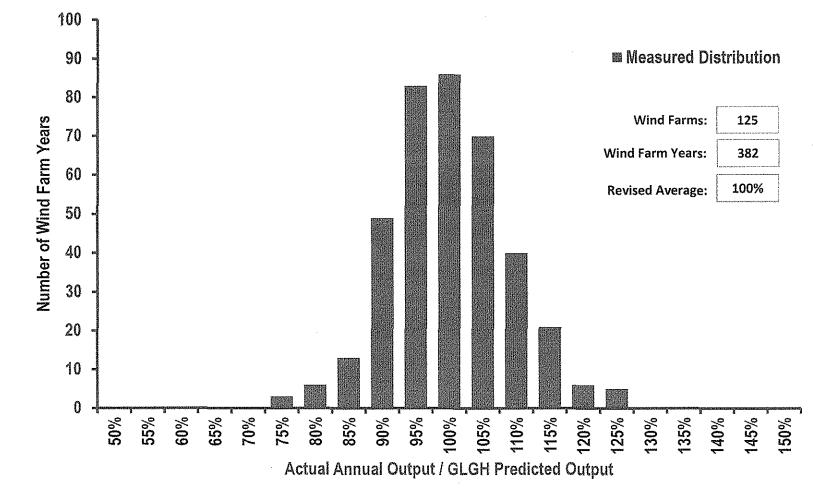
Current Status of GL GH Assessment Validation

Validation Database

GL GH Wind Farm Production Database


Attributes	2012 Database
Number of Wind Farms	125
Number of Wind Farm Years	382
Total MWs	14,000
Date of Most Recent Data Addition	2012

Database Compares Actual Production to GL GH Predictions


- Compare energy output in each year of operation of a wind farm to GL GH P50 prediction
- Compare distribution of all years of production of all wind farms to theoretical distribution accounting for uncertainty
- Actual production is unadjusted, except where grid curtailment is present and can be estimated.

Comparison of Actual Output to GL GH P50: Raw observations

Comparison of Actual Output to GL GH P50: Results Using Current Methods

GLO

Have GL GH Wind Assessments Improved Over Time?

T What evidence exists to show the gap between actual and predicted output is shrinking after methodology refinements are implemented?

TResults of validations on projects assessed after the major methodology refinement in 2008:

- 36 Wind Farms in the US and Canada totaling over 3500 MW
- 62 Wind Farm Years of Production
- Actual Production is 97.9% of Original P50 Prediction

Relatively Recent Areas of Improvement

Turbine Power Performance

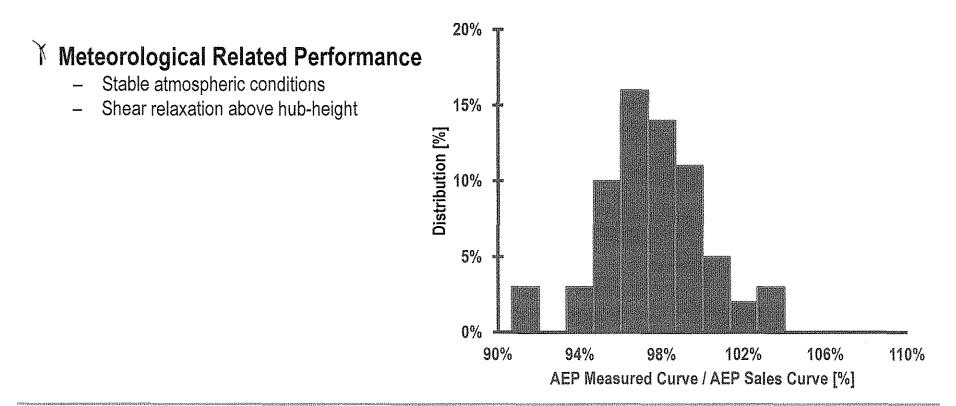
Capturing performance variation with atmospheric stability Accounting for all sub-optimal performance

Wake Effects

Y Incorporating impacts from all external wind farms

ightarrow Modeling wakes during very stable conditions over long distances

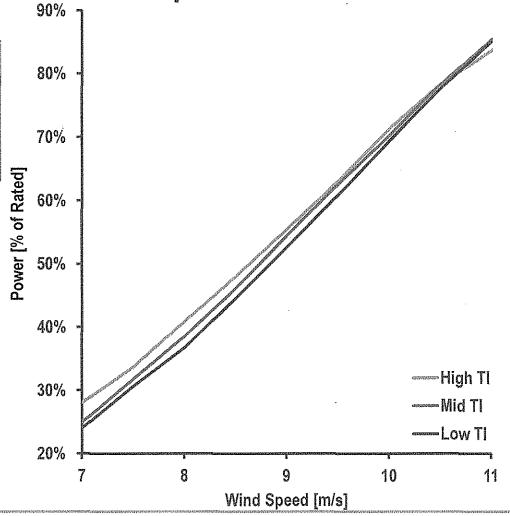
${}^{ imes}$ Wind Flow Modeling


Y Modeling wind flow variation during stable conditions with CFD

Refinements since 2010 Study: Turbine Power Performance

X Review of Turbine Power Performance Tests

- Average measured turbine performance across ~70 performance tests was approximately 97.5%

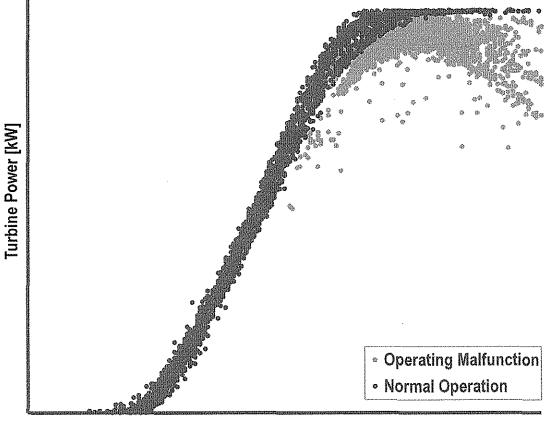

Refinements since 2010 Study: Turbine Power Performance – example Power Curve

Case	TI Range	Time	AEP*	
High	TI>12%	44%	100%	
Mid	8% <ti< 12%<="" td=""><td>33%</td><td>98.0%</td><td>vincenies/usedes/s</td></ti<>	33%	98.0%	vincenies/usedes/s
Low	TI<8%	23%	96.4%	-

* Normalized to High TI case

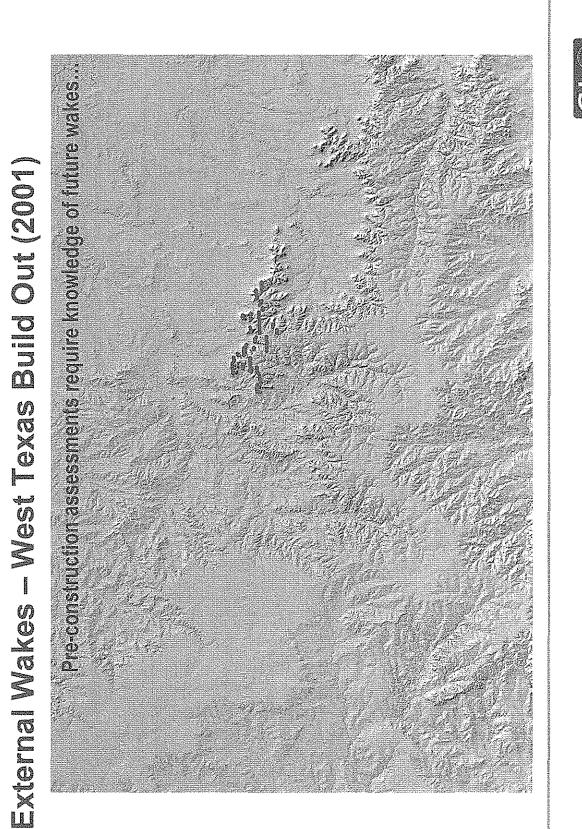
Y Power curve variation observed:

 Significantly lower performance during periods of low turbulence intensity, which corresponds to stable atmospheric conditions

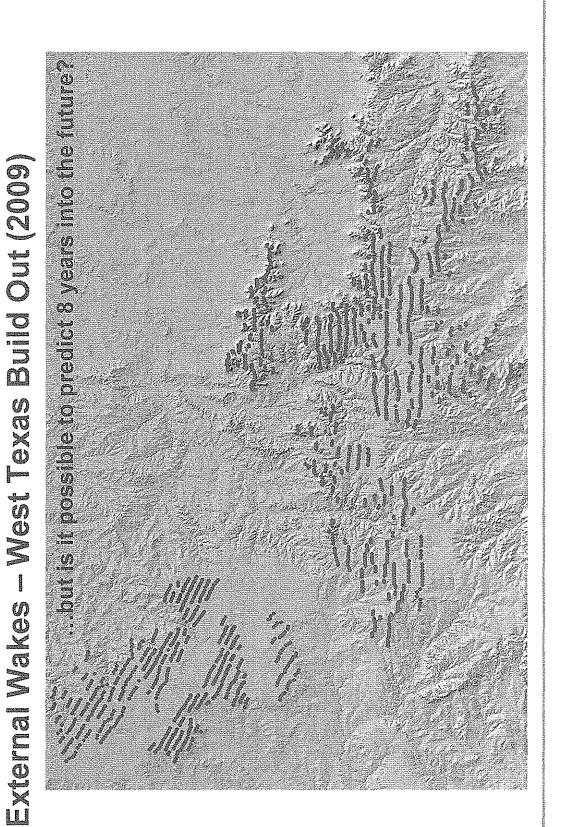


244 444 488	100	1.0.1	1.5
ALL	1.20	1000	
G	100	84 C 3	1288
爸 聯兩 斑	1823	1.5	22
100 Yang 100	maril		21
STATISTICS.	20101	CIARSON !!	POLIS

Refinements since 2010 Study: Turbine Power Performance


\mathcal{T} Sub-optimal Performance

- Turbines can often be operating and "available", but still experiencing underperformance issues
- In general, controllable turbine inefficiencies still account for material energy losses over a project lifetime

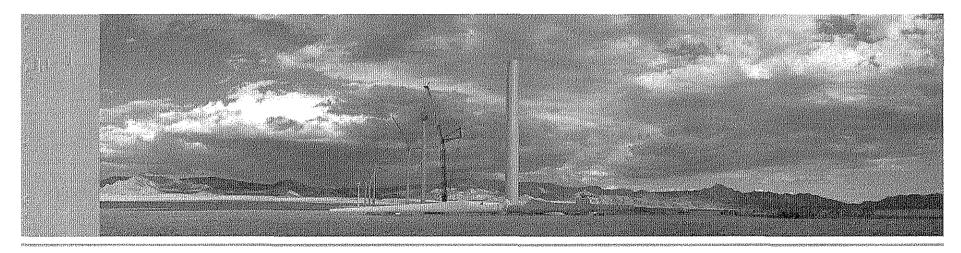


Nacelle Wind Speed [m/s]

ĺ,

GL

Wind Flow Modeling – Capturing stability

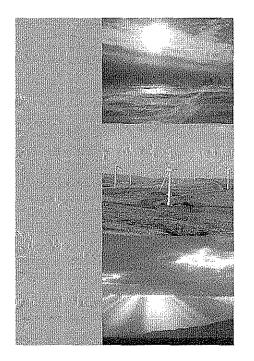


Conclusions

TGL GH Energy Production Validation Database has been updated to include 125 wind farms and 382 wind farm years of production in North America

 Υ Evidence suggests the gap between actual production and GL GH predictions has reduced over time

 \mathcal{T} GL GH Wind Assessments using current methods exhibit no bias in comparison to actual production



Renewable energy consultants

GL Garrad Hassan

Thank you!

For more information please contact:

Clint Johnson GL Garrad Hassan 333 SW Fifth Avenue Suite 400 Portland, OR 92704 Tel: 503-222-5590 clint.johnson@gl-garradhassan.com

www.gl-garradhassan.com

