

Portland General Electric Company Legal Department 121 SW Salmon Street • Portland, Oregon 97204 (503) 464-8926 • facsimile (503) 464-2200 Douglas C. Tingey Assistant General Counsel

March 28, 2005

Via Electronic Filing and U.S. Mail

Oregon Public Utility Commission Attention: Filing Center PO Box 2148 Salem OR 97308-2148

Re: In the Matter of PORTLAND GENERAL ELECTRIC Annual Adjustments to Schedule 125 (2007 RVM Filing) OPUC Docket No. UE 181

Attention Filing Center:

Enclosed for filing in the above-captioned docket are the following documents for PGE's 2007 Resource Valuation Mechanism:

Original and five (5) copies of Direct Testimony of L. Alex Tooman, Michael A. Niman, and Stephen Schue: PGE Exhibits 100 – 103;

Original and five (5) copies of Direct Testimony of Marc Cody: PGE Exhibits 200-203;

Original on CD and three (3) paper copies of Workpapers of Marc Cody.

Please note that Exhibits 101C and 102C are Confidential and subject to OPUC General Protective Order No. 06-142.

An extra copy of this cover letter is enclosed. Please date stamp the extra copy and return it to me in the envelope provided.

Thank you in advance for your assistance.

Sincerely,

/s/ DOUGLAS C. TINGEY

DCT:am

cc: UE 172 and UE 180 Service Lists

Enclosure

CERTIFICATE OF SERVICE

I hereby certify that I have this day caused the foregoing DIRECT TESTIMONY AND WORKPAPERS OF PORTLAND GENERAL ELECTRIC COMPANY to be served by First Class US Mail, postage prepaid and properly addressed, and by electronic mail, upon each party on the attached combined service lists from OPUC Dockets UE 172 and UE 180.

Dated at Portland, Oregon, this 28th day of March, 2006.

/s/ DOUGLAS C. TINGEY_____ Douglas C. Tingey

COMBINED SERVICE LISTS

UE 172 AND UE 180

JASON EISDORFER CITIZENS' UTILITY BOARD OF OREGON 610 SW BROADWAY STE 308 PORTLAND OR 97205 jason@oregoncub.org

ROBERT JENKS CITIZENS' UTILITY BOARD OF OREGON 610 SW BROADWAY STE 308 PORTLAND OR 97205 bob@oregoncub.org

S BRADLEY VAN CLEVE DAVISON VAN CLEVE PC 333 SW TAYLOR - STE 400 PORTLAND OR 97204 mail@dvclaw.com

STEPHANIE S ANDRUS ASSISTANT ATTORNEY GENERAL REGULATED UTILITY & BUSINESS SECTION DEPARTMENT OF JUSTICE 1162 COURT ST NE SALEM OR 97301-4096 stephanie.andrus@state.or.us RANDALL J FALKENBERG RFI CONSULTING INC PMB 362 8351 ROSWELL RD ATLANTA GA 30350 consultrfi@aol.com

JAMES T SELECKY BRUBAKER & ASSOCIATES, INC. 1215 FERN RIDGE PKWY, SUITE 208 ST. LOUIS MO 63141 jtselecky@consultbai.com

LOWREY R BROWN CITIZENS' UTILITY BOARD OF OREGON 610 SW BROADWAY - STE 308 PORTLAND OR 97205 lowrey@oregoncub.org

I. Introduction

1	Q.	Please state your names and positions at PGE.
2	A.	My name is L. Alex Tooman. I am a Project Manager in the Rates and Regulatory Affairs
3		Department.
4		My name is Michael A. Niman. I am Manager of the Financial Analysis Department.
5		My name is Stephen Schue. I am a Senior Analyst in the Rates and Regulatory Affairs
6		Department.
7		Our qualifications are provided in Section IV of this testimony.
8	Q.	What is the purpose of your testimony?
9	A.	The primary purpose of our testimony is to present PGE's 2007 forecast of power costs
10		using PGE's existing Resource Valuation Mechanism (RVM). As we discuss in the next
11		section, our current forecast of 2007 power costs is approximately \$811.6 million, a \$183
12		million (29.1%) increase from the 2006 RVM forecast in UE 172. However, approximately
13		\$42 million of this increase is the result of a higher cost of service load forecast for 2007.
14		On a unit cost basis, PGE's power costs have increased from \$32.15/MWh for 2005 to
15		\$40.09/MWh for 2007, an increase of 24.7%. Section III, Part B describes the primary
16		drivers of our higher power costs.
17		As we discuss below, we expect to provide several updates to our 2007 forecast, the
18		number and dates to be determined by the Administrative Law Judge (ALJ). We will file
19		our final 2007 power cost forecast in November 2006.
20	Q.	What is the rate impact of the \$183 million increase in power costs?

UE 181 – Direct Testimony

A. As described in PGE Exhibit 200, we currently expect an overall increase in rates for cost of
 service loads of 4.3 % (including supplemental tariffs) as a result of the increase in power
 costs.

4

Q. How is your testimony organized?

A. There are four sections to our testimony. First, we briefly review the prior Public Utility 5 Commission of Oregon (Commission) orders and stipulations that establish the scope of the 6 2007 RVM. Second, we summarize our load forecast for 2007, explaining the primary 7 differences between the 2007 forecast and the 2006 load forecast that we provided in 8 UE 172. PGE's expected 2007 loads determine the amount of power that we must generate 9 and/or purchase. Third, we briefly discuss MONET (Monet), PGE's power cost forecasting 10 model that we have used since the mid-1990s. We broadly describe Monet, including the 11 forward price curves and other inputs, and note that no new enhancements have been made 12 to Monet for the 2007 RVM. We also discuss the updates that we have made to the input 13 data since the final Monet run for the 2006 RVM in November 2005, and the updates to the 14 input data that we intend to make before our final 2007 RVM power cost forecast in 15 November 2006. The final section contains our qualifications. 16

17 Q. Does PGE have a schedule for updates to Monet for 2007 power costs?

A. No. We anticipate that the ALJ assigned to the 2007 RVM proceeding will establish the
schedule of Monet updates based on discussion among and input by the parties. We want
these updates to be consistent with the Monet updates in our general rate case (Docket
UE 180).

Q. Has PGE made any scope changes or enhancements to the Monet model that are
 included in the 2007 RVM?

A. No. We have not made any scope changes or enhancements to the Monet model for the
 2007 RVM.

Q. What are the differences between the Monet-based net variable power cost forecast
you provided in your recent general rate case filing (Docket UE 180) and the forecast
you provide in this filing?

A. There are two primary differences. First, we proposed six modeling changes in our general 6 rate case (GRC) filing. PGE Exhibit 400 in UE 180, attached as PGE Exhibit 103, explains 7 these changes on pages 52-56. Second, this filing is based on busbar loads of 2,311 MWa, 8 whereas our GRC power cost estimate uses busbar loads of 2,405 MWa. The difference, 94 9 MWa, is Schedule 125-B opt-out load. We propose to eliminate this option in our GRC 10 testimony (PGE Exhibit 400), but include it in this RVM filing. Therefore, in this filing we 11 do not have to supply as much load with short-term contracts and/or market purchases. We 12 also do not have to purchase as much transmission. The decomposition of the \$45 million 13 difference between net variable power costs in this filing (\$812 million) and those in our 14 GRC filing (\$857 million) is then: 15

Factor	<u>\$ Million</u>
Higher Loads in GRC	51
More Transmission in GRC	2
Effect of Model Changes in GRC	<u>(8)</u>
Total Change	45

16 Q. Are other witnesses providing testimony in the 2007 RVM?

1	A.	Yes. PGE is submitting one additional set of testimony and exhibits. PGE Exhibit 200,
2		sponsored by Marc Cody, provides the details of how RVM rates are calculated pursuant to
3		the power cost forecast.

II. 2006 Retail Load Forecast

1 Q. Please summarize PGE's forecast for its 2007 retail load.

- 2 A. PGE Exhibit 202 provides PGE's forecast for retail loads in 2007 by customer class. We
- 3 summarize the forecast and historical loads below in Table 1.

		Retail	Load Foreca (in million	ast Compar	ison		
ActualActualActualActual2006 RVMCurrent Forecast2002200320042005Forecast(2006)(2007)							
Residential	7,063	7,201	7,440	7,388	7,559	7,467	7,531
Commercial	6,442	6,580	6,761	6,897	7,095	7,067	7,262
Industrial	5,014	4,553	4,286	4,382	4,385	4,474	4,653
Miscellaneous	207	<u>202</u>	<u>199</u>	<u>195</u>	<u>209</u>	<u>209</u>	<u>212</u>
Total Retail	18,726	18,537	18,686	18,862	19,248	19,218	19,658

Tabla 1

Note: Actual data are weather-adjusted; forecasts are at normal weather.

4 Q. Does the forecast include all loads?

A. Yes. The forecast includes both PGE cost of service loads and deliveries of energy to
customers who have provided PGE notice "not to plan" for them or "non cost of service"
loads. We also sometimes refer to "non cost of service" load as "opt-out" load. PGE
Exhibit 201 decomposes the 2007 total retail load into cost of service load by rate schedule,
and then adds opt-out load in one figure.

10 Q. How does this forecast compare to the 2006 RVM (UE 172) forecast?

A. Table 1 shows PGE's actual weather-adjusted retail loads since 2002 and compares the
UE 172 (September 2005) forecast with our current forecast of 2006 retail load and our
forecast of retail loads by customer group for 2007. Our current 2006 retail load forecast is
19,218 million kWh, approximately 0.2% lower than the UE 172 (RVM) forecast for 2006.
We forecast retail load to increase 2.3% to 19,658 million kWh for 2007 from our current

UE 181 – Direct Testimony

(particularly pages 7 and 9) explains the estimation procedures in detail.

12 load). This difference is listed below in Table 2.

Q. What load do you use in the power cost forecast?

1

2

3

4

5

6

7

8

(eyele hion				
	2005 <u>RVM</u>	2006 <u>RVM</u>	2007 <u>RVM</u>	
Total System Load	19,181	19,248	19,658	
Part B Opt-Out	1,958	1,067	787	
Cost of Service Load	17,223	18,181	18,870	

Table 2
Comparison of Cost of Service Load with Total System Load
(Cycle Month Energy in million kWh)

2006 load estimate. Our expected 2007 load remains below our UE 115 2002 test year

estimate of 20,227 million kWh. We calibrated Table 1 sector data, primarily commercial

For our general rate case (UE 180) filing and this proceeding, PGE re-estimated the

load model, using recent information on the national economy, state economic and

employment forecasts, and the California economy. PGE Exhibit 1200 in Docket UE 180

and industrial, to the North American Industry Classification System (NAICS).

Whereas PGE's 2007 total system load forecast is projected to increase by only 2.1% the 2006 RVM forecast, PGE's cost of service load is projected to increase by 3.8%, reflecting less Part B opt-out load. Thus, PGE must plan for additional cost of service load in 2007.

III. PGE's Power Cost Forecast For 2007

A. Scope of the 2007 RVM 1 Q. What is the scope of the 2007 RVM? 2 The scope of the 2007 RVM is a review of PGE's expected net variable power costs 3 A. (NVPC) for calendar year 2007 (OPUC Order No. 02-772, at 6). The net variable costs are 4 combined with other resource costs from UE 115 to determine the rates for Schedule 125. 5 PGE Exhibit 200 provides a detailed discussion of the development of Schedule 125 rates. 6 7 Q. Did you define "net variable power costs" in your UE 180 testimony? A. Yes. Pages 13-14 of PGE Exhibit 400 provide this information. 8 9 Q. What changes to Monet did you make for this filing? A. As we discussed in Section I, we proposed six modeling changes in our general rate case 10 filing. However, we do not include them in this RVM filing. Consistent with past RVM 11 12 proceedings, the changes we plan to make in the RVM model inputs after this initial filing are limited. They include updates for load forecasts, power purchase or sales contracts, fuel 13 and fuel transportation contracts, and forward price curves for electricity and natural gas. 14 The only other changes we plan to make are updates to the Canadian/U.S. dollar exchange 15 rate, hedge contracts, and the price for oil that we use at our thermal plants and distributed 16 standby generation facilities. 17

18

B. The Monet Model

19 Q. Please describe PGE's power cost forecasting model.

20 A. PGE uses a model called Monet that we built in the mid-1990s and have since refined.

21 Monet is capable of modeling the hourly dispatch of our generating units. Each thermal unit

has an individual profile that includes its capacity, heat rate, fuel costs, variable maintenance 1 costs, and other characteristics. Monet models hydroelectric units with peak capabilities and 2 annual, monthly, and hourly usage factors. Since the emergence of forward markets, PGE 3 has input the forward market curves for purchased power and gas, and then run plants under 4 a "dispatch to forward market curve" mode. 5 **O.** Have you provided additional information on Monet in other testimony? 6 A. Yes. PGE Exhibit 100 in our 2006 RVM filing (Docket UE 172) and PGE Exhibit 400 in 7 our recent general rate case filing (Docket UE 180) describe Monet in detail. Pages 14-15 of 8 PGE Exhibit 400 specifically describe how Monet calculates net variable power costs. 9 Q. What is PGE's current forecast for power costs in 2007? 10 A. PGE's most recent forecast for 2007 power costs is approximately \$812 million. 11 **Q.** Could the November open enrollment process affect PGE's power costs in 2007? 12 A. Yes. All large non-residential customers, regardless whether they have "opted out" or not, 13 are eligible to receive service from PGE or from an ESS. If PGE's non-cost of service load 14 is less than 94 MWa, PGE will have to purchase more energy in order to serve these 15 customers. Conversely, if PGE's non-annual load exceeds 94 MWa, PGE will have to sell 16 energy in order to maintain its relative position. 17 Q. Can PGE's 2006 and 2007 forecasts for power costs be made consistent with the 2002 18 test year forecast in UE 115? 19

21 prices in PGE's forward curves for 2006 and 2007, then we can compare the three forecasts.

A. Yes. If we assume that all of the 2006 and 2007 opt-out loads are supplied at the market

22 We refer to this power cost forecast as the "all loads" forecast.

UE 181 – Direct Testimony

20

Q. How do PGE's all loads power cost forecasts for 2006 and 2007 compare with PGE's forecasts for 2002 power costs?

A. The "all loads" forecast for 2007 power costs is \$865 million. This is an increase of approximately \$146 million above the 2006 "all loads" power cost estimate in UE 172 and greater than power costs in UE 115. Table 3 below provides a summary of our power cost forecasts. As we noted above in Section I, we will further update our forecast for 2007 and our final forecast will be submitted in November 2006. In addition, PGE may be required to adjust Schedule 125 according to the large nonresidential load shift true-up provision identified in Schedule 125-6.

Table 3Power Cost Forecast Summary

	2002 UE 115 ¹	2005 All Loads	2006 All Loads	2007 All Loads	2005 RVM	2006 RVM	2007 RVM
Costs (\$'000)	\$766,882	\$591,007	\$718,428	\$864,640	\$486,266	\$628,512	\$811,622
Loads ² ('000 MWh)	21,664	20,591	20,849	21,072	18,551	19,556	20,243
Unit Cost (\$/MWh)	\$35.40	\$28.70	\$34.46	\$41.03	\$26.21	\$32.14	\$40.09

1. Represents the annualized power costs established in UE 115 based on a 15-month test period for power costs. Includes the impact of the Hydro Rider, Schedule 125, Part C.

2. Calendar busbar loads in 000's of MWh. The 2005, 2006, and 2007 RVM exclude non cost of service loads of approximately 232 MWa, 148 MWa, and 94 MWa respectively.

10 PGE Exhibits 101-C and 102-C contain the Monet output for our 2007 RVM forecast.

11 The Monet forecast includes transmission costs for opt-out loads and must be adjusted to

12 yield the appropriate 2007 RVM costs¹.

13 Q. Why are the RVM costs in 2007 higher than in 2006?

- 14 A. Our forecasted 2007 RVM costs are higher than our forecasted 2006 RVM costs for four
- 15 primary reasons, as shown in Table 4.

¹ For the 2003, 2004, 2005, 2006, and 2007 RVM, transmission costs that are assigned to "Opt-Out" load total \$5.3 million, \$5.4 million, \$4.9 million, \$3.0 million, and \$2.2 million respectively.

Table 4 Estimate of Change from 2006 Final RVM:	Amount (\$Million)
Additional 79 MWa COS Load	42
Lost BPA Subscription Power Benefit	59
Impact of Higher Contract Prices on Term Purchases	32
Impact of Higher Per Unit Gas Cost	46
Other Factors	<u>3</u>
Total	183

Q. Please explain in more detail the four primary reasons for higher 2007 net variable power costs.

A. First, we project 79 MWa in additional cost of service load – 25 MWa due to load growth 3 and 54 MWa due to decreased Schedule 125-B opt-out load. The cost to supply the 4 additional 79 MWa at market purchase or short-term contract prices of approximately 5 \$61/MWh is approximately \$42 million. Second, we lose 193 MWa of BPA subscription 6 power benefits in 2007. We must then supply this power with market or short-term contract 7 purchases at approximately \$61/MWh, rather than at the 2006 BPA subscription power rate 8 Third, approximately 800 MWa of 2006 market and of approximately \$26/MWh. 9 short-term contract purchases were at an average price of approximately \$56/MWh. 10 However, the comparable 2007 average price is approximately \$61/MWh. Fourth, although 11 projected market gas prices are high for both this and the final 2006 RVM filings, the value 12 of gas financials is \$46 million higher in the final 2006 RVM filing. 13

14 Q. Are there any factors that mitigate power costs in the 2007 RVM?

A. Yes. Expected output from our hydro plants and contracts is approximately 20 MWa higher
 in 2007. However, other factors off-set the savings related to increased hydro output. These
 include somewhat lower projected coal-fired output, slightly higher coal and contract hydro
 prices, and higher transmission costs.

UE 181 – Direct Testimony

1

C. Monet Updates

2 Q. Please describe the overall process of updating Monet with new data.

A. When we fully update Monet, we incorporate available information regarding the inputs affecting our power costs, including retail loads, transmission (or wheeling) costs, generation performance parameters, purchase and sales contracts, coal costs, fuel transportation costs, and the expected wholesale market prices for gas and electricity over the relevant time period. We then run Monet to determine PGE's forecasted net variable

8 power costs.

9 **Q.** What is the purpose of the updates to Monet?

A. We update Monet with the latest information available to provide us with the best forecast
for our power costs.

12 Q. Please describe the Monet resource updates that PGE considers significant.

A. All of the resource updates to Monet are provided in the step log, included in our work
 papers. Table 5 below summarizes significant resource updates made to Monet for this
 filing.

Table 5Major Resource Updates

1	<u>Data Update</u> Update PGE and Mid-C Hydro Energy	<u>Description</u> Incorporate results from the new PNCA Headwater Benefit Study.
2	Colstrip Unit 3 HP/IP Turbine Upgrade	Represents the improved capacity and heat rate of the Colstrip facility as a result of the upgrade. Reduces Colstrip's cost per unit of output at the plant and increases its output.
3	PGE Planned Maintenance	Use best current information on planned maintenance outages at our hydro and thermal plants in 2007.
4	Update Heat Rates and Capacities	Use best current plant data to update plant performance statistics.

1	Q.	Please discuss the first resource update, which incorporates the PNCA study of hydro
2		operating constraints and conditions.
3	A.	This update came out in mid-2005 and allowed us to compile a 69-year hydro data set. We
4		discuss this in more detail in our recent general rate case testimony. See pages 56-57 of
5		PGE Exhibit 400.
6	0	Do you also discuss the Colstrin Unit 3 HP/IP Turbine ungrade and the undates to

- Q. Do you also discuss the Colstrip Unit 3 HP/IP Turbine upgrade and the updates to 6 planned maintenance outages in PGE Exhibit 400 (Docket UE 180)? 7
- 8 A. Yes. See pages 57-59 of PGE Exhibit 400.

Q. Please summarize the expected thermal plant performance parameters for PGE's 9 thermal resources. 10

A. Table 6 below summarizes our expectations of thermal plant performance for 2007 and 11 provides a comparison to the 2006 RVM parameters. 12

	Heat Rate		Capacity		Forced Outage		Planned	
	2006 <u>Btu/kWh</u>	2007 <u>Btu/kWh</u>	2006 (MW)	2007 (MW)	2006 <u>Rate</u>	2007 <u>Rate</u>	2006 <u>Days</u>	2007 <u>Days</u>
Beaver	9,299	9,299	521	521	8.7%	20.8%	28.5	See Text
Boardman	9,725	9,725	380	380	6.5%	12.1%	29	30
Colstrip 3	10,913	10,842/10,490	148	143/148	13.0%	12.4%	9	44
Colstrip 4	10,913/10,556	10,490	148/153	148	13.0%	12.4%	52	0
Coyote	7,146	7,128	240	243	6.8%	7.3%	16	16

Table 6 **Thermal Performance Parameters**

Q. What is the basis of the forced outage rates (FOR) for the thermal units? 13

A. For all thermal resources, the FORs are calculated on the basis of rolling 4-year averages. 14 For 2007, this average is calculated based on the actual forced outages experienced from

15

- 1 2002 through 2005. We provided forced outage data in PGE Exhibit 300 in Docket UE 180
- 2 (see pages 19-20).

IV. Qualifications

1 Q. Mr. Tooman, please describe your qualifications.

A. I received a Bachelor of Science degree in Accounting and Finance from the Ohio State
University in 1976. I received a Master of Arts degree in Economics from the University of
Tennessee in 1993 and a Ph.D. in Economics from the University of Tennessee in 1995. I
have taught economics at the undergraduate level for the University of Tennessee,
Tennessee Wesleyan College, Western Oregon University, and Linfield College. I have
worked for PGE in the Rates and Regulatory Affairs Department since 1996.

8 Q. Mr. Niman, please describe your qualifications.

9 A. I received a Bachelor of Science degree in Mechanical Engineering from Carnegie-Mellon
10 University and a Master of Science degree in Mechanical Engineering from the California
11 Institute of Technology. I am a registered Professional Mechanical Engineer in the state of
12 Oregon.

I have been employed at PGE since 1979 in a variety of positions including: Power Operations Engineer, Mechanical Engineer, Power Analyst, Senior Resource Planner, and Project Manager before entering into my current position as Manager, Financial Analysis in 16 1999. I am responsible for the economic evaluation and analysis of power supply including 17 power cost forecasting, new resource development, least cost planning, and avoided cost 18 estimates. The Financial Analysis group supports the Power Operations, Business Decision 19 Support, and Rates & Regulatory Affairs groups within PGE.

20 Q. Mr. Schue, please describe your qualifications.

A. I received a Bachelor of Science degree in Economics from the University of Oregon, a Master of Arts degree in Economics from the University of Minnesota, and a Master of

I have been employed at PGE in a variety of positions beginning in 1984, primarily in 4 the Rates and Regulatory Affairs Department. I have worked on Bonneville Power 5 Administration rate cases, particularly in transmission rate design. I was the Project 6 Manager for PGE's 2000 Integrated Resource Plan (IRP), and worked on PGE's 2002 IRP 7 8 and related Request for Proposals. I also co-sponsored testimony and provided analytical support in the Trojan-related UE 88 Remand docket. In addition, I worked at the Oregon 9 Public Utility Commission during 1986 and 1987, where my primary assignment was 10 economic evaluation of conservation programs. 11

12 **Q. Does this conclude your testimony?**

13 A. Yes.

g:\ratecase\opuc\dockets\ue - 2007 rvm\testimony - pge direct\draft nvpc testimony.doc

List of Exhibits

PGE Exhibit	Description
101-C	(Confidential – Sent under Separate Cover) Output/Assumption Summary Sheet Model Step Change Log and Change Categories Monet Output (Cost and MWa)
102-C	(Confidential on CD – Sent under Separate Cover) Monet Model (M606PUC05-045-2007.xls) Cost of Serving Opt-Out Loads (CostofOp031506.xls Step Log (2007RateCase-ModelsSteps-March15Filing.xls) Output Summary (SumM606PUC05-045-2007.xls) Stacking Model (Stk031506-2007RL.xls) Hourly Diagnostic Output (M606PUC05-045-2007output-Hrlyxls)
103	Copy of PGE Exhibit 400 in Docket UE 180

Power Cost Framework

Table of Contents

I.	Introduction	1
II.	Power Cost Framework – General Rate Case Role	17
III.	Power Cost Framework – Annual Update Role	26
IV.	Proposed Annual Variance Tariff	
Α	. Neutralizing Load Effects	
В		
С	. Dead-bands	
D		
E	. Earnings Tests	
F.	Process	
V.	MONET Changes	54
VI.	Qualifications	62

I. Introduction

Q. Please state your names and positions at PGE.

- A. My name is Pamela G. Lesh and my position is Vice-President, Regulatory Affairs and
 Strategic Planning. I am responsible for all aspects of regulatory affairs and for overall
 strategic planning at PGE. My qualifications are in PGE Exhibit 100.
- 5 My name is Michael A. Niman and my position is Manager, Financial Analysis. I am 6 responsible for power cost, project, and other financial analyses at PGE. My qualifications 7 are in Section VI of this testimony.
- 8 (

Q. What is the purpose of your testimony?

9 A. The purpose of our testimony is to support PGE's forecast of net variable power costs (NVPC) for the purpose of setting cost of service rates for 2007 and to propose a fair 10 methodology for reflecting power costs in PGE's cost of service rates. We propose a 11 framework for power costs that uses three major regulatory tools -a general rate case 12 (GRC), a forward-looking automatic adjustment clause (AAC), and a retrospective 13 14 automatic adjustment clause – to achieve rates reasonably reflective of actual cost, and to allocate (between PGE and our customers) the risk of variances between the forecast used to 15 set rates and the actual costs experienced. Our proposal includes not only methodologies 16 and allocations, but also process and timing. 17

In brief, we propose to use a GRC much as we do now. Filed as needed by PGE, or initiated by the Commission or a complainant, the GRC would establish – for a test period and the indefinite future until the next GRC – the following:

21

• Capital recovery costs for generation investments (return of and return on)

- 22
- O&M for plants and power operations

UE 180 / PGE / 400 Lesh Niman / 2

UE 181 / PGE Exhibit / 103 Tooman – Niman – Schue / 2

1	• Operating parameters for PGE resources (or contracts that resemble resources)
2	such as heat rate, maximum capacity, and environmental constraints
3	• MONET (the PGE power cost model) logic or other changes not specifically
4	included in the annual update
5	We further propose to replace the Resource Valuation Mechanism (RVM) with Annual
6	Power Cost Update (Annual Update – see Schedule 125). The RVM served two purposes:
7	updating NVPC and providing the methodology for calculating transition adjustments for
8	customers choosing direct access or market-based rate offers. PGE Exhibit 1300 explains
9	the mechanism by which we propose to calculate transition charges in the future. For the
10	Annual Update, each year, PGE will produce a new NVPC forecast by inputting to
11	MONET:
12	• New power, fuel and transmission contracts (physical and financial) entered into
13	by PGE;
14	• A load forecast for the following calendar year;
15	• Forward curves for power and fuel to value any short or long positions;
16	• Updated forced outage rates, using the traditional four-year rolling average
17	methodology; and
18	• Planned maintenance outages for the following calendar year.
19	Unlike the RVM, the Annual Update will not re-spread fixed power costs (developed
20	through unbundling) for the new load forecast. This feature of the RVM related primarily to
21	its use as a transition cost mechanism.
22	Last, we propose an automatic adjustment clause - the Annual Power Cost Variance
23	(Annual Variance - see Schedule 126) that compares the difference between the forecast

<u>UE 180 / PGE / 400</u> <u>Lesh Niman / 3</u>

UE 181 / PGE Exhibit / 103 Tooman – Niman – Schue / 3

1	NVPC for a given year with the actual NVPC that PGE incurred, and allocates that
2	difference between PGE and customers according to the following parameters:
3	• Variances shared 90% to customers and 10% to PGE
4	• Portion of variance related to changes in load from the forecast neutralized by
5	comparing forecast average NVPC to actual average NVPC
6	Prudence review
7	Both the Annual Update and Annual Variance would be subject to an earnings test,
8	which we modeled on the Commission's 1999 policy ruling relating to Purchased Gas
9	Adjustment (PGA) clauses, Order No. 99-272. Once a year, a proceeding would occur to
10	enable a Commission finding whether the effects of the Annual Update and Annual
11	Variance mechanisms in the prior calendar year, combined with the results of risk
12	allocations from the last general rate case and any other regulatory actions for that year,
13	resulted in reasonable rates. PGE would share equally (50-50) with customers any earnings
14	for that prior calendar year above a threshold, which we propose as 100 basis points above
15	our authorized return on common equity (ROE), adjusted for years between GRCs.

16

Q. Will PGE make an RVM filing for 2007?

A. Yes. PGE's current Schedule 125 remains effective until the Commission approves its
modification. Accordingly, we have included with this filing an RVM estimate, similar to
those we have provided over the last several years, and we will file the 2007 RVM by April
1, 2006, per the usual schedule. The RVM estimate differs from the GRC NVPC forecast in
two respects:

- 22
- It reflects no changes to the MONET model

UE 181 / PGE Exhibit / 103 Tooman – Niman – Schue / 4

2

3

1

• The load excludes those customers who have given us notice "not to plan" for them under Part B of Schedule 125. As explained in PGE Exhibit 1300 we propose to eliminate this option beginning in 2007.

The 2007 RVM preliminary estimate is \$813.8 million, a 29% increase from 2006. 4 Continued high projected electric and natural gas prices and large unfilled positions are the 5 primary causes of the increase. The forward curves in the final 2006 RVM filing were 6 \$67.44 per MWh and \$9.35 per DT, respectively. However, at that time we had already 7 filled most of our needs, either on physical or financial bases. The average cost to pay for 8 9 short-term electric contracts and cover a small open electric position at forward curve prices was \$49.76/MWh, and the value of our gas financials was more than \$57 million. On the 10 other hand, as of 2/23/06, forward curves for 2007 were \$61.49 per MWh and \$8.48 per DT, 11 only somewhat lower than those in the final 2006 RVM filing, and we had large unfilled 12 electric and gas needs. The average cost to pay for short-term electric contracts and cover a 13 large open electric position was \$60.63/MWh, and the value of our gas financials was less 14 than \$10 million. Our confidential workpapers provide detailed MONET model output for 15 our 2007 RVM and GRC NVPC forecasts. 16

17

Q. What is your GRC NVPC forecast?

18 A. Our GRC NVPC forecast is \$857 million. Both this forecast and the RVM estimate include:

- 19
- Forced outages rates based on the years 2002 through 2005
- Planned maintenance outages for 2007
- Power and fuel contracts entered into through 2/23/06
- Forward electricity and natural gas curves on 2/23/06
- Updated cost and performance parameters for thermal plants

- Updated hydro generation forecast based on the average of 69 years of hydro
 conditions
- 3
- Updated transmission and wheeling assumptions

4 Q. How do you propose to update your RVM estimate and GRC NVPC forecast?

We propose to do this according to the schedule adopted in the 2007 RVM, using that 5 A. 6 schedule for updating the GRC NVPC forecast as well. We intend to propose a schedule for this GRC docket that enables resolution of PGE's proposed changes to direct access by the 7 end of August, in time for the September Schedule 483 and 489 elections. Assuming this 8 9 resolution includes the disposition of Schedule 125 Part B opt-out as well, there will be no difference between the GRC NVPC and RVM NVPC forecasts except for any contested 10 MONET changes. The RVM estimated rate change would, however, continue to reflect 11 re-spreading the UE 115 supply function fixed costs over 2007 RVM loads. 12

Q. How does the Boardman outage that begin briefly in October 2005, and PGE's pending deferral for part of the outage period, affect your RVM and GRC estimates and your proposed framework?

A. In this filing, both the 2007 RVM and GRC NVPC forecasts include the days starting October 23 through December 31, 2005, in the rolling four-year average calculation of Boardman's forced outage rate. We stated in our application for deferred accounting that, to the extent that PGE receives recovery of the cost of replacing Boardman, the forced outage rate calculation should not reflect days included in that recovery. If the deferral proceeding results in a Commission order by October or November, we can reflect the outcome in the RVM and GRC NVPC forecasts.

<u>UE 180 / PGE / 400</u> <u>Lesh Niman / 6</u>

UE 181 / PGE Exhibit / 103 Tooman – Niman – Schue / 6

The effect of the outage and the potential deferral on the Annual Variance component of 1 our proposed NVPC framework is more complex. As we summarized above, the Annual 2 Variance tariff puts in place a sharing of variances, positive and negative. All else being 3 equal, including Boardman's unexpected forced outage days in the rolling average used for 4 forecasting increases the likelihood of a negative variance; i.e., actual NVPC would be 5 6 lower because Boardman would produce more electricity at its variable cost of approximately \$13/MWh, compared to a market price that may be approximately \$60/MWh. 7 Under our proposal, customers would receive 90% of such negative variances. This result 8 9 would deprive PGE of the opportunity to recoup our loss from the outage period, to the extent that the Commission did not allow us direct recovery of the costs through deferral. 10 The reverse could happen as well if, for example, Colstrip or Coyote Springs had performed 11 particularly well in 2004 or 2005. Transition to the Annual Variance tariff could deprive 12 customers of some of the expected compensation for the extraordinary performance that did 13 not benefit them because no variance mechanism was in place. 14

To address this transition issue, which occurs both at the start and at the eventual end of the Annual Variance tariff, we have included language in the tariff to preserve the "benefit of the bargain" for customers and for PGE of variances related to how we forecast forced outage rates.

19 **Q.**

Q. How have you organized your testimony?

A. In the remainder of this introduction, we review the regulatory tools available for including power costs in cost of service rates and summarize a study PGE has prepared regarding how regulatory agencies in other states have applied these tools for electric utilities under their jurisdictions. We drew upon our review and this study, as well as the Commission's Order

<u>UE 180 / PGE / 400</u> <u>Lesh Niman / 7</u>

UE 181 / PGE Exhibit / 103 Tooman – Niman – Schue / 7

No. 05-1261, Oregon's regulatory treatment of natural gas utilities' purchased gas, and our 1 interactions with expected parties to this case, in developing our proposed framework. We 2 also briefly review the definition of net variable power costs (NVPC) and how we use our 3 MONET model to produce a forecast of NVPC. 4 Section II discusses the GRC portion of our framework. We explain why we believe it 5 appropriate to address the selected components of power costs in that forum, rather than in 6 an annual update or a retrospective automatic adjustment clause, and the risk allocation 7 reflected by the proposed treatment of those components. 8 9 Section III explains why we included the Annual Update mechanism in our framework. We also support our short list of items eligible for the Annual Update and describe the 10 process and timing we propose to apply to the proceeding. As with Section II, we identify 11 the risk allocation contained within this part of the framework. 12 Section IV explains why we included a retrospective mechanism in our proposed power 13 cost framework, describes the parameters and process we propose for the Annual Variance 14 tariff and why we chose or designed them and rejected others. We address the guidelines 15 the Commission suggested in Docket UE 165 for the SD-PCAM as well as parameters 16 17 currently in place for similar mechanisms or used in the past. In Section V, we discuss the MONET changes that we propose the Commission adopt 18 either for use in a continued RVM or for use in the proposed Annual Update. We present a 19 20 preliminary estimate of the amount by which each change will affect NVPC. **O.** What regulatory tools are available for handling power costs in cost of service rates in 21 **Oregon?** 22

<u>UE 180 / PGE / 400</u> <u>Lesh Niman / 8</u>

UE 181 / PGE Exhibit / 103 Tooman – Niman – Schue / 8

A. Oregon has at least four regulatory tools that it can employ to reflect power costs properly in 1 cost-of-service prices. These are: 2 GRCs, which are a comprehensive review of all of a utility's costs, including the 3 cost of capital; 4 Forward-looking automatic adjustment clauses, for which the Commission may 5 6 by statute suspend some of the procedural requirements for processing rates and which generally focus on components of cost of service that change more 7 frequently than most; 8 9 Retrospective-looking automatic adjustment clauses, which by using deferred accounting authority can adjust rates for components of cost of service that 10 change frequently but are difficult or impossible to forecast accurately; and 11 Deferred accounting, presently governed by the guidelines the Commission 12 adopted in Docket UM 1147 and which is best suited for unexpected and short-13 term changes in a utility's costs. 14 All of the regulatory tools other than the GRC require features that ensure that the 15 prices resulting from their application still meet U.S. Constitutional and statutory 16 requirements. Commonly, this occurs through a prospective or retrospective review of 17 earnings that will or have resulted from the approved cost changes. 18 Q. What are the characteristics of a GRC that you considered in deciding how to use this 19 20 tool in the framework? A. A GRC is the most thorough of all the tools, with a process that provides ample access to 21 information and time to ensure understanding. The inclusion of all costs and revenues 22 23 allows exploration of all linkages, direct and indirect. Determining whether the resulting

UE 180 / PGE / 400 Lesh Niman / 9

UE 181 / PGE Exhibit / 103 Tooman – Niman – Schue / 9

prices meet Constitutional and statutory requirements is intrinsic to the proceeding, because 1 the Commission determines the authorized rate of return based upon its application of the 2 requirements to the record developed in the GRC. This is the proceeding in which the 3 Commission can best address the alignment of risk allocation and cost of capital and this is 4 why PGE is proposing a comprehensive regulatory framework for power costs in this filing. 5 6 A GRC, with its "test year" core, is not well suited, however, to highly dynamic information, such as near-term power and fuel purchase contracts, and forward curves. 7 Depending on the process, it can become questionable whether the forecasts of such 8 9 dynamic costs or revenues will be an acceptable representation of what will happen in the test year, let alone subsequent years. In addition, initiation of GRCs in Oregon has been 10 one-sided in practice although not in right: the Commission or a customer can initiate a 11 GRC. The slowness and initiation characteristics make a GRC ill-suited to cost components 12 that can change significantly, up or down, from year to year (e.g., NVPC). This tool is best 13 for cost components that slowly rise or slowly fall over time, such as most fixed costs. 14 **Q.** Which characteristics of an automatic adjustment clause (AAC) did you consider 15 important in deciding how to use this tool in the framework? 16

A. Based on Oregon's experience with PGA clauses and PGE's power cost adjustment clause
 in the 1980s (1980s PCA) and RVM since 2001, we conclude that AACs are a good
 regulatory tool for cost of service rates if the cost (or revenue) to which the AAC applies:

20

21

• Changes frequently and in ways that could both increase or decrease prices, such that removing the utility's information advantage helps ensure fairness over time;

- 10
- 1

2

3

• Implements an already-decided risk allocation, rather than changing that allocation or revising it to reflect a new risk (such as a major new investment); and

Generally is actually incurred, third-party generated, per a previously-agreed
 methodology, or verifiable.

Two items on this list are similar to those mentioned by the Commission in its 1989 order modifying PGA clauses in Oregon, Order No. 89-1046, which noted the standards of: (1) a cost that changes frequently so that tracking is useful to avoid numerous rate proceedings; (2) the significance of the cost in relation to the utility's total expenses; and (3) the degree of control the utility has over the cost. In 1989, gas costs were over 56% of Northwest Natural's total expenses; in 2007, we expect NVPC to be over 50% of our total revenue requirement.

AACs based on the above criteria can proceed rapidly and consume relatively few regulatory resources. The tool works less well if the underlying information is complex or involves choices about which disagreement might exist or if the AAC's timing does not permit review of all information used in adjusting prices.

The primary difference between forward-looking and retrospective AACs is the nature of the cost or revenue change involved. AACs for costs already incurred to serve a future period (e.g. gas purchase contracts) or capable of accurate forecasting can easily be forwardlooking. AACs for costs not yet incurred and subject to uncertainty (e.g., energy efficiency program incentives that will depend on how many customers choose the program) require a retrospective AAC.

1	11 Q.	Why do you believe that AACs, forward-looking or retrospective, and deferred
2		accounting require features to ensure that the prices resulting from their application
3		still meet U.S. Constitutional and statutory requirements?
4	A.	Any time the Commission rules on utility prices, its decision must meet these tests. As we
5		noted above, this happens in a GRC as an intrinsic function of the scope of the proceeding.
6		By their very nature, however, AACs or deferred accounting matters do not involve all costs
7		and revenues and unreasonable prices could result if, for example:
8		• The cost or revenue adjusted through the AAC or deferred accounting relates
9		integrally to another cost or revenue that is not adjusted; or
10		• Unrelated costs or revenues have changed significantly.
11		The Commission typically does this through an earnings test of some sort. In the PGAs,
12		for example, the earnings test generally does not directly relate to the ways in which the
13		AACs update the forecast of future natural gas costs or the variance between forecast and
14		incurred gas costs for a prior period (this is slightly different for Avista). Rather, once a
15		year, the Commission checks whether the complete regulatory framework for the gas
16		utilities (GRCs and PGAs) has resulted in reasonable rates. Earnings above a certain
17		threshold are subject to sharing. See Order No. 99-272 and OAR 860-022-0070. With
18		respect to deferred accounting, the Commission has explained that "the sole issue is whether
19		a utility's earnings for the test period enable it to absorb a cost that has been approved for
20		deferral." Order No. 93-257 at 7.

Q. Did PGE conduct a study of how other states handled power costs for purposes of
 setting cost of service rates?

UE 181 / PGE Exhibit / 103 Tooman – Niman – Schue /

A. Yes, PGE engaged NERA Economic Consulting, formerly National Economic Research
 Associates, to conduct this study on our behalf. NERA completed the study in August 2005.
 PGE includes the full study entitled The Continuing Role of Power Cost Adjustments in the
 Electric Utility Industry as PGE Exhibit 401. In addition, PGE routinely tracks how other
 Northwest states address power cost recovery.

6 Q. What states and utilities did NERA include in the study?

A. NERA began with the fifty states as well as the District of Columbia and divided them into 7 8 traditionally regulated states and states that had restructured their electric industry. (Nebraska and Alaska do not have any investor owned utilities.) PGE Exhibit 402 shows 9 the types of states as defined by NERA and the states that have long standing Power Cost 10 Adjustments (PCAs). The study excludes the restructured states and focuses on the 11 traditionally regulated states outside the Northwest (30). Although NERA excluded Arizona 12 as a restructured state, it should probably be included because restructuring is largely halted 13 and the Arizona Corporate Commission has reinstituted a PCA for Arizona Public Service. 14 Tucson Electric Power has not yet filed a rate case because of a prolonged rate freeze 15 16 associated with the now halted restructuring.

17 Q. At a high level, what were the results of this study?

A. Of the states and utilities reviewed, the overwhelming majority track through to retail prices 19 100% of a utility's prudently-incurred NVPC, both power and fuel. This occurs through 20 periodic filings for forward-looking rate adjustments and true-up mechanisms to reconcile 21 past variances. Rate adjustments are usually accompanied by requirements for a regulatory 22 hearing or report to the Commission. The frequency of adjustments varies from state to 23 state, ranging from monthly to annually. Of the 28 states that authorize their utilities to have

UE 181 / PGE Exhibit / 103 Tooman – Niman – Schue /

a power cost adjustment clause, 25 include some form of true-up. The time-lag for full cost
 recovery of forward-looking adjustments and true-up reconciliation varies from 1 month to
 12 months.

Some states include purchased capacity costs in their PCAs. These states include Hawaii, Montana, Oklahoma, South Carolina and South Dakota. Others address capacity in separate clauses (AR, FL, WI) or the utilities' base rate (GA, IA). Some states allow utilities to recover the cost of financial hedges (AL, GA, MS, NV, ND, SD). Utilities may include some or all of the gains/losses from financial hedging aimed at reducing energy costs in the PCA. Distinct geographic characteristics exist. PGE Exhibit 403 provides details of the state process.

11 Q. What did the survey show regarding the use of dead-bands and sharing?

A. Only Washington has had a dead-band of the nature applied in Oregon to two recent deferred accounting requests and proposed by various parties for ongoing AACs. Sharing mechanisms are infrequent and, where they exist, generally relate to the true-up or retrospective portion of the mechanism. These mechanisms take on a variety of forms. We discuss dead-bands and sharing further in Section IV.

Q. What did NERA do to ensure full understanding of the power cost framework in place in the various states?

A. NERA contacted both the Commissions and the utilities listed in the study. NERA solicited
 information about the framework of each PCA so that we could understand the mechanics
 and rationale. Appendix 1 of PGE Exhibit 401 presents the detailed information.

22 Q. What are your conclusions from the NERA study?

A. We conclude that, among states that continue to regulate utilities on a cost of service basis:

14

- The use of regulatory tools that allow frequent resetting of rates for power cost 2 components, outside of a general rate case, is common;
- The use of regulatory tools that adjust rates for differences between the forecasted power cost components and actual power costs incurred, is common; and
- Commissions in the Western states tend to allocate more risk of variance to
 utilities than those in the Southern or Midwestern states.

PGE's current lack of a retrospective tool for variances between forecasted and actual
 power costs places us in an "outlier" status among cost of service electric (or combination)
 utilities. This is why our framework includes the Annual Variance tariff.

10 Q. How does PGE define "net variable power costs" (NVPC)?

A. NVPC include wholesale (physical and financial) power purchases and sales ("purchased 11 power" and "sales for resale"), fuel costs, and other costs of power that generally change as 12 power output changes, such as transmission payments to third parties. PGE records its 13 variable power costs to FERC accounts 501, 547, 555, 565, and 447. Based on historical 14 decisions, we include some fixed power costs, such as Boardman taxes. These items, such 15 as transportation charges and excise taxes, relate to fuel used to produce electricity. We 16 "amortize" these fuel-related costs even though, for purposes of FERC accounting, they 17 appear in a balance sheet account (151). We also exclude some variable power costs, such 18 19 as variable operation and maintenance costs, because they are already included elsewhere in PGE's accounting. The "net" refers to net of assumed wholesale sales. 20

21 Q. How does PGE produce a forecast of NVPC?

A. PGE uses a model to forecast NVPC. The primary purpose of the model is to reflect in estimating NVPC the principles of economic dispatch; i.e., a utility should use lowest

UE 181 / PGE Exhibit / 103 Tooman – Niman – Schue /

1	15	variable cost resources to serve customers first, moving up the price/supply curve as load
2		requires. PGE uses a combination of known future costs, forecast cost inputs, and a model
3		to produce a forecast of net variable power costs, built around the principle of economic
4		dispatch. In other words, for PGE and the region, resources such as hydro plants, coal
5		plants, and combustion turbines run to meet load in order of lowest (variable) cost first, and
6		highest cost last. We use a model called MONET that we first built in the mid-1990s and
7		have since refined.
8	Q.	How does PGE use MONET to forecast net variable power costs?
9	A.	PGE uses MONET to "dispatch" PGE's resources against forward curves for purchased
10		power and gas. To do this, the model employs the following data inputs:
11		• Forecasted retail loads, on an hourly basis;
12		• Physical and financial contract and market fuel (coal, natural gas, and oil)
13		commodity and transportation costs;
14		• Thermal plants, with forced outage rates and scheduled maintenance outage days,
15		maximum operating capabilities, heat rates, and any variable operating and
16		maintenance costs (although not part of net variable power costs for ratemaking
17		purposes);
18		• Hydroelectric plants, with output reflecting current non-power operating
19		constraints (such as fish issues) and peak, annual, seasonal, and hourly maximum
20		usage capabilities;
21		• Transmission (wheeling) contract costs;
22		• Physical and financial electric contract purchases and sales; and
23		• Forward market curves for gas and electric power purchases and sales.

UE 181 / PGE Exhibit / 103 Tooman – Niman – Schue /

Using these data inputs, MONET dispatches PGE resources to meet customer loads 1 2 based on the principle of economic dispatch. Thus, any plant is dispatched when it is available and its dispatch cost is below the market electric price. Any plant can also be 3 operating in one of various stages - maximum availability, ramping up to its maximum 4 availability, starting up, shutting down, or off-line. Given thermal output, expected hydro 5 generation, and contract purchases and sales, MONET fills any resulting gap between total 6 resource output and PGE's retail load with market purchases (or sales) based on the forward 7 8 market price curve.

		II. Power Cost Framework – General Rate Case Role
1	Q.	What components of PGE's power costs do you propose that the Commission reflect in
2		rates only through a GRC?
3	A.	As has historically occurred, we propose that the Commission reflect the following in rates
4		through a GRC:
5		• Capital recovery costs for generation investments (return of and return on),
6		whether new or capital additions;
7		• O&M for plants and power operations;
8		• Operating parameters for PGE resources (or contracts that resemble resources)
9		such as heat rate, maximum capacity, and environmental constraints; and
10		• MONET logic or other changes not specifically included in the annual update.
11	Q.	Why are capital recovery costs on this list?
12	A.	Oregon's practice for many years has been to change cost of capital only in a GRC, at which
13		time the Commission can ensure that the rate of return (reflecting cost of debt, equity,
14		preferred and cap structure) produces an end result that meets Constitutional and statutory
15		requirements. Similarly, Oregon has, for many years, required that utilities update their
16		depreciation studies every five years, a time frame more suitable to addressing these "return
17		of" issues in a GRC. For major new investment or capital additions, PGE generally knows
18		in advance and a GRC schedule is workable. In addition, a proposed addition to rate base is
19		not a highly variable number that requires frequent updating throughout the process.
20	Q.	Are there circumstances under which PGE and participants in your rate cases might
21		not want to do a full GRC to update power supply capital recovery costs?

A. Yes. We have one instance in this case. PGE plans to complete Port Westward shortly after 1 concluding a GRC for the 2007 test year. PGE could almost simultaneously run a GRC for 2 a test period that ends on Port Westward's on-line date but it makes more sense simply to 3 "track" the plant into the already approved test year when it becomes available. The 4 Commission previously used this procedure for PGE's Coyote Springs plant, and there are 5 other examples as well. In essence, these "tracker" cases operate on the implicit assumption 6 that nothing else requires review to ensure that the end result of the rates is reasonable. As 7 we think ahead to the next five to ten years, it is probable that PGE will have more frequent 8 generation-related major investments or capital additions than in the past 10 years. PGE is 9 open to adapting this framework to accommodate a "tracker" concept for certain resource 10 investments or capital additions. 11

12 Q. Why do you propose to address plant-related and power operations O&M in a GRC?

A. We propose this for two reasons. First, costs incurred in other areas, such as information
technology, affect plant or power supply O&M costs making it difficult to address only
O&M. For example, in this case, IT costs allocable to generation are \$3.7 million. Second,
these costs are not highly variable, either during a GRC process or after the case's
conclusion.

Q. What do you mean by the term "plant operating parameters" that you use to describe the next category of power cost components you propose to address in a GRC?

A. The two main parameters we have in mind here are heat rate (for thermal plants) and maximum output capability (for hydro and thermal plants). Specifically for hydro, we include environmental operating constraints as a parameter matter, but updating "average water" for additional years of data would not be. These are characteristics that change from

time to time because of reasons such as capital investments or environmental issues (permits
etc.).

Q. Why do you propose to update these plant operating parameters in a GRC?

We propose this primarily for two reasons. First, the reasons for changes in these 4 A. 5 parameters can be complex, such as a new biological opinion affecting Columbia River hydro operations or air quality issues that constrain a given plant's operation during certain 6 hours of the year. Handling such issues in a GRC allows all parties more time to understand 7 8 the change. Second, particularly for improvements in heat rate or maximum capability, capital additions and higher O&M may be integrally related with the change. It seems 9 unbalanced to reflect the parameter changes without recognizing the capital additions or 10 higher O&M. On the other hand, a planned maintenance outage – which we do intend to 11 reflect in the annual update – may be particularly long in a given year because of the work 12 that is required to improve heat rate or increase maximum capability. This actually occurred 13 with Boardman in 2004 and is underway for Colstrip 4 and 3 in 2006 and 2007, respectively. 14 In the RVM, we did change operating parameters for these matters. At times, however, 15 16 our proposed changes generated controversy for a variety of reasons. We are open to discussing this part of the proposal during the process of this case. Solutions to the 17 complexity and linkage issues may appear that we are not aware of right now. 18

19 20

Q. Why do you propose to handle MONET logic and other types of changes not specifically allowed by the Annual Update process in a GRC?

A. We make this proposal primarily because of our experience with the RVM and feedback from parties about the RVM process. The range of logic, data, and other modeling changes that can occur, as we attempt to produce as accurate a forecast as possible, is large. The

effect of most such changes, however, is generally small. We may gain some process efficiency by gathering these together for handling in a GRC and parties will gain time to evaluate these changes.

4 Q. How would your proposed framework operate in a year in which you had a GRC?

A. Much as we are doing in this filing, we would provide an estimate of the upcoming Annual
Update with the GRC so that customers understood the combined possible rate change and
we would include in the GRC any MONET or operating parameter changes not allowed by
the Annual Update process. On the date contained in the Annual Update tariff, we would
file the Annual Update for the following year, without the effects of the proposed model
changes in the GRC. Once the Commission acted on the GRC, we would include those
decisions in the final Annual Update model run for the upcoming year.

12 Q. What risk allocations does this part of your proposed framework embody?

13 A. This part of the framework allocates to PGE the following risks:

- Regulatory lag and prudence on the recovery of generation capital investments;
- Changes in load that affect the recovery of these fixed capital recovery and O&M
 costs;
- Changes in and prudence of fixed O&M costs;
- Regulatory lag on changes in costs related to changes in plant/contract operations;
 parameters, to the extent of PGE's share per the Annual Variance mechanism; and
- Modeling choices, to the extent of PGE's share per the Annual Variance.
- 21 Q. What modeling choices allocate risk to PGE?
- 22 A. Two of our inputs to MONET embody significant risk allocations:

21

1

2

- The four-year rolling average methodology used to create a forecast forced outage rate for generating plants; and
- The methodology used to forecast the amount of hydro-electric power PGE's
 plants and Mid-C contracts will produce.

5 For both of these, we use a methodology because we have no way of knowing for 6 certain what a given plant's forced outage rate for a year will be or what hydro-electric 7 power we will receive from our projects or contracts. Only by fluke will the methodology 8 result in a forecast that is the same as what actually occurs.

9 Q. How does the four-year rolling average for forced outages work?

A. We use a four-year rolling average, incorporating data from the four most recent calendar 10 years for which data are available. For the 2007 net variable power cost estimate in this 11 filing, we use data from 2002-2005. For example, if a plant had experienced forced outage 12 rates of 5%, 12%, 3%, and 8% for the years 2002, 2003, 2004, and 2005 respectively, we 13 would assume a 7% forced outage rate in our 2007 power cost estimate. This simple 14 example assumes equal weighting of the forced outage rates. The actual calculation is 15 16 effectively a weighted average, however, using the total unit forced outage hours, equivalent derated hours, service hours, etc. as applicable over the four calendar year period. 17

This produces a point forecast for a given year. If the actual forced outage rate for the year is less than this, PGE may experience the benefit of the additional plant availability, subject to the Annual Variance tariff. Customers will receive this benefit, however, over the following four years, as the increased availability lowers the forecast forced outage rate below what would otherwise have been forecast. The reverse occurs also.

UE 180 / PGE / 400 Lesh Niman / 22 22

UE 181 / PGE Exhibit / 103 Tooman – Niman – Schue /

Over the last seven years, the actual forced outage rates for PGE's coal generating 1 plants have varied between 2.9% and 24.1%. The range is slightly larger for the gas-fired 2 generating plants: between 0.6% and 30.4%. The financial effects can be significant, 3 however, particularly for the coal-fired resources because of the differences between a given 4 plant's variable cost and the market value of a MWh. The financial effect of forced outage 5 rate changes at Coyote Springs and Beaver (and Port Westward, when it begins operation) 6 are smaller because the natural gas-driven variable costs are often close to market on a given 7 day. 8

9 **O**

Q. Is this an acceptable risk allocation?

A. Yes, when matched with the Annual Variance tariff we propose. The Annual Variance tariff will ensure that customers see most of the benefit of good plant performance and that PGE recovers most of its costs to provide power despite prudently-incurred plant outages. PGE will, of course, remain subject to bearing the cost of outages caused by imprudence. As we noted in Section I and explain in Section IV, the Annual Variance tariff must include a transition mechanism, however, because the four-year rolling average methodology includes in the mechanism the effects of years before it was in place.

Q. How do you forecast the amount of hydro-electric power production PGE will have available to it?

A. We use the Pacific Northwest Coordination Agreement (PNCA) hydro regulation model to
 develop an average monthly generation for each hydro resource, based on the historical
 stream-flows over the period 1929 through 1997, with in-board and out-board adjustments to
 the model. This produces a point forecast for a given year. If the actual production for the
 year is less or more than this, PGE will experience the cost of replacing the expected

production (subject to the APCV mechanism). Generally speaking, over the last 10 years, 1 actual hydro production has varied between a low of 428 MWa to a high of 708 MWa. This 2 is a large range. Moreover, a swing of 20% or more from one year to the next is not 3 uncommon. The financial effects are also large, because of the difference between the 4 5 variable cost of hydro power, which is close to zero, and the market value of the power produced. For example, if the market electric price is \$60/MWh, and hydro production is 6 100 MWa different than expected, the financial effect is more than \$50 million 7 8 $(60 \times 100 \times 8,760 > 50,000,000).$

9 Q. Is this similar to the rolling four-year average you use for forced outage rates?

A. No. It is different in a critical respect. Except for periods of highly volatile power markets, 10 the rolling four-year average will roughly ensure an even risk allocation between PGE and 11 customers over a five-year period. The shape of effect to each differs, but the totals should 12 be close. This is NOT the case for how we forecast hydro production. Every year's forecast 13 is a new look, unaffected by the year (or four) that just occurred. Moreover, the vast range 14 of years covers an even larger range of wholesale electricity power prices (or no wholesale 15 16 power prices, as there likely was little in the nature of a wholesale power market in many of the early decades included in the 69 years). It is doubtful (although we do not have records) 17 that hydro production variations up to and as late as the 1950s had as much financial effect 18 19 on utilities as they do today.

Thus, only at the end of 69 years could customers and PGE know whether this risk allocation resulted in revenue and cost neutrality and, of that, we have no certainty because we have no way of knowing whether the same distribution of water years will occur over a given sixty-nine years. And, of course, from 2007 forward, it is uncertain whether PGE will

have access to production from the Mid-C hydro plants for 69 years and somewhat doubtful
even for production from PGE's own hydro facilities, the longest license for which now
expires in 2055.

4 **Q.** Is this an acceptable risk allocation?

A. No, not without a retrospective AAC of some sort. The Commission has recognized this,
 encouraging the development of an ongoing mechanism in Dockets UM 1077 and UE 165.

7 Q. Is there any other methodology PGE could use to create a point forecast of hydro

8 production for purposes of creating a NVPC forecast?

9 A. Some have suggested that developing "expected value power costs" could produce a point
 NVPC forecast that reflects an even chance of positive or negative variances and an even
 size of such variances.

12 **Q. What is expected value power cost?**

A. Assuming all relevant variables are defined accurately, it represents a "fair roll of the dice" 13 with respect to expected power cost recovery for the next year. If you roll the dice many 14 times (i.e., many simulations of next year), the deviations between the simulations and 15 Expected Value Power Costs for next year will tend to even out. The method simulates 16 individual or aggregated draws of possible hydro conditions from the period 1929-1997, 17 simulated to occur in the next year. It simulates next year only and not years into the future. 18 19 In other words, whether one uses Average Hydro Power Cost or Expected Value Power Cost, there can be no reason to expect an inter-temporal matching of the costs and benefits. 20

21 Q. What are your concerns with developing Expected Value Power Cost?

A. One of the difficulties in developing Expected Value Power Cost is developing reasonable
 parameters for the relationship between hydro generation and market electric prices.

UE 180 / PGE / 400 Lesh Niman / 25 25

UE 181 / PGE Exhibit / 103 Tooman – Niman – Schue /

1	25	More	over, Expected Value Power Cost does <u>not</u> represent a ratemaking response for treating					
2		the volatility of power costs around the baseline forecast. It does not simulate hydro						
3		conditions outside of the 1929-1997 period or other more extreme hydro conditions. It does						
4		not handle unanticipated events (e.g., the 2000-2001 California Power Crisis), and generally						
5	is very poor at reflecting non-fundamental factors such as market psychology. It also does							
6		not si	mulate the next 69 years into the future. This is because:					
7		•	Hydro system non-power constraints change over time into the future.					
8		•	Hydro resource shares change over time into the future.					
9		• The distribution of potential hydro production outcomes may not be represented						
10		by the 69 years because of climate change or changes in environmental						
11			requirements.					
12		•	The relevant parameters (e.g., hydro/market price relationship, gas/electric price					
13			relationship) are not static. As a result, even if the parameters are defined					
14			correctly for one year, they will tend to change over time. Thus, a deviation in					
15			power cost that is consistent with a distribution of potential outcomes in year 1					
16			could not be expected to be offset with a deviation in power cost in year 2 (or					
17			some other future year) that is consistent with a different distribution of potential					
18			outcomes.					

		III. Power Cost Framework – Annual Update Role
1	Q.	What components of PGE's power costs do you propose to address through the Annual
2		Update?
3	A.	We propose to establish a forecast of NVPC - which we defined in Section I - for
4		ratemaking purposes each year through the Annual Update tariff. To create this forecast, we
5		propose to use MONET, updating only for:
6		• Hourly loads for the forecast year;
7		• New physical and financial contracts and changes to existing contracts for power,
8		fuel, fuel transportation, or transmission/wheeling;
9		• Forced outage rates, using the traditional four-year weighted, rolling-average
10		methodology;
11		• Planned maintenance outage days for the forecast year; and
12		• Forward curves for long or short open power, natural gas, oil, or U.S./Canadian
13		foreign exchange rate positions.
14		As we stated in Section II, any model change or data input not on this list would not
15		occur in the Annual Update process.
16	Q.	Why have you included an annual NVPC update in your proposed framework?
17	A.	The primary driver of changes in our NVPC is power and fuel contracts that we purchase in
18		advance for a given future year or years.
19		With the advent of markets for both power and fuel, and the shift away from long-term
20		(15-year plus) agreements, neither PGE nor customers can have confidence that forecasts
21		created for one year will be even approximately representative for a subsequent year. For
22		example, just from 2002 to 2003, the average price of our power contracts fell by almost

49%; our 2003 RVM passed this cost decrease through to customers with no lag. An even
larger drop in natural gas prices occurred after prices based on the UE 88 test year took
effect in early 1995. PGE adjusted prices for this decrease at the end of 1996 in UE 100.
Without an AAC, reflecting these market-driven changes in PGE's prices may not occur on
a timely basis. PGE would have to evaluate whether to file a GRC based on the overall
change in our revenue requirements and our belief about how long the changed power and
fuel prices would persist.

8 Q. Doesn't an annual NVPC update eliminate regulatory lag as a risk the utility bears?

A. First, it is important to note that regulatory lag is a two-way risk: a utility has the risk of not
receiving timely (via either load growth or rate increases) revenue increases to cover rising
costs and customers have the risk of not receiving timely rate decreases as load growth
and/or falling costs increase a utility's earnings. The Annual Update eliminates this risk for
both PGE and our customers. Moreover, it does so only for this limited set of costs. The
framework we are proposing allocates to PGE the regulatory lag risk for several power costrelated components.

16 Second, one of the traditional purposes of regulatory lag - to create an incentive for prudent decision making – may be less needed for the costs we propose to include in the 17 Annual Update. One of the benefits of regulatory lag in the past was to encourage prudence 18 19 by aligning interests between the utility and customers; i.e., the lag assured that the utility experienced either the benefits or detriments of the particular decision. For power and fuel 20 contracts entered into in a competitive market, this assurance of prudence is less necessary 21 because the Commission can judge the prudence of decisions according to other available 22 23 decisions. Even for structured contracts, which may not have directly comparable

1	28	alternatives, the market will provide enough information to construct a cost-benefit analysis.
2		And, as with the purchased gas costs for which gas utilities also do not experience
3		regulatory lag, PGE earns nothing on its power and fuel contracts. These are not rate base
4		investments.
5	Q.	Does an annual update discourage PGE from entering into multiple-year contracts?
6	A.	No. PGE entered into several multiple-year (five years and longer) power contracts as part
7		of the 2002 IRP Action Plan and RFP process. As market liquidity improves for contracts in
8		the three-to-five year range, we will evaluate entering into these as well.
9	Q.	Why does your proposal update hourly loads?
10	A.	NVPC relates directly to loads. It would make no sense to update the costs without updating
11		the loads.
12	Q.	What model will you use for load forecasting in the Annual Update?
13	A.	We propose to use the same model as we use in a GRC but, as explained in PGE Exhibit
14		1200, we will need to re-estimate the parameters with current external data. Load forecasts
15		for the annual update process will incorporate the most recent data available for key inputs
16		such as employment, GDP, building permits, and interest rates.
17	Q.	Why will you include updates to power, fuel and transmission contracts in the Annual
18		Update mechanism?
19	A.	Again, these are the drivers of year-to-year changes in forecast NVPC. Chart 1 below
20		shows, in \$/MWh the average variable cost of gas resources and of power contracts during
21		the last five years and in millions the total dollars spent. The total results from both the
22		average cost and the volume, which can vary from year-to-year both because of load and
23		because of trade-offs between gas and electricity.

Chart 1

		2001/2	2003	2004	2005	2006
Gas	\$/MWh	38.5	38.3	40.9	37.6	50.6
Resources	Total \$'s	201M*	98M	91M	51M	103M
Contract	\$/MWh	74.8	38.4	42.8	46.1	52.6
Resources	Total \$'s	508M*	204M	221M	299M	381M

* indicates 15-month number, from October 1, 2001 through December 31, 2002

2 Q. Why will you update forced outage rates in the Annual Update?

A. As we explained in Section II, the methodology we use for forecasting a forced outage rate allocates the risk that this forecast is wrong very specifically: the in-year effect goes to PGE and customers experience the variance in the following four years. To make this risk allocation methodology work fairly requires an annual update.

7 Q. What is the reason you update planned maintenance outages in the Annual Update?

A. These specific plans to perform, or not perform, maintenance vary significantly every year.
PGE will purchase power to cover these periods and customers should pay that expected
cost, which will change from year to year as maintenance needs change. If we set this only
in a GRC, both sides would run a significant risk that the test year estimate was not
representative in later years.

In contrast to the current RVM process, we propose to update the planned maintenance outage forecast in October of each year. By October, plant managers have largely completed their budgets, committing dollars to the planned maintenance and firming the timing. This should decrease the chance for variance over the current RVM process, in which we set the planned maintenance outage forecast in March.

Q. Even if you lock your forecasts of planned maintenance outages in October, is there a
 chance that the outages do not occur as planned?

A. Yes. We experienced this with our Sullivan plant. As of March 2004, we expected to take
Sullivan out of service from July through October, 2005. In February 2005, we learned that
we could not obtain all the necessary permits in time and would need to reschedule the
outage for the following year – 2006. There is also a chance the outages go longer than
expected. For example, in 2000, the Boardman outage lasted almost 54 days, rather than the
15 planned.

7 Q. How will you address this in the Annual Update mechanism?

A. We are open to discussing with the parties means of adjusting for changes between actual
and planned maintenance outages. One approach might be to spread the missing or extra
days over the following 2-3 years. Other approaches may exist as well.

Q. You noted above that some planned maintenance outages include work to increase the output or decrease the heat rate of a generating plant. Since customers "pay" for the variable cost effects, shouldn't they receive the benefits of the increase in capacity or decrease in heat rate?

A. It is reasonable that customers should get some benefit but, unless we also include the
investment and additional O&M costs, it is not fair that customers receive the entire benefit.
We are willing to explore allocating the benefits according the proportions represented by
capital carrying costs (return of and on), one-time O&M, and foregone power production.
As with the potential mismatch between forecasted and actual planned maintenance outages,
we have not included a solution in the Annual Update tariff but are open to discussing the
issue with the parties.

22 Q. Why do you need forward gas and electric curves for the Annual Update mechanism?

1	31 A.	MONET meets load and dispatches PGE's resources on an hourly basis. As we begin a					
2		given calendar year, there are always some hours for which we have not purchased power or					
3		natural gas as MONET would indicate or have, in fact, purchased more power or gas than					
4		MONET calculates that we need to meet load. We input forward curves in MONET to					
5		value both what we need to buy and what we need to sell.					
6	Q.	What forward curves do you propose to use for the Annual Update?					
7	A.	We propose to use the average of five daily forward curves that we generate internally in					
8		early November.					
9	Q.	Is this a change from the RVM?					
10	A.	Yes. In the RVM, we have used PGE's internally-generated curve from just one day.					
11	Q.	Why do you propose to average the curves over a five-day period?					
12	A.	We have two reasons. First, an average over five days will smooth daily fluctuations from					
13		the forward look. Although uncommon, we have seen some extreme one-day moves in the					
14		forward curve that would cause us to have significant reservations about using that single					
15		day in ratemaking. Second, the use of five days' curves should ease concerns that PGE is					
16		proposing an unrealistic curve for purposes of the Annual Update. These are the same					
17		curves that we use to adjust our positions on a daily basis. Using an inaccurate curve for					
18		five days could have a significant adverse financial effect.					
19	Q.	Are externally-generated curves available?					
20	A.	We are aware of several external sources for forward curves, including ICE, brokers, and					
21		Energy Market Report. The difficulty with any of these is that we do not have direct access					

to their sources. We cannot validate their projections. We base our curve on actual

22

conversations with trusted sources and document those. We do validate our curve against
 the externally-generated curves.

Q. Is it feasible for parties to the Annual Update process to audit PGE's internally generated gas and power curves?

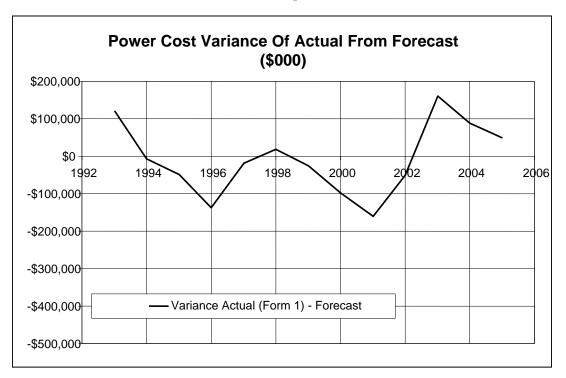
5 A. Yes. We could make available to parties our documentation and the externally-generated 6 curves from the same period. Review of these materials would not take much time.

7 Q. What process and timing do you propose for the Annual Update process?

8 A. We would initiate the process each July 1, providing an estimate of NVPC for the following calendar year, along with projected rate changes. This filing would include final forced 9 outage rate calculations and all structured (including capacity) or multi-year power or fuel 10 contracts that PGE intended to include. For the latter, the filing would include the basis on 11 which we determined that the price of the structured contracts was reasonable. The estimate 12 would also reflect preliminary planned maintenance outages, market contracts, pricing 13 changes under old contracts, such as long-term transmission/wheeling agreements, and 14 forward curves as of a certain date before July 1. For this initial filing, we would use just 15 one-day curves. We chose this timing to allow parties ample time to review the support 16 behind our structured contracts and verify the forced outage rate calculations. Parties could 17 also review market contracts and old contract pricing updates included in this estimate and 18 19 preliminarily review the load forecast.

20 On or before October 1, we would provide a final load forecast and the final planned 21 maintenance outages. As noted above, by early Fall, plant managers generally have firmed 22 their plans for maintenance work in the following year. The only load change allowed after 23 this date would be that necessary to reflect customer elections in September under Schedules

	44						
1	33	483 and 489. We envision that the parties would use the following six weeks to verify the					
2		load forecast and engage in any necessary review of the planned maintenance outages.					
3		On or before November 15, we would provide a final MONET run for the following					
4		calendar year, updating market contracts through early November, any short-term					
5		transmission pricing, and using the averaged forward curves described above. This run					
6		would include any load changes resulting from Schedule 483 and 489 elections. During the					
7		following three weeks, parties could audit the forward curve calculations and review the					
8		final market contracts and transmission pricing included.					
9		We anticipate a Commission order on rates for the Annual Update tariff on or around					
10		December 15.					
11	Q.	Does your proposed Annual Update change any of the risk allocations you discussed in					
12		Section II or create any new risk allocations?					
13	A.	We discussed above how this mechanism interacts with the risk of regulatory lag, with					
14		respect to power and fuel contracts. The cut-off of structured contracts as of July 1					
15		heightens somewhat the risk of regulatory lag for PGE for any such contracts. For forced					
16		outages rates and planned maintenance outages, the Annual Update simply implements the					
17		risk allocation stemming from the methodology choice made in a GRC.					


IV. Proposed Annual Variance Tariff Q. What are the parameters of your proposed APCV mechanism? 1 A. Under the proposed APCV mechanism, PGE would: 2 Track the difference between its actual NVPC for a given year and its forecast 3 NVPC, resulting from the Annual Update; 4 Neutralize the effects of load changes (increases or decreases) on that variance; 5 • • Absorb 10% of the variance and design the remaining 90% into a per kWh rider 6 per an amortization schedule set by the Commission; and 7 Demonstrate each year that earnings in the prior year, with the effects of the 8 Annual Update and Annual Variance tariffs, do not exceed a reasonable amount, 9 sharing any earnings above a threshold ROE 50-50 between PGE and customers. 10 **Q.** Why have you included a retrospective AAC in your power cost framework? 11 A. We believe that, notwithstanding an annual update of forecast NVPC, a substantial 12 probability remains that the actual incurred NVPC will differ significantly from the forecast 13 most years and will do so in both a positive and negative manner, resulting in lower NVPC 14 15 one year and higher NVPC another year. Without a retrospective mechanism in the framework, neither PGE nor customers will have the assurance they should have that prices 16 reflect cost of service. 17 Q. Why does the Annual Variance tariff track variances between actual NVPC and 18 forecast NVPC? 19 A. We have several reasons for proposing this construct. First, it is most consistent with the 20 nature of our resource portfolio and how we operate the system. We work hard to minimize 21

costs across the entire system and engage in much day-to-day activity to this end. Isolating

the variance mechanism to a couple of cost components eliminates much of this activity 1 from the mechanism and may distort the result. Second, and related, although we certainly 2 know the uncertainty associated with hydro production, uncertainty – positive and negative 3 - exists with respect to many other inputs to the MONET forecast even if hydro variations 4 can swamp their effect. Third, during the last several years that we have wrestled with this 5 issue with CUB, ICNU and OPUC Staff, we understand most have come to believe that a 6 comprehensive mechanism is best. The disagreement lies in use of a dead-band and sharing, 7 not in the scope of the mechanism. 8

9 Q. What has been the historical variance between forecast and actual NVPC?

A. Graph 1 below illustrates the variance between actual and forecasted net variable power
 costs from 1993 through 2005.

1 Graph 1 indicates that variances can be more than \$150 million, both positive and 2 negative.

3 **Q.** What do you cover in this section?

A. We first address, in Section A, how we propose to neutralize the outcome of the Annual
Variance calculations to changes in load. Section B discusses why we included a sharing
element in the proposal; Section C addresses why we did not, however, include a dead-band.
In Section D we address the requirement of revenue neutrality the Commission suggested in
its Order in UE 165. Section D discusses earnings tests, why we chose the form we did and
how it would work. Last, in Section F, we address the process we would follow for the
Annual Variance tariff.

A. Neutralizing Load Effects

Q. Why is it necessary to neutralize the effects of load changes on the variance tracked by the mechanism?

- A. To fail to do so would create a mismatch between the NVPC component of rates and the
 actual costs incurred to serve customers.
- 15 **Q. How will you neutralize these effects?**

A. Because variable power costs are: 1) direct costs, 2) allocated to rate schedules on a kWh
basis, and 3) included in energy charges that are billed on a kWh basis, it is relatively
straightforward to determine the rate component associated with NVPC. In simple terms, it
is the forecast NVPC divided by the forecast loads which we will call forecast unit NVPC.
If actual load increases over forecast, NVPC will also increase, all else being equal.
Likewise revenue associated with NVPC will increase by the forecast unit NVPC per kWh

	37	
1	51	of load change. If loads decrease, the opposite will happen. Therefore, it is necessary to
2		adjust for changes in loads by multiplying the load difference by the forecast unit NVPC.
3	Q.	Are there other methodologies to achieve this neutralization?
4	A.	There may be others, but they do not align actual NVPC incurred with revenues received.
5	Q.	If customers respond to a prolonged period of tight power supply by reducing load, are
6		they helped or hurt by this mechanism?
7	A.	They are helped. In general, but especially during time of power shortage (e.g., a drought
8		condition), we would expect the market value of power to exceed the forecast unit NVPC.
9		Thus, a reduction in load would reduce what we call the "Power Cost Variance" (the
10		difference between actual and forecast NVPC adjusted for load differences at the average
11		unit NVPC) from what it would otherwise be.
12	Q.	Please describe the Power Cost Variance as a formula.
13	A.	The Power Cost Variance is equal to:
14		Actual NVPC - Forecast NVPC - (Actual Load - Forecast Load) * Forecast Unit NVPC
15		An algebraically equivalent way to express this is:
16		(Actual Unit NVPC - Forecast Unit NVPC) * Actual Load
17		(The proof is left to the reader.) This is the formulation included in our proposed tariff

18 (PGE Exhibit 1302) and is the same as that used in our 1979-1987 PCA.

B. Sharing

19 Q. What purpose does a sharing feature serve?

A. To the extent the AAC is capturing variances between a forecast cost and an actual cost, the sharing percentages serve to align interests between the utility and customers, much as regulatory lag does. In other words, the utility experiences a direct financial effect of every

decision made and action taken during the period over which the AAC is capturing the variance. This alignment of interests allows an assumption that the utility is acting prudently. Thus, while to some extent this feature works – as a dead-band does – to preclude the utility from recovery of some level of prudently incurred cost, it serves a regulatory purpose of aligning interests on decision-making and easing regulatory burdens associated with establishing prudence.

7 Q. What other states have used sharing as a feature of AACs for NVPC?

A. Colorado recently adopted a stipulated AAC that included sharing for Public Service 8 Company of Colorado. Docket No. 02S-315EG. This AAC, in effect for 2004 through 9 2006, shares the first \$15 million difference 50-50, the next \$15 million is allocated 75% to 10 customers and 25% to the utility and variances beyond that are 100% to customers. Order 11 The Commission explained in adopting the stipulation that: No. CO3-0670. 12 "This mechanism insures that the difference between ECA [energy cost adjustment] revenue paid 13 by customers and prudently-incurred CPUC jurisdictional energy costs will never vary more 14 that \$11.25 million, either positive or negative." [p. 60.] The Order also notes that "[m]any 15 parties filed testimony urging the Commission to adopt a 100% pass-through mechanism." 16 [p. 59.] 17

Idaho uses a 90-10 sharing parameter in long-standing AACs in place for Avista and Idaho Power Company. Similarly, in 2005, Arizona approved an AAC for Arizona Public Service Company (APS) that includes 90-10 sharing. Docket No. E-01345A-03-0437. The Arizona Commission stated that it "agree[d] that the use of an adjustor when fuel costs are volatile prevents a utility's financial condition from deteriorating." [p. 16-17.] Because testimony indicated that APS required the AAC primarily for the cost of power purchased to

serve load growth, however, rather than price volatility, the Commission limited the annual
amount of NVPC that APS could use to calculate the AAC, thus requiring that APS file a
rate case to reset the base if it deems necessary because the cap was reached. [p. 17.]

Sharing is also a parameter in Washington. We discuss this in Section C. below, on
dead-bands.

6 **Q. Has Oregon used sharing in AACs?**

A. Yes, frequently. PGE's early PCA included sharing of the variances between the quarterly 7 8 forecast NVPC and the actual NVPC 80% to customers and 20% to PGE. Since 1989, Oregon's PGAs also have included sharing. Historically, the PGA passed through 100% of 9 any variances in the cost of purchased gas which, at that time, was typically from a sole 10 interstate pipeline supplier. In 1989, it became possible for gas utilities to purchase from 11 multiple suppliers. Gas costs were then approximately 56% of Northwest Natural Gas 12 Company's total expenses. The Commission stated: "[I]t is obvious that changes in gas 13 costs can have a significant effect on LDC earnings. The determinations in this order 14 demonstrate that it is the intention of the Commission to continue to provide safeguards to 15 LDCs and their customers regarding gas cost changes." Order No. 89-1046. 16 The Commission adopted 80-20 sharing for the retrospective aspect of the PGA. 17

18

Q. How do the PGA's work?

A. Our understanding is that a PGA has two components, similar to those we propose for PGE:
 a forward-looking mechanism to reset base natural gas costs for a coming year and a
 retrospective mechanism which defers, for later inclusion in rates, 100% of the monthly
 difference between actual fixed costs and the base level and a portion of the monthly
 differences between actual commodity-related costs and the base level in rates. See Order

UE 180 / PGE / 400 Lesh Niman / 40 40

UE 181 / PGE Exhibit / 103 Tooman – Niman – Schue /

No. 99-272 at 2. As indicted above, this portion was 80-20 for all gas utilities starting in
1989. In the late 1990s, two of the Oregon gas utilities moved to 67-33 sharing, while one
remains at 80-20. The sharing percentage triggers different applications of an earnings test.
Order No. 99-272.

The base is set according to the cost of gas for a given gas utility for twelve months ending June 30 of each year. Volumes are not normalized to a prior rate case or for weather. This historical period can be adjusted for known and measurable changes in purchase contracts. See Order No. 89-1046. In other words, the base includes forward contracts. Only projected volumes not covered by forward contracts would be priced at the historical cost.

Based on this understanding, we perceive that the risk allocated between gas utilities and their customers is as follows:

- Regulatory lag in adjusting the price of any "base" gas required for the following
 year and not purchased in advance. Gas utilities have this risk, but it is also largely within
 their control.
- 2. Variance risk between the volume of gas used in the prior year and, thus, used to
 set the base and the volume of gas actually needed. This risk is shared, either 67-33 or
 80-20.
- Variance risk between the price of gas needed to serve load greater than that in the
 base forecast and the price included in rates and, thus, recovered for the additional sales.
 This risk is also shared, either 67-33, or 80-20.

Q. Is the process of setting the forward-looking base for the PGA the same as you propose
 for the Annual Update?

A. No. There are two significant differences. First, we currently, and would in the future, use a
 normalized, forecasted load, not historical volumes. Second, both the Annual Update and
 Annual Variance mechanisms concern **net** variable power costs: we forecast sales of any
 power or fuel purchased in excess of the forecasted, normalized load and generating plant
 needs and would track the variance in sales as they actually occurred.

Q. Is there any other difference between natural gas and PGAs and NVPC and your proposed mechanisms that is worth noting?

8 A. Yes. PGE faces a much larger price variance that is not related to volume/load variance. Our NVPC is based on a resource stack at the bottom of which are resources with very low 9 or zero variable costs. Changes in the delivery from these resources can profoundly affect 10 our actual NVPC. It would be analogous to the gas utilities having access to natural gas 11 supplies priced at nothing or very low prices - say, \$0.50/MMBtu - but being unsure, day-12 to-day just how much of this gas they will receive in their system. In addition, we have 13 single-source risk for both some of our plants and our purchases. In other words, we expect 14 significant volumes from these sources raising the risks of default or production variations. 15 Examples would be the Mid-C contracts, the Trans Alta contract, and our coal-fired 16 generating plants. 17

18 Q. How did you choose the sharing percentage?

A. The sharing percentage is the same as used in Arizona and Idaho. It is also the same as
being proposed by Avista for Washington, to match what is in place for them in Idaho.

C. Dead-bands

21 Q. Does your proposed Annual Variance tariff use a dead-band?

22 A. No.

UE 180 / PGE / 400 Lesh Niman / 42

UE 181 / PGE Exhibit / 103 Tooman – Niman – Schue /

42

Q. What has been Oregon's application of a dead-band to an AAC?

A. Oregon has applied a dead-band to an AAC only once: in the stipulated power cost
adjustment mechanism adopted in UE 115. Because the tariff for this mechanism expired 15
months following its effective date, however, it is arguable that this tariff was more in the
nature of a deferral than an AAC. Oregon does not apply any dead-band to the regulatory
framework used for purchased gas adjustments (PGAs) for natural gas utilities nor did
Oregon apply a dead-band to PGE 's 1980s PCA.

8 The Commission has also imposed a dead-band in one instance of a deferred accounting 9 request.¹ Such requests are markedly different from AACs, however, because of their 10 sporadic nature.

11 Q. What other states use a dead-band for AACs that apply to electric utility power costs?

A. Washington (through the Washington Utilities and Transportation Commission) has
 approved, in the instance of two stipulations offered to it, a dead-band for AACs that apply
 to NVPC. Within the last month, Wyoming also approved a stipulation filed with it in a
 PacifiCorp case that includes a power cost adjustment clause with a dead-band.

A dead-band parameter –\$20 million plus or minus – appears in the AAC stipulated to by Puget Sound Energy (PSE) Company in 2002, along with sharing tiers of 50% for the next \$20 million, 90%/10% for the next \$80 million and anything over \$120 million shared 95% to customers and 5% to PSE. Twelfth Supplemental Order Docket No. UE-011570. That stipulation also placed a cumulative \$40 million, 4-year limit (7/1/02 through 6/30/06) on the amount of NVPC variances allocated either to customers or PSE, with sharing moving to 99% to customers and 1% to PSE for amounts over this. A dead-band – \$9

¹ PGE stipulated to a dead-band in another deferred accounting request (Docket UM 1008/1009).

million plus or minus – also appears in the AAC stipulated to by Avista in 2002, with 90-10
sharing of all amounts outside of that. Fifth Supplemental Order, Docket No. UE-011195.

Q. Will Washington be reviewing the appropriateness of dead-bands in AACs for NVPC?

A. Yes. Both Avista (Docket No UE-060181) and PSE (Docket No. UE-060266) have filed
cases requesting removal of the dead-bands from their power-cost related AACs. Avista
proposes an AAC with 90-10 sharing. PSE proposes an AAC with 50-50 sharing of the first
\$25 million in positive or negative variance, with 90-10 sharing of the next \$95 million in
variance and 95-5 sharing of any remainder.

9

Q. Has Wyoming applied a dead-band parameter to an AAC for NVPC?

A. As noted above, Wyoming just approved a stipulation that included one for PacifiCorp. The 10 NERA report indicates that Wyoming had previously approved a dead-band mechanism for 11 Cheyenne Light, Fuel and Power Company (Cheyenne) but, based on our review of the 12 matter, it is not clear that is the case. The August 2001 Order describes a stipulation 13 regarding a long-standing NVPC AAC for Cheyenne. Docket No. 20003-ES-01-58. 14 Because of costs incurred during the Western power market crisis, Cheyenne was proposing 15 16 rate increases from 57.1% to 88.2%. In the Stipulation, the parties agreed to spread recovery of some of the already-incurred costs included in those increases over future years (through 17 2005) and Cheyenne agreed to fix capacity and energy prices for purposes of the AAC from 18 19 February 24, 2001 through the end of 2002. After the end of 2002, the AAC would revert to passing through 100% of actual NVPC. This plan allowed Cheyenne to drop the proposed 20 21 rate increases by about a half in 2001 with an additional round of increases in 2002.

22 Q. Does the NERA report also show Kansas as a state that has used a dead-band for

- 23
- utility power-cost related AACs?

A. Yes. Again, we reviewed the material and would not classify the approach as a dead-band.
 The state-wide policy, adopted in 1977, puts limits on certain costs, such as line losses.

3 Q. Why haven't you included a dead-band in your mechanism?

4 A. We have several reasons.

First, as noted above, Oregon has only applied a dead-band in a non-settlement matter
for a deferred accounting request. A dead-band applied to PGE's stipulated 15-month PCA,
but this was not an ongoing AAC. Oregon has never applied the dead-band concept to an
indefinite AAC, of which the most comparable example is the PGA mechanisms.

9 Second, a dead-band interferes with the risk allocation of the forced outage rate 10 methodology. This occurs because the dead-band, for positive or negative variances, will 11 consume some of the amounts the methodology would otherwise allocate to PGE or to 12 customers, depending on what other factors are causing NVPC to vary. Applying sharing 13 does not cause this because the sharing is consistent across the five years the forced outage 14 rate methodology requires to reach parity.

Third, a dead-band suggests that a utility's earnings opportunity must, first and 15 16 foremost, be at risk to variances in costs over which the utility has little or no control and must incur to meet its obligation to serve. NVPC differ from fixed O&M both in the size of 17 potential variance, which is much higher for NVPC, and the ability to delay or avoid 18 19 expenditures, which is much greater for fixed O&M. Delaying significant amounts of fixed O&M can threaten the quality of customer service and, over some period, the health of the 20 utility's system. Delaying the purchase of power customers demand could threaten the 21 stability of the system, causing widespread outages. 22

Last, a dead-band is not necessary to prevent undue rate volatility. The Commission has control over the amortization of any variances accumulated through the mechanism. Small variances need not trigger a rate change and the Commission may spread large variances over several years.

5

Q. Are you aware of any regulatory policy reason for applying a dead-band?

A. No. Some argue that a retrospective AAC must include a dead-band to ensure that the utility
bears some risk. However, most aspects of regulation, such as the concept of
administratively-determined prudence, allocate risk to a utility. A dead-band that
automatically works to preclude recovery of prudently-incurred costs a utility must incur, or
to prevent customers from benefiting from the characteristics of resources such as hydro
generation, is not a necessary step to ensure that a utility bears risk.

Q. Doesn't the Commission's Order in UE 165 suggest that an AAC for hydro variances include a dead-band?

A. The Commission stated that "unusual, but not necessarily extraordinary, events – should be 14 used for hydro-related PCAs." Order No. 05-1261. It is not clear what the Commission 15 16 would conclude with respect to a retrospective adjustment for all NVPC variances, as opposed to hydro-generation variances only. If this conclusion applied to a retrospective 17 adjustment for comprehensive NVPC variances, it would suggest that there is some level of 18 19 "usual" prudently incurred cost that a utility may not have an opportunity to recover. Moreover, this policy would preclude recovery simply because the cost is uncertain and, 20 thereby, difficult to forecast. While utilities have traditionally borne responsibility for 21 managing costs within their control, they have not borne responsibility for uncertainty. In 22 23 some circumstances, a utility's NVPC may not be uncertain and such circumstances would

support a regulatory framework that did not include a retrospective adjustment. That is not
 the case, however, for PGE.

Q. Has the Commission required a dead-band as described in UE 165 to Oregon PGA
clauses?

5 A. No.

D. Revenue Neutrality

Q. What is your understanding of "revenue neutrality," a guideline the Commission recently suggested apply to a hydro-related AAC in UE 165?

A. We understand that the Commission's goal was "that operation of a hydro-related PCA
should not bias the overall expected level of power cost recovery; i.e., the mechanism should
be revenue neutral over time." Order No. 05-1261 at 10. We find this difficult to apply,
however.

The reason regulatory practice has included AACs over the years is that some costs defy accurate forecasting. NVPC are such, both for individual components, such as hydro production, and overall. This is particularly the case in a resource portfolio that has resources with significantly different dispatch costs and in a region in which there is an active wholesale market in which utilities participate to achieve lower overall NVPC as the market-clearing heat rate changes, affecting planned dispatch decisions.

Thus, it is impossible to determine whether a given AAC will result in the same collection of costs from customers – revenue neutrality – whether it existed or not. This goal appears to suggest a long-term backward look, limiting recoveries from or refund to customers to equalize them over the period chosen. Such a practice, however, setting aside legal concerns, suggests that we know the costs covered by the AAC will distribute

6

UE 181 / PGE Exhibit / 103 Tooman – Niman – Schue /

themselves over the period of years chosen in a manner that provides the utility and
customers equal probabilities of the same amount of economic variance. We can think of no
cost included within NVPC that meets such criteria, let alone that the overall resulting
NVPC over a period of years would meet such criteria.
Until we can achieve a fuller understanding of the steps and pre-conditions necessary to

7 APCV we propose, and the alternate, are "revenue neutral." We can assure, however, that

apply this parameter, we will not attempt to do so. We cannot "show" that the retrospective

8 customers pay no more than the actual cost of service related to NVPC as those rise and fall.

E. Earnings Tests

Q. How has Oregon applied earnings tests to AACs? 1

A. At some point in the 1990s, Oregon began to apply an earnings test to natural gas utilities' 2 PGA mechanisms. Our understanding of how this earnings test works is as follows. In the 3 Spring of each year, once audited results are available for the prior calendar year, the gas 4 utilities make a filing of regulated earnings for that prior year. Using a formula, the parties 5 derive an updated "allowed" ROE for the prior year. A portion of actual earnings a given 6 7 number of basis points above the updated ROE are shared with customers. For example, it appears that this is 33% of earnings more than 300 basis points above the updated ROE for 8 Northwest Natural. If a gas utility chooses 67-33, rather than 80-20, sharing for the 9 retrospective portion of the PGC, the earnings test does not apply to deferred amounts. That 10 the earnings test triggers, does not limit applying the PGA to create a new base natural gas 11 cost for the following year, it simply generates a credit to customers that the utility 12 amortizes in that following year. If an earnings test applies to the deferred amounts, and if 13 adjusted earnings are above the threshold earnings levels and the deferrals would result in a 14 15 surcharge to customers, the gas utility will return to customers the lesser of: (a) the amount of revenue in the readjusted test year representing 80% of the earnings above the threshold, 16 or (b) the amount of revenue related to offsetting the purchased gas cost deferrals. 17

18

An earnings test did not apply to PGE's old PCA, nor did one apply to the SAVE

mechanism. 19

Q. Has Oregon applied earnings tests to deferred accounting requests? 20

Yes. The statute that gives the Commission authority to use deferred accounting requires an 21 A. 22 earnings test in most instances. Nonetheless, in practice an earnings test is not always a

factor. For example, the Commission did not perform an earnings test in passing through
property tax reductions to customers (UM 374), the amount by which actual IT expenditures
were less than its forecast (UE 115), or in allowing PGE to recover certain conservation
expenses (UM 784).

5 During the early 1990s, when PGE's Trojan plant experienced prolonged outages and 6 then we permanently closed it to achieve long-term lower costs for customers, the 7 Commission authorized PGE to defer replacement power costs four times. Table 1 below 8 shows the dockets, amount deferred, earnings test applied, and resulting recovery for each 9 deferral.

Trojan-Related Deferrals (\$000)							
	Earnings						Effective
		•	Test	Power	Before	After	Customer
		Customer	Year	Cost	Earnings	Earnings	Share
Dockets	Period Covered	Share	Ending	Variance	Test	Test	Percentage
UE 81, UE 82, UM 445	11/01/91 - 03/31/92	90%	04/01/92	26,112	23,501	23,501	90%
UM 529, UE 85	12/04/92 - 03/31/93	80%	04/01/93	56,714	45,371	45,371	80%
UM 594, UM 571, UE 93	07/01/93 - 03/31/94	50%	04/01/94	98,360	49,180	9,100	9%
UM 692, UE 93	01/01/95 - 03/31/95	40%	04/01/95	29,000	11,600	11,600	40%

Table 1rojan-Related Deferrals (\$000)

10 Q. As a matter of regulatory policy, should earnings test considerations used for deferred

11 accounting requests apply to AACs?

A. In general, no². The two regulatory tools are different. As we noted above, the use of deferred accounting is infrequent and limited to temporary and extraordinary cost or revenue changes. Most AACs, in contrast, are an ongoing regulatory mechanism and features included in them directly affect the probability of cost recovery a utility can expect and that

 $^{^{2}}$ An exception may be applying an earnings test to the AACs adopted as a result of SB 408. Because various interpretations of SB 408 needed for the AACs could cause utilities severe financial harm, an earnings test may be the only means of achieving a reasonable result under the *Hope* test.

UE 180 / PGE / 400 Lesh Niman / 50 50

UE 181 / PGE Exhibit / 103 Tooman – Niman – Schue /

is important to determining whether the approved prices meet Constitutional and statutory 1 requirements. For example, an AAC earnings test that routinely cut-off recovery of incurred 2 costs at a point below a utility's authorized return on common equity (ROE) would affect 3 the risk profile for the utility's entire cost structure. With such an earnings test, it could be 4 5 impossible to conclude that the prices allowed the utility an opportunity to recover its costs and earn a return commensurate with firms facing comparable risks. It would lower 6 investors' expected ROE, driving down the utility's market value and, ultimately, increasing 7 8 its cost of raising capital. See PGE Exhibit 1100. Such an earnings test is a penalty, rather than a means of assuring reasonable prices. 9

An AAC should not, by its operation, cause prices to become unreasonable. The earnings test used for PGAs accomplishes that purpose. For an electric utility, however, because of the amounts involved in NVPC, sharing of earnings more than 100 basis points above an updated ROE may be more appropriate than the 300 basis points used for gas utilities.

15 **Q.** How would the earnings test apply?

A. PGE proposes to share evenly with customers the amount by which PGE's normalized actual ROE exceeds a threshold ROE. The threshold ROE is 100 basis points over a baseline ROE, calculated as follows:

19 20

• The baseline ROE for each year that is also a GRC test year will be the Commission authorized ROE as determined in that GRC.

• The baseline ROE for each year that is not a test year will be based on the difference between the risk free rate used to derive the Commission authorized ROE in the most recent GRC case and the actual risk free rate, based on actual

		180 / PGE / 400 n Niman / 51	UE 181 / PGE Exhibit / 103 Fooman – Niman – Schue /
1	31	Treasury yield data and applying the same methods used	to determine the risk free
2		rate in the GRC.	
3		The annual update to ROE will ensure that if interest ra	tes change (up or down), the
4	1	baseline ROE (and hence, threshold ROE) will move according	ıly.
5		The normalized actual ROE will be determined based on	PGE's actual financial results
6	ä	as reported in the Results of Operations report filed annually	with the OPUC, adjusted for
7	1	the following:	
8		• Costs explicitly disallowed for recovery by the Commiss	sion in our last GRC, such
9		as Category C advertising expenditures (these are not	adjustments to forecasted
10		expenditures).	
11		• Removal of any non-utility costs inappropriately include	ed in utility accounts.
12		• Removal of any prior period costs or revenues.	
13		• Coordination of the interest deduction for tax purposes	to reconcile to the cost of
14		long-term debt financing of PGE's rate base.	
15	Q.]	Does your proposed Annual Variance tariff use the ear	mings test the Commission
16	\$	suggested in its order in Docket UE 165?	
17	A.]	No. The Commission's suggested earnings test mechanism wo	uld constrain any recovery by
18]	PGE to that which brought our earnings up to the bottom	m of a range calculated by
19	5	subtracting 100 basis points from our authorized ROE and lin	nit any refund by PGE to that
20	,	which brought our earnings down to the top of a range calculat	ed by adding 100 basis points
21	1	to our authorized ROE. In other words, if PGE had experience	ed higher NVPC and managed
22	1	to control other expenses or receive revenue to offset some	of this loss, the earnings test
23	•	would commensurately preclude recovery of the increased	NVPC, ensuring that, at a

52

minimum, PGE had to absorb all (or more – depending on net rate base) of the \$15 million dead-band the Commission also suggested to be appropriate.

2

1

Even assuming an equal probability that NVPC will be lower or higher than the 3 forecast, with an equal probability that the positive or negative variance will be the same, 4 5 this unprecedented version of an earnings test would systematically and negatively interfere with the other risk allocations already made to the utility by the overall regulatory 6 framework. Compounding this problem is what PGE has demonstrated in Docket UE 165: 7 8 the variance between forecast and actual NVPC is not symmetric in probability and amount. Given the amount of hydro power in the NW, hydro conditions have the ability to move the 9 market clearing heat rate across the WECC, with lower than average hydro raising the 10 market clearing heat rate and higher than average hydro lowering it. Even if water 11 conditions, over some period of years, produced a symmetric distribution of lower and 12 higher than average production, the financial effects would not be symmetric because of 13 how hydro affects the market. 14

15 Q. Has the Commission applied an earnings test such as the one suggested in UE 165 to

- 16 **Oregon PGA clauses or in any other instance?**
- 17 A. No, not to our knowledge.

F. Process

18 Q. What process do you propose for the Annual Variance mechanism?

- 19 A. We propose to initiate the mechanism in June with a filing that contains:
- Calculation of the variance
- The earnings test
- Proposed rate adjustments

Assuming that the Commission could complete any necessary process with six months,
 PGE can make the price change on January 1 of the following year with ample advance
 notice to customers.

4 Q. Is it possible to make more timely rate changes for results of the Annual Variance
5 mechanism?

A. Yes. PGE could estimate the result of the Annual Variance mechanism (although not the
earnings test) for a given calendar year as of October of that year and include this estimate in
the final stages of the Annual Update for the following year. As long as the Commission
had authorized us to maintain a balancing account for this mechanism that we could credit or
debit as need be for any reconciliation of the final to the estimate, PGE would be willing to
do this.

12 Q. Would prudence be an issue in the Annual Variance proceeding?

A. Yes, actions or decisions that pre-date but affect the period of the variance and that were not the subject of regulatory scrutiny in the Annual Update process would be subject to a prudence review. An example of this would be maintenance decisions on PGE's generating facilities and forced outage rates. While a party could raise prudence issues with respect to decisions and actions during the period of the variance, the alignment produced by the sharing mechanism should limit such issues to a minimum.

V. MONET Changes

1	Q.	What model changes have you made to MONET since your 2006 RVM (UE 172) filing?
2	A.	We have made the following modeling changes:
3		Inclusion of Boardman coal losses
4		• Change in definition of electric market from the PGE system to the Mid-C trading
5		curve
6		• Inclusion of an electric exchange option
7		• Increase in stand-by generator ratings to full capacity
8		• Inclusion of net costs of Troutdale-Linneman wheeling
9		• Inclusion of wheeling cost for "excess" Montana Colstrip power
10	Q.	Why have you changed the model to include consideration of the loss of coal during its
11		transportation from Wyoming to Boardman?
12	A.	We have documented (over the period 1999 through 2002) that we lose approximately 1%
13		of the coal between the point where it is loaded in Wyoming to where it is fed into the
14		Boardman boiler. The trip is approximately 1,121 miles. During transit, strong winds attack
15		the coal from the cumulative effects of train speed, headwinds, and crosswinds. These
16		winds blow coal out of the rail cars, which is called in-transit wind erosion. In the coal
17		industry, in-transit wind erosion is a commonly accepted fact, much like the loss of
18		electrical energy over transmission lines. Studies in the 1970s and early 1980s reported
19		losses of up to 3%. The studies used several methods of measuring the amount of coal lost,
20		including both measuring the change in the depth of the coal and the weight of the coal,
21		before and after transit and wind tunnel tests. A study by K.H. Nimerick and O.P Laflin,
22		"In-transit Wind Erosion Losses of Coal and Methods of Control", Mining Engineering,

	55	
1	55	August (1979), 1236-1240, reported that coal loss can be as high as 1.675 tons (3,350 lbs.)
2		per rail car when subjected to 58 mph winds for six hours.
3		We calculated our estimate of 1% by comparing the difference between coal purchased
4		and coal burned and the actual physical change in our coal pile. In equation form:
5		Coal Loss = (Coal Purchased – Coal Burned) – (Change in Actual Coal Pile)
6		Our 1% coal loss figure is then total coal losses over 1999-2002 divided by total coal
7		purchases over that same period.
8	Q.	How does the inclusion of coal losses affect 2007 NVPC?
9	A.	We presently estimate that this model change will increase NVPC by approximately
10		\$354,000 but this number will likely change as we update MONET.
11	Q.	Why isn't PGE proposing a similar model change for coal transported to Colstrip?
12	A.	Colstrip is located only six miles from the mine, so any coal loss due to in-transit wind
13		erosion is minor. In fact, our study found that the coal losses were only 0.1%, which is
14		insignificant.
15	Q.	Why have you changed MONET's definition of the electric market from PGE system
16		price to Mid-C prices?
17	A.	Using Mid-C prices, rather than PGE system prices, removes the 1.9% adder for contractual
18		losses over BPA's transmission system that we previously applied to purchases we
19		forecasted we would make at Mid-C. We include losses in our load forecast, so this adder
20		caused double-counting. Removing it is consistent with how we model losses from our
21		thermal plants. This enhancement also removes a minor inconsistency in MONET's
22		treatment of contract purchases vs. market purchases. Previously, when PGE purchased a
23		contract at the current Mid-C price, the power incrementally displaced assumed forward

1	56	market purchases in MONET at the PGE system price. In theory, there should be no change
2		in power costs because both the contract and the market purchase were at the market price.
3		This displacement did create a change in power costs in MONET, however, because of the
4		loss adder on the forward market purchases. Suppose, for example, that PGE purchased a
5		100 MWa flat contract at the Mid-C for \$50/MWh. We would input that contract into
6		MONET, and MONET would reduce forward market purchases by 100 MWa, but at a PGE
7		market curve price of approximately $51/MWh$ ($50 \times 1.019 = 50.95$). Forecasted power
8		costs would fall because the adder did not apply to the contract.
9	Q.	What effect does using Mid-C prices instead of PGE's system prices have on 2007
10		NVPC?
11	A.	We currently estimate that using Mid-C prices decreases net variable power costs by
12		approximately \$7.0 million. This effect will diminish as we replace assumed forward
13		market purchases with contracts through the year.
14	Q.	How have you included the electric exchange option contract in MONET?
15	A.	This contract is what we would call a structured contract, which is designed to achieve a
16		particular result between the contracting parties. In this structured contract, the counterparty
17		pays PGE an annual fee, and, in return, when the option is exercised by the counterparty,
18		PGE must transmit (wheel) the counterparty's generation for them. Under normal
19		conditions, we expect to use our existing BPA Point-To-Point transmission capacity with no
20		incremental cost to PGE. However, we expect to incur incremental wheeling costs when
21		
		simultaneously: (a) the counterparty exercises its option and (b) certain transmission paths
22		simultaneously: (a) the counterparty exercises its option and (b) certain transmission paths are curtailed. This contract makes use of otherwise available capability on PGE's system.

23 To include this contract in MONET, we modeled the incremental wheeling cost PGE

expects to incur based on our expectation of how often the two conditions will occur
 simultaneously and included this estimate as well as the annual fee PGE receives from the
 counterparty. The forecasted net benefit to customers is approximately \$1.1 million in 2007.

4 Q. Why did you change the stand-by generator ratings in MONET from partial-capacity

5 to full capacity?

A. In prior MONET model runs, we significantly de-rated the capacities of the distributed
standby generation (DSG) units at PGE customers' sites because of the annual run-time
limits in their operating permits, which are typically a few hundred hours. Based on our
observations of how PGE actually dispatches these DSG units, however, we believe this is
too conservative. There might be only a few high-priced hours in a year when MONET
dispatches a standby generator, and in reality the standby generator would then typically
operate at its full capacity.

Going forward, we will monitor each DSG unit's run time to ensure that it stays within its annual limit. If a unit begins to exceed its annual limit, we will need to modify MONET to constrain its dispatch, probably by using a de-ration for certain months as needed. Under current conditions, we do not expect the annual run-time limits to limit DSG generation, but we do expect this enhancement to improve our power cost modeling.

18 Q. Does increasing the DSG units' capacities have any effect on NVPC in this proceeding?

A. No. With current oil prices and electric prices, we do not presently forecast to run any of
 these units in 2007. This is consistent with their peak resource nature.

Q. What change did you make to MONET to reflect the net wheeling costs related to the Troutdale-Linneman transmission facilities?

A. These costs relate to an old transmission contract between PGE and Pacific Power, under 1 which we pay each other for wheeling rights on each other's transmission facilities. We 2 overlooked this contract in UE 115 and first proposed to include it in MONET in the 2004 3 RVM proceeding. We have added this contract to MONET. Under the contract, PacifiCorp 4 5 pays PGE a fixed \$20,529 per month to use PGE's 230-kV Linneman-Bethel transmission line, and PGE pays PacifiCorp a fixed \$8,646 per month to use PacifiCorp's Troutdale-6 Linneman 230-kV transmission line. The net effect is a fixed NVPC cost reduction of 7 approximately \$140,000 for 2007. 8

9 Q. Why have you modified MONET to include wheeling costs for "excess" power
 10 generated at the Colstrip plant in Montana?

This change corrects an omission on our part. There are times when our share of Colstrip's 11 A. generation (296 MW at the busbar in the last several RVMs) exceeds our firm contract 12 wheeling capacity on the Townsend-Garrison line in Montana (approximately 280 MW). 13 We pay non-firm wheeling charges to deliver this power to the Garrison Substation, from 14 which our BPA IR Contract wheels the power the rest of the way to our system. Because we 15 16 include this excess power in MONET as part of our normal generation from Colstrip, the model should also include these "excess" wheeling costs. Our 2007 estimate is based on the 17 2002-2005 four-year average of actual excess wheeling payments to Northwestern Energy. 18 19 This increases 2007 NVPC by approximately \$205,000.

- 20 Q. Has more hydro output data become available since the Commission approved PGE's
- 21 **2006 RVM filing?**

A. Yes. We have historically based our hydro output forecasts on data that the Northwest
 Power Pool (NWPP) uses in its Headwater Benefits Studies (HBS). NWPP completed an

HBS in mid-2005, using data for the August 1928-July 1998 period, 70 Operating Years.
The previous HBS used only 60 Operating Years, the August 1928-July 1988 period. The
new HBS allowed us to construct a 69-calendar year data set.

4 Q. Has PGE added any new resources from the 2002 IRP Final Action Plan to MONET

5

since the 2006 RVM filing?

A. Yes, we have added one such resource. The only new resource from the 2002 IRP Final
 Action Plan that is new since the 2006 RVM is Port Westward, commencing in March 2007

8 Q. How will Port Westward affect NVPC in 2007 when it begins commercial operation?

9 A. We expect that Port Westward's operation will lower NVPC because its favorable heat rate
10 will displace higher cost contracts and assumed forward market purchases. We presently
11 estimate these benefits, using the 2007 GRC MONET run, at approximately \$11.7 million
12 on an annualized basis.

After preparing this estimate, we became aware that the maximum operating capacity we used in MONET for Port Westward is too high and the heat rate is too low. We are working with the manufacturer to project Port Westward's operating parameters during the test year and will include heat rate and maximum capacity revisions in the updated MONET runs we do as this case proceeds. PGE Exhibit 300 discusses these parameter changes.

Q. What are your present expectations regarding 2007 planned maintenance outages (PMOs) for PGE's thermal plants?

A. Table 2 below shows both the 2006 and 2007 PMOs, the latter of which is based on the
 expectations of the respective PGE plant managers for Beaver, Boardman, and Coyote, and
 PP&L Montana, the plant operator for Colstrip.

UE 180 / PGE / 400 Lesh Niman / 60 60

UE 181 / PGE Exhibit / 103 Tooman – Niman – Schue /

Planned 2007 outages at Beaver include 16 days for the entire plant, and 21, 14, and 21 additional days for Units 6, 5, and 1, as we expect these units to need combustion turbine inspections and other work. Colstrip Unit 3 will be out for more than six weeks to complete an upgrade, which will increase PGE's output share by 4.8 MW. PP&L Montana does not plan a maintenance outage at Colstrip Unit 4 during 2007. The planned outage at Coyote relates to a hot gas path inspection and planned maintenance at Port Westward is for a combustion turbine inspection.

Table 2 Thermal Plant Scheduled Maintenance (Days/Year)					
Plant	2006 RVM	2007 GRC			
Beaver	28.5	See Text			
Boardman	29	30			
Colstrip 3	9	44			
Colstrip 4	52	0			
Coyote	16	16			
Port Westward	NA	16			

8 Q. What are your present expectations regarding 2007 PMOs for PGE's hydro plants?

- 9 A. Our planning includes the following hydro plant outages:
- Bull Run production decrease of more than two thirds in November and
 December dismantlement begins
- Sullivan production decrease of approximately 15% from June 1 through
- 13 November 9 two units out for runner replacements
- River Mill production decrease of approximately 7% from April 15 through June
- 15 15, and during November test spills for fish
- Round Butte production decrease of 10% in November work on Selective Water
- 17 Withdrawal Structure
- 18 Q. Have you changed the total capability and heat rate of Colstrip Units 3 and 4 for this
- 19 filing?

61

UE 181 / PGE Exhibit / 103 Tooman – Niman – Schue /

A. Yes, because, consistent with our framework proposals, this type of change would appear in 1 a GRC. We are updating for two types of changes at Colstrip for the 2007 GRC, which are 2 updates to the existing capacity and heat rate of Units 3 and 4 and updates to reflect a 3 turbine upgrade at each unit. Over the last 1-2 years, degradation in the capacity of Units 3 4 5 and 4 has been observed, reducing each unit's capacity from approximately 740 MW to 716 MW net. There is a minor update to the combined heat rate for Units 3 and 4, from 10,913 6 Btu/kWh to 10,842 Btu/kWh. Then, effective July 1, 2006 Colstrip 4 will have its high-7 8 pressure steam turbine upgraded, adding an estimated 24 MW of capacity with no additional fuel input. A year later, effective July 1, 2007, Unit 3 will be upgraded in the same manner. 9 After the upgrade is complete, each unit's capacity will be increased by 24 MW, which is 10 also coincidentally the approximate amount of observed capacity degradation over the last 11 1-2 years. Thus, after the upgrade is complete, each unit's capacity will be restored to about 12 740 MW net. The heat rate will also improve, to 10,490 Btu/kWh, because the upgrade 13 capacity does not use additional fuel. 14

1

Q. Mr. Niman, please describe your qualifications.

VI. Qualifications

2	A.	I received a Bachelor of Science degree in Mechanical Engineering from Carnegie-Mellon
3		University and a Master of Science degree in Mechanical Engineering from the California
4		Institute of Technology. I am a registered Professional Mechanical Engineer in the state of
5		Oregon.
6		I have been employed at PGE since 1979 in a variety of positions including: Power
7		Operations Engineer, Mechanical Engineer, Power Analyst, Senior Resource Planner, and
8		Project Manager before entering into my current position as Manager, Financial Analysis in
9		1999. I am responsible for the economic evaluation and analysis of power supply including
10		power cost forecasting, new resource development, least-cost planning, and avoided cost
11		estimates. The Financial Analysis group supports the Power Operations, Business Decision
12		Support, and Rates & Regulatory Affairs groups within PGE.

I. Introduction

1	Q.	Please state your name and position.
2	A.	My name is Marc A. Cody. I am a Senior Pricing Analyst in the Rates and Regulatory
3		Department. My qualifications are described in Section IV.
4	Q.	What is the purpose of your testimony?
5	A.	In this testimony I:
6		• Summarize the projected 2007 Schedule 125 Resource Valuation Mechanism (RVM)
7		update methodology, adjustment rates, and Energy Charges based on the power cost
8		estimates provided in Exhibit 100 and;
9		• Describe the steps used to determine the projected 2007 RVM rates.

II. RVM Rate Summary

1 Q. Why are the RVM rates updated on January 1, 2007?

A. PGE is implementing the annual power cost update mechanism as approved in Order
No. 01-777. This annual update, referred to as the RVM update (Resource Valuation
Mechanism), provides that in mid-November of each year, PGE update and post the Energy
Charges for each rate schedule and simultaneously post Schedule 125, RVM Part A and Part
B rates for the upcoming year. With this filing PGE presents its current projections of those
rates for 2007. These are only projections at this point and will change with future updates.

Q. Please describe the basis and overall methodology for updating power supply-related rates in this RVM filing.

A. The annual RVM update mechanism is designed to meet requirements originating in
 SB1149 that include unbundling costs into functional cost categories for recovery in rates.
 In addition, PGE is required to allow non-residential customers an opportunity to move to
 direct access service without adversely affecting other customers.

The annual RVM update is based on updated power supply costs and forward market prices for 2007. The methodology used to recover power supply costs through rates is built on two primary elements, the Energy Charge and the Schedule 125, Part A and Part B rates which, when summed, yield the cost of service rates. The following describes the Energy Charge and RVM rates and the basis of the rates:

Rate schedule Energy Charges are set at the projected market value of power based
 on forward curves. While PGE has used the forward curve on February 23, 2006, for
 this filing, the actual Energy Charge rates for 2007 will be updated and finalized on
 November 15th based on the forward curve used for the November posting.

UE 181 – Direct Testimony

- 1
- RVM adjustment rates (Schedule 125) consist of two parts:

o Part A – Long-term Resources. Part A rates (which may be a charge
or credit) are determined as the difference between the projected
production and fixed costs of PGE's long-term resources (resources
with an initial term longer than five years) and the market value of the
output of the Long-term resources. The projected market value
utilizes the same forward curve used to set rate schedule Energy
Charges described above.

- 9 o Part B Short-term Resources. Part B (which may be a charge or
 10 credit) is determined as the difference between the projected costs of
 11 power from Short-term resources (that is all resources not considered
 12 long-term resources) and the projected market value of the equivalent
 13 amount of power. The projected market value utilizes the same
 14 forward curve used to set rate schedule Energy Charges described
 15 above.
- 16 From the resulting Energy Charge and RVM Part A and Part B rates:

Power supply cost of service = Energy Rate + RVM Part A + RVM Part B, where RVM Parts A and B may be a charge or credit.

This approach allows PGE to accommodate different power supply options that customers may choose. For example, a large non-residential customer that elects to be served by an ESS will continue to receive the charge or credit of the Part A and Part B rates, but will not incur our Energy Charge. PGE also allows Schedule 83 customers to opt-out of

1		the Part B rate entirely, but only with one year notice. PGE then effectively does not plan to
2		serve that load and thus does not incur the associated power costs.
3		I provide a more detailed description of the steps and costs used to set the revised
4		Energy Charge and Schedule 125, Part A and Part B rates below.
5		The applicable tariff sheets will be updated and filed on November 15th with final
6		prices based on power costs resulting from this proceeding and then current market prices
7		for 2007.
8	Q.	Please summarize the projected Energy Charges and Schedule 125 RVM adjustment
9		rates as updated for 2007.
10	A.	The projected 2007 Energy Charges and Schedule 125 Part A and Part B rates applicable to
11		rate schedules 7 through 93 are listed on Exhibit 201, Projected Energy and Schedule 125
12		Rates for 2007. As described above, the projected Energy Charge by rate schedule is
13		derived from the power market forward curve for 2007. The projected RVM Part A and Part
14		B rates are calculated based on the difference between Long and Short-term power costs and
15		the market value of power. These projected rates will be updated and posted for the
16		November 15th posting.
17	Q.	How have the projected 2007 Energy Charge and Schedule 125 RVM adjustment rates
18		changed from the equivalent final 2006 RVM update rates?
19	A.	Table 1 below demonstrates, for a sample of our rate schedules, the development of the
20		overall cost of service power supply rates which include the projected 2007 Energy Charge,
21		Parts A and B rates, and the resulting net rates.

Table 1

2007	Projected 2007 er	nergy cha	rge (cents	/kWh)
Selected Schedules	Energy Charge*			Total
Residential (Sch. 7)**				
Block 1	7.032	-1.390	0.084	5.726
Block 1 Block 2	7.032	-1.390	0.084	5.726
BIOCK 2	1.032	-1.390	0.084	5.720
Small Non-Residential (Sch. 32)	6.946	-1.267	0.017	5.696
Large Non-Residential				
Sch. 83-P, Primary				
Flat (< 1,000 kW)	6.621	-1.380	-0.017	5.224
On-Peak (> 1,000 kW)	7.011	-1.380	-0.017	5.614
Off-Peak (> 1,000 kW)	5.938	-1.380	-0.017	4.541
2006	Current 2006 en	erov char	oe (cents/	kWh)
Selected Schedules	Energy Charge*			Total
Residential (Sch. 7)**				
Block 1	8.037	-1.984	-0.402	5.651
Block 2	7.756	-1.984	- 0.402	5.370
Small Non-Residential (Sch. 32)	7.754	-1.865	- 0.702	5.187
Large Non-Residential				
Sch. 83-P, Primary				
Flat (< 1,000 kW)	7.369	-2.105	-0.527	4.737
On-Peak ($> 1,000$ kW)	7.765	-2.105	-0.527	5.133
Off-Peak ($> 1,000$ kW)	6.714	-2.105	-0.527	4.082
	"-" denotes the ad	iustment r	ate is a cre	edit.
	* Energy Charge of			
	** Sob 7 blook ro			•

** Sch. 7 block rates do not include Sch. 102

Note that the above table does not include all charges applicable to the rate schedule.

1 The second portion of the table shows the current 2006 Energy Charges, Parts A and B 2 rates, and resulting net rates for the same rate schedules. The changes in costs and forward 3 curves between 2006 and projected 2007 can be noted.

The projected 2007 Energy Charges (column labeled Energy Charge), which are based on the forward curve, have decreased when compared to 2006. This indicates that the market price for power has decreased for 2007. In addition, the Part A credits are smaller reflecting the decrease in market prices and changes in costs. Part B rates for the most part are close to zero reflecting the large open position at this time. The Total column shows the sum of the Energy Charge and RVM Part A and B rates for the schedules. The results of
 this comparison show that the resulting net power costs have increased from the 2006 levels.

3 Q. Please describe the projected rate impacts for 2007 resulting from the RVM update.

4 A. Table 2 below summarizes the estimated rate impact for 2007 based on the power costs and market prices used in developing the updated RVM rates. The first column contains the 5 estimated percentage changes in rates from Energy Charges and the Schedule 125 rates 6 7 described above. The second column contains the estimated rate impacts with all supplemental schedules except the Low-Income Adjustment (LIA) and the Public Purpose 8 Charge (PPC). Assumptions contained in the second column are as follows: BPA monetary 9 10 benefits (Residential Exchange) of \$15.59/MWh for 2007; termination of Schedule 107 DSM Refinancing; and minor changes to Schedule 105. PGE intends to provide updates to 11 12 these rate impacts during the RVM process.

13

Table 2

		mated Rate Change (%) Sch. 125, Part A and B, 102)*	Estimated Rate Change (%) (<u>w/all supplementals)****</u>
Residential**		2.9%	2.4%
Small Non-Resi	dential	5.8%	5.0%
Large Non-Resi	dential, COS**	* 7.0%	6.1%
Overall		4.9%	4.3%
	** curr *** repr	Ides base rates with Schedule 125. ent rates assume BPA rate change esents Cost of Service customers o Ides all supplementals except LIA	nly.

14	The Table 2 estimated rate change percentages as well as the prices that appear in Table
15	1 will change as RVM cost estimates are updated. In addition, the supplemental adjustment
16	assumptions and associated rate impact estimates may change in upcoming updates.

III. Rates Determination

1	Q.	Pleas	e describe how the updated Schedule 125 RVM Part A and Part B rates were
2		devel	oped.
3	A.	The 2	007 projected rates are determined by the following process, which is consistent with
4		the m	ethodology used to set 2006 rates:
5		1.	Determine the market value of power for residential, small nonresidential, and
6			large nonresidential customer classes.
7		2.	Determine the costs of meeting each class's (residential, small nonresidential,
8			large nonresidential) load requirements using Long-term and Short-Term
9			resources. Because BPA Subscription Power deliveries terminate September
10			2006, the cost of Subscription Power is zero.
11		3.	Allocate the market value of power for each class consistent with the percent of
12			resources used to meet the class's load.
13		4.	Calculate the differences between the allocated market value and the cost of each
14			resource for each class.
15		5.	Calculate the RVM Part A and B rates for each customer class.
16		E	exhibit 202, RVM Adjustment Rate Development, provides the computations and steps
17		used	to compute the RVM adjustment rates. Pages 1 through 6 provide the detailed
18		calcul	ations of the market value of power for each rate schedule (Step 1). Page 7 presents
19		the co	osts of meeting each class's power requirements using Long-term, Short-term and BPA
20		Subsc	cription Power (Step 2). Page 8 demonstrates how the market value of power for each
21		class	is allocated (Step 3). Page 9 summarizes both the production costs and the market
22		value	of power while page 10 details the calculation of the differences between the

production costs and market value for each class (step 4). Page 11 summarizes the
 calculations of the rates for the RVM (step 5).

Q. Please describe the purpose and process for each of the steps for Part A and B rate
 development.

A. The 2007 update applies the same methodology as 2006 rates, but with revised power costs,
load forecast data, and line loss estimates.

- Step 1: Determine the market value for each customer class by employing the energy
 consumption and load profiles of each schedule and the same forward price curve
 used to determine PGE's 2007 power costs. The forecast consumption of large
 residential customers who have "opted out" of Short-Term Resource Supply (the
 RVM Part B adjustment) is not part of the market value calculation.
- Step 2: Determine the power supply cost for each class consistent with the UE 115 Power Cost Stipulation resource stacking process. As in the market value of power calculation, the opt-out loads and associated wheeling costs are removed from the power cost calculations. The result is that the costs of the resources are separately identified for each customer class.
- Step 3: Allocate the market value of power for each customer class to Long-Term,
 and Short-Term resources consistent with the cost allocations from Step 2.
- Step 4: Calculate the difference between resource costs and the market value of
 power. This amount represents the total difference in dollars between costs of power
 and the market value determined from the forward price curve. This establishes the
 basis for Schedule 125's resource valuations.

1	•	Step 5: Calculate the Schedule 125 rates from the dollar differences from Step 4. For
2		rate calculations, the RVM Part A utilizes the consumption of PGE's total system less
3		Schedule 483 loads. The revenues from Schedule 129 are subtracted from the dollar
4		differences calculated in step 4 in order to appropriately calculate the RVM Part A
5		rate. The RVM Part B rate is calculated with the opt-out loads removed. This
6		ensures that the appropriate loads are used to determine rates and revenues. The
7		resulting RVM rates reflect the difference between the market value of power and the
8		cost of the resources.

9 Q. Do the calculated energy and RVM rates recover the target power costs.

A. Yes. Exhibit 203, Estimate of 2007 Energy Revenues, calculates the energy charge
 revenues of \$1,029.4 million resulting from the projected load and calculated net energy
 rates for each rate schedule. Comparing these revenues to Exhibit 202, page 7, demonstrates
 that subject to rounding, PGE recovers its production costs.

IV. Qualifications

Q. Mr. Cody, please state your educational background and qualifications.

A. I received a Bachelor of Arts degree and a Master of Science degree from Portland State
 University. Both degrees were in Economics. The Master of Science degree has a
 concentration in econometrics and industrial organization.

- 5 Since joining PGE in 1996, I have worked as an analyst in the Rates and Regulatory
- 6 Affairs Department. My duties at PGE have focused on cost of capital estimation, marginal
- 7 cost-of-service, rate spread and rate design.

8 Q. Does this conclude your testimony?

9 A. Yes, it does.

g:\ratecase\opuc\dockets\ue-161 2005 rvm\testimony\price\pricefinal_03-31-04.doc

List of Exhibits

PGE Exhibit	Description
201	Projected Energy and Schedule 125 Rates for 2007
202	RVM Adjustment Rate Development
203	Estimate of 2007 Energy Revenues

PORTLAND GENERAL ELECTRIC Projected Energy Charge and Schedule 125 Rates for 2007

Grouping	Market-Based Energy mills/kWh	Schedule 125a mills/kWh	125b
SCH 7 - Residential	70.32	(13.90)	0.84
Block 1 (first 250 kWh)	70.32	(13.90)	0.84
Block 2 (over 250 kWh)	70.32	(13.90)	0.04
SCH 15 - Outdoor Area Lighting	66.50	(13.02)	0.36
SCH 32 - General Service <30 kW	69.46	(12.67)	0.17
SCH 38 - Opt Time-of-Day G.S. >30 kW			
On-peak	76.80	(13.80)	(0.17)
Off-peak	63.07	(13.80)	(0.17)
•			
SCH 47 - Irrig. & Drain. Pump <30 kW			
First 50 kWh per kW	86.65	(12.67)	0.17
Over 50 kWh per kW	57.13	(12.67)	0.17
SCH 49 - Irrig. & Drain. Pump >30 kW		() m m m m m	
First 50 kWh per kW	83.84	(13.80)	(0.17)
Over 50 kWh per kW	54.32	(13.80)	(0.17)
SCH 83-S General Service >30 kW	~~ ~~	(40.00)	(0.477)
Flat (less than 1,000 kW)	68.70	(13.80)	(0.17)
On-peak (greater than 1,000 kW)	72.71	(13.80)	(0.17)
Off-peak (greater than 1,000 kW)	61.66	(13.80)	(0.17)
COLL 92 D. Drimony			
SCH 83-P - Primary Flat (less than 1,000 kW)	66.21	(13.80)	(0.17)
On-peak (greater than 1,000 kW)	70.11	(13.80)	(0.17)
Off-peak (greater than 1,000 kW)	59.38	(13.80)	(0.17)
On-peak (greater than 1,000 kw)	00.00	(10.00)	(0)
SCH 83-T - Subtransmission			
On-peak	69.19	(13.80)	(0.17)
Off-peak	58.50	(13.80)	(0.17)
On pour		(,	()
SCH 91 - Street & Highway Lighting	66.67	(13.80)	(0.17)
		. ,	
SCH 92 - Traffic Signals	67.90	(13.80)	(0.17)
SCH 93 - Recreational Field Lighting	66.08	(13.80)	(0.17)

Note: System Usage Charges not included.

	12 Month Avg/Total	65.96 55.54 61.38	2.36	68.32 57.90 63.74	4,792,769 2,739,148 7,531,917		\$356,006 \$173.610 \$529,618		1,750 4,963 6,713		4 \$137 3 \$303 7 \$446	8 4,377 12,418 16,796		11 \$343 8774 4 \$1,117
	Dec-07	75.66 68.53 72.36	2.36	78.02 70.89 74.72	542,989 295,850 838,840		\$45,024 \$22,290 \$67,314		292 438 729		\$24 \$33 \$57	733 1,011 1,834		\$61 \$83 \$144
	Nov-07	73.37 61.14 67.93	2.36	75.73 63.50 70.29	431,297 245.025 676,322		\$34,713 <u>\$16,536</u> \$51,250		243 683 683		\$20 \$490 \$490	611 1,717		\$49 \$75 \$124
	Oct-07	62.92 54.01 59.18	2,36	65.28 56.37 61.54	337,928 207,488 545,416		\$23,445 <u>\$12,431</u> \$35,876		139 638 638		\$14 \$26 \$40	500 1,104 1,604		\$35 \$66 \$101
	Sep-07	73.88 61.39 68.05	2.36	76.24 63.75 70.41	324,864 178,456 503,320		\$26,323 <u>\$12,091</u> \$38,414		124 413 537		\$10 \$28 \$38	310 1,038 1,348		\$25 \$70 \$95
NC	Aug-07	75.41 62.92 70.17	2.36	77.77 65.28 72.53	361,145 213,559 574,704		\$29,850 \$14,817 \$44,667		61 420 481		\$5 \$29 \$34	152 1,054 1,207		\$13 \$23 \$86
RVM ADJUSTMENT RATE DEVELOPMENT MARKET-BASED POWER SUPPLY COST CALCULATION BY RATE SCHEDULE: COS LOADS 2007	Jul-07	64.20 50.19 57.72	2.36	66.56 52.55 60.08	362,147 <u>191,457</u> 553,604		\$25,618 <u>\$10,693</u> \$36,311		34 375 409		\$2 \$21 \$23	86 <u>939</u> 1,025		\$6 \$59 \$59
r RATE DEVEL SUPPLY COST SDULE: COS LC 2007	70-nul	39.49 28.79 34.97	2.36	41.85 31.15 37.33	324,916 181,055 505,971		\$14,452 \$5.994 \$20,446		23 355 384		\$1 \$13 \$13	73 <u>887</u> 961		\$33 \$33
LUSTMENT I ED POWER SI RATE SCHED 20	May-07	40.51 31.84 36.69	2.36	42.87 34.20 39.05	328,185 1 <u>97,349</u> 525,534		\$14,953 \$7,173 \$22,126		51 380 431		\$14 \$16 \$16	128 <u>950</u> 1,078		\$6 \$40 \$40
RVM AC Arket-Basi By	Apr-07	58.34 50.19 54.72	2.36	60.70 52.55 57.08	361,424 205,457 566,881		\$23,316 <u>\$11,475</u> \$34,791		88 490 490		85 828 828	209 1.015 1,224		\$14 \$57 \$70
W	Mar-07	71.84 59.36 66.61	2.36	74.20 61.72 68.97	427,840 234.329 662,170		\$33,739 <u>\$15,371</u> \$49,110		154 588 588		\$12 \$28 \$41	384 1 <u>1081</u> 1,465		\$30 \$71
	Feb-07	77.44 68.02 73.40	2.36	79.80 70.38 75.76	432,027 278,590 710,617		\$36,641 \$20,839 \$57,479		200 624 624		\$17 \$32 \$49	498 1.055 1,553		\$42 <u>\$79</u> \$121
	Jan-07	78.46 70.06 74.76	2.36	80.82 72.42 77.12	558,007 <u>310,531</u> 868,538		\$47,930 \$23,901 \$71,831		279 439 717		\$24 \$58 \$58	692 1,780		\$59 \$84 \$143
		POWER PRICES (mills per kWh) ¹ PGE Curve 15 On-Peak Off-Peak Flat	Wheeling	Market Prices On-Peak Off-Peak Flat	GROUPING ² SCH 7 - Residential Total Energy (MWh) On-Peak Off-Peak Total	Loss Adjustment Factor: 6.28%	Power Costs (\$000) On-Peak Off-Peak Total	SCH 15 - Outdoor Area Lighting	Residential Portion Energy (MWh) On Peak Oift-Peak Total	Loss Adjustment Factor: 6.28%	Power Costs (\$000) On-Paak Off-Peak Total	Commercial Portion Energy (NWh) On-Peak Off-Peak Total	Loss Adjustment Factor: 6.28%	Power Costs (\$000) On-Peak Off-Peak Total

PORTLAND GENERAL ELECTRIC RVM ADJUSTMENT RATE DEVELOPMENT

RVM MARKET-BA B	Jan-07 Feb-07 Mar-07 Apr-07	970 699 538 203 1.522 1.472 1.515 1.462 2,498 2,178 2,053 1.714	Loss Adjustment Factor: 6.28% Power Costs (\$000) \$83 \$59 \$42 \$19 On-Peak \$118 \$111 \$229 \$79 Off-Peak \$201 \$170 \$142 \$38 Total	SCH 32 - Gen Serv - < 30 kW Total Energy (MWh) 30,658 78,052 86,071 79,139 On-Peak 00.Feak 40,772 43,210 41,690 38,035 On-Peak 137,733 137,232 13,210 117,174 Total 137,432 121,062 127,761 117,174	Loss Adjustment Factor: 6.28%	<i>ST</i> ,787 \$6 ,620 \$6 ,787 \$5 ,105 <u>\$3,600</u> <u>\$3,222</u> <u>\$2,125</u> <u>\$2,125</u> \$11,387 \$9,652 \$7,230	SCH 38 - Opt TOD G.S. > 30 kW Total Energy (MWh) 6,175 6,033 6,132 5,727 On-Peak 3.269 2.710 2.670 OttiPeak 9,443 9,323 6,842 8,397 Total	Loss Adjustment Factor: 6.28%	\$530 \$512 \$484 \$369 \$252 \$246 \$178 \$149 \$782 \$758 \$661 \$519	SCH 47 - Irrig. & Drein. Pump < 30 kW Total Energy (MWh) 179 230 161 214 On-Peak 101 133 101 238 On-Peak 238 101 238 446 Total	Loss Adjustment Factor: 6.28%	\$15 \$20 \$13 \$1 \$18 \$10 \$13 \$1 \$28 \$10 \$2 \$13 \$23 \$30 \$20 \$2
RVM ADJUSTMENT RATE DEVELOPMENT MARKET-BASED POWER SUPPLY COST CALCULATION BY RATE SCHEDULE: COS LOADS 2007	Мау-07 Јип-07	3 179 103 1 <u>1.331</u> 1.242 4 1.510 1.345	9 \$6 \$6 \$41 \$46	89 77,632 81,030 86 40,214 36,732 14 117,846 117,767		05 \$3,537 \$3,604 24 \$1,462 \$1,216 30 \$4,999 \$4,820	27 4,982 5,416 20 <u>2,739</u> 2,638 97 7,781 8,054		69 \$227 \$241 49 \$102 \$87 19 \$329 \$328	14 918 1.332 33 <u>1.062 1.662</u> 46 1.981 2.994		\$14 \$42 \$59 \$13 \$39 \$55 \$27 \$80 \$114
IPMENT CALCULATION ADS	Jul-07 Aug-07	120 213 <u>1314</u> 1 <u>475</u> 1,434 1,688	\$8 \$102 \$120 \$102 \$102 \$120	90,673 87,735 40,194 43,424 130,867 131,159		\$6,414 \$7,252 <u>\$2,245 \$3,013</u> \$8,659 \$10,264	5,367 6,123 2,558 3,136 7,924 9,259		\$380 \$506 \$143 \$218 \$522 \$774	2,600 2,808 <u>3,927</u> 3,7 <u>35</u> 6,527 6,543		\$184 \$232 \$219 \$259 \$403 \$491
	Sep-07 Oct-07	434 699 434 1 <u>543</u> 1.451 1.543 1,885 2,242	\$35 \$35 \$38 \$38 \$141 \$133	81,177 81,804 38,028 41,299 119,206 123,103		\$6,578 \$5,676 <u>\$2,577</u> \$2,47 <u>4</u> \$9,154 \$8,150	6,914 6,028 <u>3,184 2,799</u> 10,098 8,827		\$560 \$418 \$216 \$168 \$776 \$586	1,236 410 <u>1,161</u> 346 2,397 755		\$100 \$28 <u>\$79</u> \$21 \$179 \$49
	Nov-07 Dec-07	854 1,025 854 1,025 1,545 1,539 2,399 2,569	\$65 \$69 \$10 <u>4</u> \$115 \$115	82,476 92,037 <u>40,408</u> 45,646 122,884 137,682		\$6,638 \$7,632 \$2,727 \$3,439 \$9,365 \$11,071	6,057 6,139 <u>2,759</u> <u>3,050</u> 8,815 9,189		\$487 \$509 \$186 \$230 \$674 \$739	179 162 111 92 290 259		\$14 \$13 \$22 \$21 \$21
	12 Month Avg/Total	6,127 <u>17,382</u> 23,509	\$480 \$1,063 \$1,563	1,008,484 4 <u>95,658</u> 1,504,143		573,630 <u>530,843</u> \$104,473	71,092 24,861 105,952		56,224 2 \$2,173 57,397	2 10,429 7 12,6 <u>81</u> 9 23,110		3 \$735 5735 51,459

.

PORTLAND GENERAL ELECTRIC RVM ADJUSTMENT RATE DEVELOPMENT MARKET-BASED POWER SUPPLY COST CALCULATION BY RATE SCHEDULE: COS LOADS 2007

\$247,855 <u>\$116,608</u> \$364,464 \$31,509 \$14,037 \$45,546 \$279,364 <u>\$130,646</u> \$410,010 \$2,139 \$2,114 \$4,253 3,413,214 <u>1,892,033</u> 5,305,246 433,356 227,667 661,023 3,846,570 2,<u>119,699</u> 5,966,269 30,543 37,228 67,770 12 Month Avg/Fotal \$2,884 <u>\$1.434</u> \$4,318 \$27,193 <u>\$13,940</u> \$41,134 \$27 \$15 \$42 293,162 <u>165,998</u> 459,160 34,783 19,031 53,814 327,945 185,029 512,974 \$24,309 <u>\$12,507</u> \$36,816 328 195 521 Dec-07 \$25,430 <u>\$11,750</u> \$37,180 35,320 18,333 53,653 315,957 174,109 490,066 \$22,587 \$10,513 \$33,100 \$2,843 \$1,237 \$4,080 \$39 280,637 <u>155,776</u> 436,413 89 38 70-voN 39,980 20,319 60,299 \$20,586 \$9,616 \$30,202 \$2,774 <u>\$1,217</u> \$3,991 \$23,360 <u>\$10,834</u> \$34,193 296,712 160,513 457,226 336,692 <u>180,832</u> 517,525 \$90 \$65 \$155 1,293 Oct-07 \$22,740 <u>\$10,476</u> \$33,216 \$25,991 \$11,918 \$37,910 3,969 <u>3,727</u> 7,696 40,129 21,280 61,409 320,772 <u>175,904</u> 496,676 \$3,252 \$1.442 \$4,693 \$322 \$253 \$574 280,644 154,624 435,268 Sep-07 301,126 162,892 464,018 43,271 22,306 65,577 344,397 185,198 529,595 \$24,889 \$11,301 \$36,191 \$3,577 \$1,548 \$5,124 \$28,466 \$12,849 \$41,315 8,203 10,911 19,113 \$678 \$757 \$1,435 Aug-07 \$24,601 \$10,542 \$35,143 \$2,978 \$1,213 \$4,191 \$21,623 \$9,328 \$30,952 \$513 \$612 \$1,126 305,674 167,025 472,699 42.092 21.727 63,819 347,766 <u>188,752</u> 536,518 7,258 10.963 18,220 70-lul 34,793 17,989 52,782 \$12,597 <u>\$5,147</u> \$17,744 \$1,548 <u>\$596</u> \$2,143 \$14,144 <u>\$5,743</u> \$19,887 283,209 <u>155,473</u> 438,681 318,002 173,462 491,464 4,369 5,450 9,819 \$194 \$180 \$375 10-unf \$1,549 \$642 \$2,192 \$14,332 \$6,250 \$20,582 34,003 17,676 51,679 \$12,783 <u>\$5,607</u> \$18,390 280,553 <u>154,273</u> 434,826 314,556 171,949 486,505 \$117 \$108 \$224 2,557 2,958 5,516 May-07 266,845 147,595 414,440 32,583 17.040 49,623 \$17,215 \$8,243 \$25,458 \$2,102 \$952 \$3,054 \$19,317 <u>\$9,195</u> \$28,512 299,428 164,635 464,063 733 \$47 \$45 \$92 Apr-07 \$2,742 \$1,201 \$3,943 \$25,443 \$11,709 \$37,151 287,865 160,184 448,049 34,766 <u>18,312</u> 53,078 322,631 <u>178,497</u> 501,127 \$22,701 \$10,507 \$33,208 \$41 \$63 516 343 860 Mar-07 260,000 147,720 407,720 29,571 <u>16,208</u> 45,779 \$22,051 \$11,049 \$33,100 \$2,508 \$1,212 \$3,720 \$24,559 \$12,262 \$36,821 510 307 816 \$43 \$66 289,571 163,928 453,499 Feb-07 \$23,775 \$12,312 \$36,087 \$2,754 \$1,343 \$4,097 \$26,529 <u>\$13,654</u> \$40,184 276,788 <u>159,959</u> 436,747 32,065 17,446 49,511 308,853 <u>177,405</u> 486,258 327 185 512 \$28 \$14 \$42 Jan-07 SCH 49 trrig. & Drein. Pump. - > 30 kW Total Energy (MWt) On-Peak Off-Peak Total Total ²ower Costs GT 1,000 kW(\$000) SCH 83-S G.S. Second. > 30 kW Schedule 83-S LE 1,000 kW Energy (AWN) On-Peak Off-Peak Total Power Costs LE 1,000 kW(\$000) Schadule 83-S GT 1,000 kW Energy (MWN) On-Peak Off-Peak Total Loss Adjustment Factor: 6.28% Loss Adjustment Factor: 6.28% Total Schedule 83-S On-Peak Olf-Peak Total Power Costs (\$000) On-Peak Off-Peak Total Schedule 83-S On-Peak Off-Peak Total Off-Peak Total Off-Peak On-Peak On-Peak Total Total

468,998 <u>335,189</u> 804,187 \$32,448 <u>\$19,608</u> \$52,056 \$13,100 \$6.579 \$19,679 \$99,739 \$56,822 \$156,560 \$112,839 \$63,401 \$176,239 1,422,597 <u>956,926</u> 2,379,523 1,609,331 <u>1,067,422</u> 2,676,753 186,734 110,496 297,230 12 Month Avg/Total \$3,312 <u>\$1,951</u> \$5,263 \$9,443 <u>\$5,791</u> \$15,233 \$10,664 <u>\$6,464</u> \$17,128 41,899 27,172 69,070 15,224 9,243 24,467 117,710 79,444 197,154 \$1,221 \$674 \$1,895 132,935 <u>88,687</u> 221,621 Dec-07 \$2,916 <u>\$1,748</u> \$4,664 38,014 27,169 65,183 14,992 8,829 23,820 114,377 77.694 192,071 129,368 <u>86,523</u> 215,892 \$1,167 <u>\$576</u> \$1,744 \$8,906 \$5,073 \$13,979 \$10,073 <u>\$5,649</u> \$15,723 Nov-07 \$2,721 <u>\$1,682</u> \$4,403 \$1,061 <u>\$526</u> \$1,586 \$7,979 <u>\$4,548</u> \$12,527 \$9,040 \$5,073 \$14,113 41,143 29,449 70,591 134,678 87,530 222,209 15,802 9.067 24,869 118,876 78,463 197,339 Oct-07 38,605 27,585 66,190 \$2,982 \$1,782 \$4,763 15,907 9.533 25,440 122,633 82,170 204,804 138,540 91,703 230,244 \$1,247 \$625 \$1,872 \$9,613 \$5,386 \$14,999 \$10,860 \$6,011 \$16,871 Sep-07 \$10,120 <u>\$5,639</u> \$15,759 \$11,452 \$6,279 \$17,731 35,585 26,079 61,664 \$2,804 \$1,725 \$4,528 143,218 <u>93,548</u> 236,766 \$1,332 \$640 \$1,972 16,662 9,530 26,191 126,556 <u>84,018</u> 210,574 Aug-07 PORTLAND GENERAL ELECTRIC RVM ADUUSTMENT RATE DEVELOPMENT MARKET-BASED POWER SUPPLY COST CALCULATION BY RATE SCHEDULE: COS LOADS 2007 40,984 29,512 70,496 \$2,764 \$1,571 \$4,335 16,821 9,835 26,656 125,668 <u>83,613</u> 209,281 142,489 <u>93,448</u> 235,937 \$1,151 \$531 \$1,683 \$8,600 <u>\$4,518</u> \$13,118 \$9,751 <u>\$5,049</u> \$14,801 Jul-07 38,172 27,575 65,747 \$1,618 <u>\$870</u> \$2,489 \$5,194 <u>\$2,620</u> \$7,814 \$5,862 \$2,912 \$8,774 15,512 9,115 24,627 120,709 <u>81,802</u> 202,512 136,221 <u>90,918</u> 227,139 \$667 \$292 \$959 Jun-07 \$1,680 <u>\$986</u> \$2,666 \$5,922 <u>\$3,120</u> \$9,042 38,683 28,462 67,145 \$5,239 \$2,804 \$8,042 15,513 9,003 24,516 118,844 79,726 198,571 134,358 <u>88,729</u> 223,087 \$684 \$317 \$1,000 May-07 \$8,255 <u>\$4,715</u> \$12,970 39,839 28,685 68,525 \$2,450 <u>\$1,527</u> \$3,977 \$963 <u>\$490</u> \$1,453 \$7,292 \$4,226 \$11,517 15,428 9,067 24,495 116,835 78,204 195,039 132,263 <u>87,271</u> 219,534 Apr-07 39,424 28,223 67,647 \$2,964 \$1,765 \$4,728 136,177 89,891 226,068 \$1,203 \$596 \$1,799 \$9,186 \$5,108 \$14,294 \$10,389 \$5.705 \$16,094 15,769 <u>9,397</u> 25,167 120,408 80,494 200,902 Mar-07 36,992 26,434 63,427 \$2,991 \$1,885 \$4,875 108,172 74,243 182,415 122,754 <u>83,124</u> 205,878 \$1,196 \$643 \$1,839 \$8,876 <u>\$5,373</u> \$14,248 \$10,072 <u>\$6.015</u> \$16,087 14,582 <u>8.881</u> 23,463 Feb-07 39,659 28,844 68,502 \$3,247 \$2,116 \$5,363 \$10,498 <u>\$6,408</u> \$16,905 14,521 8,996 23,517 111,808 77,055 188,862 126,329 <u>86,050</u> 212,379 \$1,207 \$670 \$1,877 \$9,291 <u>\$5,738</u> \$15,029 Jan-07 Power Costs LE 1,000 kW(\$000) On-Peak Off-Peak Total SCH 83-T G.S. Subtransmission Calendar Energy (MWh) On-Peak Off-Peak Total Power Costs GT 1,000 kW(\$000) On-Peak Off-Peak SCH 83-P G.S. Primary Schedule 83-P LE 1,000 kW Energy (MWh) On-Peak Off-Peak 7012 Loss Adjustment Factor: 1.31% Loss Adjustment Factor: 2.82% Sch 83-P GT 1,000 kW Energy (MWh) On-Peak Off-Peak Total Power Costs (\$000) On-Peak Off-Peak Total Total Energy (MWh) On-Peak Off-Peak Total Total Schedule 83-P On-Peak Off-Peak Totai Tolai

UE 181 / PGE	
	Cody / 5

ż

	12 Month Avg/Total	25,557 71,880 97,437		\$2,005 <u>\$4,492</u> \$6,496	3,384 2, <u>545</u> 5,939		\$247 <u>\$157</u> \$403	374 <u>191</u> 565		\$26 \$371
	Dec-07	4,343 6.521 10,864		\$360 <u>\$491</u> \$851	281 211 492		\$23 \$16 \$39	9 52 52		<u>8 8</u> 8
	Nov-07	3,598 6,505 10,103		\$290 \$439 \$729	289 217 506		\$23 \$15 \$38	312 25		8 1 8
	Oct-07	2,924 6,452 9,376		\$203 \$387 \$589	275 206 482		\$19 \$12 \$31	50 82 82 82 82 82 82 82 82 82 82 82 82 82		<u> </u>
	Sep-07	1,787 <u>5.974</u> 7.761		\$145 \$405 \$550	290 217 507		\$23 \$15 \$38	88 83 88		8 88 S
NO	Aug-07	876 <u>6.065</u> 6,941		\$72 \$421 \$493	278 209 487		\$23 \$14 \$37	30 44		8 1 8
PORTLAND GENERAL ELECTRIC RVM ADJUSTMENT RATE DEVELOPMENT MARKET-BASED POWER SUPPLY COST CALCULATION BY RATE SCHEDULE: COS LOADS 2007	Jul-07	486 5,810 5,810		\$34 \$297 \$332	277 208 486		\$20 <u>\$12</u> \$31	89 9 1 93		828
PORTLAND GENERAL ELECTRIC RVM ADJUSTMENT RATE DEVELOPMENT ET-BASED POWER SUPPLY COST CALCUL BY RATE SCHEDULE: COS LOADS 2007	Jun-07	411 5,378		\$18 <u>\$164</u> \$183	282 212 494		\$13 \$20	64 8 <u>8</u> 65		នងន
NTLAND GEI DJUSTMENT ED POWER S RATE SCHEI	May-07	726 5,399 6,125		\$33 <u>\$196</u> \$229	282 212 494		\$13 \$2 \$21	814		ទងន
PC RVM AI ARKET-BAS BY	Apr-07	1,202 <u>5,825</u> 7,027		\$78 \$325 \$403	286 215 501		\$18 \$12 \$30	2 24 8		8 2 1 8
2	Mar-07	2,233 6,292 8,525		\$176 \$413 \$589	282 212 494		\$22 \$14 \$36	3 P 2		85 55 55
	Feb-07	2,909 6,160 9,069		\$247 \$461 \$707	283 212 496		\$24 \$16 \$40	3 is 15		223
	Jan-07	4,063 <u>6.395</u> 10,459		\$349 <u>\$492</u> \$841	287 215 502		\$25 <u>\$17</u> \$41	ک بی 42		55 53 55 53
		SCH 91 - St & Highway Lighting Total Energy (MWh) On-Peak Off-Peak Total	Loss Adjustment Factor: 6.28%	Power Coets (\$900) On-Peak Oft-Peak Totai	SCH 92 - Traffic Signals Total Inergy (MWh) On-Peak Off-Peak Total	Loss Adjustment Factor: 6.28%	Роикеr Costs (\$000) Ол-Peak Off-Peak Total	SCH 93 - Rec Field Lighting Total Energy (MWh) On-Peak Off-Peak Total	Loss Adjustment Factor: 6.28%	Power Costs (\$000) On-Peak Off-Peak Total

PORTLAND GENERAL ELECTRIC RVM ADJUSTMENT RATE DEVELOPMENT MARKET-BASED POWER SUPPLY COST CALCULATION BY RATE SCHEDULE: COS LOADS 2007

	Jan-07	Feb-07	Mar-07	Apr-07	May-07	Jun-07	Jut-07	Aug-07	Sep-07	Oct-07	Nov-07	Dec-07	12 Month Avg/Total
TOTAL						۰.							
Energy (MWh) On-Peak Off-Peak Total	1,135,521 <u>661,303</u> 1,796,825	970,075 <u>606,881</u> 1,576,956	1,022,025 <u>583,820</u> 1,605,844	920,573 <u>535,259</u> 1,455,832	903,090 <u>540,482</u> 1,443,571	910,304 525,942 1,436,246	1,000,199 <u>567,674</u> 1,567,872	990,611 <u>587,353</u> 1,577,965	918,646 <u>527,420</u> 1,446,067	943,931 <u>559,063</u> 1,502,994	1,008,595 584,683 1,593,279	1,150,097 <u>654,004</u> 1,804,101	11,873,668 6,933,863 18,807,551
Power Costs (\$000) On-Peak Off-Peak Total	\$97,024 \$50,580 \$147,603	\$81,788 \$45,100 \$126,888	\$80,102 <u>\$38,018</u> \$118,119	\$58,990 \$29,661 \$88,651	\$40,865 <u>\$19,492</u> \$60,357	\$40,212 \$17,271 \$57,483	\$70,290 \$31,458 \$101,748	\$81,355 <u>\$40,454</u> \$121,809	\$73,924 \$35.445 \$109,369	\$65,052 \$33,240 \$98,292	\$80,696 <u>\$33,183</u> \$119,879	\$34,844 \$48,961 \$143,805	\$865,142 <u>\$428,862</u> \$1,294,004
Average Power Costs On-Peak Off-Peak Total	85.44 76.48 82.15	84.31 74.31 80.46	78.38 66.12 73.56	64.08 55.41 60.89	45.25 36.06 41.81	44.17 32.84 40.02	70.28 55.42 64.90	82.13 68.88 77.19	80.47 67.20 75.63	68.92 59.46 65.40	80.01 67.02 75.24	82.47 74.86 79.71	72.86 61.85 68.80
Energy (MWh) Residential On-Peak Off-Peak	558,285 310,970	432,227 279,014	427,994 234,763	361,508 205,863	328,236 197,730	324,946 181,410	362,181 191,832	361,206 213,979	324,987 178,870	338,127 207,927	431,540 245,464	543,281 296,288	Avg/Fotal 4,794,519 2,744,111 7,538,630
Small Non-residential On-Peak Off-Peak	91,529 47,963	78,781 44,403	86,615 42,879	79,561 39,283	78,679 42,226	82,435 39,286	93,359 45,061	90,695 48,213	82,724 40,227	82,714 42,748	83,266 41,624	92,932 46,844	1,023,291 <u>520,757</u> 1,544,048
Large non-residentia) On-Peak Off-Peak	485,707 302,371	459,068 283,463	507,415 306,178	479,504 290,112	496,175 300,526	502,923 305,246	544,659 330,781	538,710 325,161	510,935 308,323	523,090 308,387	493,789 297,595	513,884 310,872	6,055,858 <u>3,669,015</u> 9,724,874
											,	Totals	18,807,551
Market Vatue of Power (\$000) Residential Small Non-desidential Large non-residential Total	\$71,889 \$11,554 \$64.161 \$147,603	\$57,528 \$10,003 \$59,357 \$126,888	\$49,151 \$9,643 \$59,325 \$118,119	\$34,819 \$7,327 \$46,505 \$88,651	\$22,142 \$5,120 \$33,095 \$60,357	\$20,459 \$4,967 \$32,057 \$57,483	\$36,335 \$9,121 \$56,293 \$101,748	\$44,701 \$10,841 \$66,267 \$121,809	\$38,452 \$9,428 \$61,429 \$109,369	\$35,916 \$8,300 <u>\$54,076</u> \$98,292	\$51,299 \$9,511 \$59,069 \$119,879	\$67,372 \$11,235 \$65,198 \$143,805	\$530,062 \$107,049 <u>\$656,892</u> \$1,294,004
¹ Forward curve prices of 2/29/06. ² On and oil peak onergy usages (Suriday-only off-peak basis) derived from load research data of average customers and grouping usage from 2007 Billing Determinants in workpapers, or specifics in Forecast SDEC05E07.	anly off-peak bas	is) derived from	t load research	deta of averag	e customers an	d grouping use	ge from 2007 B	ilièng Determàna	nts in workpap	ers, or specifics	เล่า Forecast SI	DECOSE07.	

UE 181 / PGE Exhibit / 202 Cody / 6

PORTLAND GENERAL ELECTRIC RVM Adjustment Rate Development Projected 2007 Power Costs¹ Resource Stacking: Average Hydro Conditions 2/23/06 Forward Curve (\$000)

Customer Class	2006 Total	Revised Total
Residential		
Long Term Resources		
VPC ²	\$101,992	\$102,591
Fixed	\$78,950	\$78,950
Wheeling	\$16,462	\$16,558
Subtotal	\$197,403	\$198,099
Term Purchases ⁴	\$74,665	\$75,104
Market Purchases/Sales	\$157,473	\$158,398
Subtotal	\$232,139	\$233,502
BPA Subscription ⁵	\$ 0	\$0
Total	\$429,542	\$431,601
Sm. Non-Residentiai		
Long Term Resources		
VPC ²	\$19,840	\$19,957
Fixed	\$15,358	\$15,358
Wheeling	\$3,202	<u>\$3,221</u>
Subtotal	\$38,400	\$38,535
Term Purchases ⁴	\$16,122	\$16,216
Market Purchases/Sales	\$32,805 \$49,997	<u>\$32,998</u> \$49,214
Subtotal	\$48,927	
BPA Subscription ⁵	\$0 \$07.007	\$0 \$87,749
Total	\$87,327	\$01,149
Lg. Non-Residential		
Long Term Resources		
VPC ²	\$153,378	\$154,278
Fixed	\$118,726	\$118,726
Wheeling	<u>\$24,755</u>	<u>\$24,901</u>
Subtotal	\$296,859	\$297,905
Term Purchases ⁴	\$71,060	\$71,477 <u>\$140,689</u>
Market Purchases/Sales	<u>\$139,868</u> \$210,928	\$212,166
Subtotal	⊕∠10,920 \$0	\$0
BPA Subscription ⁵ Total	\$507,787	\$510,072
Total	ψοστ,τοτ	\$010,012
All Classes		
Long Term Resources	Acres 640	A070 000
VPC	\$275,210	\$276,826
Fixed ³	\$213,034	\$213,034
Wheeling	<u>\$44,419</u>	<u>\$44,680</u>
Subtotal	\$532,663	\$534,540 \$162,797
Term Purchases	\$161,847 \$330,1 <u>46</u>	\$332,086
Market Purchases/Sales Subtotal	\$491,993	\$494,883
BPA Subscription	\$0	\$0
Grand Total	\$1,024,656	\$1,029,423
Non-Fixed Costs - Total	\$811,622	\$816,389
Target Revenue Requirement of Non-I	• •	\$816,389
Revenue Sensitive Cost Factor ⁶		0.59%

¹ Costs for VPC, Wheeling, Term Purchases, Market Purchases/Sales from Power Cost Model, Stacked, Resources to Meet Loads of Customer Classes.

² Comprised of PGE Hydro, Mid-C and PHP Hydro, Coal, Gas & Old Contracts

³ 2007 Fixed Costs derived from spread of Non-VPC Production Revenue Requirement (annual) on Old Resource Allocation amounts. Amount adjusted for

Order No. 02-772

⁴ Term Purchases are new contracts and include wheeling expense.

^s Excludes any BPA credits in lieu of power.

⁶ From UE-115 Revenue Requirements model.

Note: Transmission and Distribution costs not included.

.

PORTLAND GENERAL ELECTRIC RVM Adjustment Rate Development Projected Market Value of Power Resource Stacking: Average Hydro Conditions 2/23/06 Forward Curve

	Jan-07	Feb-07	Mar-07	Apr-07	May-07	Jun-07	Jul-07	Aug-07	Sep-07	Oct-07	Nov-07	Dec-07	Wgt Avg	Resource Pct of Class	Market Value (\$000)
HOURS	744	672	743	720	744	720	744	744	720	744	721	744	8,760		
RESIDENTIAL															
Long Term Resources															
PGE Hydro	102	107	103	107	94	80	62	56	65	65	83	94			
Mid-C & PHP Hydro	147	147	120	140	140	150	139	118	91	103	123	136			
Coal	218	218	218	177	108	181	220	220	220	220	220	220			
Gas	81	77	(0)	(0)	(0)	(0)	4	79	78	2	77	82			
Old Contracts	73	76	7 9	87	87	87	79	74	61	69	68	67			
Subtotal	621	625	520	511	429	498	504	547	515	459	571	598	533	57.14%	\$302,866
Net ST Purchases/Sales	644	521	446	343	337	264	302	291	243	336	446	624	400	42.86%	\$227,196
BPA Subscription	O	0	0	0	0	0	0	0	0	0	0	0	0	0.00%	\$0
Total	1,266	1,147	966	854	766	762	807	838	758	795	1,017	1,223	932		\$530,062
SMALL NON-RESIDENTIAL															
Long Term Resources															
PGE Hydro	20	21	20	21	18	16	12	11	13	13	16	18			
Mid-C & PHP Hydro	29	29	23	27	27	29	27	23	18	20	24	26			
Coal	42	42	42	34	· 21	35	43		43	43	43	43			
	16	15	(0)			(0)		15	15	Ő	15	16			
Gas			15	17	17	17	15		12	14	13	13			
Old Contracts	14 121	15 122	101	99	83	97	98		100	89	111	116	104	54.27%	\$58,092
Subtotal	121	122	101	99	63	97	90	100							
Net ST Purchases/Sales	82	77	88	79	93	86	103	96	85	93	77	87	87	45.73%	\$48,958
BPA Subscription	0	0	0	0	0	0	0	.0	0	0	0	0	0	0.00%	\$0
Total	203	199	189	179	176	183	202	202	185	183	188	204	191		\$107,049
LARGE NON-RESIDENTIAL															
Long Term Resources	150	160	155	160	141	121	94	85	98	98	124	141			
PGE Hydro	153	221	180	210	211	226	209		137	155		205			
Mid-C & PHP Hydro	221								331	331		331			
Coal	328	328		266	163	273	331					124			
Gas	122		• •						117	2					
Old Contracts	110			131	130	130	119		92	104		100	004	677 A 69/	6440 440
Subtotal	935	940	782	768	645	749	758	822	775	691	859	900	801	67.46%	\$443,119
Net ST Purchases/Sales	199	241	389	375	500	452	501	420	442	505	315	286	386	32.54%	\$213,773
BPA Subscription	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%	\$0
Total	1,133	1,182	1,171	1,143	1,145	1,201	1,259	1,243	1,217	1,196	1,174	1,186	1,188		\$656,892
ALL CLASSES															
Long Term Resources			,		0.00	~	400	450	475	176	223	252			
PGE Hydro	275					217	168					252 367			
Mid-C & PHP Hydro	397				378	405	376								
Coal	589					489						594			
Gas	218														
Old Contracts	197														
Subtotal	1,677	1,687	1,404	1,378	1,157	1,344	1,361	1,476	1,391	1,239	1,542	1,615	1,437	62.20%	\$804,077
Net ST Purchases/Sales	925	840	923	797	930	802	907	807	769	934	837	998	873	37.80%	\$489,927
BPA Subscription	C) 0) a	0	0	0	C) C	0) C) 0	0	0	0.00%	\$0
Total	2,602	2,527	2,326	2,175	2,087	2,146	2,267	2,283	2,160	2,174	2,379	2,612	2,311		\$1,294,004

PORTLAND GENERAL ELECTRIC **RVM Adjustment Rate Development** Projected Production Costs and Market Value of Power Resource Stacking: Average Hydro 2/23/06 Forward Curve (\$000)

Customer Class	Production Costs	Market Value of Power
De sidential		· · · · ·
Residential Long Term Resources	\$198,099	\$302,866
Term & Mkt Purchases & Sales	\$233,502	\$227,196
BPA Subscription	\$0	<u>\$0</u>
Total	\$431,601	\$530,062
Sm. Non-Residential		
Long Term Resources	\$38,535	\$58,092
Term & Mkt Purchases & Sales	\$49,214	\$48,958
BPA Subscription	<u>\$0</u>	<u>\$0</u>
Total	\$87,749	\$107,049
Lg. Non-Residential		
Long Term Resources	\$297,905	\$443,119
Term & Mkt Purchases & Sales	\$212,166	\$213,773
BPA Subscription	<u>\$0</u>	<u>\$0</u>
Total	\$510,072	\$656,892
All Classes		
Long Term Resources	\$534,540	\$804,077
Term & Mkt Purchases & Sales	\$494,883	\$489,927
BPA Subscription	<u>\$0</u>	<u>\$0</u>
Total	\$1,029,423	\$1,294,004

PORTLAND GENERAL ELECTRIC RVM Adjustment Rate Development Production Costs and Market Value of Power Resource Stacking: Average Hydro 2/23/06 Forward Curve (\$000)

				Revenues		
- -	••••	Market			BPA Credit	
Customer Class	Costs	Value	Sch 125a	Sch 125b	For Power	Total
Residential						
Long Term Resources	\$198,099	\$302,866	(\$104,766)	,		\$198,099
Term & Mkt Purchases & Sales	\$233,502	\$227,196		\$6,306		\$233,502
BPA Subscription	<u>\$0</u>	<u>\$0</u>			<u>\$0</u>	<u>\$0</u>
Total	\$431,601	\$530,062	(\$104,766)	\$6,306	\$0	\$431,601
Sm. Non-Residential						
Long Term Resources	\$38,535	\$58,092	(\$19,556)			\$38,535
Term & Mkt Purchases & Sales	\$49,214	\$48,958		\$257		\$49,214
BPA Subscription	<u>\$0</u>	<u>\$0</u>			<u>\$0</u>	<u>\$0</u>
Total	\$87,749	\$107,049	(\$19,556)	\$257	\$0	\$87,749
Lg. Non-Residential						
Long Term Resources	\$297,905	\$443,119	(\$145,214)			\$297,905
Term & Mkt Purchases & Sales	\$212,166	\$213,773		(\$1,606)		\$212,166
BPA Subscription	<u>\$0</u>	<u>\$0</u>			<u>\$0</u>	<u>\$0</u>
Total	\$510,072	\$656,892	(\$145,214)	(\$1,606)	\$0	\$510,072
All Classes						
Long Term Resources	\$534,540	\$804,077	(\$269,537)			\$534,540
Term & Mkt Purchases & Sales	\$494,883	\$489,927		\$4,956		\$494,883
BPA Subscription	<u>\$0</u>	<u>\$0</u>			<u>\$0</u>	<u>\$0</u>
Total	\$1,029,423	\$1,294,004	(\$269,537)	\$4,956	\$0	\$1,029,423

.

PORTLAND GENERAL ELECTRIC RVM ADJUSTMENT RATE DEVELOPMENT SCHEDULE 125: PROJECTED RVM ADJUSTMENT RATES 2007

		Schedul	e 125a		Schedule	125b	Tota	1
Class/Schedule	Calendar Energy (MWh)	(\$000)	Rate (mills per kWh)	Calendar Energy (MWh)	(\$000)	Rate (mills per kWh)	(\$000)	Rate (mills per kWh)
RESIDENTIAL	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
SCH 7 - Residential	7,531,917	(\$104,694)	(13.90)	7,531,917	\$6,327	0.84	(\$98,367)	(13.06)
Portion of SCH 15 - Outdoor Area Lighting	6,713	(\$93)	(13.90)	6,713	\$6	0.84	(\$88)	(13.06)
Subtotal	7,538,630	(\$104,766)	(13.90)	7,538,630	\$6,306	0.84	(\$98,455)	(13.06)
SMALL NON-RESIDENTIAL								
Portion of SCH 15 - Outdoor Area Lighting	16,796	(\$213)	(12.67)	16,796	\$3	0.17	(\$210)	(12.50)
SCH 32 - General Service <30 kW	1,504,143	(\$19,057)	(12.67)	1,504,143	\$256	0.17	(\$18,802)	(12.50)
SCH 47 - Irrig. & Drain. Pump < 30 kW	23,110	(\$293)	(12.67)	23,110	\$4	0.17	(\$289)	(12.50)
Subtotal	1,544,048	(\$19,556)	(12.67)	1,544,048	\$257	0:17	(\$19,301)	(12.50)
LARGE NON-RESIDENTIAL								
SCH 38 - Opt Time-of-Day G.S. > 30 kW	105,952	(\$1,462)	(13.80)	105,952	(\$18)	(0.17)	(\$1,480)	(13.97)
SCH 49 - Irrig. & Drain. Pump > 30 kW	67,770	(\$935)	(13.80)	67,770	(\$12)	(0.17)	(\$947)	(13.97)
SCH 83-S General Service >30 kW	6,079,023	(\$83,891)	(13.80)	5,966,269	(\$1,014)	(0.17)	(\$84,905)	(13.97)
SCH 83-P - Primary	2,796,849	(\$38,597)	(13.80)	2,676,753	(\$455)	(0.17)	(\$39,052)	(13.97)
SCH 83-T - Subtransmission	1,365,349	(\$18,842)	(13.80)	804,187	(\$137)	(0.17)	(\$18,979)	(13.97)
SCH 91 - Street & Highway Lighting	97,437	(\$1,345)	(13.80)	97,437	(\$17)	(0.17)	(\$1,361)	(13.97)
SCH 92 - Traffic Signals	5,939	(\$82)	(13.80)	5,939	(\$1)	(0.17)	(\$83)	(13.97)
SCH 93 - Recreational Field Lighting	565	(\$8)	(13.80)	565	(\$0)) (0.17)	(\$8)	(13.97)
Schedule 129		(\$24)						
Mark-to Market of Part B Financials					900 \$0			
Subtotal	10,518,884	(\$145,191)	(13.80)	9,724,874	(\$1,606) (0.17)	(\$146,814)) (13.97)
TOTAL	19,601,562	(\$269,513)		18,807,551	\$4,956		(\$264,569))
TOTAL with Sch 76R & 483	19,686,004			878,453	(optout)			

Schedule 129 revenues are subtracted from 125a

PORTLAND GENERAL ELECTRIC ESTIMATE OF 2007 ENERGY REVENUES

Grouping	2006 Cal Energy (MWH)	Energy Rate	Schedule 125a	Schedule 125b	Total Energy Rate	Revenues (\$000)
· · · · · · · · · · · · · · · · · · ·						
SCH 7 - Residential	2,029,053	70.32	(13.90)	0.84	57.26	116,184
Block 1 (first 250) Block 2 (over 250)	5,502,864	70.32	(13.90)		57.26	315,094
Block 2 (Over 200)	0,001,001		(,			, .
SCH 15 - Outdoor Area Lighting						***
Residential portion	6,713	66.50	(13.02)		53.84	. 361
Commercial portion	16,796	66.50	(13.02)	0.36	53.84	904
SCH 32 - General Service <30 kW	1,504,143	69.46	(12.67)	0.17	56.96	85,676
SCH 38 - Opt Time-of-Day G.S. >30 kW						
On-peak	52,019	76.80	(13.80)	(0.17)	62.83	3,268
Off-peak	53,934	63.07	(13.80)	(0.17)	49.10	2,648
SCH 47 - Irrig. & Drain. Pump <30 kW	4,693	86.65	(12.67)	0.17	74.15	348
First 50 kWh per kW Over 50 kWh per kW	18,417	57.13	(12.67)		44.63	822
	.0,	07110	(,			
SCH 49 - Irrig. & Drain. Pump >30 kW						
First 50 kWh per kW	19,114	83.84	(13.80)		69.87	1,335
Over 50 kWh per kW	48,656	54.32	(13.80)	(0.17)	40.35	1,963
SCH 83-S General Service >30 kW						
Flat (less than 1,000 kW)	5,305,246	68.70	(13.80)	(0.17)	54.73	290,356
On-peak (greater than 1,000 kW)	433,356	72.71	(13.80)		58.74	25,455
Off-peak (greater than 1,000 kW)	227,667	61.66	(13.80)	(0.17)	47.69	10,857
SCH 83-P - Primary						
Flat (less than 1,000 kW)	297,230	66.21	(13.80)	(0.17)	52.24	15,527
On-peak (greater than 1,000 kW)	1,422,597	70.11	(13.80)		56.14	79,865
Off-peak (greater than 1,000 kW)	956,926	59.38	(13.80)		45.41	43,454
,						
SCH 83-T - Subtransmission	460 000	69.19	(13.80)) (0.17)	55.22	25,898
On-peak Off peak	468,998 335,189	58.50	(13.80)			14,926
Off-peak	000,100	00.00	(10.00)	, (0)		,
SCH 91 - Street & Highway Lighting	97,437	66.67	(13.80)) (0.17)	52.70	5,135
SCH 92 - Traffic Signals	5,939	67.90	(13.80)) (0.17)	53.93	320
SCH 93 - Recreational Field Lighting	565	66.08	(13.80)) (0.17)	52.11	29
Totals	18,807,551					\$1,040,428
BPA Power Credit						\$0
Schedule 125a revenues from optout loads						(\$10,957)
Schedule 129						(\$24)
Total Energy Revenues						\$1,029,447

PORTLAND GENERAL ELECTRIC Calculation of 2007 Wheeling Charge

Monthly Projected ESS Loads & Peaks: Load Forecast SDEC05E07

12CP 11.8		86.40%
15.1	89,057 8,760 10.2	67%
Ann 10.4	6,930 744 9.3	%06
Dec 10.6	7,135 721 9.9	63%
Nov 11.6	7,813 744 10.5	91%
Oct 13.0	7,777 720 10.8	83%
Sep 15.1	8,837 744 11.9	%67
Aug 14.0	8,196 744 11.0	79%
Jul 11.0	6,671 720 9.3	84%
Jun 11.2	7,297 743 9.8	%88
May 11.3	7,438 720 10.3	91%
Apr 11.9	7,958 744 10.7	%06
Mar 11.0	6,444 672 9.6	87%
Feb 10.1	6,560 744 8.8	87%
Jan		
System Peaks	System Busbar Energy Hours MWa	System LF

MC of wheeling based on projected DA loads & 12CP

	1.487 kW-month	730 average per month	11.8	10.2	86.4%	2.36
3	8PA PTP	Hours	DA 12CP	DA MWa	Ľ	Wheeling Charge milis/kWh

2007 RVM Work Papers

	Total 6,833 3,905 10,738		Total 63.63% 36.37% 100.00%	Total	Total 67.04% 32.96% 100.00%	Total 67.14% 32.86% 100.00%	Total 48.97% 51.03% 100.00%	Total 48.97% <u>51.03%</u> 100.00%
	10,83,61		<u>ද සී සී වි</u>	Tc	F 20 20	+ 12 8 5	⊢ & 껍호	► 88 ¹² 12
	Dec 758 413 1,171		Dec 64.73% 35.27% 100.00%	Dec 39.98% 60.02% 100.00%	Dec 66.85% 33.15% 100.00%	Dec 66.81% 33.19% 100.00%	Dec 62.54% 37.46% 100.00%	Dec 62.54% 37.46% 100.00%
	Nov 646 367 1,013		Nov 63.77% 36.23% 100.00%	Nov 35.61% 64.33% 100.00%	Nov 67.12% 32.88% 100.00%	Nov 68.71% 31.29% 100.00%	Nov 61.65% 38.35% 100.09%	Nov 81.65% 38.35 <u>%</u> 100.00%
	807 807 807		Oct 61.96% 38.04% 100.00%	Oct 31.19% 5 <u>8.81%</u> 100.00%	Oct 66.45% 33.55% 100.00%	Oct 68.29% 31.71% 100.00%	Oct 54.25% 45.75% 100.00%	Oct 54.25% 45.75% 100.00%
	Sep 446 691 691		Sep 64.54% <u>35.46%</u> 100.00%	Sep 23.02% 76.98% 100.00%	Sep 68.10% 31.90% 100.00%	Sep 68.47% 31.53% 100.00%	Sep 51.57% 48.4326 100.00%	Sep 51.57% 48.43% 100.00%
	Aug 531 845 845		Aug 62.84% <u>37.16%</u> 100.00%	Aug 12.62% 87.38% 100.00%	Aug 66.89% 33.11% 100.00%	Aug 66.13% 33.87% 100.00%	Aug 42.92% 57.08% 100.00%	Aug 42.92% 57.08% 100.00%
	Jul 558 853		Jul 65.42% 34.58% 100.00%	Juf 8.35% <u>91.64%</u> 100.00%	Jul 69.29% 30.71 <u>%</u> 100.00%	Juf 67.72% 32.28% 100.00%	Jul 39.83% 60.17% 100.00%	Jul 39.83% 60.17% 100.00%
	Jun 463 721		Jun 64.22% <u>35.78%</u> 100.00%	Jun 7.64% 92.35% 100.00%	Jun 68.81% 31.19% 100.00%	Jun 67.25% 32.75% 100.00%	Jun 44.49% 55.51% 109.00%	Jun 44.49% 55.51% 100.00%
	May 449 719		May 62.45% 37.55% 100.00%	May 11.85% 88.15% 100.00%	May 65.88% 34.12% 100.00%	May 64.02% 35.98% 100.00%	May 46.36% 53.64% 100.00%	May 46.36% 53.64% 100.00%
	Apr 482 274 756		Apr 63.76% <u>36.24%</u> 100.00%	Apr 17.10% 82.90% 100.00%	Apr 67.54% 32.46% 100.00%	Apr 68.20% 31.80% 100.00%	Apr 47.87% 52.13% 100.00%	Apr 47.87% 52.13% 100.00%
Schedule 7	Mar 566 31 <u>0</u> 876		Mar 64.61% 35.39% 100.00%	Schedule 15 Mar 26.19% 73.81% 100.00%	Mar 67.37% 32.63% 100.00%	Mar 69.65% 30.64% 100.00%	Mar 60.08% <u>39.92%</u> 100.00%	Mar 60.09% 39.92% 100.00%
ŝ	Feb 611 394 1,005		Feb 60.80% 39.20% 100.00%	Feb 32.08% 67.92% 100.00%	Feb 64.37% 35.63% 100.00%	Feb 64.71% 35.29% 100.00%	Feb 62.45% 37.55% 100.00%	Feb 62.45% <u>37.55%</u> 100.00%
	Jan 823 1,281		Jan 64.25% 3 <u>5.75%</u> 100.00%	Jan 38.85% <u>61.15%</u> 100.00%	Jan 66.97% 34.03% 100.00%	Jan 65.39% 34.61% 100.00%	Jan 63.68% 36.12% 100.00%	Jan 63.88% <u>36.12%</u> 100.00%
	Schedule 7 Avg Cust Energy (kWh) On-peak Oft-peak Total	Source: 2004 load research data	Schedule 7 Oh-peak percent Olf-peak percent Total	Schedule 15 Burning Hour Percentages On-peak percent Oil-peak percent Total	Schedule 32 Avg Cust Energy (KWh) On-peak Off-peak Total Source- 20104 Iond research Cata	Schedule 38 Chi-peak percent Oil-peak percent Total Source: 2004 Inari research data	Schedule 47 Ch-peak percent Olf-peak percent Total	Schedule 49 On-peak percent Off-peak percent Total

2007 RVM Work Papers

Source: 2004 load research data

.

	110 383 393	ai 3% 0%	31 31 31 31 31 31 31 31 31 31 31 31 31 3	al 3% 0%	al 184 53	al 2% 00%	119 119	8% 2% X0%
	Total	Total	Total	Total	Total	Total	Total	Total
	3,408,110	64.33%	432,435	65.55%	186,484	62.82%	1,420,508	59.78%
	1.889,883	35.67%	227,296	<u>24.45%</u>	110,370	37.18%	<u>955,611</u>	40.22%
	5,297,993	100.00%	659,731	100.00%	296,853	100.00%	2,376,119	100.00%
	Dec 285,443 161,628 447,071	Dec 63.85% 36.15% 100.00%	Dec 33,887 52,428	Dec 64.64% 35.36 <u>%</u> 100.00%	Dec 15,459 <u>3.385</u> 24,844	Dec 62.22% 37.78% 100.00%	Dec 119,522 80,666 200,188	Dec 59.70% 40.30% 100.00%
	Nov	Nov	Nov	Nov	Nov	Nov	Nov	Nov
	281,391	64.31%	35,413	65.83%	14,774	62.94%	12,714	59.55%
	156.195	<u>35.69%</u>	18.381	<u>34.17%</u>	8,701	37.06%	76,565	40.45%
	437,586	100.00%	53,795	100.00%	23,474	100.00%	189,279	100.00%
	Oct	Oct	Oct	Oct	Oct	Oct	Oct	Oct
	287,639	64.89%	38,787	66.30%	16,339	63.54%	122,919	60.24%
	155,605	35.11%	19,713	<u>33.70%</u>	9.376	36.45%	81,131	39.76%
	443,243	100.00%	58,499	100.00%	25,715	100.00%	204,050	100.00%
	Sep	Sep	Sep	Sep	Sep	Sep	Sep	Sep
	296,896	64.48%	42,392	65.35%	16,190	62.53%	124,814	59.88%
	163,578	35.52%	22,480	34.653%	9.Z02	37.47%	<u>83,631</u>	40.12%
	460,474	100.00%	64,872	100.00%	25,592	100.00%	208,445	100.00%
	Aug	Aug	Aug	Aug	Aug	Aug	Aug	Aug
	298,899	64.90%	42,959	65.98%	16,430	53.62%	124,797	60.10%
	161,688	35.10%	22,145	34.02%	<u>8,397</u>	36.38%	82,850	39.90%
	460,587	100.00%	65,104	100.00%	25,827	100.00%	207,646	100.00%
	Jul	Jul	Jul	Juf	Jul	Jul	Jul	Jul
	287,782	64.67%	39,672	65.96%	16,391	63.10%	122,458	60.05%
	157,249	35.33%	20,477	34.04%	<u>9,584</u>	<u>36.90%</u>	<u>81.47</u> 7	39.95%
	445,030	100.00%	60,149	100.00%	25,975	100.00%	203,936	100.00%
	Jun	Jun	Jun	Jun	Jun	Jun	Jun	Jun
	281,158	64,56%	34,545	65.92%	15,224	62.99%	118,466	59.61%
	<u>154,347</u>	35,44%	17,861	34.08%	8, <u>946</u>	37.01 <u>%</u>	80,282	40.39%
	435,505	100.00%	52,406	100.00%	24,170	100.00%	198,748	100.001
	May	May	May	May	May	May	May	May
	269,800	64.52%	32,723	65.80%	15,312	63.28%	117,304	59.85%
	148,361	35.48%	17.011	34.20%	8.887	36.72%	7 <u>8,693</u>	40.15%
	418,160	100.00%	49.734	100.00%	24,199	100.00%	195,996	100.00%
00 KW	Apr 271,466 150,150 421,616	Apr 64.39% 35.61 <u>%</u> 100.00%	00 kW 33,135 11,329 50,464	Apr 65.66% 34.34% 100.00%	100 kW Apr 15,327 <u>9,007</u> 24,334	Apr 52.99% 37.01% 100.00%	000 kW Apr 116,067 27,690 193,757	Apr 59.90% 40.10% 100.00%
Schedule 83-S LT 1,000 kW	Mar 281,499 <u>156,642</u> 438,141	Mar 64.25% 35.75% 100.00%	Schedule 83-S GT 1,000 kW 25 34,013 33, 25 515 215 12,013 33, 61 929 50,0	Mar 65.50% 34.50% 100.00%	Schedule 83-P LT 1,000 kW b Mar A 18 14,967 15, 19 8,931 9,0 66 23,918 24,	Mar 62.66% 37.34% 100.00%	Schedule 83-P GT 1,000 kW b Mar A 110 114,433 116, 05 75,499 77,5 116 190,332 193,	Mar 59.93% 40.07% 100.00%
Schedu	Feb 280,335 1 <u>59,273</u> 439,607	Feb 63.77% 36.23% 100.00%	Schedt Feb 31,825 17,443 49,268	Feb 64.60% 35.40% 100.00%	Sched Feb 15,518 9,451 24,968	Feb 62.15% 37.85% 100.00%	Sched Feb 115,110 79,005 134,116	Feb 59.30% 40.70% 100.00%
	Jan	Jan	Jan	Jan	Jan	Jan	Jan	Jan
	285,804	63.37%	33,083	64.76%	14,533	61.75%	111,905	59.20%
	<u>165,169</u>	36.63%	18,000	35.24%	9.004	<u>38.25%</u>	77,121	40.80%
	450,973	100.00%	64,084	100.00%	20,537	100.00%	189,025	100.00%
	Schedule 83-5 Li 1,000 KW On-peak Off-peak Total	Source: 2007 load forecast Schedule 83-S LT 1,000 KW On-peak percent Off-peak percent Total	Schedule 83-S GT 1,000 kW On-peak (MWH) Off-peak (MWH)	Cource: 2007 load forecast Source: 2007 load forecast Corpeak percent Off-peak percent Total	Schedule 83-P LT 1,000 kW On-peak Off-peak Total	Source: 2007 load forecast Schedule 83-P LT 1,000 KW On-peak percent Off-peak percent Total	Schedule 83-P GT 1,000 kW On-peak (MWH) Off-peak (MWH) Total	Source: 2007 load forecast Schedule 83-P GT 1,000 KW On-peak percent Off-peak percent Total

2007 RVM Work Papers

PORTLAND GENERAL ELECTRIC SELECTED LOAD PROFILES BY SCHEDULE

,

Total 58.32% 41.68% 100.00%	Totał	Total 6.9 12.0	Total 65.80% 34.20% 100.00%
Dec 60.66% 39.34% 100.00%	Dec 39.98% 50.02% 100.00%	Dec 0.6 1.0	Dec 65.30% 34.70% 100.00%
Nov 58.32% 41.68% 100.00%	Nov 35.61% 64.33% 100.00%	Nov 0.6 1.0	Nov 66.26% 33.74% 100.00%
Oct 58.28% 41.72% 100.00%	Oct 31.19% <u>68.81%</u> 100.00%	0.6 0.6 1.0	Oct 66.53% 33.47% 100.00%
Sep 58.32% 41.68% 100.00%	Sep 23.02% 76.98% 100.00%	Sep 0.6 1.0	Sep 67.90% 32.10% 100.00%
Aug 57.71% 42.29% 100.00%	Aug 12.62% 87.38% 100.00%	Aug 0.6 1.0	Aug 65.13% 34.87% 100.00%
Jul 58.14% 41.86% 100.00%	Jul 8.36% 91.64% 100.00%	Jul 0.6 1.0	Jul 67.16% 32.84% 100.00%
Jun 58.06% 41.94% 100.00%	Jun 7.64% 92.36% 100.00%	uu 0.6 1.0	Jun 66.49% 33.51% 100.00%
May 57.61% 42.39% 100.00%	May 11.85% 88.15% 100.00%	May 0.6 1.0	May 64.49% 35.51% 100.00%
Apr 58.14% 41.86% 100.00%	Apr 17,10% 82.90% 100.00%	Apr 0.6 1.0	Apr 66.62% 33.382% 100.00%
Mar 58.28% 41.72% 100.00%	Mar 26.19% 73.81 <u>%</u> 100.00%	Mar 0.6 1.0	Mar 66.38% 33.64% 100.00%
Feb 58.32% <u>41.68%</u> 100.00%	Feb 32.08% <u>67.92%</u> 100.00%	Feb 0.6 1.0	Feb 63.03% 36.97% 100.00%
Jan 57.89% 42.11 <u>%</u> 100.00%	nly Jan 38.85% 61.15% 100.00%	Jan 0.6 1.0	Jan 64.46% <u>35.54%</u> 100.00%
Schedule 83-T On-peak percent Off-peak percent Total	Note: Schedule 83 profiles represent COS only SCH 91 - St & Highway Lighting Burning Hour Percentages On-Peak OH-Peak Total Total Source: Burning hours study	SCH 92 - Traffic Signals Pct. Cf Operation On-Peak Off-Peak Total	Schedule 93 On-peak percent Oif-peak percent Total Source: 2004 load research data

2007 RVM Work Papers 4

	Basic Charge BD	Basic Charge BD	Vol. Trans & Related	Demand Transmission & Related	Volumetric Dist.	Volumetric Dist.	Facilities	Distribution Demand Block 1 BD	Distribution Demand Riock 2 BD	Explicit & Implicit System Usage BD
Grouping	1-phase	3-phase	BD	80	BU-BIOCK 1	DU-BIOCK 2				
	8 421 770	5.179	7,524,421	0	2,027,033	5,497,387	0	0	0	7,524,421
Schedule 15 Residential	6,348	0	6,684	0	6,684	0	0	0	0	6,684
Cohodulo 15 Commercial	9 864	C	16,812	0	16,812	0	0	0	0	16,812
Schedule 13 Vollimitet van Schediule 32	624.206	354,764	1,503,045	0	1,327,585	175,460	0	0	0 (1,503,045
Schodulo 38	1.644	13,410	105,829	0	105,829	0	0	0	Ð .	100,828
Schedule 30 Schedule 47	1,200	17 340	22,922	0	4,673	18,249	0	0	0	22,922
Schedule 4/	48	8.412	67,951	0	19,426	48,525	0	0	0	67,951
Screaule 49 Cohodulo 02.0 //C	8 713	131.852	0	15,761,511	0	0	18,092,892	4,169,537	11,591,974	5,957,724
Sulfaure os o Markat	36	1 824	0	253,074	0	0	292,488	55,702	197,372	112,624
	;	36	0	29,089	0	0	40,116	888	28,201	14,259
Screaule 403-5	9 479	; -	97.806	0	97,806	0	0	0	0	97,806
	168	Ċ	5,939	.0	5,939	0	0	. 0	0	5,939
Scredule 32 Schadula 93	30	324	565	0	565	0	0	0	0	565
		3 UNB	C	4,956,762	0	0	5,589,912	4,956,762	0	2,672,972
Schedule 83-P CUS		84		249.142	0	0	272,040	249,142	0	119,861
Schedule 83-P warket		2 5	• c	119.975	0	0	129,612	119,975	0	70,000
Scredule 483-P		4								
		ΤH	C	1.420.507	0	0	1,480,680	1,420,507	0	803,359
Scredule 03-1 CC3		12	0	713,621	0	0	773,856	713,621	0	385,963
Schedule 35-1 market		12		231,000	0	0	231,000	231,000	0	168,900
Schedule 76R				0	0	0	0	0	0	0
Totals	9,076,469	536,351	9,351,974	23,734,681	3,612,352	5,739,622	26,902,596	11,917,134	11,817,547	19,657,637
	:				010 010 0	5 790 822	06 163 ABA	10 546 806	11.591.974	18.786.030
COS Totals	9,076,433	534,371	9,351,974	22,138,780	3,012,002	0,100,000	FUT 100 101			
Sch. 83 COS Totals	8,713	134,942	00	22,138,780 1 605 001	00	00	25,163,484 1.739,112	10,546,806 1,370,328	11,591,974 225,573	9,434,056 871,607
Sch. 83 Market Totals	36	1,980	5	1,000,000,1	,)		•		

PORTLAND GENERAL ELECTRIC

2007 Cycle Billing Determinants

2007 RVM Work Papers

LECTRIC
ш
R
ij
Щ Ш
g
Υ.
E
a.

2007 Cycle Billing Determinants

	Block 1 Energy	Block 2 Energy	Flat Energy	On-peak Energy	Off-peak Energy	Wheeling Demand	Reactive	Fixed	125a RD	125b RD	Sch 129 RD
Grouping	BD	BD	BD	вIJ	na	70	78	2	20	2	2
Cohodule 7	2 027 033	5 497,387	0	0	0	0		0	7,524,421	7,524,421	0
Schedule 15 Residential	0	0	6,684	0	0	0	0	6,684	6,684	6,684	0
Schedule 15 Commercial	0	0	16,812	0	0	0	0	16,812	16,812	16,812	-
Schedule 32	0	0	1,503,045	0	0	0	0	0	1,503,045	1,503,045	0
Scheditle 38	c	0	0	51,962	53,867	0	136,564	0	105,829	105,829	0
Schedule 47	4.673	18.249	0	0	0	0	98	0	22,922	22,922	0
Schedule 49	19.426	48,525	0	0	0	0	10,770.	0	67,951	67,951	0
Schedule 83-5 COS	C	0	5.297,993	432.435	227,296	0	1,984,708	0	5,957,724	5,957,724	0
Schodule 82-5 Market	• c	0	0	73,518	39,106	0	0	0	112,624	0	0
Schodule of C manage		C	0	8,901	5,358	29,089	7,953	0	0	0	14,259
Schodule 100-0			97.806	0	0	0	0	97,806	97,806	97,806	0
Octionate of Coheditie 00			5.939	0	0	0	0	0	5,939	5,939	0
Schedule 22 Schedule 03	• c	0	565	0	0	0	0	0	565	565	0
	ŧ										
	c	c	296 853	1 420 508	955.611	0	1,114,867	0	2,672,972	2,672,972	O
Scredule 63-1 COS	, c) C	00000	73.345	46.517	0	0	0	119,861	0	0
Schedule 63-F warket Schedule 483-P	00	0	00	42,308	27,692	119,975	40,178	0	0	0	70,000
Scheriule 83-T COS	0	0	0	468,496	334,863	0	121,706	0	803,359	803,359	0
Schodule 83-T Market	0	0	0	211,424	174,538	0	0	0	385,963	0	0
Schodule 75-T	0	0	0	96,474	72,426	0	0	0	168,900	0	0
Schedule 76R	0	0	0	0	0	0	0	0	0	0	0
Totais	2,051,132	5,564,162	7,225,698	2,879,370	1,937,275	149,064	3,416,844	121,302	19,573,378	18,786,030	84,259
										000 002 01	c
COS Totals	2,051,132	5,564,162	7,225,698	2,373,400	1,571,638	0	3,368,713	121,302	18,786,030	18,786,030	Þ
Sch. 83 COS Totais	0 (0	5,594,847	2,321,439 505,070	1,517,771 965,627	0 140 064	3,221,281 48 131	00	9,434,056 787.347	9,434,056 0	0 84.259
Sch. 83 Market Totals	C	>	>	n/e'ond	200,000		10-10-)			

PORTLAND GENERAL ELECTRIC

2007 Cycle Billing Determinants

Grouping	Sch 102 Power BD	Sch 102 Monetary BD	Sch 101 BD	Sch 105 BD	Sch 107 BD	Sch 114 BD	Sch 126 BD	
Schedule 7 Schedule 15 Residential	2,027,033 6,684	5,497,387 6,684	7,524,421 6,684	7,524,421 6,684	7,524,421 6,684	7,524,421 6,684	7,524,421 6,684	
Schedule 15 Commercial Schedule 32 Schedule 38	232,854 6,400 21,296	232,854 6,400 21,296	16,812 1,503,045 105,829 22,922	16,812 1,503,045 105,829 22,922 67 051	16,812 1,503,045 105,829 22,922 67 051	16,812 1,503,045 105,829 22,922 67 051	16,812 1,503,045 105,829 22,922 67 051	
Schedule 49 Schedule 83-S COS Schedule 83-S Market Schedule 483-S Schedule 91	295,169 295,265 77 704 0	295,265 295,265 77 704	5,957,724 112,624 14,259 97,806	5,957,724 112,624 14,259 97,806	5,957,724 112,624 14,259 97,806	5,957,724 112,624 14,259 97,806	5,957,724 112,624 14,259 97,806	
Schedule 92 Schedule 93	00	00	565	5,939 565	5,939 565	565 565	565 565	÷
Schedule 83-P COS Schedule 83-P Market Schedule 483-P	0 0 0	0 0 6	2,672,972 119,861 70,000	2,672,972 119,861 70,000	2,672,972 119,861 70,000	2,672,972 119,861 70,000	2,672,972 119,861 70,000	
Schedule 83-T COS Schedule 83-T Market Schedule 75-T Schedule 76R	0000	0000	803,359 385,963 168,900 0	803,359 385,963 168,900 0	803,359 385,963 168,900 0	803,359 385,963 168,900 0	803,359 385,963 168,900 0	
Totals COS Tatals	2,658,902 2,658,902	6,129,256 6.128,475	19,657,637 18 786.030	19,657,637 18,786,030	19,657,637 18,786,030	19,657,637 18.786.030	19,657,637 18.786.030	-
sch. 83 COS Totals Sch. 83 Market Totals	304,664 781	304,664 781	9,434,056 871,607	9,434,056 871,607	9,434,056 871,607	9,434,056 871,607	9,434,056 871,607	

2007 RVM Work Papers