

Public Utility Commission

550 Capitol St NE, Suite 215 **Mailing Address:** PO Box 2148 Salem, OR 97308-2148 **Consumer Services** 1-800-522-2404 Local: (503) 378-6600 **Administrative Services** (503) 373-7394

July 18th, 2006

OREGON PUBLIC UTILITY COMMISSION ATTENTION: FILING CENTER PO BOX 2148 SALEM OR 97308-2148

RE: <u>Docket No. UE 180/UE 181</u> - In the Matter of PORTLAND GENERAL ELECTRIC COMPANY Request for a General Rate Revision (UE 180) And 2007 Resource Valuation Mechanism (UE 181).

Enclosed for electronic filing in the above-captioned docket is the Public Utility Commission Staff's Opening Testimony.

/s/ Kay Barnes

Kay Barnes Regulatory Operations Division Filing on Behalf of Public Utility Commission Staff (503) 378-5763 Email: kay.barnes@state.or.us

c: UE 180 and UE 181 Service List - parties

PUBLIC UTILITY COMMISSION OF OREGON

UE 180/UE 181

STAFF DIRECT TESTIMONY OF

Maury Galbraith Bill Wordley Ed Durrenberger

In the Matter of PORTLAND GENERAL ELECTRIC COMPANY Request for a General Rate Revision (UE 180) And 2007 Resource Valuation Mechanism (UE 181)

REDACTED VERSION

July 18, 2006

CASE: UE 180/UE 181 WITNESS: Maury Galbraith

PUBLIC UTILITY COMMISSION OF OREGON

STAFF EXHIBIT 100

Direct Testimony

July 18, 2006

Q.

Q. PLEASE STATE YOUR NAME AND POSITION.

A. My name is Maury Galbraith. The Public Utility Commission of Oregon (OPUC) employs me as a Senior Economist. My qualifications are shown on Exhibit Staff/101.

Introduction and Summary

A. First, I summarize staff's analysis of Portland General Electric's (PGE's) forecast of net variable power cost for 2007. Staff has analyzed the MONET (Monet) updates included in PGE's Resource Valuation Mechanism (RVM) and the Monet enhancements included in PGE's general rate case. Second, I present staff's recommendations regarding the equivalent forced outage rate (EFOR) to use in modeling the expected generation from the Boardman and Colstrip units in 2007.

WHAT IS THE PURPOSE OF YOUR TESTIMONY?

Q. DO YOU PRESENT ANALYSIS OF PGE'S PROPOSED POWER COST FRAMEWORK, INCLUDING THE PROPOSED ANNUAL POWER COST

UPDATE AND ANNUAL VARIANCE TARIFF?

A. No. Pursuant to the Administrative Law Judge's Pre-hearing Conference Report, staff will present its testimony on the proposed power cost framework on August 9, 2006.

Q. DOES STAFF PRESENT ANY OTHER WITNESSES IN THIS FILING?

A. Yes. Bill Wordley, a Senior Economist in the Economic Research and Financial
 Analysis section, provides testimony on two power cost adjustments. Staff
 Exhibit 200. The first adjustment adds revenue for ancillary services the
 company sells. The second adjustment includes the extrinsic value of PGE's

flexible generation and contract resources in the forecast of power costs for 2007. Ed Durrenberger, a Senior Analyst in the Rates and Tariffs section, provides testimony on PGE's proposal to include an estimate of the amount of coal lost during transportation from Wyoming to the Boardman plant in its Monet forecast of 2007 power costs. Staff Exhibit 300.

Q. PLEASE SUMMARIZE STAFF'S POWER COST RECOMMENDATIONS.

- A. Staff makes the following recommendations:
- Staff witness Galbraith recommends 'normal' equivalent forced outage rates of 7.67 percent for Boardman and 7.69 percent for Colstrip. Staff estimates that these adjustments will reduce PGE's final net variable power cost by \$6,592,000 and \$6,255,000, respectively.
- Staff witness Wordley recommends a \$1,647,885 reduction to PGE's proposed
 power cost in order to appropriately match the revenues and costs from PGE
 providing ancillary services to wholesale market participants. Mr. Wordley also
 recommends a \$12,352,530 reduction to net variable power cost to account for
 the extrinsic value of PGE's natural gas-fired generation and capacity tolling
 agreements.
- Staff witness Durrenberger recommends that the Commission reject PGE's
 proposed enhancement of its Monet model to reflect coal 'lost' during railroad
 transportation from Wyoming to the Boardman plant. This disallowance reduces
 PGE's proposed power cost by \$354,000.

PGE's Power Cost Forecasts For 2007

Q.				
A.	The following table summarizes PGE's forecasts of 20	007 power costs in its RVM		
	and general rate case filings.			
	Table 1. PGE's Power Cost Forecasts. Power	wer Cost (\$000)		
	2007 RVM Filing (UE 181) Include Schedule 125 Part B Load Include Monet Changes 2007 GRC Filling (UE 180) Include Port Westward 2007 Port Westward Tracker (UE 184)	813,786 +50,854 7,671 856,968 9,648 847,321		
	Staff will present its testimony regarding Port Westwa	rd on August 9, 2006.		
Q.	PLEASE SUMMARIZE STAFF'S ADJUSTMENTS TO	PGE'S POWER COST		
	FORECASTS.			
A.	The following table summarizes staff's proposed power	er cost adjustments.		
	Table 2. Staff's Power Cost Adjustments. Por	wer Cost (\$000)		
	PGE's UE 180 Forecast Boardman Forced Outage Rate Adjustment (S-4) Colstrip Forced Outage Rate Adjustment (S-4) Ancillary Services (S-16) Extrinsic Value Adjustment (S-10) Coal Loss Adjustment (S-7) Staff's Adjusted Forecast The adjustments should be applied in Dockets UE 18	-6,255 -1,648 -12,353 <u>-354</u> 829,766		
	А. Q .	 A. The following table summarizes PGE's forecasts of 20 and general rate case filings. Table 1. PGE's Power Cost Forecasts. Power Cost Forecasts. Power Cost Forecasts. 2007 RVM Filing (UE 181) Include Schedule 125 Part B Load Include Monet Changes 2007 GRC Filling (UE 180) Include Port Westward 2007 Port Westward Tracker (UE 184) Staff will present its testimony regarding Port Westward Q. PLEASE SUMMARIZE STAFF'S ADJUSTMENTS TO FORECASTS. A. The following table summarizes staff's proposed power Table 2. Staff's Power Cost Adjustments. Power PGE's UE 180 Forecast Boardman Forced Outage Rate Adjustment (S-4) Colstrip Forced Outage Rate Adjustment (S-4) Ancillary Services (S-16) Extrinsic Value Adjustment (S-10) Coal Loss Adjustment (S-7) Staff's Adjusted Forecast 		

-

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Coal Unit Forced Outage Rates

Q. PLEASE DEFINE THE TERMS 'FORCED OUTAGE' AND 'FORCED OUTAGE RATE'.

A. A forced outage is an unplanned failure of a generating unit that requires the unit to be immediately removed from service. A forced outage rate is a proportion of forced outage hours to total hours a unit was capable of providing service on an annual basis. For example, a unit might be scheduled for maintenance during 10 percent of a year and, therefore, capable of providing service for 7,884 hours (i.e., 8,760 annual hours * (1 - 0.10) = 7,884 available hours). If the unit was forced out of service for 394 hours during the year, then the unit's forced outage rate is 5 percent (i.e., 394 forced outage hours / 7,884 available hours = 5 percent).

Q. HOW ARE FORCED OUTAGE RATES USED IN THE RATEMAKING PROCESS?

A. Forced outages rates are used in ratemaking to reflect normal generating unit availability in the determination of test period power costs. In other words, forced outage rates are input into a utility's power cost model to normalize power costs on a going-forward basis. For example, assume a unit has a capacity of 100 MW and has a normal forced outage rate of 10 percent. In this hypothetical example, the utility's power cost model would economically dispatch the unit at a capacity of 90 MW per hour during the test period (i.e., 100 MW * (1 - 0.10) = 90MW).¹

23

Q.

HOW ARE 'NORMAL' FORCED OUTAGE RATES DETERMINED?

¹ This hypothetical example assumes that there is no scheduled maintenance outage.

Oregon's three electric investor-own utilities have traditionally used a four-year Α. rolling average of actual unit forced outage rates to determine a unit's normal forced outage rate. Staff Exhibit 102 is a staff policy statement from 1984 recommending the four-year rolling average method for determining normal forced outage rates. In making his recommendation, Staff analyst Tom Harris states: The reason I propose using a 48-month rolling average is that it reflects recent plant experience, which I think tends to better portray expected operation over the coming year. Four years of experience is sufficient to average out variations and yet not include generally irrelevant experience from history long past. Staff/102, Galbraith/4. Boardman PLEASE SUMMARIZE THE HISTORIC FORCED OUTAGE RATE OF PGE'S Q. **BOARDMAN UNIT.** In direct testimony, PGE provided actual plant availability factors for 2001 Α. through 2005 for each of its thermal units. See UE 180, PGE/300, Quennoz -Schue/19-20. It is simple to calculate a unit's forced outage rate from its availability factor (i.e., forced outage rate = (1 - availability factor)). The following table shows the historic forced outage rate of Boardman.

Table 3. Boardman Forced Outage Rates 2001-2005.

2 3			Availability Factor	Forced Outage Rate
4 5 7 8		2001 2002 2003 2004 2005	97.11 % 91.88 % 95.79 % 88.49 % 75.89 %	2.89 % 8.12 % 4.21 % 11.51 % 24.11 %
9		The higher forced	outage rate in 2005 re	flects 70 days of forced outage
10		attributable to the	October 23, 2005 ever	nt that is the subject of PGE's deferral
11		application in Doc	ket UM 1234.	
12	Q.	IN DOCKET UM '	1234, YOU TESTIFIED	THAT THE OCTOBER 23, 2005,
13		FORCED OUTAG	E AT BOARDMAN W	AS AN EXTREME EVENT. IS IT
14		REASONABLE T	O INCLUDE EXTREMI	E EVENTS IN A FOUR-YEAR
15		AVERAGE FOR 1	THE PURPOSE OF DE	TERMING A UNIT'S 'NORMAL'
16		FORCED OUTAG	E RATE?	
17	A.	No. The simple a	verage of Boardman's	forced outage rates in 2002-2005 is 12
18		percent. The sim	ple average gives equa	I weight to each of the four annual
19		forced outage rate	es. But, on a going-for	ward basis, one would not expect a
20		24.11 percent anr	nual forced outage rate	to occur with equal frequency as an
21		8.12 percent force	ed outage rate. It is un	easonable to include an extreme
22		outage in the rollir	ng four-year average ca	alculation of a unit's 'normal' forced
23		outage rate becau	ise the methodology in	appropriately gives too much weight to
24		the extreme event	. 2	

² PGE's actual four-year forced outage rate is calculated from average period hours, average planned outage hours, average reserve shutdown hours, and average equivalent availability factor. The calculation is essentially a weighted average. The criticisms of the simple four-year average are still valid for PGE's actual calculation.

5

6

7

8

9

10

11

Q. WHAT ARE THE POTENTIAL REMEDIES FOR THIS FLAW IN THE TRADITIONAL METHODOLOGY FOR CALCULATING 'NORMAL' FORCED OUTAGE RATES?

A. Staff has identified three remedies that depart from the traditional methodology in increasing degree. The first remedy is to adjust the inputs to the four-year average to remove the effect of the extraordinary outage. The second remedy is to abandon the use of unit-specific availability data and determine 'normal' forced outage rates based on an industry-wide average. The third remedy is to abandon the use of point-estimates of a unit's 'normal' forced outage rate and instead use Monte Carlo simulation to determine power costs based on a probability-weighted range of unit outage rates.

12

Q. HAS STAFF EXPLORED THE FIRST REMEDY?

Yes. In this "deferral" approach, staff adjusted the traditional four-year average 13 Α. calculation of Boardman's 'normal' forced outage rate by removing the hours in 14 the November 18, 2005 through December 31, 2005 deferral period (see Docket 15 UM 1234) from the forced outage hours and the period hours used in the 16 traditional calculation. This has the effect of truncating the traditional 48-month 17 average to a slightly less than 46-month average. This approach results in a 18 'normal' forced outage rate for Boardman of 9.01 percent. Inputting this rate into 19 PGE's Monet model results in a \$4.598 million reduction to net variable power 20 21 costs.

22

23

24

Q. IS THERE PRECEDENT FOR THIS TYPE OF ADJUSTMENT?

A. Yes. PacifiCorp made a similar adjustment for the extreme outage at its Hunter
 1 unit that began on November 25, 2000. PacifiCorp removed the hours

associated with this outage from the traditional four-year average forced outage rate calculation in Dockets UE 134, UE 147, and UE 170.

Q. WHAT ARE THE WEAKNESSES OF THIS ADJUSTMENT?

A. There are two weaknesses associated with removing the deferral period hours from the forced outage rate calculation. First, simply removing the deferral period hours from the calculation does not guarantee the result will reflect the unit's 'normal' forced outage rate. This adjustment may overshoot or undershoot that desired target. Second, linking the calculation of the unit's 'normal' forced outage rate, a forward-looking consideration, with deferred accounting, a backward-looking endeavor, can create confusion about the underlying purpose of modeling forced outage rates when determining the power cost to include in base rates. The purpose of including unit outage rates in power cost modeling is to normalize unit availability during the test period. The modeling of unit forced outage rates is not intended to provide recovery of the replacement power costs associated with past outages. The recovery (or true-up) of actual replacement power costs through deferred accounting is a separate issue that comes after the normalization of power costs in base rates.³

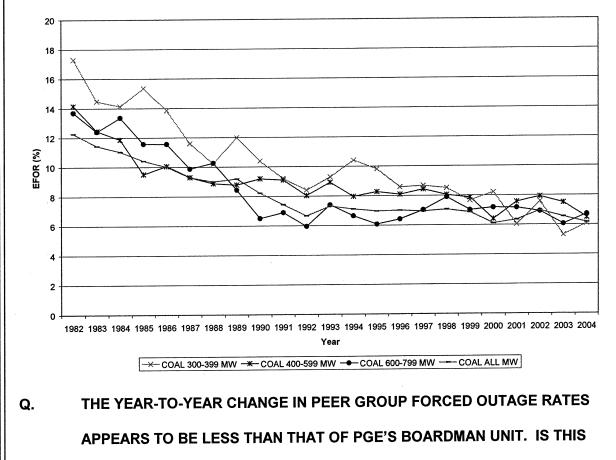
³ For a discussion of this distinction and its application to the issue of "double recovery" of unit outage costs see Docket UE 170, Staff/800, Wordley/10-11.

13

HAS STAFF EXPLORED THE SECOND REMEDY: SETTING BOARDMAN'S Q. 'NORMAL' FORCED OUTAGE RATE ON THE BASIS OF AN INDUSTRY-WIDE 2 **AVERAGE?** 3

Yes. The North American Electric Reliability Council (NERC) publishes two 4 Α. annual reports summarizing the statistical performance of various classes, or 5 peer groups, of generation units. The Generating Availability Report (GAR) 6 presents generating unit availability statistics for the most recent five-year period. 7 Staff Exhibit 103 is the section of the 2000-2004 GAR covering coal unit 8 performance. The Historical Availability Statistics (HAS) report presents 9 availability information starting from 1982 through the most current year. Staff 10 Exhibit 104 is the section of the 2000-2004 HAS covering coal unit performance. 11 HAS STAFF IDENTIFIED AN APPROPRIATE NERC PEER GROUP FOR THE 12 Q.

BOARDMAN PLANT?


Yes. NERC groups units based on fuel type and unit size. To assure consistent 14 Α. classification from year-to-year, NERC uses the turbine nameplate rating in its 15 determination of unit size. PGE's Boardman plant has a nameplate rating of 530 16 MW. The appropriate NERC peer group for Boardman is coal units with a 17 nameplate capacity between 400 and 599 MW. This peer group had annual 18 average forced outage rates of 6.40 percent in 2000, 7.56 percent in 2001, 7.91 19 percent in 2002, 7.49 percent in 2003, and 6.48 percent in 2004. The 'Coal 400-20 599 MW' peer group averaged 147 units and provided 736 unit-years of 21 commercial service over the period 2000-2004. In 2004, the 146 units in this 22 peer group had an average age of 28 years. In comparison, Boardman was 24 23 24 years old.

Q.

HOW DO THE AVERAGE ANNUAL FORCED OUTAGE RATES FOR THIS PEER GROUP COMPARE TO OTHER NERC PEER GROUPS?

A. The following chart shows time-series of the annual equivalent forced outage rates for four classes of coal units. The data show similar trends for each of the four peer groups.

Coal Unit Equivalent Forced Outage Rates 1982-2004 by Size of Unit

RESULT TO BE EXPECTED WHEN MAKING THIS TYPE OF COMPARISON?

 Yes. The annual statistics in the NERC reports are composites, representing the performance of a large group of units. I would expect the average annual performance of a peer group of units to be less volatile than the performance of a single unit.

4

5

6

7

8

9

10

11

12

13

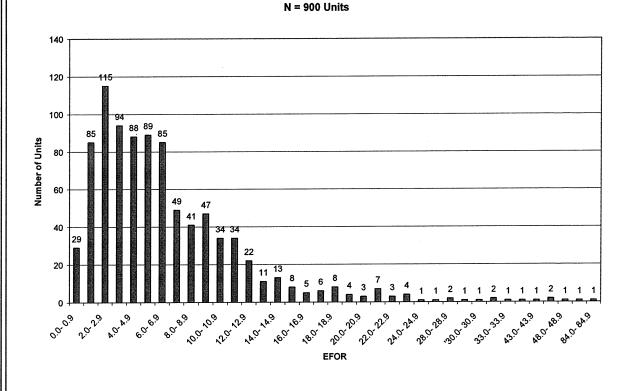
1	Q.	HAS STAFF IDENTIFIED A 'NORMAL' FORCED OUTAGE RATE FOR
2		BOARDMAN BASED ON THIS PEER GROUP ANALYSIS?
3	A.	Yes. The most recent five-year average equivalent forced outage rate for the
4		'Coal 400-599 MW' peer group is 7.15 percent. This average gives a more
5		reasonable weighting to extreme outage events. Inputting this rate into PGE's
6		Monet model results in a \$7.366 million reduction to net variable power costs.
7	Q.	IS THERE PRECEDENT FOR THIS TYPE OF ADJUSTMENT?
8	A.	Yes. In the 1984 staff policy statement on the methodology for determining
9		'normal' forced outage rates, Staff proposed a blended average outage rate for
10		Boardman. The proposed rate was based on 38 months of actual data from
11		Boardman and 10 months of data from a national average. Staff/102,
12		Galbraith/14. In recommending the blended average, Staff analyst Tom Harris
13		stated:
14 15 16 17 18 19		There are two reasons for excluding the turbine blade outages. One reason is that the problem was extraordinary. The Oregon PUC, as well as all jurisdictions, does not consider extraordinary, nonrecurring events for rate making. We set rates based on normal, ongoing expected conditions The second reason is that the turbine blade problem has been repaired. Staff/102, Galbraith/14.
20	Q.	WHAT ARE THE WEAKNESSES OF THIS ADJUSTMENT?
21	A.	In the NERC Generating Availability Data System (GADS), some of the outage
22		hours reported as planned outage hours may in fact reflect 'forced' maintenance
23		hours. ⁴ As a result, the reported statistics may understate equivalent forced
24		outage rates for power cost normalization purposes.

⁴ A "forced maintenance" outage is one where the outage is delayed until a more convenient time to make the needed repairs. Plants typically report this delayed outage as a "maintenance" outage but, for power cost normalization purposes, it is more appropriate to count it as a "forced" outage.

1	Q.	IS STAFF ABLE TO ADJUST THE NERC AVERAGE EQUIVALENT FORCED
2		OUTAGE RATE TO ACCOUNT FOR 'FORCED' MAINTENANCE OUTAGES?
3	A.	Yes. In recent RVM proceedings, PGE has adjusted the inputs to the traditional
4		four-year average calculation to account for 'forced' maintenance hours. The
5		adjustment factor for 'forced' maintenance hours averaged 7.26 percent over the
6		2002-2005 period. Applying this PGE adjustment factor to the NERC 'Coal 400-
7		599 MW' peer group equivalent forced outage rate results in an adjusted rate of
8		7.67 percent (i.e., 7.15 percent * (1 + 7.26 percent) = 7.67 percent). Inputting
9		this rate into PGE's Monet model results in a \$6.592 million reduction to net
10		variable power costs.
11		
12		Colstrip
13	Q.	HAS STAFF COMPARED THE PERFORMANCE OF PGE'S COLSTRIP UNITS
14		TO AN APPROPRIATE NERC PEER GROUP?
15	A.	Yes. Colstrip units 3 and 4 each have a nameplate capacity 700 MW. The
16		appropriate NERC peer group for these units is 'Coal 600-799 MW'. This peer
17		group had annual average forced outage rates of 7.17 percent in 2000, 7.16
18		percent in 2001, 6.91 percent in 2002, 6.05 percent in 2003, and 6.71 percent in
19		2004. The five-year average equivalent forced outage rate for this class of units
20		is 6.79 percent. In contrast, PGE has determined that the 'normal' test period
21		forced outage rate for these units is 12.4 percent. See UE 181, Tooman –
22		Niman – Schue/12.
23	Q.	CAN YOU PROVIDE MORE INFORMATION ABOUT THE NERC 'COAL 600-
1		
24		799 MW' PEER GROUP?

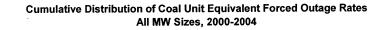
Yes. The 'Coal 600-799 MW' peer group averaged 87 units and provided 430 Α. 1 unit-years of commercial service over the period 2000-2004. In 2004, the 91 2 units in this peer group had an average age of 27 years. In comparison, PGE's 3 Colstrip units were 19 years old. 4 WAS COLSTRIP'S PERFORMANCE UNIFORMLY POOR ACROSS THE 2002-5 Q. 2005 PERIOD OR IS COLSTRIP'S ABOVE-PEER-GROUP-AVERAGE 6 ATTRIBUTABLE TO A SINGLE BAD YEAR? 7 The traditional four-year average equivalent forced outage rate for Colstrip is 8 Α. impacted by particularly poor unit performance in 2002. The composite Colstrip 9 availability factor in 2002 was 76.95 percent compared to an average 91.31 10 percent availability factor for the other years. See UE 180, PGE/300, Quennoz -11 Schue/19-20. It is unreasonable to include the 23.05 percent forced outage rate 12 from 2002 in the rolling four-year average calculation of Colstrip's 'normal' forced 13 outage rate because this methodology inappropriately gives too much weight to 14 this extreme outage rate. 15 HAS STAFF IDENTIFIED A 'NORMAL' FORCED OUTAGE RATE FOR Q. 16 COLSTRIP BASED ON THIS PEER GROUP ANALYSIS? 17 Yes. The most recent five-year average equivalent forced outage rate for the 18 Α. 'Coal 600-799 MW' peer group is 6.79 percent. This average gives a reasonable 19 weighting to extreme outage events. Inputting this rate into PGE's Monet model 20 results in a \$7.450 million reduction to net variable power costs. 21 SHOULD THE NERC EQUIVALENT FORCED OUTAGE RATE BE ADJUSTED Q. 22 TO ACCOUNT FOR 'FORCED' MAINTENANCE OUTAGES? 23 Yes. The PGE adjustment factor for 'forced' maintenance hours at Colstrip Α. 24 averaged 13.27 percent over the 2002-2005 period. Applying this adjustment 25

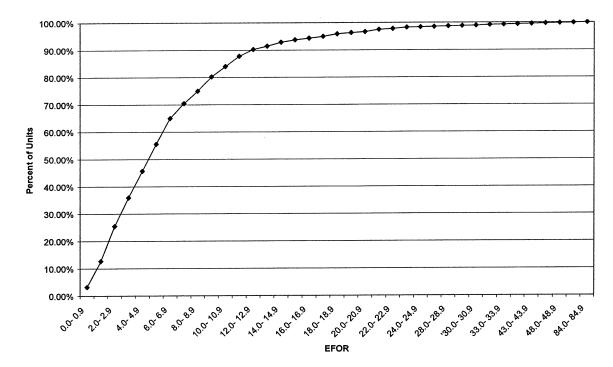
1		factor to the NERC 'Coal 600-799 MW' peer group equivalent forced outage rate
2		results in an adjusted rate of 7.69 percent (i.e., 6.79 percent * (1 + 13.27
3		percent) = 7.69 percent). Inputting this rate into PGE's Monet model results in a
4		\$6.255 million reduction to net variable power costs.
5	Q.	YOU HAVE DESCRIBED A NUMBER OF ADJUSTMENTS TO THE FORCED
6		OUTAGE RATES FOR THE BOARDMAN AND COLSTRIP UNITS. PLEASE
7		SUMMARIZE THESE ALTERNATIVES AND CLEARLY STATE STAFF'S
8		RECOMMENDATIONS TO THE COMMISSION.
9	A.	The following table summarizes the alternative adjustments.
10 11 12 13		Table 4. Alternatives to PGE's 'Normal' Equivalent Forced Outage Rates for Boardman and Colstrip. Amount (\$000)
14 15 16 17		Boardman'Normal' based on deferral adjustment-4,598'Normal' based on NERC Peer Group-7,366'Normal' based on Adjusted NERC Rate-6,592
18 19 20 21 22 23		Colstrip'Normal' based on NERC Peer Group-7,450'Normal' based on Adjusted NERC Rate-6,255Staff Recommendation'Normal' based on Adjusted NERC Rates-12,847
24		Out of the end of the table Commission use the edjusted NEPC poor group
25		Staff recommends that the Commission use the adjusted NERC peer group
26		equivalent forced outage rates as the 'normal' test period rates for Boardman
27		and Colstrip.
28	Q.	AT THE BEGINNING OF THIS TESTIONY YOU MENTIONED A THIRD
29		REMEDY: USING MONTE CARLO SIMULATION TO DETERMINE 'NORMAL'


POWER COSTS BASED ON A PROBABILITY-WEIGHTED AVERAGE OF UNIT FORCED OUTAGES. PLEASE DISCUSS THIS REMEDY.

A. Staff has proposed the use of stochastic power cost modeling in several recent dockets (e.g., UE 165, UE 173, and UE 179). Thermal unit forced outages are largely independent of variation in hydroelectric generation, market electricity prices, market natural gas prices, and retail load. Given this independence, thermal forced outage rates can be a separate first step towards Monte Carlo simulation of net power costs. Production cost models such as AURORA, developed by EPIS, Inc., and Planning & Risk, developed by Global Energy Decisions, Inc., have Monte Carlo forced outage rate functionality. Monte Carlo simulation of unit forced outages has several advantages. First, it can provide an appropriate weighting of forced outages of different durations. Second, it can provide a more realistic simulation of unit operation. Instead of de-rating the unit by a fixed percent in every hour of the test period, Monte Carlo simulation can better reflect the actual pattern of unit operation.

Q.DOES THE NERC GADS APPEAR TO BE A GOOD DATA SOURCE FOR7DEVELOPING DISTRIBUTIONS OF THE FREQUENCY AND DURATION OF8PEER GROUP FORCED OUTAGES?


A. Yes. For example, the units in the 'Coal 400-599 MW' 'per group averaged
11.11 forced outages per unit-year of service over the period 2000-2004.
Staff/103, Galbraith/11. The underlying distribution of the number of
occurrences per unit-year of service could be used as a measure the likelihood
of peer group forced outages. The NERC GADS also contains data on the
duration of forced outages. See UM 1234, PGE/302, Drennan-Tinker-Hager/1-2.


NERC GADS Services can provide tailored peer group datasets with a large number of peer units and a representative distribution of forced outages.⁵
 Q. DOES NERC REPORT THE DISTRIBUTION OF KEY PERFORMANCE PARAMETERS?
 A. Yes. Staff Exhibit 105 is the section of the 2000-2004 GAR covering the distribution of key statistics on coal unit performance. For example, in addition to reporting that coal units of all MW sizes had an average equivalent forced outage rate of 6.43 percent over the 2000-2004 period, NERC also reports the underlying distribution of this parameter. The following chart shows the distribution of equivalent forced outage rates for coal plants of all sizes.

⁵ For a description of these services see <u>http://www.nerc.com/~gads/benchmarking.html</u>

The distribution of coal unit forced outage rates is bounded by zero and asymmetrically skewed towards high forced outage rates. The following chart shows the cumulative distribution of equivalent forced outage rates for the same group of units.

Roughly 88 percent of all coal units in the NERC GADS database had a forced outage rate less than 12 percent for the period 2000-2004. In conclusion, Staff believes it is more appropriate to normalize power costs using Monte Carlo techniques to simulate the full range of potential forced outages based on peer group performance statistics than to simply de-rate a unit's capacity in each hour of a test period using a single forced outage rate based on that unit's average performance over the last four years.

1

2

3

4

Q. DOES THIS CONCLUDE YOUR TESTIMONY?

-

A. Yes.

CASE: UE 180/UE 181 WITNESS: Maury Galbraith

PUBLIC UTILITY COMMISSION OF OREGON

STAFF EXHIBIT 101

Witness Qualification Statement

July 18, 2006

Staff/101 Galbraith/1

WITNESS QUALIFICATION STATEMENT

- NAME: Maury Galbraith
- **EMPLOYER:** Public Utility Commission of Oregon
- TITLE: Senior Economist, Energy Division
- ADDRESS: 550 Capitol Street NE Suite 215 Salem, Oregon 97301-2551
- **EDUCATION:** Graduate Student in Environmental Studies Program (1995 1997) University of Montana Missoula, Montana

Master of Arts in Economics (1992) Washington State University Pullman, Washington

Bachelor of Science in Economics (1989) University of Oregon Eugene, Oregon

EXPERIENCE: The Public Utility Commission of Oregon has employed me since April 2000. My primary responsibility is to provide expert analysis of issues related to power supply in the regulation of electric utility rates.

From April 1998 through March 2000 I was a Research Specialist with the State of Washington Office of the Administrator for the Courts in Olympia, Washington.

From April 1993 through August 1995 I was a Safety Economist with the Pacific Institute for Research and Evaluation in Bethesda, Maryland.

CASE: UE 180/UE 181 WITNESS: Maury Galbraith

PUBLIC UTILITY COMMISSION OF OREGON

STAFF EXHIBIT 102

Exhibits in Support of Direct Testimony

July 18, 2006

Staff/102 Galbraith/1

AUG - 1 1984

BATAS K P

۲.

. . 3

PUBLIC UTILITY COMMISSIONER OF OREGON

LABOR & INDUSTRIES BUILDING, SALEM OREGON 97310 PHONE (503) 378-6053

July 31, 1984

Mr Larry A Crowley Asst Manager-Rates Idaho Power Company Box 70 Boise ID 83707

Mr David W Sloan, Manager Rates & Regulations Pacific Power & Light Co 920 SW Sixth Ave Portland OR 97204 Mr Grieg L Anderson General Manager Rates & Revenue Requirements Portland General Electric Co 121 SW Salmon St Portland OR 97204

Earlier this year, we had extensive discussions concerning the performance of several thermal plants as used in setting rates. As a result of those discussions, Tom Harris has authored the attached memorandum stating staff's position on these matters.

For rate-making, we will use historical plant data to calculate the production available from each thermal plant. In general, we will use 48 calendar months, on a rolling basis, of unit performance data. Definitions and procedures are discussed in the attached memo.

As part of our ongoing rate-making process, we will need routine reports from each utility on the performance of thermal units. The PUC staff is attempting to treat thermal plants uniformly from plant to plant and company to company. The request for specific thermal plant data is directed to each utility as listed.

Idaho Power

-Valmy 1-2

Portland General Electric

-Trojan Boardman Colstrip 3-4 -

Pacific Power & Light

-Jim Bridger 1-4 Dave Johnston 1-4 Wyodak Centralia 1-2 Colstrip 3-4

Data Request

For Trojan, PGE is to continue providing staff with the monthly operating data report and the semiannual net electric generation graph.

July 31, 1984 Page Two

For all the <u>other plants</u>, within <u>30 days after the end of each</u> month, each company, as listed above, is to provide the PUC staff the following data for the preceding month for each thermal unit.

Month, Year Plant and Unit Name Maximum Dependable Capacity Forced Outage Hours Maintenance Outage Hours (Short Notice) Planned Outage Hours (Annual Outage) Reserve Shutdown Hours Period Hours Service Hours Equivalent Schedule Outage Hours Equivalent Forced Outage Hours Gross Generation--mwh Net Generation--mwh Planned Maintenance Schedule for Current and Subsequent Year

The above data is to be provided for the preceding month, year-todate, preceding 12 calendar months, and 48 calendar months. Except for the last item in the list, all the other data is contained in the attached example Unit Data Summary report. Also, we wish to begin receiving the semiannual net electric generation graph for each plant as listed above for your company. In addition, you will note that performance data for Colstrip 3 depart from that used in the tracking filing. We propose using the technique suggested in Tom's memo for that facility in future rate reviews. Finally, Page 3 of Appendix A of the attached memo contains a reference to the North American Electric Reliability Council (NERC). We ask that each year each company foward the annual report from NERC containing such information immediately upon receipt.

Some additional specific questions regarding certain of the thermal plants will be transmitted in another letter.

-

If you have questions about this request, please contact Roger Colburn at 378-6894. Incidentally, Scott Girard has assumed responsibilities previously held by Tom Harris. His number is 378-6625.

William G. Warren Manager Energy Division

ger/05611

Attachments

cc: Roger Colburn Scott Girard DATE: 05/18/84

. .

ì

PACIFIC PDWER & LIGHT COMPANY UNIT DATA SUMMARY PERIOD 5/ 1/83 THRU 4/30/84 WYODAK UNIT 1

		2									
	FIRST SYNCHRONIZED	67	8/78 14:21 }	NAMEPLATE= 332MW	: 332MW	DECLAR	DECLARED COMMERCIAL	SCIAL	9/18/78		
			48 MONTH TOTAL	TOTAL	PERIOD		YEAR TO I	DATE	LAST MONTH		
	FORCED	(HOURS/#)	712.10/	77	48.58/	ы	5.28/	Ľ,	0.00/	0	
	MAINTENANCE	(HOURS/#)	29.95/	2	0.00/	0	0.00/	0	0.00/	0	
	PLANNED	(HOURS/#)	2649.38/	9	893.83/	5	0.00/	0	0.00/	0	
	RESERVE SHUTDOWH	(Hours/#)	100.0	0	0.00/	0	00.0	0	0.00/	0	
	FORCED PARTIAL	(HOURS/#)	1999.37/ 2079.65	222	67.28/ 67.28	16	3.28/ 3.28	N	2.40/ 2.40	1	
	SCHEDULED PARTIAL	(HOURS/#)	127.12/ 127.12	16	0.00	0	0.00	0	0.00/0	0	
i		(HOURS/#)	64,4216			00		0	0.00/	.0	
	PERIOD	(HOURS)	35064.00		8784.00	2	2904.00	•	720.00		
	SERVICE	(HOURS)	31672.57		7841.58	5	2898.72		720.00		
	AVAILABILITY	(HOURS)	31672.57		7841.58	2	2898.72		720.00		
	EQUIVALENT SCHEDULED	(HOURS)	50.82		0.00		0.00		0.00		
	EQUIVALENT FORCED	(HOURS)	335.70		14.58		0.56		0.45		
	GROSS GENERATION	(MUH) 1	10230363.00	2512	2512312.00	1044	1044414.00	0	260368.00		
	NET GENERATION	(HMH)	9270850.00	2283	2283622.00	9.5.6	956340.00	0	237982.00		
	MAX. DEPEND. CAP. GROSS (MW)	(MM)	345.00		345.00		345.00		345.00		
	UNIT YEARS		4.00		1.00		0.33		0.08		

ı

NOTE: EFFECTIVE SEPTEMBER 1,1977 THE UNIT MDC WAS CHANGED FROM 345 TO 345 Partial Outage Data includes honconcurrent (upper) and concurrent Outage Hours (C: MCLAGAN, MORGAN, UDY, VINCENT, GENERATION ENGINEERING, POWER RESOURCES, THERMAL OPERATIONS

.

Staff/102 Galbraith/3

PUBLIC UTILITY COMMISSIONER OF OREGON INTER-OFFICE CORRESPONDENCE

(NOT FOR MAILING)

DATE: July 18, 1984

TO: Bill Warren

FROM: Tom Harris

SUBJECT: Thermal Plant Performance

INTRODUCTION

In this memo I shall summarize my investigation and analysis of the performance of thermal plants for use in <u>our rate-making process</u>. This memo represents a "final" wrap-up of the plant performance project I began in 1983. My purpose is to develop reasonable methods for calculating thermal plant performance levels to be used for calculating the cost of power.

Performance level includes both <u>month-to-month</u> availability of, or net megawatts available from, each plant and the length of the expected annual maintenance period. I intend to propose a method for calculating performance that can be applied uniformly from plant to plant and from company to company. There is an exception. <u>I shall treat Trojan</u> <u>a little differently</u> because PGE collects data for Trojan to meet NRC requirements, and such data differs from that collected for coal fired plants.

In general, I propose to use a 48-calendar month rolling average of historical performance for each thermal unit on which to base cost of power calculations. The megawatts available from each thermal unit are to be calculated by (1.0 - EOR) * (MW Net) for the months during the year the unit is scheduled to be available. Definitions for Equivalent Outage Rate (EOR), MW Net, Maximum Dependable Capacity (MDC), and other terms and procedures will be discussed later in this memo. EOR is to be calculated for a 48-month period for most thermal units. The reason I propose using a 48-calendar month rolling average is that it reflects recent plant experience, which I think tends to Detter portray expected operation over the coming year. Four years of experience is sufficient to average out variations and yet not include generally irrelevant experience from history long past.

DEFINITIONS

The definitions and procedures I am using are intended to be similar to those adopted by the Edison Electric Institute and the North American Electric Reliability Council. The differences I propose adopting were suggested by Pacific Power & Light and by Idaho Power Company. Bill Warren July 18, 1984 Page Two

. . .

Following I shall list and illustrate the formula and definitions to be used.

MW available = (1.0 - EOR) * (MW Net)

EOR = EOH + EFOH + MOH + ESOHSH + FOH + MOH

MW Net = MDC * Net Generation mwh Gross Generation mwh

- EA Equivalent Availability Includes effects of EOR and planned maintenance. Essentially equivalent to the percentage of time during which the unit was available for operation at full capability.
- EOR Equivalent Outage Rate EOR categorizes and summarizes equipment failures and their corresponding outage periods. EOR characterizes the inability of a unit to operate when required for service. It essentially is equivalent to percentage of an anticipated service, during which a unit was not available for operation at full capability. Time required for planned outages and economy or reserve shutdowns is excluded when computing this index.
- EFOH Equivalent Forced Outage Hours For a <u>partial forced</u> <u>outage reduction</u>, EFOH is equivalent time in hours for a full forced outage which would equal mwh lost because of the partial outage.
- ESOH Equivalent Scheduled Outage Hours For a <u>partial scheduled</u> <u>outage</u>, ESOH is equivalent time in hours for a full scheduled outage which would equal mwh lost because of the partial outage.

<u>Scheduled and maintenance outages are scheduled a rela-</u> tively short time (i.e., few days) in advance. They are distinguished from planned outages which are planned months in advance (i.e., annual outages).

- Forced Outage The occurrence of a component failure or other conditions which requires that the unit be removed from service immediately or up to and including the very next weekend.
- Forced Partial Outage The occurrence of a component failure or other conditions which requires that the load on the unit be reduced two percent or more immediately or up to and including the very next weekend.
- FOH Forced Outage Hours The time in hours during which a unit is unavailable due to a forced outage.

Bill Warren July 18, 1984 Page Three

- FPOH Forced Partial Outage Hours The time in hours during which a unit is unavailable for full load due to a forced partial outage.
- MOH Maintenance Outage Hours The time in hours during which a unit is unavailable due to a maintenance outage.

A maintenance outage or scheduled outage is scheduled a relatively short time (i.e., few days) in advance. For our purposes, a maintenance outage is treated like a forced outage.

- PH Period Hours Hours in the period under consideration, usually one month, one year, or four years.
- POH Planned Outage Hours The time in hours a unit is unavailable due to a planned outage.

Planned outages are planned months in advance. Generally these are annual maintenance outages.

- POR Partial Outage Reduction The size of reduction from MDC in megawatts during a partial outage.
- RSH Reserve Shutdown Hours The time in hours a unit is shutdown for economy reasons.
- SH Service Hours The total number of hours the unit was actually operated with breakers closed to the station bus.
- SPOH Scheduled Partial Outage Hours The time in hours during which a unit is unavailable for full load due to a scheduled partial outage. Scheduled partial outages are generally scheduled a short time in advance. For our purposes, they are treated like a forced partial outage.
- mw Megawatts
- MDC Maximum Dependable Capacity The dependable main-unit capacity, winter or summer, whichever is smaller. MDC includes station use.
- MW Net Megawatts Net Net megawatts available from a unit or plant excluding station use. For our purpose here:

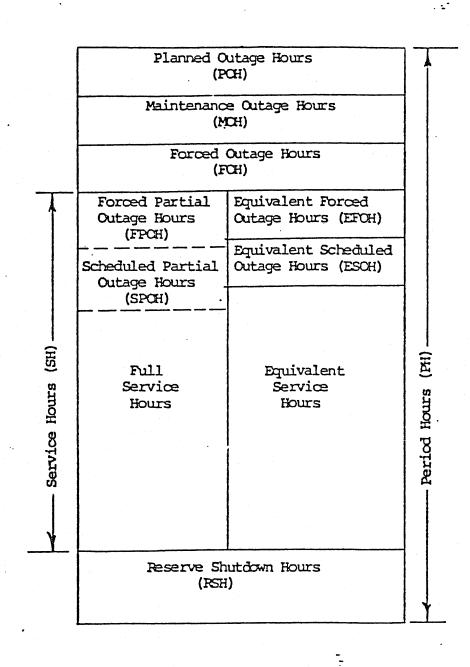

MW Net = MDC * Net Generation mwh Gross Generation mwh.

Figure 1 on the next page illustrates some of the above terms.

For cur purposes, I have specified different definitions for and uses of the terms planned outage, maintenance outage, and scheduled outage than we have commonly used in the past. Maintenance outages or

		Figure 1	
Thermal	Unit	Availability	Statistics
		Definitions	

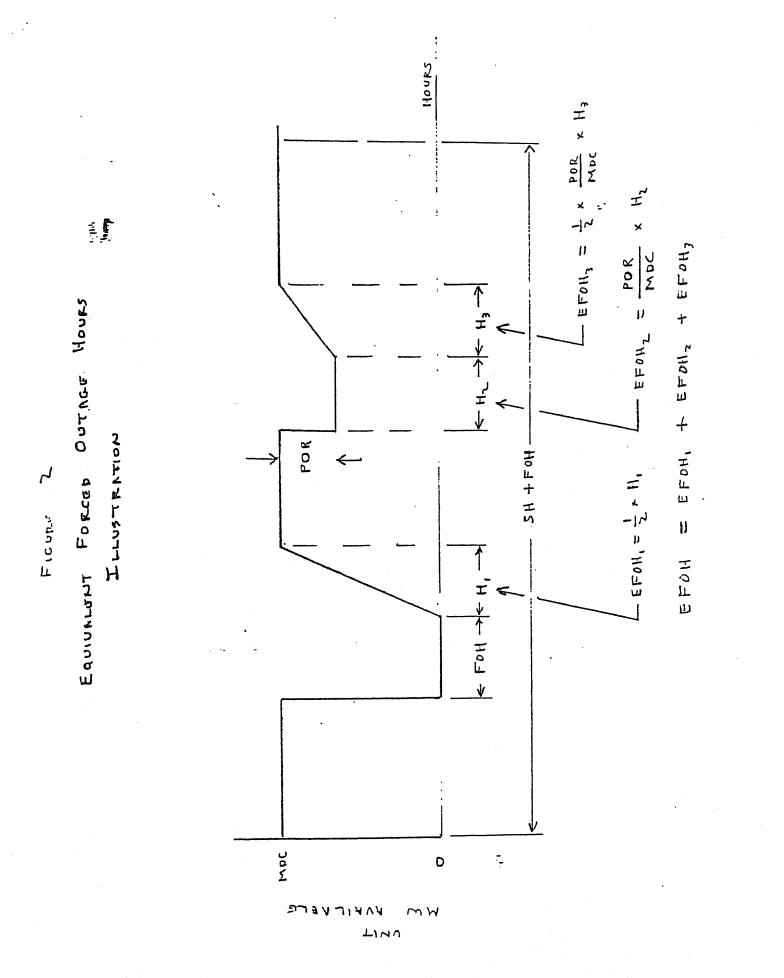
1-1-4

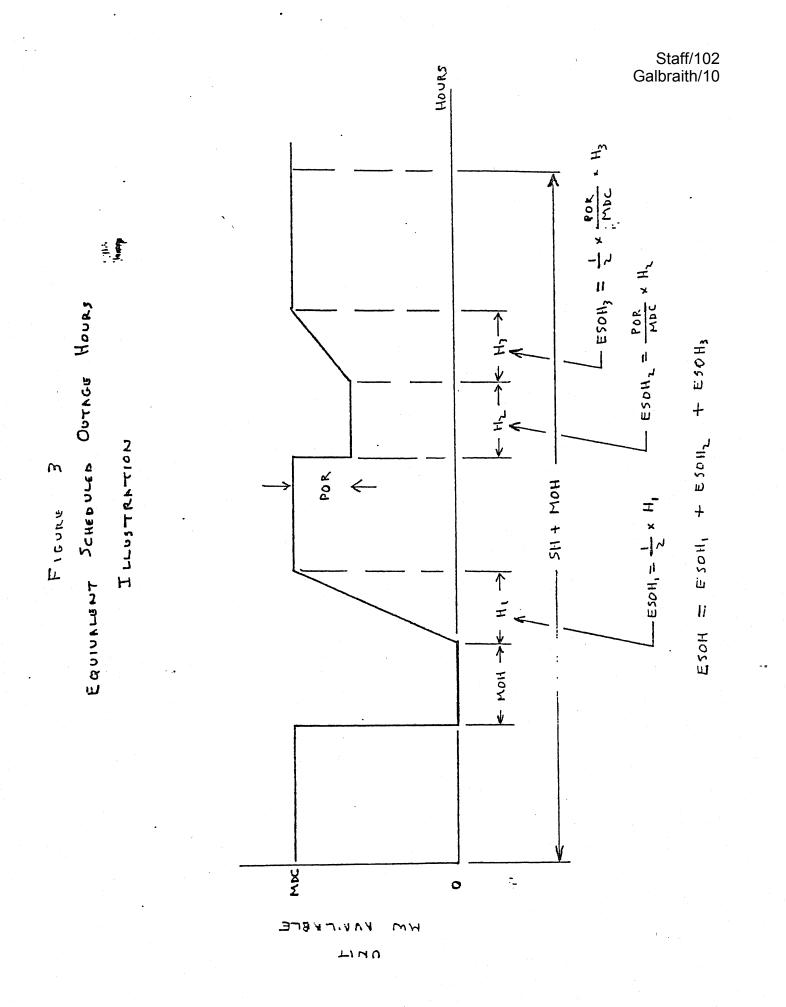
Bill Warren July 18, 1984 Page Four

scheduled outages are interchangeable terms. They both refer to unit outages which are scheduled or known a relatively short time in advance, i.e., a few days. These outages are treated like forced outages.

A planned outage is known months in advance. This outage is usually the annual maintenance shutdown. Planned outages are to be specifically used in rate-making cost of power caluclations by showing a unit as being out-of-service. Planned outages are not reflected in calculations for the Equivalent Outage Rate (EOR).

PROCEDURES


For rate-making cost of power calculations the mw available for each thermal unit are to be calculated as indiciated earlier, that is mw available = (1.0 - EOR) * (MW Net). A plant's mw available is the sum of all units' mw available. Utilities may aggregate several thermal units at one site into a plant for rate-making purposes.


The megawatts available from thermal units for rate making will generally be less than megawatts used by the utilities for Coordination Agreement purposes. The reason is the agreement permits utilities to inflate, within limits, the expected average megawatts available from the thermal plants. On average, it is to the benefit of the utilities and their ratepayers to do so. Utilities can borrow amounts of energy from the Northwest hydro system based on the firm energy resources which they report they have available. The utilities gamble that they can repay the borrowed energy from future hydro energy. In poor hydro years, they must repay energy from their thermal resources.

The procedures for calculating EFOH and ESOH are illustrated on the following two pages. The procedures are alike. It can be seen that EFOH and ESOH are the sum of equivalent outage hours for several partial forced or partial scheduled outages.

The EOR and MW Net are to be calculated using the most recent available 48-calendar months of performance data for each thermal unit. For thermal units with less than 48 months operation, i.e., Colstrip #3 and Valmy, the Equivalent Outage Rate to be used will be the weighted (by number of months) average of actual historical performance and national averages. The national averages I will use are shown on page 3 of Appendix "A." Those averages were compiled and published by the Thermal Resources Committee of PNUCC. The source of data is the North American Electric Reliability Council (NERC). Members of the Thermal Resources Committee include representatives of several Northwest utilities, including Portland General Electric and Pacific Power & Light. The numbers shown in the appendix are illustration only. I expect the utilities to annually furnish updated data reflecting national average performance of new thermal plants.

An example: If PGE files for a rate increase when Colstrip is two years old, PGE will have 24 months of historical data. Obviously, we will not know what the EOR for Colstrip #3 will be in its third

Bill Warren July 18, 1984 Page Five

year. From the appendix we see the national average Forced Outage Rate for coal units of Colstrip's approximate size for the third year of operation is 12.3 percent. I shall use Forced Outage Rate, which differs slightly from EOR, for new plants because that is the data available from the PNUCC. However, we need to give some consideration to Colstrip's two years of actual operation. Let us assume the EOR for two years is actually 16.0 percent. The weighted (by number of months) average of 24 months at 16.0 percent and 12 months at 12.3 percent is 14.8 percent.

Therefore, the estimated EOR for Colstrip #3 for that coming year would be 14.8 percent. The mw available will be (1.0 - 0.148) * (700 mw) = 596.4 mw for the unit. PGE should show their 20 percent share as 119 mw for the approximate 11 months per year Colstrip #3 is scheduled to be on line.

A utility may use, for rate-making purposes, the same equivalent outage rate and planned maintenance schedule that it uses for the <u>Coordination Agreement</u>. I suggest that if a utility cannot provide adequate data, calculations, and workpapers to support lower performance levels (higher EOR or lower annual availability), then the PUC staff should seriously consider using Coordination Agreement values.

The MW Net calculation is to be used to reflect station use: That is, MW Net excludes station use. In power cost calculations, station use should not be a separate line item nor added to system load. I shall calculate MW Net as indicated earlier, that is:

> MW Net = MDC * Net Generation mwh Gross Generation mwh

Portland General Electric includes in their power cost calculations a line item called non-running station service. That item is effectively a load. It is correct to use only for months a unit is planned to be off line, i.e., during planned annual maintenance. For months the unit is planned to be in service, station use is incorporated in the MW Net calculation. An <u>alternative</u>, which I prefer, is to have net generation mwh reflect energy used by a thermal unit when it is <u>shutdown</u>. In that case, non-running station service must not be specifically included in power costs.

The annual planned maintenance for rate making for each unit should be an average of a four-year cycle actual planned outages. The reason I chose a four-year average is that actual planned outages run different numbers of days from what was scheduled during the previous year. In actual practice, utilities vary from the previously scheduled outage dates in response to operating conditions.

Utilities normally expect to have relatively short planned outages for three years out of four, and a longer outage one year. The four-year average should be reflected in cost of power calculations rather than Bill Warren July 18, 1984 Page Six

the expected planned outage during the test year for a rate case. If, over time, the actual length of planned outages varies over a five- or six-year cycle, then that should be reflected in rate making.

THERMAL PLANTS

In the following pages I shall discuss each thermal plant separately. All the data shown are calculated from data now available to me. In the coming weeks I expect Portland General Electric to provide up-todate data for Boardman. Both Pacific Power & Light and PGE are trying to get Montana Power Company to develop and provide appropriate data for Colstrip.

The data shown below will be changed over time as more recent data is provided by the utilities. For each rate filing the utilities will need to provide updated data and, if necessary, supporting workpapers.

Portland General Electric

Trojan

MDC EOR Planned Maintenance Available (Month-to-Month) 1080 mw 16.4% (6/80-5/84) 71 days 609 mw (PCE share) 23 mw (PP&L share) PCE

Primary Utility

The EOR calculated for Trojan is for 48 months calendar June 1980-May 1984. The procedure I used was based on net mwh produced, which reflects all station use mwh and forced outages. The data comes from Trojan's monthly operating data report, which PGE prepares for the NRC and provides a copy to us. I did not calculate EOR on a month-by-month basis. I do exclude economy, planned refueling, and NRC imposed outages.

The underlying rationale for the procedure that I used is that Trojan normally is run at 100 percent of its capability. The evidence I have seen over the years points to that. There have been some clear-cut economy shutdowns, and one partial backdown for a few days for economy reasons in 1984.

The Trojan monthly operating reports show net mwh produced. The narrative part of each report discusses all outages in detail. From the narrative I determine the net hours each month Trojan should have been available by excluding refueling hours. NRC imposed shutdown hours, economy, and equivalent economy shutdown hours. I sum the net hours available and the net mwh produced over 48 months. The average mw available from Trojan is the sum of mwh divided by the sum of net hours.

For Trojan, I think the annual planned refueling and maintenance outage will vary from 61 to 80 days. The average is about 71 days. Trojan had two very long refueling outages in 1982 and 1983, which Bill Warren July 18, 1984 Page Seven

٩,

would tend to lengthen the average refueling outage. The 1982 refueling outage includes a 1-month forced outage (leaking pressurizer) which is reflected in my calculations for EOR. However, both the 1982 and 1983 refueling outages were effectively extended because of good hydro conditions and both, therefore, are partially economy shutdowns. Those long refueling outages were adjusted before the average refueling outage duration was calculated. Therefore, <u>I believe the average refueling outage for</u> <u>Trojan should be about 71 days</u>. I developed that number in detail for my testimony in the 1983 Portland General Electric rate case, UE 1/UE 6. The average refueling outage, as adjusted, for four years, 1980 through 1983, is 71 days.

In PGE's 1983 general rate case staff settled with the company, for that case only, on a complicated method to account for Trojan's performance to be used in cost of power calculations. The company made four computer runs, for four repetitions of the test year, changing Trojan's available mw each month to show actual mw produced each month over the past four years. That method is not satisfactory. It is complicated, it entails a lot of hand calculations to average four years' results, and it does not theoretically represent Trojan's expected output over a test year. It does not account for variations in other resources. We are treating one resource, that is Trojan, philosophically different from all the other resources.

I propose we use the most recent 48 months of Trojan's historical performance to estimate available megawatts, the same as for other thermal plants. In general, regulatory (NRC) shutdowns should be excluded because they are extraordinary events. Like other thermal plants, planned maintenance and economic outages are also excluded from the calculation of megawatts available. Of course, the planned refueling outage must be represented in annual power cost calculations on an expected average basis.

Only one computer run of PGE's Power Operations Model, which is the new power cost model, is to be used to calculate the cost of power. The procedure of making four computer runs to cover four years of data is not a theoretically sound way to predict next year's cost of power, nor Trojan's performance. There are some additional power costs which result when the old power cost model is run four times using actual mw for Trojan versus one computer run using average mw for Trojan. Those additional calculated power costs will be reduced in the future because Colstrip #3 is now on line. Colstrip #3 is a low operating cost unit. Its existance will reduce variations in power cost resulting from variations in Trojan's mw_output.

In PGE's 1983 general rate case, UE 1/UE 6, the difference in cost of power between four computer runs and one equivalent run was about \$765,000. The one run produced the lower cost. After considering PGE's power cost adjustment, the cost to PGE is about \$153,000. PGE's total cost of power is about \$127,000,000. The Bill Warren July 18, 1984 Page Eight

cost to PGE from using one computer run is about 0.012 percent of their total power cost. Power cost predictions are never anywhere near that accurate, so using one computer run instead of four is well within normal accuracy limits.

I have shown an Equivalent Outage Rate (EOR) for Trojan of 16.4 percent. That translates into using <u>609 mw</u> available at Trojan for PGE. Actually the 16.4 percent EOR is fiction. It reflects thousands of megawatt hours of non-running station use; however, the 609 mw itself is reasonable. PGE's power operations model includes a non-running station service as a separate line item. That line item includes non-running station service for Trojan and for Boardman. Because I exclude station service from available mw, that separate line item must be eliminated.

For Trojan, I suggest we use the average of actual historical mw produced at Trojan over the most recent rolling 48 calendar months. We will not calculate EOR as such, nor availability as a percentage. Of course, we will exclude regulatory, planned refueling, and the economy shutdowns, both full and partial, from the 48-month average.

Boardman

τ

MDC	530 mw
EOR	14.2%
Planned Maintenance	4 weeks
Available	356 mw (PGE share)
	44 mw (IPC share)
Primary Utility	PGE

The available mw excludes station use. The EOR shown is calculated from 38 months, August 1980 through September 1983 of actual, 13.7 percent, and 10 months of national average, 16.2 percent forced outage rate. The national average data is shown on page 3 of the appendix attached to this memo. For coal plants of Boardman's size for the fourth year of operation, the average forced outage rate is 16.2 percent. In PGE's next general rate filing there will be 48 months of actual data available from Boardman, so the national average data will not be used.

The Equivalent Outage Rate that I have calculated for Boardman excludes all outages caused by the turbine blade problem. Also, it excludes planned and economy shutdowns. There are two reasons for excluding the turbine blade outages. One reason is that the problem was extraordinary. The Oregon PUC, as well as all jurisdictions, does not consider extraordinary, nonrecurring events for rate making. We set rates based on normal, ongoing expected conditions.

The second reason is that the turbine blade problem has been repaired. It was repaired in the spring of 1982. There was an additional fix made to the turbine blades in September 1983.

Bill Warren July 18, 1984 Page Nine

Colstrip #3

MDC	700 mw
EOR	17.3%
Planned Maintenance	4 weeks
Available `.	116 mw (PGE share) :
	58 mw (PP&L share)
Primary Utility	PGE & PP&L

The EOR shown is for the first year only. It was taken from the national average data for the first year of service, which are shown on page 3 of the appendix. For the second year of operation we will calculate a weighted EOR using several months' actual data as available, and subsequent years national average forced outage rates. In addition, we will assess an appropriate planned maintenance duration, for the second and future years of operation.

Colstrip #4

MDC EOR Planned Maintenance Available 700 mw 17.3% 4 weeks 116 mw (PGE share) 58 mw (PP&L share) PGE & PP&L

Primary Utility

The EOR shown is for the first year only. It is taken from the national average data for the first year of service, which are shown on page 3 of the appendix.

Idaho Power Company

Valmy 1

MDC	264 mw
EOR	6.96%
Planned Maintenance	4 weeks
Available	115 mw (IPC share)
Primary Utility	IPC

The EOR shown is calculated from 29 months, late December 1981 through May 1984, of actual data at 6.4 percent, seven months of third year national average data at 7.7 percent, and five months of fourth year national average data at 9.2 percent.

The actual data was taken from a Unit Data Summary report through May 1984, supplied by Idaho Power Company.

Valmy 2

MDC	264 mw
EOR	12.8%
Planned Maintenance	4 weeks
Available	115 mw (IPC share)
Primary Utility	IPC

Bill Warren July 18, 1984 Page Ten

The EOR shown is taken from the national average, for the first year of operation, for coal plants of Valmy's size.

Pacific Power & Light

The following data for four Pacific Power & Light plants is calculated from the monthly unit data summary for each unit for April 1984. The data reflects 48 months of operation for each unit through April 30, 1984. The planned maintenance shows Pacific Power's long-term cycle average for planned outage duration for each plant. The days outage duration shown are unit-days.

Jim Bridger 1-4

MDC EOR Planned Maintenance Available

Primary Utility

Dave Johnston 1-4

MDC EOR Planned Maintenance Available Primary Utility

Wyodak

MDC EOR Planned Maintenance Available Primary Utility

Centralia.1-2

MDC EOR Planned Maintenance Available 665 mw each (1330 mw total) 13.1% 74 days (total 2 units) 522 mw (PP&L share, total) 27 mw (PGE share, total) PP&L

Primary Utility

The above data for each MDC rating reflects the data available to me now. For each rate filing the utilities will need to provide up-to-date information and, if necessary, supporting documents.

510 mw each (2040 mw total) 19.6% 148 days (total 4 units) 1529 mw (" " ") 1019 mw (PP&L share, total) 510 mw (IPC share, total) PP&L

785 mw (total 4 units) 13.0% 113 days (total) 633 mw (") PP&L

345 mw 3.5% 28 days 241 mw (PP&L share) PP&L Bill Warren July 18, 1984 Page Eleven

PLANNED AND ECONOMY OUTAGES

The EOR indicated for the above thermal plants was calculated excluding planned and economy outages. Where data was available, the EOR was calculated as a 48-calendar month average. For rate making, cost of power calculations will use (1.0 - EOR) * (MW Net) as the unit or plant megawatts available for the several months each year the unit is scheduled to be on line. In addition, the cost of power calculations need to reflect planned maintenance outages for each unit or plant.

For the coal plants listed earlier, annual planned maintenance varies from three to six weeks. I prefer that utilities use a long-run cycle average for planned outage duration for rate making. As an alternative, the above estimates of annual planned maintenance may be altered annually by the utilities with staff's concurrence to reflect the expected maintenance schedule for the test period used in a rate case.

The procedure I propose excludes reserve shutdown (economy outages) and planned maintenance outages from the calculation of Equivalent Outage Rate (EOR). Economy and planned outages do not count for nor against utilities. If we use this procedure, then the theoretical problem of considering a unit as 100 percent available during a reserve shutdown does not exist. PGE and PP&L have argued that a plant should not be considered 100 percent available when it is not running, because if it were operated there would be, on average, some forced outages. Their's is a reasonable argument.

Occasionally we will need to determine if an outage was a forced or a reserve (economy) shutdown. The outage will be considered a reserve (economy) shutdown unless the utility provides a clear, definite explanation of the cause.

GENERAL INFORMATION

The only thermal plants of concern in this memo are those discussed earlier. Some data about each plant is also listed in the attached appendix. Beaver and other combustion turbines and diesel units are not covered by this memo because their maximum performance, or maximum available mw, have not been serious issues in rate making.

I do not suggest the PUC accept "carte blanche" whatever Equivalent Outage Rate (EOR) or MW Net the utilities calculate for each unit, even if such actually occurred. As in all aspects of rate making, if we can reasonably establish that substandard performance was due to poor or imprudent management then we can and should disallow some cost or adjust the historical EOR or MW Net. That applies even to data I have shown earlier.

The list of thermal plants discussed earlier and also shown in the appendix indicates the primary utility, i.e., Portland General Electric, Idaho Power Company, or Pacific Power & Light. The primary utility is the one the PUC staff generally will expect to furnish data

Bill Warren July 18, 1984 Page Twelve

Staff/102 Galbraith/18

for the unit and to estimate planned maintenance outages. However, if the primary utility does not furnish appropriate data, the other involved utilities will not be excused.

An exception is Colstrip. There, for the time being, I propose to treat PGE and PP&L as each being responsible to develop the relevent data; however, they need not act independently. I suggest that each act as a check on each other and on Montana Power.

Usually the procedures, data, and results we settle on for the primary utility will be applied to the other utilities for each plant. I am sure there will be exceptions over the years.

Ξ.

bjs/1710m

Attachments

Staff/102 Galbraith/19

Appendix A Pg. 1

Thermal Plant Performance

. . . 48 Months 48 Months Plant EOR¹ Thru Trojan 16.4% 5/84 9/83² Boardman 14.2 17.33 Colstrip 3 As of on-line date (1/10/84) As of on-line date Colstrip 4 17.3 7.9 7/83² Valmy 1 As of on-line date Valmy 2 12.8 4/84 Bridger 1-4 19.6 11 D. Johnston 13.0 11 Wyodak 3.5 11 Centralia 1-2 13.1

'EOR in percent

²EOR includes actual and additional one year from national averages.

³National average data. For illustration only until actual performance data is available.

-

jcp/1014j-1

Appendix A Pg. 2

Therma	1 :	Pla	nts
--------	-----	-----	-----

Plant	` MDC mw ¹	Primary Utility ²	Percent Share	Other Utility	Percent Share
i y Trojan	1080 mw	PGE	67.5%	PP&L	2.5%
Boardman	530	PGE	80.0	IPC	10.0
Colstrip 3	700	PGE	20.0	PP&L3	10.0
Colstrip 4	700	PGE	20.0	PP&L ³	10.0
Valmy 1	254	IPC	50.0		
Valmy 2	254	IPC	50.0		
Bridger 1-4	510 each	PP&L	66.7	IPC	33.3
D Johnston	785 total	PP&L	100.0		
Wyodak	345	PP&L	80.0		
Centralia 1-2	665 each	PP&L	47.5	PGE	2.5

¹Nameplate rating.

²Primary utility for providing data and planned maintenance schedules for Oregon rate making.

³For Colstrip PP&L will also be treated as the primary utility.

-

jcp/1014j-2

Staff/102 Galbraith/21 Appendix A Pg. 3

Thermal Plants

First four years of service. Values to be averaged with actual performance for plants less than four years old.

] 3	lear of S	ervice ¹		
	Nameplate	. 1st	2nd	3rd	4th	
Plant	MW	FOR ²	FOR	FOR	FOR	_
Boardman ³	530				16.2	
Colstrip 3 & 4	700 ea	17.3	14.7	12.3	15.7	
Valmy 1 & 2	254 ea	12.8	6.4	7.7	9.2	

¹Data: FOR in percent. National figures. Source: PNUCC Thermal Resources Data Base Addendum February 1, 1983. PNUCC source is North American Electric Reliability Council (NERC).

²EOR, Forced Outage Rate

'It is expected 48 months data for Boardman will be available before PGE's next rate filing.

1

jcp/1014j-3

CASE: UE 180/UE 181 WITNESS: Maury Galbraith

PUBLIC UTILITY COMMISSION OF OREGON

STAFF EXHIBIT 103

Exhibits in Support of Direct Testimony

July 18, 2006

NORTH AMERICAN ELECTRIC RELIABILITY COUNCIL GENERATING AVAILABILITY DATA SYSTEM

FOSSIL Coal Primary All MW Sizes 2000-2004 Data

2000-2004 ANNUAL UNIT PERFORMANCE STATISTICS

8 8 8 1 1 1	AGE	NCF	SF	NOF	AF	EAF	FOR	EFOR	EFORd	SOF	FOF	SR	ART
2000	33 93	77 34	84_24	84.39	87.45	84.80	4.32		5.95	8.75	3.80	98.16	494.95
2004	35 17	69 94	81 66	83 35	87 37	84 68	4 59	6.35	6.09	8.75	3.93	98.15	482.05
1007					10. LO	00.10		6 97	E 71	0 10	22 V	97 39	380 56
7007	35.48	/1.30	97.78	83.80	01.43	04.30	4.7/	16.0		0.4.0	n u n u t u		
2003	37.02	73.04	84.16	85.17	87.66	84.91	4.60	6.54	6.37	8.29	4.06	TU./8	50.195
2004	37.89	72.98	83,34	85.27	88.34	85.71	4.33	6.16	5.94	7.89	3.77	96.18	558.34
2000-04	4	71.95	83.24	84.41	87.60	84.90	4.56	6.43	6.21	8.43	3.98	97.40	486.31
	2 2 2 2 2 2 2 2 2 4	- 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2000	1 1 1 1 1 1 1 1	2001	2002		2003		2004	2000-04
llnit-Years	ars		i •		831.83		99.92	834.33	33	797.92		828.33	4,092.33
Maximum	Maximum Capacity (MW)	(MM)	GROSS:		340		330	35	35	336		339	336
		, .	NET:		320		313	317	17	318		321	318
Dependa	Dependable Capacity (MW)	ity (MW)	GROSS:		338		329	.:	333	335		337	335
		•	NET:		319		311	316	16	317		319	317
Actual	Actual Generation (MWh)	n (MWh)	GROSS:	2,1	177,943	2,044	,462	2,110,4	14	2,169,751	2,	,188,441	2,138,612
			NET:	2,0	35,887	1,915,703	, 703	1,983,482	82	2,037,557		2,055,148	2,005,935
Attempt	Attempted Unit Starts	tarts			15.23	-1	15.12	19.56	56	13.40		13.63	15.43
Actual	Actual Unit Starts	ts	÷.		14.95	1	14.84	19.05	05	13.00		13.11	15.01
Service	Service Hours			7.	7,399.56	7,153.62	3.62	7,249.61	61	7,372.15		7,319.84	7,299.44
Reserve	Reserve Shutdown Hours	Hours			271.89	47	474.74	380.1	01	278.84		422.36	365.4(
Numbe	Number of Occurrences	rrences			4.62		4.63		28	3.76		4.35	4.5
Pumping	Pumping Hours				00.00		0.00	0.1	00	0.00		0.00	0.00
Synchro	Synchronous Condensing Hours	ensing Ho	urs :		00.0		0.00	0.1	00	0.00		0.00	0.0
TOTAL /	TOTAL AVAILABLE HOURS	HOURS	••	7	7,681.56	7,64	7,649.30	7,641.14	14	7,678.69		7,758.60	7,682.05
Forced	Forced Outage Hours	urs			334.15	34	14.14	378.88	88	355.31	8 1 1 1 8 8 8 8	331.20	348.75
Numbé	Number of Occurrences	rrences	••		8.74		8.72	. 6	37	9.28		8.82	8.98
Planne(Planned Outages:		•										
Plan	Planned Outage Hours	Hours	••		590.36	60	3.48	556.	12	570.08		541.48	572.09
Nur	Number of Occurrences	currences	••		3.41		7.27	2.	48	6.03		4.12	4.6
Plan	Planned Outage Ext. Hours	Ext. Hou	irs :		5.92	-	14.55	11.	52	8.76		5.47	9.21
NUI	Number of Occurrences	currences	••		0.66		0.06	0.07	07	0.39		0.05	0.2
Mainte	Maintenance Outages:	iges:				·							
Main	Maintenance Outage Hours	itage Hour	 S		171.33	14	146.75	170.96	96	146.62		144.84	156.27

:

3.59 3.04 1.46 1.31 0.02 0.02 1,024.44 1,087.57	8,782.94 8,769.54	140.46 142.96 55.01 54.55 5.41 3.73 35.49 39.60	195.47 197.51
2.27 0.62 0.02 1,081.33 1,0	8,759.94 8,7	150.34 46.57 3.59 44.03	196.92
2.53 1.51 0.01 1,118.95	8,760.00	152.83 58.27 3.97 38.62	211.10
3.21 2.09 0.01 1,110.97	8,760.22	132.47 55.23 2.71 43.02	187.70
3.57 0.85 0.02 1,102.43	8,783.94	138.55 57.38 2.91 37.12	195.93
rences : ge Ext. Hours : rences :		s Durs s During RS ated Hours	ERATED HOURS :
Number of Occurrences Maintenance Outage Ext. Hours Number of Occurrences TOTAL UNAVAILABLE HOURS	TOTAL PERIOD HOURS	Equiv. Forced Hours Equiv. Scheduled Hours Equiv. Forced Hours During RS Equiv. Seasonal Derated Hours	TOTAL EQUIVALENT DERATED HOURS

Staff/103 Galbraith /2

NORTH AMERICAN ELECTRIC RELIABILITY COUNCIL GENERATING AVAILABILITY DATA SYSTEM

FOSSIL Coal Primary 001-099 MW 2000-2004 Data

2000-2004 ANNUAL UNIT PERFORMANCE STATISTICS

AGE	NCF	SF	NOF	AF	EAF	FOR	EFOR	EFORd	SOF	FOF	SR	ART
2000 43.35	55.68	75.78	71.65	88.00	86.08	3.71	5.50	5.04	9.08	2.92	90.06	316.97
		73.49		88.99	87.00	3.76	5.51	4.99	8.14	2.87	99.02	301.99
		72.40		87.22	84.47	5.54	7.85	6.99	8.54	4.24	99.20	269.31
		76.49		87.85	85.40	4.24	6.28	5.86	8.77	3.39	98.15	370.62
		74.26	73.75	88.93	86.08	5.36	7.88	7.11	6.87	4.20	97.44	398.46
2000-04	55.00	74.46	72.54	88.19	85.80	4.53	6.61	6.02	8.28	3.53	98.67	324.83 -
	6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2000	21	2001	2002		2003	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2004	2000-04
Unit-Years		:	, 1 1 1 1 1 1	138.58	138.08	.08	142.92	92	133.50		138.08	691.17
Maximum Capacity (MW)	itv (MW)	GROSS:		68		68	-	68	70		69	68
		NET:		64		64	-	64	99		65	65
Dependable Capacity (MW)	oacity (MW)	GROSS:		68		67	-	68	69		68	68
-		NET:		64		64	-	64	65		65	64
Actual Generation (MWh)	tion (MWh)	GROSS :		337,556	328,732	732	318,5	67	352,253		340,031	335,200
		NET:		313,451	305,	639	295,9	64	326,824		316,002	311,367
Attempted Unit Starts	t Starts			21.20	21	.53	23.	74	18.42		16.79	20.37
Actual Unit Starts	tarts			21.00	21	21.32	23.55	55	18.08		16.36	20.10
Service Hours		••	9	6,656.33	6,438.48	.48	6,342.21	21	6,700.89	9	,518.80	6,528.99
Reserve Shutdown Hours	own Hours	••	Ч	1,064.48	1,355	60.	1,294.07	07	946.52		, 273.69	1,189.03
Number of Occurrences	ccurrences	••		13.41	13	13.60	13.	84	11.81		10.85	12.72
Pumping Hours				00.00	0	00.00	0.00	00	0.00		0.00	0.00
Synchronous Condensing Hours	ondensing Hc	ours :		00.00	0	00.00	0	00	00.00		0.00	0.00
TOTAL AVAILABLE HOURS	LE HOURS		7	7,729.73	7,796.59	.59	7,639.	87	7,695.54	~	,805.92	7,733.13
Forced Outage Hours	Hours	· · ·	1 1 1 1 1 1 1	256.77	251	251.76	371.72	72	296.78		368.90	309.67
Number of Occurrences	ccurrences	••		7.19	8	1.83	9.	86	12.82		6.34	8.37
Planned Outages:	es:											
Planned Outage Hours	age Hours	•••		623.85	567	7.45	553.	07	539.03		438.89	544.61
Number of	Number of Occurrences			5.15	-	1.04	1.	29	1.16		2.93	2.32
Planned Out	Planned Outage Ext. Hours	urs :		1.11	11	2.91	13.	93	1.87		0.87	4.22
Number of	Number of Occurrences	 s		0.01	5	0.02	0.04	04	0.03		0.01	0.02
Maintenance Outages:	utages:											
Maintenance	Maintenance Outage Hours	rs 		172.77	142	142.85	181.18	18	227.23		163.63	177.22

. .

.

TOTAL UNAVAILABLE HOURS	 0.07 0.01 1,054.16 8,783.73	2.83 0.00 964.90 8,761.33	2.46 0.00 1,119.81 8,759.55	2.09 0.18 0.01 1,065.01 8,760.36	7.77 0.00 972.27 8,777.98	3.67 0.05 0.00 1,035.64 8,768.59
Equiv. Forced Hours	 123.95	117.08	155.76	143.25	176.00	143.28
Scheduled Hours	 21.64	25.40	31.84	16.49	37.73	26.72
Forced Hours During RS	 6.99	4.58	7.44	4.86	23.13	9.42
Equiv. Seasonal Derated Hours	 23.26	31.52	52.98	54.77	36.30	39.75
TOTAL EQUIVALENT DERATED HOURS	 145.59	142.48	187.60	159.74	213.73	170.00

NORTH AMERICAN ELECTRIC RELIABILITY COUNCIL GENERATING AVAILABILITY DATA SYSTEM

FOSSIL Coal Primary 100-199 MW 2000-2004 Data

2000-2004 ANNUAL UNIT PERFORMANCE STATISTICS

	AGE	NCF	SF	NOF	AF	EAF	FOR	EFOR	EFORd	SOF	FOF	SR	ART
2000	41.20		85.69	78.67	88.40	85.21	3.94	5.58	5.46		3.52	98.91	553.85
2001	42.80	63.22	81.28	•	88.05	84.83	4.27	6.24	5.93	8.32	3.63	98.63	493.75
2002	43.75	65.13	83.41	77.57	88.41	85.16	4.40	6.34	6.08	7.75	3.84	98.27	347.61
2003	44.86	67.12	84.66	78.95	88.54	85.22	4.45	6.69	6.48	7.51	3.95	97.99	584.39
2004	45.92	65.13	82.83	78.21	89.79	86.84	3.47	5.32	5.07	7.23	2.98	98.68	513.09
2000-04	· · · ·	65.64	83.57	78.14	88.64	85.45	4.11	6.03	5.80	7.78	3.58	98.51	482.49
- 4 8 8 8 8 8 8 8 8 8 8 8 8 8		1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	2000		2001	2002	02	2003	1 1 1 1 1 1 1	2004	2000-04
Unit-Years	ars		;	r 1 5 5 6 8	228.08	22(226.75	228.00	00	224.25		226.00	1,133.08
Maximum	Maximum Capacity (MW)	(MM)	GROSS:		149		147	.	48	148		147	148
			NET:		140		138	H.	39	139		138	135
Dependal	Dependable Capacity (MW)	ity (MW)	GROSS:		148		146	147	47	146		146	147
			NET:		139		137	н Н	38	138		137	138
Actual (Actual Generation (MWh)	n (MWh)	GROSS:	ω	392,709	822	,697	851,0	66	874,751		849,461	858,139
			NET:	ω	830,508	763	,572	792,3	02	814,537		789,872	798,159
Attempt	Attempted Unit Starts	tarts			13.74	ri ,	4.62	21.	39	12.95		14.37	15.42
Actual	Actual Unit Starts	ts			13.59	-	4.42	21.	02	12.69		14.18	15.19
Service Hours	Hours			7,	,526.82	7,11	9.82	7,306.	84	7,415.96		7,275.68	7,329.08
Reserve	Reserve Shutdown Hours	Hours			228.48	58	1.62	433.	36	330.18		596.91	433.99
Numbe	Number of Occurrences	rrences			4.11		5.22	5.	76	4.53		6.42	5.2
Pumping Hours	Hours				00.00		0.00	.0	00	00.00		0.00	0.0
Synchro	Synchronous Condensing Hours	ensing Ho	urs :		00.00		0.00	0.	00	00.00		00.00	00.00
TOTAL A	TOTAL AVAILABLE HOURS	HOURS	••	7	,765.14	7,71	7,713.45	7,745.10	10	7,756.14		7,887.37	7,773.3
Forced	Forced Outage Hours	urs		- 	308.89	31	317.93	336.31	31	345.62		261.63	314.06
Numbe	Number of Occurrences	rrences			7.61		7.28	7.	65	7.19		9.49	7.8
Planned	Planned Outages:	:				í			i				
r Lann	rtanned Uutage nours	ROULS			11.220	50	c7.ci	4/0.	11	10.444 20.0		4/4.00	c. UUC
	Number of Occurrences	currences			4.50	ſ	5.4L	CI.I	5 F	15.2		0.4.0 0.4	16.2
r Lann	rlanned Outage Ext. Hours	EXT. HOU	Irs .		8.90	7	1.31	۲	16	1./3		7.1/	J. Z
NUM	Number of Occurrences	currences			1.16		0.07	0	05	0.07		0.04	0.2
Mainten Maint	Maintenance Outages: Maintenance Outage Hours	iges: tage Hour	, ,		177.81	17	171.81	201.87	87	149.85		155.47	171.46
			,)			i	•		5				

3.58	1.29	0.03	996.24	8,769.57	147.31	84.69	5.95	47.77	232.00
2.89	3.38	0.04	896.68	8,784.00	139.39	84.07	5.09	36.31	223.46
2.65	0.87	0.03	1,003.62	8,759.75	174.05	69.71	9.32	47.55	243.76
2.94	0.20	0.02	1,015.00	8,760.04	148.57	85.40	6.01	50.94	233.97
4.00	0.56	0.01	1,046.47	8,759.92	146.33	85.64	5.70	50.44	231.98
5.42	1.44	0.05	1,018.95	8,784.05	128.59	98.35	3.69	53.52	226.94
				· · · ·					· · · ··
Number of Occurrences	Maintenance Outage Ext. Hours	Number of Occurrences	TOTAL UNAVAILABLE HOURS	TOTAL PERIOD HOURS	Equiv. Forced Hours	Equiv. Scheduled Hours	Equiv. Forced Hours During RS	Equiv. Seasonal Derated Hours	TOTAL EQUIVALENT DERATED HOURS

Staff/103 Galbraith /6

NORTH AMERICAN ELECTRIC RELIABILITY COUNCIL GENERATING AVAILABILITY DATA SYSTEM

200-299 MW 2000-2004 Data FOSSIL Coal Primary

2000-2004 ANNUAL UNIT PERFORMANCE STATISTICS

							 			1	í.	
NCF SF	SF		NOF	AF	EAF	FOR	EFOR	EFORd	SOF	FOF	SR	ART
72.70 86.99	 6.99	!	83.70	88.11	85.61	4.05	5.39	5.34	8.23	3.67	98.38	600.73
	4.35		•	88.93	86.07	4.28	5.64	5.46	7.30	3.77	99.39	562.75
	6.64		82.15	88.15	85.72	4.37	5.67	5.60	7.89	3.96	98.80	513.52
70.61 85.75	5.75		82.34	86.96	84.10	4.98	6.44	6.37	8.55	4.50	98.78	616.18
71.00 86.25	6.25		82.18	88.75	85.90	4.12	5.42	5.32	7.55	3.71	93.99	663.43
70.91 86.00	6.00		82.41	88.18	85.49	4.36	5.71	5.61	7.90	3.92	97.94	586.92
	1 1 1	1	+ + + + + + + + + + +	2000		2001	2002	02	2003	 	2004	2000-04
		: .		110.25	11(10.58		00	110.25	1 1 1 1 1 1 1	114.00	558.08
Maximum Canacity (MW) GROSS:	GROS	 S	-	249		245	57	44	245		245	246
	Ľ	NET:		232		231	2:	29	231		231	231
Dependable Capacity (MW) GROSS	GROS	.: ::		246		243	5,	43	243		243	243
	N	NET:		230		229	2:	29	229		228	229
Actual Generation (MWh) GROSS	GROS	ŝ	1,5	1,597,401	1,502	,421	1,529,58	68	1,530,018		1,541,220	1,540,063
	B	NET:	1,4	80,626	1,398	,810	1,429,6	84	1,429,927		,437,612	1,435,298
Attempted Unit Starts		••		12.93		3.21	14.	96	12.34		12.15	13.12
Actual Unit Starts		••		12.72	Ч	3.13	14.	78	12.19		11.42	12.85
		••	7.	641.34	7,38	8.97	7,589.	77	7,511.20		7,576.34	7,541.91
Reserve Shutdown Hours		••		79.97	36	2.16	123.	49	97.76		185.45	169.76
Number of Occurrences		••		1.56		3.40	2.	12	1.96		2.81	2.37
		••		0.00		0.00	0	00	0.00		0.00	0.00
Svnchronous Condensing Hours	10	••		0.00		0.00	.0	00	0.00		0.00	0.00
TOTAL AVAILABLE HOURS		••	7,	7,739.10	7,790.11	0.11	7,721.81	81	7,617.31		7,795.74	7,733.21
<pre></pre>		;	5 5 5 5 6 5 6 5 5 5 5 5	322.20		:	346.89	89	393.80		325.61	343.68
Number of Occurrences		••		8.98		8.38	8.	28	8.54		8.57	8.5
Planned Outage Hours		••		544.74	47	70.88	508.	92	611.26		528.78	532.73
Number of Occurrences		••		5.66	-	15.06	Ъ.	19	3.60		8.45	6.78
Planned Outage Ext. Hours		••		3.69	-	12.01	.9	78	15.35		3.28	8.18
Number of Occurrences		••		2.37		0.05	0.06	.06	0.07		0.05	0.5
Maintenance Outages: Maintenance Outage Hours		••		174.07	11	156.40	171.99	66.	122.10		130.65	151.01

NORTH AMERICAN ELECTRIC RELIABILITY COUNCIL GENERATING AVAILABILITY DATA SYSTEM

FOSSIL Coal Primary 300-399 MW 2000-2004 Data

2000-2004 ANNUAL UNIT PERFORMANCE STATISTICS

	AGE	NCF	SF	NOF	AF	EAF	FOR	EFOR	EFORd	SOF	FOF	SR	ART
2000		68,00	83.79	80.76	85.62	83.04	6.26	8.21	8.08	8.79	5.59	97.51	375.30
	30 50	68 55	85.03	80.48	86.24	83.82	4.22	6.03	5.96	10.00	3.75	•	553.40
	31 44	68 34	84.13	80.78	85.60	82.82	5.53	7.56	7.47	9.48	4.92	93.36	440.56
	13 13	72.00	86.77	83.23	88.18	86.00	3.82	5.31	5.26	8.38	3.44	93.83	632.88
	33.94	71.90	86.31	83.18	87.31	84.96	4.24	6.08	6.03	8.87	3.83	93.81	640.86
2000-04			85.20	81.72	86.59	84.12	4.82	6.65	6.58	60.6	4.32	94.92	506.59 -
		- - - - - - - -			2000		2001	2002		2003		2004	2000-04
llni+_Vaare	Ű		; .		73.08	· · · · · · · · · · · · · · · · · · ·	68.00	75.67	 57	71.00	 	76.83	364.58
Mavimum Capacity (MW)	Tanaritv	(MM)	GROSS		357		359	ň	356	359		358	358
	capac - c)		NET:		335		338	'n	336	337		336	336
Dependable Capacity (MW)	le Capac	ity (MW)	GROSS:		355		358	Ň	355	358		356	356
-			NET:		333		337	'n	334	336		335	335
Actual Generation (MWh)	eneratio	n (MWh)	GROSS:	2,1	2,160,648	2,191	, 702	2,164,1	81	2,305,766		283,857	2,221,399
		•	NET:	2,(2,000,754	2,030	,011	2,009,6	44	2,141,815		119,882	2,060,632
Attempted Unit Starts	d Unit S	tarts	••		20.11	1	4.13	17.	92	12.80		12.61	15.54
Actual Unit Starts	nit Star	ts			19.61	Т	.3.46	16.73	73	12.01		11.83	14.75
Service Hours	Hours			7	,359.61	7,44	8.78	7,370.	56	7,600.85		,581.38	7,472.23
Reserve Shutdown Hours	Shutdown	Hours			138.35	6	18.47	119.	74	73.85		77.36	101.63
Number	Number of Occurrences	rrences	••		7.21		1.41	5.	92	1.07		1.04	3.37
Pumping Hours	Hours		••		0.00		0.00	0.00	00	0.00		0.00	0.00
Svnchron	ous Cond	Svnchronous Condensing Hours	urs :		0.00		0.00	0	00	00.00		0.00	0.00
TOTAL AV	TOTAL AVAILABLE HOURS	HOURS		7	7,520.67	7,554.63	54.63	7,499.	58	7,724.56		,668.66	7,593.52
Forced 0	Forced Outage Hours		· · · · · · · · · · · · · · · · · · ·	1 1 1 1 1 1 1	491.23		328.39	431.	18	301.60		336.07	378.77
Number	Number of Occurrences	Irrences			11.10		9.09	10.12	12	9.01		8.72	9.61
Planned	Planned Outages:												
Planne	Planned Outage Hours	Aours :	••		561.30	95	32.51	641.	60	575.10		625.92	87.9T9
Numb	ber of Oc	Number of Occurrences	••		1.23		1.25	1.19	19	15.66		4.83	4.79
Planne	id Outage	Planned Outage Ext. Hours	irs :		12.43		28.05	و. و	49	7.36		4.18	11.38
Numb	ber of Oc	Number of Occurrences	••		0.08		0.09	0	.05	0.07		0.08	0.07
Maintena Mainte	Maintenance Outages: Maintenance Outage	intenance Outages: Maintenance Outage Hours	 s,		195.19	1,	143.57	182.8	.81	151.07		146.88	164.22

Maintenance Outage Ext. Hours 2.85 21.74 0.17 0.44 1.83 5.13 Number of Occurrences : 0.03 0.06 0.01 0.05 0.03 TOTAL UNAVAILABLE HOURS : 1,262.92 1,205.47 1,261.73 1,035.54 1,115.07 1,176.52 TOTAL UNAVAILABLE HOURS : 8,783.51 8,760.00 8,761.16 8,760.00 8,769.95 TOTAL PERIOD HOURS : 8,783.51 8,760.00 8,761.16 8,760.00 8,769.95 TOTAL PERIOD HOURS : 153.74 140.57 159.13 118.04 145.29 143.67 Equiv. Forced Hours : 39.37 37.60 51.98 43.21 44.09 3.29 Equiv. Forced Hours : 33.76 32.44 29.88 16.59 29.04 Equiv. Forced Hours : 33.70 32.44 29.88 16.59 29.04 TOTAL PERATED HOURS : 193.12 178.17 211.11 161.25 189.38 189	Number of Occurrences	 3.78	2.87	2.75	2.68	2.55	2.92
rences 0.03 0.06 0.01 0.01 0.05 DURS 1,262.92 1,205.47 1,261.73 1,035.54 1,115.07 1, SURS 8,783.51 8,760.00 8,761.16 8,760.00 8,783.69 8, SURS 153.74 140.57 159.13 118.04 145.29 8, Urs 39.37 37.60 51.98 43.21 44.09 44.09 During RS 5.38 0.76 8.89 0.62 0.49 44.69 Ated Hours 33.44 33.70 32.44 29.88 16.59 16.59 Ated Hours 193.12 178.17 211.11 161.25 189.38 16.59	Maintenance Outage Ext. Hours	 2.85	21.74	0.17	0.44	1.83	5.13
DURS : 1,262.92 1,205.47 1,261.73 1,035.54 1,115.07 1, : 8,783.51 8,760.00 8,761.16 8,760.00 8,783.69 8, : 8,783.51 8,760.00 8,761.16 8,760.00 8,783.69 8, urs : 153.74 140.57 159.13 118.04 145.29 urs : 39.37 37.60 51.98 43.21 44.09 During RS : : 33.76 32.44 29.88 16.59 ated Hours : : 33.70 32.44 29.88 16.59 RATED HOURS : : 178.17 211.11 161.25 189.38	Number of Occurrences	 0.03	0.06	0.01	0.01	0.05	0.03
: 8,783.51 8,760.00 8,760.00 8,760.00 8,783.69 8, urs : 153.74 140.57 159.13 118.04 145.29 urs : 39.37 37.60 51.98 43.21 44.09 During RS : : 33.44 33.76 51.98 43.21 44.09 ated Hours : : 33.76 32.44 29.88 0.49 ATED HOURS : : : : : : : : ATED HOURS :	FOTAL UNAVAILABLE HOURS	 1,262.92	1,205.47	1,261.73	1,035.54	1,115.07	1,176.52
I53.74 140.57 159.13 118.04 145.29 urs 39.37 37.60 51.98 43.21 44.09 During RS 5.38 0.76 8.89 0.62 0.49 ated Hours 33.44 33.70 32.44 29.88 16.59 RATED HOURS 193.12 178.17 211.11 161.25 189.38	TOTAL PERIOD HOURS	 8,783.51	8,760.00	8,761.16	8,760.00	8,783.69	8,769.95
urs : 39.37 37.60 51.98 43.21 44.09 During RS : 5.38 0.76 8.89 0.62 0.49 ated Hours : 33.44 33.70 32.44 29.88 16.59 RATED HOURS : 193.12 178.17 211.11 161.25 189.38	uiv. Forced Hours	 153.74	140.57	159.13	118.04	145.29	143.67
: 5.38 0.76 8.89 0.62 0.49 : 33.44 33.70 32.44 29.88 16.59 5 : 193.12 178.17 211.11 161.25 189.38	uiv. Scheduled Hours	 39.37	37.60	51.98	43.21	44.09	43.40
: 33.44 33.70 32.44 29.88 16.59 5 : 193.12 178.17 211.11 161.25 189.38	uiv. Forced Hours During RS	 5.38	0.76	8.89	0.62	0.49	3.29
: 193.12 178.17 211.11 161.25 189.38	uiv. Seasonal Derated Hours	 33.44	33.70	32.44	29.88	16.59	29.04
	AL EQUIVALENT DERATED HOURS	 193.12	178.17	211.11	161.25	189.38	187.07

NORTH AMERICAN ELECTRIC RELIABILITY COUNCIL GENERATING AVAILABILITY DATA SYSTEM

FOSSIL Coal Primary 400-599 MW 2000-2004 Data

2000-2004 ANNUAL UNIT PERFORMANCE STATISTICS

	AGE	NCF	SF	NOF	AF	EAF	FOR	EFOR	EFORd	SOF	FOF	SR	ART
2000	23.67	74.79	86.84	86.01	87.29	84.36	4.21	6.40	6.37	8.90	3.82	95.89	584.10
2001	24.28	71.87	83.90	85.46	85.15	82.77	5.72	7.56	7.49	9.76	5.09	97.43	539.27
2002	25.53	72.72	85.11	85.25	86.10	83.12	5.48	7.91	7.85	8.96	4.93	95.49	374.86
2003	26.45	74.30	85.91	86.38	86.93	84.17	5.25	7.49	7.45	8.31	4.76	95.49	612.38
2004	27.56	74.83	86.35	86.62	87.25	84.89	4.57	6.48	6.43	8.62	4.14	95.22	585.27
2000-04	4	73.72	85.66	85.94	86.56	83.87	5.02	7.15	7.10	8.91	4.53	95.88	520.60 -
5 5 5 6 8 5	: : : : : : :			• • • • • • •	2000	, 19 	2001	2002)2	2003	5 5 6 7 7 7	2004	2000-04
Unit-Years	ars		;	- - - - - - - - - - - - - - - - - - -	160.75	135	9.50	152.92		137.00	1 1 1 1 1 1 1 1	145.42	735.58
Maximum	Maximum Capacity (MW)	(MM)	GROSS:		537		537	5.	537	538		542	538
			NET:		509		510	5	510	511		512	510
Dependable		Capacity (MW)	GROSS:		534		534	23	534	535		537	535
			NET:		507		507	5(508	509		511	508
Actual	Generation (MWh)	n (MWh)	GROSS:	3,5	,555,527	3,412,	, 555	3,446,6	84	3,537,069	ч,	575,411	3,506,279
			NET:	з, з	,344,281	3,209	, 305	3,249,402	02	3,327,038		365,369	3,299,917
Attempt	Attempted Unit Starts	tarts			13.62	1	3.99	20.8	83	12.87		13.61	15.05
Actual	Actual Unit Starts	ts			13.06	1	3.63	19.89	68	12.29		12.96	14.43
Service Hours	Hours		••	7.	,628.29	7,35(0.27	7,456.00	00	7,526.12		,585.16	7,512.19
Reserve	Reserve Shutdown Hours	Hours	••		33.51	7.	2.47	53.68	68	35.60		67.43	52.19
Numbe	Number of Occurrences	rrences	••		1.88	-	0.82	2.4	49	0.66		1.45	1.50
Pumping Hours	Hours		••		0.00	-	0.00	0.00	00	00.00		0.00	00.00
Synchro	nous Cond	Synchronous Condensing Hours	urs :		0.00	1	0.00	0.6	00	00.00		0.00	0.00
TOTAL A	TOTAL AVAILABLE HOURS	HOURS		7	7,667.37	7,459.64	9.64	7,542.	55	7,615.27		,663.72	7,591.60
Forced	Forced Outage Hours	urs	, , , , , , , , , , , , , , , , , , ,	1 1 1 1 1 1	335.49	44	5.61	432.	26	417.16	1 1 1 1 1 1 1	363.30	397.20
Numbe	Number of Occurrences	rrences	••		9.74	Ъ,	10.44	14.38	38	10.77		10.14	11.11
Plannec	Planned Outages:												·
Planr	Planned Outage Hours	Hours	••		599.61	69	7.16	591.	17	582.79		602.16	613.73
NUN	ther of Oc	Number of Occurrences	••		1.23	Т	4.13	7.	87	15.97		1.37	7.83
Planr	ned Outage	Planned Outage Ext. Hours	rs :		7.24	H	3.23	25.	72	14.17		9.49	13.95
Nun	Number of Occurrences	currences			0.07		0.08	0.14	14	0.11		0.08	0.10
Mainter Maint	Maintenance Outages: Maintenance Outages:	Iges:			173 61		1 A A 1 E	167 60	09	00 001		143 34	157 50
	רבוומוורע הר	וומ ווו רפוומוורפ סמרמצה חסמו א	•		10.011	T 	· 10	. 101	00	CD. C71		F + 7 - 7 - 1	~~~~

....

2.44 1.17 0.02 1,178.51	8,770.05	168.24 38.79 0.63 29.02 207.03
2.19 2.00 0.02 1,120.31	8,783.88	151.80 34.62 0.30 20.35 186.42
1.97 1.63 0.04 1,144.82	8,759.99	178.08 31.36 0.09 32.30 209.44
2.57 0.75 0.01 1,217.45	8,759.94	191.49 41.11 1.25 28.56 232.60
2.41 0.49 0.02 1,300.58	8,760.24	143.66 33.24 0.09 32.18 176.90
2.97 1.03 0.02 1,116.90	8,784.22	173.93 51.53 1.25 31.74 225.46
Number of Occurrences Maintenance Outage Ext. Hours Number of Occurrences TOTAL UNAVAILABLE HOURS	TOTAL PERIOD HOURS	Equiv. Forced Hours Equiv. Scheduled Hours Equiv. Forced Hours During RS Equiv. Seasonal Derated Hours TOTAL EQUIVALENT DERATED HOURS

NORTH AMERICAN ELECTRIC RELIABILITY COUNCIL GENERATING AVAILABILITY DATA SYSTEM FOSSIL Coal Primary 600-799 MW 2000-2004 Data

2000-2004 ANNUAL UNIT PERFORMANCE STATISTICS

ART	598.44	610.18	503 13	736 07	709.84		2000-04	430.00	730	692	726	069	4,831,006	4,555,144	12.74	12.15	7,554.37	20.13	0.42	0.00	0.00	7,589.51	386.04	9.81	· · · · · · · · · · · · · · · · · · ·	680.32	4.44	6.53	0.63	
SR		-			92.99 70	95.37 62	2004	91.00	728	692	724	689	4,845,906	,571,689	11.42	10.62	7,538.52	19.98	0.45	0.00	0.00	7,560.66	388.08	9.58		694.77	1.45	16.92	0.04	
FOF	4.49	4.83	4 47	2 81	4.42	4.40	t t 1 t t						4	4									1 1 1 1 1 1 1 1							
SOF	9.67	9.47	8 74	7 87	9.51	90.6	2003	84.92	731	694	726	692	4,972,734	4,697,036	11.20	10.47	7,706.65	13.14	0.31	00.00	00.00	7,737.11	333.42	8.89		600.28	4.59	3.38	3.04	
EFORd	7.15	7.13	6 89	20.0	6.70	6.77	02	00	1	33	17	91	21	11	71	14	00	36	47	00	00	44	14	36	•	31 *	54	12	02	
EFOR	7.17	7.16	6 91	5.05 6 05	6.71	6.79	2002	85.00	731	693	727	691	4,792,021	4,522,521	15.7	15.04	7,567.00	23.86	0.47	00.00	0.0	7,603.44	391.3	10.36		657.31		3.12	0.0	
FOR	4.99	5.37	4 91	1 - F	4.90	4.86	2001	5.00	728	692	726	689	, 705	, 290	12.76	12.20	4.20	3.65	0.46	0.00	0.00	7,507.51	2.82	10.18		733.71	.3.41	5.33	0.04	
EAF	83.28	83.20	84.06	01.00	83.62	83.97	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00					4,723,705	4,455,290	1	Ч	7,44	2				7,50	42	-		73	н			
AF	85.84	85.70	R6 RU	00.00 Cc 00	86.07	86.54	2000	84.08	730	069	729	689	819,628	527,860	12.73	12.56	,516.35	20.04	0.42	00.0	0.00	,540.47	394.63	10.06		714.83	1.38	3.09	0.04	
NOF	87.27	86.53	86 14	77 70	87.63	87.08							4,8	4,5			7.					7.	1 1 1 1 1 1 1							
SF	85.57	84.98	86 28	90.00	85.82	86.14	1 5 5 1 1 1 1 1 5	,	GROSS:	NET:	GROSS:	NET:	GROSS:	NET:	••	••	•••	•••	••	•••	urs :		1 1 1 1 1 1 1 1					rs :		
NCF	74.70	73.52	74 47		75.23	75.04	1 1 1 2 1 2 1 1 3		(MM)		Capacity (MW)		n (MWh)		tarts	ts		Hours	rrences		ensing Ho	HOURS	urs	rrences		Hours	currences	Ext. Hou	currences	
AGE	23.59	74.44	75 44	VV 90	26.73	4	1 1 1 1 1 1 1 1 1 1	ars	Maximum Capacity (MW)		ble Capac		Actual Generation (MWh)		Attempted Unit Starts	Actual Unit Starts	Hours	Reserve Shutdown Hours	Number of Occurrences	Hours	Synchronous Condensing Hours	TOTAL AVAILABLE HOURS	Forced Outage Hours	Number of Occurrences	Planned Outages:	Planned Outage Hours	Number of Occurrences	Planned Outage Ext. Hours	Number of Occurrences	Maintenance Outages:
	2000	2001	2000	2002	2004	2000-04)) () () () () ()	Unit-Years	Maximum		Dependable		Actual		Attempt	Actual	Service Hours	Reserve	Numbe	Pumping Hours	Synchro	TOTAL A	Forced	Numbe	Planned	Plann	Nur	Planr	Nun	Mainten

Staff/103 Galbraith /13

Date-10/13/05

1.71 1.54 0.00 1,180.34	8,769.79	153.48 48.01 0.00 23.60	201.48
1.71 0.00 0.00 1,223.40	8,784.01	143.99 44.71 0.00 26.47	188.70
1.60 0.02 0.01 1,022.79	8,759.84	153.22 47.95 0.01 25.35	201.17
1.61 7.78 0.01 1,156.68	8,760.06	158.68 57.97 0.00 22.94	216.65
1.59 0.00 0.00 1,252.61	8,760.00	140.12 52.22 0.00 27.13	192.34
2.03 0.00 0.00 1,243.69	8,784.17	172.25 37.30 0.00 15.80	209.54
Number of Occurrences Maintenance Outage Ext. Hours Number of Occurrences TOTAL UNAVAILABLE HOURS	TOTAL PERIOD HOURS	Equiv. Forced Hours Equiv. Scheduled Hours Equiv. Forced Hours During RS Equiv. Seasonal Derated Hours	TOTAL EQUIVALENT DERATED HOURS

Staff/103 Galbraith /14

NORTH AMERICAN ELECTRIC RELIABILITY COUNCIL GENERATING AVAILABILITY DATA SYSTEM

FOSSIL Coal Primary 800-999 MW 2000-2004 Data

2000-2004 ANNUAL UNIT PERFORMANCE STATISTICS

 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			120.00	882	839	882	839	6,020,133	66,636	10.78	10.66	7,622.18	16.86	0.19	0.00	00.00	7,657.29	251.16	7.24	733.10	5.79	13.56	0.06	114.90
ART	636.54 702.20 533.47 839.64 .,048.44	715.03						6,0	5,6			7.					7,							
SR	100.00 100.00 99.72 99.56 93.50 1	98.89 2004	25.00	884	842	884	842	6,309,961	,986,926	8.00	7.48	7,842.32	10.72	0.16	0.00	0.00	7,930.19	231.53	6.72	527.12	21.48	3.41	0.04	91.52
FOF	2.74 2.61 3.58 2.70 2.64	2.86						9	5															
SOF	10.05 11.29 10.40 7.08	9.82 2003	25.00	882	840	882	840	6,096,092	5,753,094	9.08	9.04	7,590.36	1.12	0.04	0.00	00.00	7,595.72	236.28	6.32	795.16	1.44	11.62	0.12	121.28
EFORd	3.95 4.30 5.68 4.10 3.46	4.29 2	0	0	0	6,	6	96	5	9	12	96	36	14	00	00	34	96	96	16	52	06	04	08
EFOR	3.96 4.34 5.68 3.47 3.47	4.30 2002	25.00	880	840	879	839	5,917,69	5,601,15	14.1	14.1	7,532.5	0.	0	0.00	0.0	7,534.84	313.96	7.5	770		22.	0.04	119.08
FOR	3.06 2.96 4.00 3.02 2.87	3.19 2001	20.00	874	835	874	835	5,651,873	3,303	10.65	10.65	78.40	61.65	0.45	0.00	0.00	7,542.45	28.50	7.20	32,00	1.35	35.02	0.10	122.15
EAF	85.87 83.70 84.23 85.54 89.43	85.84						5,651	5,268			7,4	•				7,5,	2		œ				1
AF	87.21 86.10 86.01 86.71 90.28	87.31 2000	25.00	887	838	887	838	,051,392	5,644,038	12.00	12.00	,638.48	19.40	0.32	0.00	0.00	7,660.29	240.99	8.00	760 84	2.28	0.00	00.00	121.92
NOF	88.18 84.22 88.58 90.07 90.64	88.54	1 1 1 1 1 1 1 1					9,0	5,0			7					7	1 1 1 1 1 1 1						
SF	86.96 85.37 85.99 86.65 89.28	86.91		GROSS:	NET:	GROSS:	NET:	GROSS:	NET:		••	••	••			Irs :		••	••		• •		•••	••
NCF	76.65 72.03 76.16 78.20 80.94	77.00		(MM)		ity (MW)		(UMM) u		tarts	ts		Hours	rrences		ensing Hou	HOURS	urs	rrences	Нонго	currences	Ext. Hour	currences	ges: tage Hour:
AGE	21.80 21.25 23.80 24.80 25.80	4	ar c	Maximum Canacity (MW)		Dependable Capacity (MW)		Actual Generation (MWh)		Attempted Unit Starts	Actual Unit Starts	Hours	Reserve Shutdown Hours	Number of Occurrences	t Hours	Synchronous Condensing Hours	TOTAL AVAILABLE HOURS	Forced Outage Hours	Number of Occurrences	Planned Outages:	Number of Occurrences	Planned Outage Ext. Hours	Number of Occurrences	Maintenance Outages: Maintenance Outage Hours
1 1 1 1 1	2000 2001 2002 2003 2003 2003	2000-04	llnit-Years	Maximum		Dependa		Actual		Attempt	Actual	Service Hours	Reserve	Numbe	Pumping Hours	Synchro	TOTAL #	Forced	Numbe	Plannec		Planr	NUN	Mainte Maint

1.96	0.00	0.00	1,112.71	8,769.97	87.48	40.79	0.21	0.88	128.27
			1,	. 80	1 1 1 1 1 1				
1.44	0.00	0.00	853.73	8,783.84	48.41	24.01	1.03	2.20	72.42
2.28	0.00	0.00	1,164.40	8,760.00	84.38	17.89	0.00	0.35	102.27
1.92	0.00	0.00	1,225.20	8,760.00	131.49	24.81	0.00	0.38	156.30
2.40	0.00	0.00	1,217.50	8,760.00	105.62	104.24	0.00	0.46	209.86
1.84	0.00	0.00	1,123.67	8,784.00	71.11	45.68	0.00	0.94	116.79
				1 1 1 1 1 1 1 1			•••		1 1 1 1 1 1
Number of Occurrences	Mäintenance Outage Ext. Hours	Number of Occurrences	TOTAL UNAVAILABLE HOURS	TOTAL PERIOD HOURS	Equiv Forced Hours	Equiv. Scheduled Hours	Equiv. Forced Hours During RS	Equiv. Seasonal Derated Hours	TOTAL EQUIVALENT DERATED HOURS

NORTH AMERICAN ELECTRIC RELIABILITY COUNCIL GENERATING AVAILABILITY DATA SYSTEM

FOSSIL Coal Primary 1000 MW Plus 2000-2004 Data

2000-2004 ANNUAL UNIT PERFORMANCE STATISTICS

							2000-04	59.83	1,314	1,239	1,311	1,235	8,350,087	7,871,994	11.31	11.01	, 228.50	15.04	0.27	0.00	0.00	,251.59	653.61	9.43		730.45	1.40	15.50	0.13	
ART	622.27	653.03	719.44	698.56	603.96	656.54		; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;					80	7.8			7					7	1 1 1 1 1 1 1 1							
SR	98.55	100.00	98.40	96.73	93.50	97.35	2004	12.00	1,309	1,240	1,306	1,236	8,666,797	8,196,566	12.92	12.08	7,295.83	8.33	0.25	0.00	0.00	7,305.37	616.71	10.08		703.67	2.08	18.29	0.08	
FOF	6.98	6.55	7.03	9,68	7.02	7.45	t t t t						8	8									1 1 1 1 1 1 1							
SOF	10.93	9.34	6.67	12 46	9.82	9.85	2003	12.00	1,308	1,238	1,304	1,234	8,037,430	7,608,617	10.08	9.75	6,811.00	3.75	0.17	00.00	00.00	6,820.00	848.16	9.25		997.25	1.25	22.63	0.17	
EFORd		8.70	9.18	17 41	9.11	9.74	2		8	6	4	5	4	г т	2	œ	7	7	7	0	0	ñ	52	3		ŝ	77	16	[7	
EFOR	9.41	8.76	9.19	12 41	9.12	9.76	2002	11.8	1,30	1,239	1,30	1,23	8,644,884	8,196,671	10.65	10.4	7,539.7	3.97	0.1	0.0	0.0	7,557.73	615.6	9.13		, 513.6	1.77	22.1	0.1	
FOR	7.84	7.29	7.55	11 07	7.79	8.29	2001	12.00	1,307	, 238	, 303	, 234	, 824	,140	11.17	1.17	4.33	54.92	0.67	0.00	0.00	,368.21		8.17		8.75	0.92	.4.34	0.17	
EAF	79.67	81.91	84.02	75 74	81.05	80.47	1 1 1 1 1 1 1 1	1	1	1	1,303	г	8,139	7,714,140		1	7,29	5				7,36	5			68		-		
AF	82.09	84,11	86.30	77 85	83.17	82.69	2000	12.00	1,339	1,239	1,335	1,235	8,265,592	48,486	11.75	11.58	7,205.92	4.08	0.08	0.00	0.00	7,210.88	613.29	10.50		745.92	1.00	0.17	0.08	
NOF		85.25		02 08	90.23	87.50		8 9 8 8 8 8 8 8 8					8,2	7,6			7,					7,								
SF	82.03	83.27	86.09	77 75	83.06	82.43			GROSS :	NET:	GROSS:	NET:	GROSS:	NET:			••	••	•••				· ··			••	•••	 s		
NCF	70.27	71.11	75.57	70.13	75.26	72.46	5 1 1 1 1 1 1 1		(MM)		ity (MW)		n (MWh)		tarts	ts		Hours	rrences		Synchronous Condensing Hours	HOURS	urs	rrences		Hours	currences	Planned Outage Ext. Hours	currences	
AGE	22.58	23 58	24.51	25.52	25.30 26.58	4	1 1 1 1 1 1	ars	Maximum Capacity (MW)	-	Dependable Capacity (MW)		Actual Generation (MWh)		Attempted Unit Start	Actual Unit Starts	Hours	Reserve Shutdown Hours	Number of Occurrences	Hours	nous Cond	TOTAL AVAILABLE HOURS	<pre>Forced Outage Hours</pre>	Number of Occurrences	Planned Outages:	Planned Outage Hours	Number of Occurrences	ned Outage	Number of Occurrences	Maintonanco Outarot.
	2000	2001	2002	2002	2004	2000-04	8 5 6 8 8 8 8 8 8 8 8 8	Unit-Years	Maximum		Dependa		Actual		Attempt	Actual	Service Hours	Reserve	Numbe	Pumping Hours	Synchro	TOTAL A	Forced	Numbe	Plannec	Planr	Nun	Planr	NUN	Mototo

1.67	0.00	0.00	1,517.51	8,769.14	115.84	54.73	0.00	24.65	170.57
1.92	0.00	0.00	1,478.63	8,784.00	104.80	57.24	0.00	24.25	162.04
1.17	0.00	0.00	1,939.83	8,759.92	102.68	61.48	0.00	20.81	164.16
0.93	0.00	0.00	1,199.91	8,757.63	133.85	42.23	0.00	23.91	176.08
2.50	0.00	0.00	1,391.71	8,760.00	115.37	51.07	0.00	26.09	166.44
1.83	0.00	0.00	1,573.04	8,784.00	122.75	61.46	0.00	28.15	184.21
							•••		
Number of Occurrences	Maintenance Outage Ext. Hours	Number of Occurrences	TOTAL UNAVAILABLE HOURS	TOTAL PERIOD HOURS	Equiv. Forced Hours	Equiv. Scheduled Hours	Equiv. Forced Hours During RS	Equiv. Seasonal Derated Hours	TOTAL EQUIVALENT DERATED HOURS

CASE: UE 180/UE 181 WITNESS: Maury Galbraith

PUBLIC UTILITY COMMISSION OF OREGON

STAFF EXHIBIT 104

Exhibits in Support of Direct Testimony

July 18, 2006

NORTH AMERICAN ELECTRIC RELIABILITY COUNCIL GENERATING AVAILABILITY DATA SYSTEM

1982-2004 Historical Availability Statistics

FOSSIL Coal Primary All MW Sizes

Net Generation MWHr/U-Yr	1,375,631	1,416,915	1,474,323	1,498,515	1,466,148	1,550,729	1,617,112	1,607,052	1,623,053	1,605,975	1,644,012	1,703,834	1,658,537	1,683,922	1,763,748	1,817,014	1,878,194	1,855,818	2,035,887	1,915,703	1,983,482	2,037,557	2,055,148	2.005.935	1 000 710	L,033,/13	1,708,883
ity MW) Dep	292	295	298	300	303	305	307	305	308	310	313	313	311	312	314	314	316	313	319	311	316	317	319	317	711	315	309
Capacity (Net, MW Max D	294	297	300	302	305	306	308	306	309	312	314	314	312	313	315	315	317	314	320	313	317	318	321	318		916	311
ARTS Actual	21.50	21.35	19.90	19.68	20.37	18.72	19.93	23.90	18.46	17.80	17.48	18.71	18.91	19.47	19.59	16.62	15.58	15.96	14.95	14.84	19.05	13.00	13.11	15 01		16.26	18.21
UNIT STARTS Attempts Actu	21.64	21.50	20.12	20.05	20.56	18.93	20.15	24.14	18.69	17.99	17.78	18.93	19.24	19.79	20.08	17.16	15.95	16.51	15.23	15.12	19.56	13.40	13.63	15 41	• •	16.69	18.53
WEFOR	13.66	12.20	11.92	10.67	10.38	9.57	9.00	9.00	8.18	7.64	6.72	7.74	7.37	7.20	6.94	7.20	7.42	7.00	6.39	6.67	7.04	6.65	6.16	C 58		6.87	8.22
S WFOR	8.88	8.13	8.45	7.68	7.29	6.88	5.99	6.23	5.69	5.27	4.70	5.34	4.92	5.08	4.79	5.04	5.01	4.94	4.55	4.97	5.06	4.81	4.48			4.87	5.73
TATISTIC WFOF	7.02	6.44	6.80	6.14	5.76	5.50	4.84	5.05	4.65	4.25	3.78	4.44	4.09	4.26	4.14	4.45	4.46	4.35	4.08	4.39	4.54	4.34	4.01		4.4/	4.30	4.82
CAPACITY WEIGHTED STATISTICS WAF WEAF WSOF WFOF WFOR	12.95	12.60	12.23	12.81	12.50	12.50	11.97	11.53	11.42	11.65	11.77	11.32	11.38	10.35	9.54	8.72	8.73	9.79	9.08	9.26	8.66	8.55	8.47		0.00	9.12	10.73
ACITY WE WEAF	74.90			77.93	78.56	79.15	80.11	80.42	81.01	81.34	81.96	81.44	81.61	82.87	83.59	84.18	83 90	83.15	84.26	83.84	84 11	84.59	85.17		04.40	83.96	81.50
CAP WAF	80.01	80 95	80.96	81.19	81 75	82.00	83.18	83.40	83.92	84.10	84.45	84.24	84.53	85.39	86.32	86.84	86 81	85,86	86.85	86.35	86.80	87 13	87.53		80.34	86.58	84.46
WSF	72_03	77 78	73 60	73 83	73 18	74.50	75.99	75.95	77.22	76 48	76.63	78.71	78.92	79 65	87.36	83 88	00.00 PA AQ	07 28	85.71	83.91	85.16 85.16	97.78	85.59		85.24	84.00	79.28
Number of Jtil. Units	784	008	000	070 837	270 220	660 841	852	866	869	870	871	868	876	873	877	875	098	488	838	806	920		831	1			
Number of Util. Unit	107	101	101	112	C T T	177	175	174	174	176	176	126	178	175	174	105	C 7 T	175	177	120	0 4 F	001	126		2004:	2004:	1982-2004:
Year	1087	1001	1004	1005	1006 1006	1087	1988	1989	1990		1001	1993	7001	1005	1006		10001	0001		2002		2002	2004	8	2000-2004	1995-2004	1982-

TRADITIONAL NON-WEIGHTED STATISTICS

	-																							1 1 1		
ART		275.54	302.89	307.20	291.16	324.97	313.01	259.90	340.95	345.48	354.40	347.50	340.74	333.65	351.44	423.36	458.57	442.22	494.95	482.05	380.56	567.09	558.34	486.31	437.03	360.87
SR	99,35	99.30	98.91	98.15	99.08	98.89	98.91	10.06	98.77	98.94	98.31	98.84	98.28	98.38	97.56	96.85	97.68	96.67	98.16	98.15	97.39	97.01	96.18	97.40	97.42	98.27
EFOR	12.26	11.43	11.04	10.41	10.01	9.28	8.99	9.19	8.21	7.43	6.66	7.31	7.12	6.96	7.00	6.94	7.06	6.87	6.11	6.35	6.97	6.54	6.16	 6.43	6.70	7.97
FOR	8.26	7.80	7.64	7.42	7.13	6.62	5.85	6.30	5.61	5.06	4.62	5.02	4.72	4.84	4.62	4.64	4.68	4.80	4.32	4.59	4.97	4.60	4.33	4.56	4.64	5.50
FOF		5.68	5.68	5.53	5.20	4.93	4.42	4.77	4.27	3.74	3.42	3.92	3.64	3.77	3.80	3.91	4.01	4.06	3.80	3.93	4.33	4.06	3.77	3.98	3.94	4.36
SOF	12.06	12.12	11.69	12.15	12.25	12.38	11.49	11.01	11.06	11.37	11.22	10.98	10.96	10.00	9.28	8.69	8.64	9.67	8.76	8.75	8.45	8.30	7.90	8.43	8.86	10.39
EAF	77.39	78.25	78.92	79.12	79.61	79.93	80.99	81.23	81.81	82.32	83.03	82.52	82.72	83.86	84.18	84.74	84.57	83.58	84.80	84.68	84.38	84.91		84.90	84.53	82.36
AF	81.79	82.17	82.59	82.38	82.54	82.68	84.09	84.17	84.67	84.87	85.37	85.10	85.38	86.23	86.93	87.40	87.36	86.26	87.45	87.32	87.23	87.66	88.34	87.60	87.21	85.25
SF	67.92	67.16	68.63	69.01	67.72	69.44	71.03	70.91	71.85	70.20	70.52	74.22	73.56	74.16	78.38	80.33	81.56	80.62	84.24	81.66	82.76	84.16	83.34	83.24	81.06	74.97
NOF	74.25	74.93	76.03	76.73	75.02	77.59	78.63	78.81	77.60	76.94	77.72	78.60	76.85	77.04	77.32	78.57	80.16	80.66	84.39	83.35	83.80	85.17	85.27	84.41	81.56	79.15
GOF	75.00	75.48	76.56	77.23	75.62	78.18	79.12	79.34	78.11	77.51	78.59	79.39	77.57	77.79	78.15	79.24	. 80.59	81.11	85.03	84.19	84.40	85.85	85.75	85.05	82.20	79.78
NCF	•	54.54	55.96	56.64	54.89	57.80	59.75	59.86	59.92	58.84	59.55	61.87	60.65	61.36	63.68	65.91	67.72	67.51	72.34	69.94	71.36	73.04	72.98	71.95	68.51	62.74
GCF	54.03	54.91	56.32	57.01	55.32	58.22	60.11	60.25	60.32	59.27	60.21	62.48	61.23	61.95	64.37	66.47	68.10	67.87	72.89	70.65	71.89	73.63	73.41	72.51	69.05	63.24
U-Yrs	771	788	803	816	829	834	841	858	860	864	863	861	869	869	868	874	867	874	832	800	834	798	828	4,092	8,442	19,296
AGE	19.05	19.79	20.38	21.00	21.58	22.47	23.24	24.37	25.23	26.09	27.07	28.09	29.03	29.90	30.32	31.29	32.25	33.39	33.93	35.17	35.98	37.02	37.89			
Year	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2000-2004:	1995-2004	1982-2004

NORTH AMERICAN ELECTRIC RELIABILITY COUNCIL GENERATING AVAILABILITY DATA SYSTEM

1982-2004 Historical Availability Statistics

FOSSIL Coal Primary 001-099 MW

																								:		
Net Generation MWHr/U-Yr	210,708	196,099	202,897	211,545	196,457	209,654	218,024	220,901	213,405	197,802	201,843	216,001	209,850	209,405	234,390	257,423	278,397	266,826	313,451	305,639	295,964	326,824	316,002	311,367	279,571	240,159
ty MW) Dep	61	61	60	60	62	62	63	64	64	64	65	65	65	65	64	65	65	64	64	64	64	65	65	64.	64	64
Capacity (Net, MW) Max Dep	62	62	61	61	63	63	64	64	64	65	65	65	65	99	65	65	65	64	64	64	64	66	65		65	64
ARTS Actual	30.37	29.60	28.96	26.28	28.67	27.82	35.98	47.96	28.44	26.73	23.24	26.50	26.12	25.11	26.67	21.21	21.42	22.18	21.00	21.32	23.55	18.08	16.36	20.10	21.75	26.13
UNIT STARTS - Attempts Actua	30.48	29.74	29.07	26.45	28.84	27.97	36.21	48.28	28.57	26.89	23.43	26.75	26.36	25.22	26.86	21.45	21.70	22.47	21.20	21.53	23.74	18.42	16.79	20.37	22.00	26.34
	8.93	9.99	9.72	9.57	9.68	8.92	9.17	8.42	7.73	5.34	5.18	5.63	6.68	5.68	6.74	6.02	5.79	5.83	5.30	5.41	7.23	6.64	7.40		6.22	7.10
WFOR	6.95	6.78	6.49	7.41	7.50	6.68	5.86	5.89	5.71	3.50	3.72	4.18	4.86	4.00	4.43	3.95	3.97	3.90	3.53	3.70	5.00	4.53	4.79	4.31	4.18	4.96
CAPACITY WEIGHTED STATISTICS WAF WEAF WSOF WFOF WFOR WEFOR	4.22	3.77	3.76	4.49	4.35	3.97	3.56	3.53	3.43	1.94	2.09	2.55	2.89	2.35	2.98	2.81	2.93	2.82	2.84	2.89	3.87	3.67	3.79	3.42	3.09	3.26
IGHTED S WSOF	10.67	12.46	14.25	11.71	11.01	12.65	8.97	11.85	8.14	9.88	9.86	9.34	9.46	9.65	9.74	7.73	8.54	10.75	8.71	7.58	8.81	8.20	6.75	8.01	8.67	9.80
ACITY WE WEAF	81.59	80.25	78.22	80.76	81.97	80.60	84.30	82.24	86.21	86.43	86.48	86.33	85.82	86.41	85.19	87.42	86.69	84.44	86.47	87.42	84.65	85.65	86.55	86.14	86.08	84.55
CAP WAF	85.09	83.71	81.70	83.75	84.60	83.31	87.49	84.61	88.41	88.15	88.05	88.11	87.56	88.01	87.28	89.46	88.54	86.43	88.46	89.53	87.32	88.13	89.47	88.57	88.25	86.92
WSF	56.47	51.82	54.23	56.06	53.66	55.40	57.20	56.29	56.61	53.37	54.02	58.38	56.60	56.35	64.38	68.41	70.78	69.51	77.71	75.35	73.57	77.33	75.23	75.82	70.71	62.35
r of Units	134	138	138	140	133	130	130	138	139	139	138	138	150	146	145	145	140	151	139	141	144	134	140			
Number of Util. Units	40	41	44	45	45	45	47	49	49	48	48	48	49	47	45	45	44	47	42	42	44	42	44	2004:	2004 :	2004:
Year	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2000-2004	1995-2004	1982-2004

TRADITIONAL NON-WEIGHTED STATISTICS

ART	155.62	148.33	158.17	178.93	158.72	170.39	134.91	99.02	165.93	165.65	193.43	184.67	179.20	186.13	203.05	272.62	279.90	269.86	316.97	301.99	269.31	370.62	398.46	324.83	277.62	201.87
SR	99.64	99.53	99.62	99.36	99.41	99.46	99.36	99.34	99.54	99.40	99.19	99.07	99.09	99.56	99.29	98.88	98.71	98.71	90.06	99.02	99.20	98.15	97.44	98.67	98.86	99.20
EFOR	8.41	9.35	9.15	9.32	9.77	9.17	9.48	8.32	7.60	5.87	5.15	5.56	7.23	5.69	7.43	6.08	5.84	6.06	5.50	5.51	7.85	6.28	7.88	6.61	6.43	7.21
FOR	6.52	6.56	6.36	7.41	7.73	6.95	5.96	5.56	5.65	4.08	3.70	4.16	5.37	3.85	4.20	3.93	4.00	4.00	3.71	3.76	5.54	4.24	5.36	4.53	4.28	5.05
FOF	3.76	3.52	3.54	4.30	4.35	4.04	3.50	3.19	3.23	2.15	1.97	2.43	3.03	2.14	2.71	2.70	2.85	2.85	2.92	2.87	4.24	3.39	4.20	3.53	3.08	3.20
SOF	10.29	11.71	12.58	11.03	10.51	11.32	9.07	11.31	8.40	9.33	9.54	9.17	9.27	9.71	9.90	7.99	8.83	10.85	9.08	8.14	8.54	8.77	6.87	8.28	8.89	9.64
EAF	82.18	81.05	79.96	81.51	82.44	81.74	84.09	82.99	86.31	86.81	86.92	86.71	85.87	86.53	84.88	87.35	86.58	84.30	86.08	87.00	84.47	85.40	86.08	85.80	85.86	84.72
AF	85.93	84.68	83.59	84.61	85.06	84.54	87.43	85.47	88.35	88.43	88.49	88.39	87.56	88.15	87.40	89.31	88.32	86.31	88.00	88.99	87.22	87.85	88.93	88.19	88.04	87.12
SF	53.94	50.13	52.15	53.68	51.96	54.11	55.27	54.21	53.87	50.55	51.18	55.86	53.44	53.35	61.65	66.04	68.44	68.33	75.78	73.49	72.40	76.49	74.26	74.46	68.88	60.18
NOF	68.93	69.86	69.45	70.13	66.51	68.39	68.03	69.61	67.19	65.54	65.20	64.94	64.70	64.65	64.15	66.20	68.80	68.14	71.65	72.53	71.40	73.38	73.75	72.54	69.66	68.60
GOF	69.79	70.76	70.19	70.85	67.34	69.36	68.89	70.34	67.97	66.45	65.97	65.71	65.32	65.26	64.76	66.93	69.29	68.82	72.56	73.64	72.48	74.57	74.89	73.62	70.52	69.44
NCF	38.92	36.20	37.66	39.32	35.69	37.89	38.91	39.19	38.03	34.98	35.22	37.91	36.62	36.43	41.30	45.29	48.70	47.36	55.68	54.65	52.54	56.75	55.49	55.00	49.25	42.77
GCF		36.57	38.00	39.70	36.12	38.42	39.39	39.61	38.52	35.51	35.68	38.41	37.00	36.81	41.72	45.81	49.09	47.87	56.43	55.49	53.38	57.68	56.36	55.85	49.90	43.31
U-Yrs	130	133	131	134	129	128	126	135	137	137	135	137	147	146	144	144	140	148	139	138	143	134	138	691	1,413	3,149
AGE	29.32	30.39	31.08	31.23	31.81	32.86	33.68	35.12	35.86	36.88	38.30	39.38	39.33	40.38	38.63	39.99	41.27	42.45	43.35	43.18	44.06	44.62	45.41	2004:	2004:	2004:
Year	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2000-2004	1995-2004	1982-2004

Staff/104 Galbraith/4

.

NORTH AMERICAN ELECTRIC RELIABILITY COUNCIL GENERATING AVAILABILITY DATA SYSTEM

1982-2004 Historical Availability Statistics

FOSSIL Coal Primary 100-199 MW

Number of			CAPACI		TY WEIGHTED S	STATISTICS	S		UNIT STARTS	LARTS	Capacity (Net, MW)	ity MW)	Net Generation
Util. Units		WSF	WAF			WFOF	wFOR	WEFOR	Attempts	Actual	Max	Dep	MWHr/U-Yr
229	1		82.02	78.76	12.05	5.87	8.14	11.22	18.32	18.22	136	135	558,385
233		65.03	83.57	80.64	11.23	5.16	7.36	10.34	17.92	17.87	136	135	556,909
238		65.95	84.51	81.31	10.52	4.98	7.02	10.28	16.42	16.33	137	136	577,873
240	~	67.22	83.73	80.58	11.25	4.98	6.89	10.12	18.13	18.03	137	136	587,591
24	2	65.01	83.92	81.38	11.68	4.40	6.34	9.21	16.65	16.59	137	136	561,771
24	~	65.87	83.96	81.58	11.83	4.19	5.99	8.68	16.71	16.54	137	136	590,806
24	ω	67.78	84.78	81.81	11.16	4.05	5.64	8.99	17.59	17.46	137	137	615,573
25	4	68.93	85.36	82.20	9.81	4.64	6.31	9.61	22.06	21.94	137	137	629,167
24	6	70.24	84.73	81.63	11.19	4.08	5.49	8.49	16.61	16.48	138	137	629,675
5	48	67.03	85.09	82.56	11.51	3.40	4.83	7.14	16.91	16.79	138	137	586,516
5	0	68.50		84.22	10.53	2.97	4.15	6.23	16.13	15.96	138	137	603,055
'n	47	75.19	81	83.11	10.90	3.29	4.19	6.55	16.39	16.26	138	137	678,250
2	45	74.68		83.95	10.39	2.81	3.62	6.16	18.42	18.28	138	137	658,575
2	245	76.23	87.98	85.44	8.74	3.28	4.13	6.19	19.49	19.20	139	138	680,226
2	44	80.23	88.42	85.40	8.40	3.19	3.82	6.28	18.08	17.68	139	138	703,999
2	42	81.61	88.35	85.30	8.69	2.96	3.50	6.04	16.83	15.98	138	137	717,604
7	43	82.79	88.41	85.46	8.08	3.51	4.07	6.35	15.04	14.88	137	137	750,126
	251	81.54	87.35	84.44	8.55	4.08	4.76	6.69	16.06	15.86	138	138	749,637
	229	85.86	88.41	85.33	8.10	3.51	3.92	5.53	13.74	13.59	140	139	830,508
	229	81.84	88.06	84.93	8.24	3.71	4.34	6.21	14.62	14.42	138	137	763,572
1.4	28	83.97	88.36	85.17	7.81	3.82	4.36	6.28	21.39	21.02	139	138	792,302
7	225	85.01	88.31	85.12	7.70	3.99	4.49	6.61	12.95	12.69	139	138	814,537
7	226	83.27	89.65	86.79	7.36	2.99	3.47	5.25	14.37	14.18	138	137	789,872
	:	84.00	88.56	85.47	7.84	3.60	4.11	5.97	15.42	15.19	139	138	798,159
		82.18	88.32	85.33	8.18	3.50	4.09	6.15	16.29	15.98	138	138	757,867
		74.28	86.26	83.35	9.83	3.90	4.98	7.46	17.02	16.82	138	137	669,357

STATISTICS	
NON-WEIGHTED	
TRADITIONAL	

	1																							1		
ART	314.62	313.83	350.96	323.52	340.14	344.94	338.01	272.26	369.22	346.58	370.45	399.49	354.25	342.36	394.99	443.54	484.65	448.57	553.85	493.75	347.61	584.39	513.09		447.77	383.36
SR	99.45	99.72	99.45	99.45	99.64	98.98	99.26	99.46	99.22	99.29	98.95	99.21	99.24	98.51	97.79	94.95	98.94	98.75	98.91	98.63	98.27	97.99	98.68	98.51	98.10	98.82
EFOR	11.48	10.58	10.34	10.29	9.24	8.81	8.80	9.74	8.49	7.10	6.30	6.64	6.11	6.28	6.39	6.26	6.49	6.80	5.58	6.24	6.34	6.69	5.32	6.03	6.24	7.55
FOR	8.40	7.55	7.05	6.98	6.35	6.11	5.52	6.31	5.41	4.70	4.19	4.26	3.56	4.14	3.88	3.60	4.10	4.83	3.94	4.27	4.40	4.45	3.47	4.11	4.11	5.02
FOF	6.01	5.23	4.95	4.99	4.36	4.24	3.92	4.60	3.97	3.28	2.95	3.30	2.73	3.24	3.21	3.02	3.52	4.13	3.52	3.63	3.84	3.95	2.98	3.58	3.50	3.89
SOF	11.85	11.13	10.43	11.19	11.74	12.09	11.18	9.54	11.11	11.26	10.48	10.99	10.29	8.85	8.40	8.67	8.14	8.27	8.09	8.32	7.75	7.51	7.23	7.78	8.14	9.78
EAF	78.90	80.67	81.45	80.61	81.37	81.32	82.00	82.49	81.76	82.89	84.32	83.05	84.15	85.39	85.37	85.18	85.31	84.62	85.21	84.83	85.16	85.22	86.84	85.45	85.31	83.39
AF	82.09	83.61	84.63	83.77	83.90	83.66	84.89	85.71	84.92	85.47	86.58	85.71	86.97	87.91	88.39	88.31	88.34	87.58	88.40	88.05	88.41	88.54	89.79	88.64	88.36	86.32
SF	65.46	64.02	65.25	66.59	64.42	65.12	67.19	68.19	69.46	66.43	67.31	74.15	73.93	75.04	79.50	80.91	82.33	81.27	85.69	81.28	83.41	84.66	82.83	83.57	81.62	73.56
NOF	70.82	71.87	72.92	72.71	72.08	74.86	75.29	75.84	74.33	72.27	72.77	74.61	72.85	73.45	71.99	72.86	75.29	75.86	78.67	77.25	77.57	78.95	78.21	78.14	76.00	74.63
GOF	71.94	72.63	73.60	73.43	72.77	75.55	75.79	76.49	74.88	72.96	74.52	75.94	74.10	74.67	73.44	73.97	75.80	76.36	79.21	77.98	78.25	79.63	78.84	78.79	76.81	75.48
NCF		46.74	48.09	48.88	46.86	49.31	51.03	52.28	52.21	48.45	49.85	56.10	54.40	56.00	57.76	59.46	62.33	61.86	67.55	63.22	65.13	67.12	65.13	 65.64	62.45	55.43
GCF	47.59	47.15	48.48	49.34	47.29	49.73	51.32	52.70	52.62	48.90	51.07	57.05	55.34	56.90	58.85	60.35	62.76	62.26	68.01	63.85	65.71	67.69	65.67		63.12	56.05
U-Yrs	227	231	235	238	242	245	247	252	248	247	248	245	244	244	242	242	242	246	228	227	228	224	226	1,133	2,350	5,499
AGE	24.78	25.53	26.29	27.24	28.12	29.12	29.89	30.94	32.01	33.00	33.96	34.97	35.97	36.71	37.65	38.65	39.68	40.55	41.20	42.80	43.75	44.86	45.92	2004:	2004:	2004:
Year	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2000-2004	1995-2004	1982-2004

NORTH AMERICAN ELECTRIC RELIABILITY COUNCIL GENERATING AVAILABILITY DATA SYSTEM

1982-2004 Historical Availability Statistics

FOSSIL Coal Primary 200-299 MW

	-	5	2	~	6	6	8	0	1	7		1	2	9	2	ß	1	5	6	0	4	7	2		٥.	2
Net Generation MWHr/U-Yr	1,183,661	1,159,415	1,216,515	1,219,543	1,184,719	1,225,809	1,268,358	1,264,456	1,242,981	1,203,887	1,231,473	1,295,661	1,217,242	1,207,096	1,299,252	1,332,493	1,374,391	1,354,945	1,480,626	1,398,810	1,429,684	1,429,927	1,437,612	1,435,298	1,373,449	1,288,922
ity MW) Dep	228	228	229	229	230	230	230	231	231	231	230	230	230	231	230	228	229	229	230	229	229	229	228	229	229	230
Capacity (Net, MW) Max Dep	229	230	230	231	232	231	232	232	232	232	231	231	231	232	231	229	230	230	232	231	229	231	231	231	231	231
ARTS Actual	17.81	15.50	14.98	15.12	15.70	15.14	14.47	13.90	15.17	13.89	14.68	14.29	15.33	13.77	13.90	13.68	12.59	13.18	12.72	13.13	14.78	12.19	11.42	12.85	13.14	14.23
UNIT STARTS Attempts Actu	17.91	15.55	15.01	15.34	15.78	15.25	14.57	14.00	15.36	13.97	14.81	14.37	15.48	13.87	13.98	13.83	12.82	13.34	12.93	13.21	14.96	12.34	12.15	13.12	13.35	14.38
WEFOR	8.92	10.01	8.58	8.59	7.88	7.90	7.86	8.70	7.06	6.39	6.62	6.68	5.90	6.48	6.29	6.25	6.74	6.03	5.45	5.59	5.64	6.47	5.29		6.02	6.97
S WFOR	5.84	7.01	5.49	6.24	5.79	5.65	5.84	7.28	5.30	4.65	5.05	4.96	4.17	4.82	4.73	4.40	4.62	4.25	4.06	4.25	4.32	4.98	3.98	4.32	4.44	5.09
CAPACITY WEIGHTED STATISTICS WAF WEAF WSOF WFOF WFOR	4.74	5.55	4.50	4.99	4.61	4.59	4.80	6.04	4.34	3.69	4.08	4.19	3.41	4.00	4.14	3.91	4.11	3.71	3.67	3.76	3.91	4.50	3.58	3.88	3.93	4.29
IGHTED S WSOF	10.74	11.72	10.28	12.77	12.21	12.16	11.03	9.95	11.39	11.76	10.16	10.32	12.84	10.19	8.08	8.52	8.56	99.66	8.40	7.25	7.98	8.55	7.58	7.95	8.48	10.10
ACITY WE WEAF	80.82	79.41	81.54	79.48	80.64	80.70	81.77	82.14	82.18	82.50	83.84	83.43	81.76	83.86	85.76	85.39	84.69	84.05	85.38	86.03	85.71	83.99	85.92	85.41	85.08	83.09
CAP WAF		82.72	85.22	82.25	83.18	83.25	84.18	84.01	84.27	84.56	85.77	85.49	83.75	85.82	87.78	87.57	87.33	86.63	87.95	88.99	88.12	86.96	88.84	88,18		85.60
 WSF	76.50	73.72	77.42	74.91	74.96	76.63	77.39	76.94	77.40	75.63	76.68	80.24	78.50	78.91	83.48	84.97	84.91	83.39	86.86	84.59	86.59	85.75	86.39	86.04	84.56	80.09
r of Units	111	111	110	113	116	117	117	118	118	117	117	117	117	116	114	117	116	115	111	111	113	111	114			
Number of Util. Units	44	45	44	45	47	48	49	50	50	49	49	49	49	48	48	49	49	48	48	46	47	45	48	2004:	2004:	2004:
Year	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2000-2004	1995-2004	1982-2004

Staff/104 Galbraith/7

	1																						1		
ART	375.49	415.64 454.73	435.37	419.29	444.05	471.03	486.09	447.98	477.15	459.82	492.46	448.89	504.15	529.05	545.90	593.51	553.87	600.73	562.75	513.52	616.18	663.43	586.92	564.90	494.05
SR	99.44	99.80 99.80	98.57	99.49	99.28	99.31	99.29	98.76	99.43	99.12	99.44	99.03	99.28	99.43	98.92	98.21	98.80	98.38	99.39	98.80	98.78	93,99	97.94	98.43	98.96
EFOR	8.95	9.94 8.56	8.59	7.90	7.97	7.78	8.43	6.92	6.39	6.54	6.61	5.92	6.28	6.23	6.20	6.67	5.99	5.39	5.64	5.67	6.44	5.42	5.71	5.99	6.93
FOR	5.88	7.05 5.56	6.29	5.86	5.75	5.76	7.02	5.20	4.66	4.99	4.90	4.22	4.72	4.71	4.42	4.60	4.25	4.05	4.28	4.37	4.98	4.12	4.36	4.45	5.09
FOF	4.77	4.56	5.04	4.67	4.68	4.74	5.82	4.25	3.70	4.04	4.14	3.46	3.92	4.14	3.94	4.12	3.71	3.67	3.77	3.96	4.50	3.71	3.92	3.94	4.30
SOF	10.60	10.20	12.72	12.19	12.12	11.09	10.03	11.47	12.09	10.17	10.54	12.94	10.10	8.10	8.33	8.33	9.73	8.26	7.30	7.89	8.55	7.55	7.91	8.42	10.11
EAF	80.93 97 97	81.62	79.49	80.62	80.65	81.74	82.27	82.19	82.14	83.88	83.24	81.61	84.08	85.77	85.60	84.95	84.01	85.61	86.07	85.72	84.10	85.90	85.49	85.18	83.11
AF	84.58 07 50	85.24	82.24	83.14	83.20	84.17	84.15	•	84.21	85.80	85.32	83.59	85.98	87.76	87.73	87.55	86.56	88.11	88.93	88.15	86.96	88.75	88.18	87.64	85.60
SF	76.34	cc.c/ 77.55	75.14	75.15	76.74	77.59	77.13	77.58	75.66	76.85	80.33	78.56	79.25	83.72	85.25	85.30	83.41	86.99	84.35	86.64	85.75	86.25	86.00	84.68	80.20
NOF	76.99	77.71	80.50	77.91	78.96	80.55	80.91	79.01	78.29	79.08	79.85	76.51	75.33	76.63	78.10	80.51	80.64	83.70	81.68	82.15	82.34	82.18	82.41	80.35	79.51
GOF	77.93 77.93	78.41	81.07	78.61	79.75	80.96	81.54	79.40	78.78	80.29	81.05	77.55	76.39	77.80	79.02	80.81	80.98	84.19	82.58	•	•	82.91	83.09	81.07	
NCF	58.90 57 50	60.17	60.31	58.40	60.51	62.33	62.26	61.15	59.21	60.64	64.07	60.06	59.45	63.97	66.36	68.36	67.24	72.70	60.69	71.13	70.61	71.00	70.91	67.94	63.68
GCF	59.64	50.02 60.71	60.72	58.93	61.11	62.66	62.74	61.47	59.61	61.56	65.03	60.88	60.26	64.96	67.11	68.65	67.55	73.15	69.88	71.68	71.15	71.66	71.51	68.57	64.29
U-Yrs	111	110	111	116	117	117	117	118	117	117	117	117	116	114	117	116	113	110	111	113	110	114	558	1,134	2,627
AGE	20.77 27 15																			39.13			2000-2004:	1995-2004:	- 2004 :
Year	1982	1984	1985	1986	1987	1988	1989	1990	1991	<u>1</u> 992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2000	1995.	1982

Staff/104 Galbraith/8

Date-10/13/05

NORTH AMERICAN ELECTRIC RELIABILITY COUNCIL GENERATING AVAILABILITY DATA SYSTEM

1982-2004 Historical Availability Statistics

FOSSIL Coal Primary 300-399 MW

	Number of	, of		CAF	CAPACITY WEIGHTED		STATISTICS	S		UNIT STARTS -	TARTS	Capacity (Net. MW)	ity MW)	Net Generation
Year L	Util. Units	Units	WSF	WAF	WEAF	WSOF	WFOF	WFOR	WEFOR	Attempts	Actual	Max	Dep	MWHr/U-Yr
1982	42		70.48	79.20	72.44	12.81	7.99	10.18	16.89	26.94	26.74	326	323	1,425,640
.983	43	77	71.67	79.09	73.37	13.65	7.26	9.20	14.18	31.76	31.58	327	325	1,453,097
1984	45	82	73.00	80.61		12.13	7.25	9.04	13.75	28.55	28.24	327	326	1,535,007
.985	47	83	70.63	79.24	74.85	12.54	8.22	10.42	14.94	26.40	26.08	328	327	1,519,944
1986	47	84	67.57	78.78	75.02	14.18	7.05	9.44	13.38	21.09	20.81	329	328	1,379,225
987	48	84	71.67	79.06	75.54	14.77	6.17	7.92	11.23	21.46	21.21	326	325	1,504,089
1988	48	85	74.32	82.93	78.84	12.67	4.41	5.60	9.83	22.52	22.32	326	325	1,575,455
1989	47	83	72.96	81.55	77.03	12.92	5.53	7.04	11.55	22.93	22.61	327	325	1,560,482
066	48	86	75.15	82.38	78.23	12.50	5.11	6.37	9.93	21.09	20.87	328	326	1,609,658
1991	49	86	75.84	83.23	79.64	12.50	4.27	5.33	8.87	22.12	21.90	329	327	1,580,190
592	48	84	74.74	83.34	79.91	12.49	4.17	5.28	8.14	22.23	21.92	329	327	1,606,059
1993	48	85	77.45	83.13	80.13	11.73	5.14	6.22	60.6	21.39	21.09	330	328	1,695,678
1994	48	83	77.51	83.75	80.71	10.18	6.07	7.26	10.22	18.41	17.79	332	331	1,661,537
.995	48	83	75.26	81.96	78.86	12.74	5.30	6.58	9.52	21.32	20.98	332	331	1,594,844
966	47	82	79.87	84.53	81.77	10.57	4.90	5.78	8.38	21.75	20.87	333	332	1,725,981
597	48	83	81.55	85.25	82.51	9.25	5.49	6.31	8.58	20.00	19.26	333	332	1,783,081
1998	48	82	83.04	85.86	82.78	8.98	5.16	5.85	8.39	20.11	19.06	334	333	1,853,615
666.	47	81	82.85	84.93	82.16	10.71	4.36	5.00	7.32	20.71	18.67	332	331	1,849,167
000	44	74	84.20	85.91	83.37	8.81	5.40	6.03	7.95	20.11	19.61	335	333	2,000,754
2001	42	68	85.18	86.36	83.93	9.95	3.68	4.15	5.97	14.13	13.46	338	337	2,030,011
:002	46	76	84.60	85.95	83.23	9.32	4.73	5.30	7.25	17.92	16.73	336	334	2,009,644
:003	44	71	87.07	88.46	86.32	8.19	3.35	3.70	5.16	12.80	12.01	337	336	2,141,815
004	46	77	86.44	87.39	85.11	8.78	3.83	4.25	6.00	12.61	11.83	336	335	2,119,882
2000-2004	 04:	 	85.50	86.81	84.39	9.00	4.21	4.69	6.48	15.54	14.75	336	335	2,060,632
1995-2004	04:		82.87	85.60	82.93	9.76	4.65	5.31	7.48	18.31	17.40	334	333	1,902,118
1982-2004	04:		77.41	83.13	79.60	11.44	5.43	6.56	9.74	21.32	20.77	331	329	1,697,182

Staff/104 Galbraith/9

																								:		
ART	228.27	196.63	224.25	234.46	280.77	292.67	289.30	280.18	312.82	300.31	296.56	318.95	378.74	312.24	333.92	368.86	380.03	384.62	375.30	553.40	440.56	632.88	640.86	506.59	415.35	323.87
SR	99.26	99.43	98.91	98.79	98.67	98.84	99.11	98.60	98.96	99.01	98.61	98.60	96.63	98.41	95.95	96.30	94.78	90.15	97.51	95.26	93.36	93.83	93.81	94.92	95.03	97.42
EFOR	17.30	14.46	14.13	15.34	13.84	11.59	10.22	11.98	10.38	9.19	8.41	9.28	10.41	9.81	8.59	8.67	8.50	7.66	8.21	6.03	7.56	5.31	6.08	6.65	7.67	10.04
FOR	10.49	9.49	9.29	10.73	9.83	8.21	5.78	7.32	6.64	5.52	5.46	6.43	7.45	6.83	5.96	6.35	5.86	5.20	6.26	4.22	5.53	3.82	4.24	4.82	5.45	6.77
FOF	8.16	7.43	7.38	8.39	7.28	6.33	4.51	5.71	5.30	4.39	4.28	5.28	6.19	5.48	5.03	5.50	5.15	4.51	5.59	3.75	4.92	3.44	3.83	4.32	4.75	5.57
SOF	12.91	13.76	12.44	12.67	14.41	15.19	13.08	13.13	12.62	12.76	12.68	11.92	10.35	12.71	10.63	9.40	9.12	10.96	8.90	10.00	9.48	8.38	8.87	9.12	9.88	11.64
EAF	72.20	73.21	75.45	74.56	74.57	74.97	78.22	76.59	77.83	79.22	79.54	79.85	80.43	78.70	81.57	82.33	82.57	81.65	83.04	83.82	82.82	86.00	84.96	84.12	82.66	79.23
AF	78.93	78.81	80.17	78.94	78.32	78.47	82.41	81.16	82.07	82.85	83.05	82.80	83.46	81.81	84.34	85.10	85.73	84.54	85.62	86.24	85.60	88.18	87.31	86.59	85.38	82.79
SF	69.67	70.88	72.09	69.79	66.73	70.86	73.51	72.32	74.53	75.08	74.00	76.79	76.91	74.79	79.33	81.10	82.69	82.16	83.79	85.03	84.13	86.77	86.31	85.20	82.45	76.74
NOF	70.88	70.74	73.17	74.81	70.82	73.39	73.95	74.71	74.49	72.35	74.40	75.84	73.79	72.87	73.87	75.05	76.21	76.85	80.76	80.48	80.78	83.23	83.18	81.72	78.29	75.63
GOF	72.08	71.40	m	LO LO	-	m	4	ŝ	ŝ	m	ŝ	76.56	74.49	73.71	74.56	75.82	76.92	77.40	81.81	81.73	81.82	84.22	84.09	82.76	79.16	76.39
NCF	49.95	50.70	53.42	52.84		•	54.96		55.98	54.87	55.61	58.73	57.19	54.84	58.99	61.21	63.28	63.67	68.00	68.55	68.34	72.47	71.90	69.87	64.88	58.54
GCF	50.86	51.26	53.95	53.30	48.25	m.	55.37	•	56.47	•	56.34	59.36	57.83	•			63.93	63.96	68.94	69.63	69.30	73.34	72.69		65.62	59.18
U-Yrs	76	77	80	81	84	83	85	83	83	84	83	82	82	82	82	83	82	81	73	68	76	71	77	365	774	1,836
AGE	13.95	14.80	15.53	16.22	16.82	17.81	18.77	19.57	20.47	21.23	22.02	23.05	24.14	25.19	26.19	27.25	28.16	29.13	29.61	30.50	31.44	32.13	33.94	2004:	2004:	2004:
Year	1982	1983	1984		1986							1993					1998	1999	2000	2001	2002	2003	2004	2000-2004	1995-2004	1982-2

Date-10/13/05

NORTH AMERICAN ELECTRIC RELIABILITY COUNCIL GENERATING AVAILABILITY DATA SYSTEM

1982-2004 Historical Availability Statistics

FOSSIL Coal Primary 400-599 MW

	Number of	r f			ACTTV WE	ту метснтер с	ΥΑΤΙ ΥΤΙ ΓΥ	ý	1	IINIT STARTS	TARTS	Capacity (Net MW	ity MW)	Net Generation	
Year	Util. Units	Units	WSF	WAF	WEAF		MFOF	WFOR	WEFOR	Attempts	Actual	Max		MWHr/U-Yr	
1982	55	138	72.95	78.93	73.47	13.86	7.21	8.99	14.16	21.75	21.45	496	492	2,319,084	
1983	57	142	75.02	80.67	75.59	12.59	6.73	8.24	12.59	20.74	20.55	498	494	2,424,746	
1984	58	146	74.50	79.75	75.50	13.19	7.07	8.66	12.15	18.62	18.35	498	494	2,492,962	
1985	58	147	76.30	81.92	78.24	13.03	5.47	6.69	9.63	20.15	19.05	498	493	2,503,573	
86	58	148	73.57	80.56	77.24	13.65	5.78	7.29	10.23	21.54	21.32	499	495	2,335,986	
1987	59	149	76.55	82.05	78.80	12.60	5.35	6.53	9.35	19.41	19.16	499	496	2,577,306	
1988	59	151	77.39	81.74	78.29	13.59	4.67	5.70	8.91	18.34	18.19	497	494	2,648,632	
1989	59	150	77.51	82.19	79.21	12.63	5.17	6.26	8.81	19.16	18.86	497	494	2,663,925	
06	60	154	77.93	82.22	78.86	12.51	5.29	6.35	9.21	19.38	19.05	499	496	2,641,136	
1991	60	155	77.83	81.91	78.71	12.77	5.32	6.39	9.04	17.26	17.05	500	497	2,648,203	
92	60	156	77.50	81.63	78.53	13.88	4.49	5.48	7.95	20.35	19.88	504	501	2,656,363	
93	60	156	78.54	82.85	79.10	-12.36	4.79	5.75	8.98	24.47	24.06	505	501	2,728,141	
94	61	155	78.53	83.37	79.59	12.51	4.14	5.00	8.00	22.66	22.03	506	503	2,714,086	
95	61	157	79.25	83.88	81.00	11.23	4.88	5.80	8.17	25.95	25.39	506	503	2,761,597	
96	62	162	81.33	84.70	81.39	10.53	4.77	5.54	8.08	27.27	26.29	505	502	2,870,187	
97	63	163	82.95	85.04	81.83	9.84	5.12	5.81	8.36	19.16	18.51	506	503	2,952,643	
86	64	163	84.27	85.68	82.30	9.80	4.52	5.09	8.04	15.96	15.33	507	505	3,055,789	
66	63	161	84.26	85.09	82.16	10.09	4.82	5.41	7.70	15.14	14.23	508	505	3,100,899	
00	62	161	86.95	87.38	84.51	8.84	3.78	4.17	6.30	13.62	13.06	509	507	3,344,281	
01	58	140	84.10	85.30	82.96	9.73	4.97	5.58	7.37	13.99	13.63	510	507	3,209,305	
2002	60	153	85.31	86.20	83.30	8.88	4.92	5.45	7.79	20.83	19.89	510	508	3,249,402	
03	58	137	86.02	86.93	84.22	8.38	4.73	5.21	7.40	12.87	12.29	511	509	3,327,038	
04	61	146	86.39	87.20	84.88	8.65	4.17	4.61	6.49	13.61	12.96	512	511	3,365,369	
- 00	2000-2004:	1 1 1 1 1 1 1	85.78	86.62	83.98	8.89	4.50	4.98	7.05	15.05	14.43	510	508	3,299,917	
95-	1995-2004:		84.05	85.72	82.82	9.62	4.66	5.26	7.57	17.96	17.28	508	506	3,117,336	
82-	1982-2004:		79.90	83.43	80.07	11.49	5.11	6.01	8.78	19.26	18.75	504	500	2,812,651	

																								; ;			
ART	297.03	319.81	356.21	350.60	301.40	348.76	373.28	360.15	358.01	398.87	340.64	284.66	311.11	272.91	271.65	391.97	481.37	517.52	584.10	539.27	374.86	612.38	585.27	520.60	425.81	372.69	
SR	98.62	99.08	98.55	94.54	98.98	98.71	99.18	98.43	98.30	98.78	97.69	98.32	97.22	97.84	96.41	96.61	96.05	93.99	95.89	97.43	95.49	95.49	95.22	95.88	96.21	97.35	
EFOR	14.15	12.44	11.87	9.51	10.06	9.30	8.88	8.78	9.19	9.10	8.03	8.92	7.96	8.27	8.08	8.43	8.05	7.86	6.40	7.56	7.91	7.49	6.48	7.15	7.66	8.80	
FOR	8.97	8.11	8.39	6.52	7.11	6.51	5.66	6.18	6.28	6.44	5.55	5.75	5.02	5.88	5.51	5.86	5.05	5.52	4.21	5.72	5.48	5.25	4.57	5.02	5.30	6.00	
FOF	7.17	6.62	6.82	5.31	5.62	5.31	4.64	5.10	5.22	5.34	4.53	4.77	4.14	4.94	4.74	5.15	4.48	4.91	3.82	5.09	4.93	4.76	4.14	4.53	4.69	5.09	
SOF	13.99	12.59	13.23	12.96	13.79	12.72	13.56	12.62	12.50	12.77	14.08	12.57	12.59	11.13	10.43	9.90	9.80	10.12	8.90	9.76	8.96	8.35	8.65	8.92	9.62	11.54	
EAF	73.41	75.77	75.80	78.43	77.30	78.78	78.37	79.27	78.91	78.69	78.32	78.98	79.61	81.05	81.51	81.72	82.31	81.97	84.36	82.77	83.12	84.17	84.89	83.87	82.75	80.04	
AF	78.84	80.79	79.95	82.10	80.59	81.97	81.80	82.27	82.30	81.89	81.40	82.66	83.28	83.93	84.83	84.95	85.72	84.96	87.29	85.15	86.10	86.93	87.25	86.56	85.69	83.39	
SF	72.72	75.02	74.46	76.24	73.39	76.28	77.34	77.54	77.85	77.64	77.09	78.19	78.24	79.10	81.34	82.82	84.24	84.09	86.84	83.90	85.11	85.91	86.35	85.66	83.93	79.72	
NOF	73.16	74.07	76.50	75.19	72.65	77.02	78.37	78.88	77.59	77.66	77.39	78.59	78.03	78.68	79.52	80.36	81.67	82.78	86.01	85.46	85.25	86.38	86.62	85.94	83.25	79.76	
GOF	73.91		77.09	75.80	73.39	77.77	79.08	79.54	78.32	78.47	78.22	79.36	78.73	79.31	80.26	80.91	82.23	83.32	86.73	86.30	85.91	87.24	86.83	86.60	83.87	80.44	
NCF	53.37	55.56	56.99	57.37	53.45	58.96	60.65	61.14	60.47	60.44	59.97	61.73	61.28	62.36	64.67	66.66	68.83	69.75	74.79	71.87	72.72	74.30	74.83	73.72	69.97	63.72	
GCF	53.93	56.08	57.42	57.83	53.98	59.50	61.19	61.63	61.02	61.07	60.60	62.34	61.81	62.85	65.32	67.18	69.30	70.21	75.42	72.58	73.30	75.04	75.07	74.30	70.52	64.27	
U-Yrs	135	141	144	146	148	148	150	150	153	154	155	155	153	155	161	163	163	161	161	140	153	137	145	736	1,538	3,469	
AGE	8.42	9.06	9.90	10.49	11.38	12.32	13.22	14.19	15.07	15.96	16.91	17.85	18.67	19.46	20.02	20.93	21.79	22.83	23.67	24.28	25.53	26.45	27.56	2004:	2004:	2004:	
Year	2	1983	4																				2004	2000-2004	1995-2004	1982-2004	

Staff/104 Galbraith/12

Date-10/13/05

NORTH AMERICAN ELECTRIC RELIABILITY COUNCIL GENERATING AVAILABILITY DATA SYSTEM

1982-2004 Historical Availability Statistics

MM 662-009 FOSSIL Coal Primary

:	qmnN	Number of		CAI	- CAPACITY WEIGHTED	IGHTED	STATISTICS	SC		UNIT STARTS	FARTS	Capacity (Net, MW	Ξ	Net Generation
Year	Util.	Util. Units	MSF	WAF	WEAF	WSUF	WFOF	WFUK	WEFUK	Attempts	Actual	тах	nep	MWH//U-11
1982	32	68	76.44	79.76	74.12	13.03	7.20	8.61	13.65	17.86	17.80	677	674	3,533,564
1983	34	70	77.16	80.07	75.26	13.48	6.45	7.71	12.29	19.91	19.63	679	676	3,568,793
1984	37	75	77.92	79.77	76.23	11.80	8.43	9.76	13.19	19.15	18.66	678	676	3,651,945
1985	38	79	76.52	78.69	75.61	14.13	7.29	8.69	11.78	17.14	16.73	677	675	3,606,127
1986	39	82	78.15	80.83	76.91	12.47	6.70	7.90	11.67	26.05	25.55	677	674	3,621,883
1987	39	83	79.65	82.07	79.30	11.70	6.23	7.25	9.97	15.69	15.27	679	678	3,887,162
1988	40	88	80.18	81.81	78.89	11.85	6.33	7.32	10.09	15.54	14.91	675	674	3,964,549
1989	41	87	81.98	83.51	80.85	11.27	5.23	5.99	8.41	20.79	20.47	674	673	3,975,338
1990	41	87	82.87	84.64	82.29	11.43	3.93	4.53	6.58	13.04	12.56	675	674	3,966,848
1991	40	88	82.58	84.99	82.45	10.94	4.07	4.70	6.95	12.30	11.95	676	675	3,919,522
1992	41	89	82.91	85.60	83.31	10.94	3.46	4.01	6.01	11.68	11.30	680	680	3,978,323
1993	40	88	82.77	84.93	82.35	10.52	4.55	5.21	7.51	11.41	11.22	680	679	3,995,653
1994	41	89	84.15	85.31	82.45	11.04	3.65	4.15	6.66	12.86	12.42	681	680	4,035,448
1995	40	89	86.75	88.14	85.78	8.30	3.56	3.94	6.09	11.13	10.69	681	680	4,148,442
1996	39	88	86.21	87.25	84.62	8.78	3.97	4.40	6.49	11.56	11.14	683	681	4,148,420
1997	39	88	87.19	87.58	85.11	7.82	4.60	5.01	7.13	12.09	11.66	683	682	4,277,622
1998	39	88	87.42	87.74	84.75	7.21	5.05	5.46	7.97	12.01	11.72	684	683	4,378,541
1999	39	88	86.05	86.40	83.70	9.19	4.42	4.88	7.09	12.49	11.95	685	684	4,325,215
2000	39	87	85.60	85.88	83.29	9.66	4.46	4.96	7.16	12.73	12.56	690	689	4,527,860
2001	37	85	84.96	85.66	83.16	9.50	4.84	5.39	7.20	12.76	12.20	692	689	4,455,290
2002	37	85	86.46	86.86	84.13	8.70	4.44	4.88	6.91	15.71	15.04	693	691	4,522,521
2003	37	85	88.04	88.40	85.78	7.82	3.80	4.13	6.09	11.20	10.47	694	692	4,697,036
2004	39	91	85.85	86.10	83.62	9.46	4.44	4.91	6.78	11.42	10.62	692	689	4,571,689
2000-2004	2004:	· · ·	86.18	86.58			4.40	4.85	6.82	12.74	12.15	692	069	4,555,144
1995-2004	2004:		86.45	87.00	84.39	8.65	4.36	4.80	6.89	12.29	11.79	688	686	4,403,615
1982-2004	2004:		83.20	84.64	81.74	10.37	5.00	5.67	8.19	14.44	14.00	682	681	4,094,761

Staff/104 Galbraith/13

-

. .

ART	374.81	343.30	365.71	401.06	267.35	457.75	471.06	350.99	579.11	605.99	643.09	646.93	593.84	710.56	680.98	655.17	653.32	630.30	598.44	610.18	503.13	736.07	709.84	621.76	642.79	520.68
SR	99.66	98.59	97.44	97.61	98.08	97.32	95.95	98.46	96.32	97.15	96.75	98.33	96.58	96.05	96.37	96.44	97.59	95.68	98.66	95.61	95.74	93.48	92.99	95.37	95.93	96.95
EFOR	13.69	12.40	13.35	11.57	11.56	9.87	10.26	8.43	6.50	6.89	5.95	7.40	6.65	6.07	6.41	7.03	7.89	7.02	7.17	7.16	6.91	6.05	6.71		6.84	8.16
FOR	8.71	7.79	9.95	8.46	7.85	7.12	7.43	5.99	4.44	4.64	3.99	5.17	4.16	3.95	4.35	4.92	5.42	4.85	4.99	5.37	4.91	4.15	4.90	4.86	4.78	5.66
FOF	7.28	6.51	8.59	7.08	6.65	6.12	6.43	5.22	3.86	4.02	3.44	4.52	3.65	3.57	3.93	4.51	5.01	4.38	4.49	4.83	4.47	3.81	4.42	4.40	4.34	4.99
SOF	13.05	13.43	11.72	14.16	12.59	11.69	11.89	11.22	11.32	10.87	11.08	10.44	10.95	8.36	8.66	7.88	7.24	9.26	9.67	9.47	8.74	7.88	9.51	9.06	8.67	10.38
EAF	74.04	75.22	76.18	75.78	76.89	79.40	78.74	80.90	82.49	82.61	83.28	82.55	82.57	85.75	84.84	85.15	84.81	83.71	83.28	83.20	84.06	85.74	83.62	83.97	84.42	81.76
AF	79.67	80.06	79.69	78.87	80.76	82.19	81.68	83.56	84.82	85.11	85.49	85.04	85.40	88.08	87.41	87.61	87.75	86.36	85.84	85.70	86.80	88.32	86.07	86.54	87.00	84.64
SF	76.26	77.00	77.74	76.58	78.03	79.79	80.03	82.01	83.03	82.67	82.73	82.86	84.19	86.71	86.36	87.20	87.41	85.98	85.57	84.98	86.38	87.98	85.82	86.14	86.44	83.17
NOF	78.08	77.89	78.79	79.48	78.21	82.01	83.41	82.10	80.93	80.12	80.30	81.02	80.34	80.14	80.17	82.01	83.64	83.76	87.27	86.53	86.14	87.77	87.63	87.08	84.49	82.31
GOF	78.48	78.30					83.82			80.54			80.93			82.57	84.06		87.75		86.57	~~	~	- 1	85.05	2
NCF	59.68	60.10	61.39	60.81	61.12	65.33	66.88	67.30	67.07	66.17	66.57	67.06	67.61	69.52	69.12	71.50	73.11	72.07	74.70	73.52	74.47	77.27	75.23	75.04	73.04	68.48
GCF	60.00	60.41	61.75	61.18	61.66	65.75	67.20	67.65	67.48	66.52	67.09	67.54	68.10	70.08	69.76	71.98	73.48	72.57	75.11	74.02	74.85	77.71	75.73	75.49	73.53	68.93
U-Yrs	65	68	72	76	80	82	85	86	86	88	88	88	88	89	88	88	88	88	84	85	85	85	91	430	870	1,923
AGE	8.45	9.16	9.58	10.13	10.64	11.18	12.17	13.05	14.00	14.71	15.66	16.64	17.69	18,69	19.81	20.81	21.79	22.81	23.59	24.44	25.44	26.44	26.73	2004:	2004:	2004:
Year	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2000-2	1995-	1982-2004:

Staff/104 Galbraith/14

Date-10/13/05

-5

NORTH AMERICAN ELECTRIC RELIABILITY COUNCIL GENERATING AVAILABILITY DATA SYSTEM

1982-2004 Historical Availability Statistics

FOSSIL Coal Primary 800-999 MW

																									1		
Net Generation	MWHr/U-Yr	4,120,912	4,269,385	4,355,445	4,657,831	4,720,593	4,402,611	4,546,702	4,348,482	4,597,747	4,482,734	4,576,241	4,715,029	5,019,253	4,975,811	5,256,481	5,365,953	5,453,184	5,457,816	5,644,038	5,268,303	5,601,152	5,753,094	5,986,926	5,666,636	5,480,578	4,966,065
ty MW)	Dep	817	823	821	832	834	831	831	832	831	832	830	831	830	831	832	834	837	839	838	835	839	840	842	839	837	832
Capacity (Net. MW)	Мах	817	823	821	832	834	831	831	832	832	833	830	831	832	832	834	834	837	839	838	835	840	840	842	839	837	833
ARTS	Actual	19.01	16.20	16.06	14.55	13.50	12.43	11.77	11.68	10.86	11.60	11.04	10.28	11.36	9.76	10.64	10.03	10.23	11.84	12.00	10.65	14.12	9.04	7.48	10.66	10.58	11.83
UNIT STARTS	Attempts	19.17	17.10	16.44	14.90	13.65	12.57	12.23	12.69	11.39	12.28	12.76	10.56	11.72	10.52	10.88	10.35	10.23	11.88	12.00	10.65	14.16	9.08	8.00	10.78	10.78	12.23
8 8 8 8	WEFOR	18.54	14.63	10.76	8.38	9.68	7.63	5.93	6.04	5.65	6.44	4.60	7.74	6.30	6.80	5.53	4.56	5.14	4.86	3.86	4.13	5.61	4.01	3.40	4.20	4.80	6.66
S.	WFOR	12.40	10.56	7.19	6.32	6.67	5.29	4.11	3.75	4.23	4.73	3.64	6.45	4.43	5.10	4.25	3.29	3.88	3.55	3.01	2.90	3.98	2.95	2.82	3.14	3.58	4.83
STATISTICS	WFOF	10.57	8.99	6.03	5.30	5.69	4.26	3.32	2.87	3.52	3.87	2.92	5.46	3.95	4.48	3.85	2.99	3.53	3.18	2.70	2.55	3.56	2.64	2.60	2.82	3.22	4.16
тү метснтер S		12.12	13.60	13.21	10.90	9.90	11.18	9.44	10.12	7.49	8.07	9.48	11.09	8.65	10.27	8.80	8.70	8.40	10.19	10.13	11.20	10.45	10.49	7.07	9.81	9.54	9.93
АСІТҮ МЕ	WEAF	71.40	73.45	77.33	81.91	81.75	82.53	85.72	85.13	87.46	86.25	86.64	82.15	85.29	83.43	85.59	86.80	86.64	85.10	85.90	84.03	84.27	85.72	89.52	85.97	ഹ	83.98
CAPACI	WAF	77.31	77.40	80.76	83.81	84.45	84.57	87.24	87.01	88.92	88.06	87.60	83.45	87.41	85.25	87.34	88.31	88.07	86.64	87.17	86.25	86.01	86.87	90.34	87.38	87.25	85.91
8 8 8 8 8	WSF	74.65	76.22	77.82	78.51	79.58	76.26	77.51	73.61	79.59	78.01	77.43	79.29	85.06	83.38	86.83	87.82	87.47	86.47	86.93	85.52	85.98	86.81	89.30	86.97	86.68	82.01
, of	Jnits	19	20	22	20	20	21	23	25	25	25	25	25	25	25	25	25	25	25	25	20	25	25	25			
Number of	Util. Units		80	80	7	7	7	80	6	6	6	6	6	6	6	6	6	6	6	6	œ	6	თ	6	2004:	2004:	2004:
	Year	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2000-2004	1995-2004	1982-2004

ART	344.43	411.21	425.36	471.35	515.24	536.55	577.91	551.07	641.51	588.89	613.28	676.33	655.62	746.11	716.75	767.03	747.89	640.02	636.54	702.20	533.47	839.64	1048.44	715.03	717.72	606.95
SR	99.17						96.24														99.72	99.56	93.50	98.89	98.14	96.73
EFOR	18.85	14.94	11.06	8.41	10.04	7.81	6.10	6.14	5.69	6.61	4.61	7.71	6.44	7.08	5.65	4.72	5.27	5.04	3.96	4.34	5.68	4.10	3.47	4.30	4.94	6.83
FOR	12.40	10.67	7.29	6.34	6.84	5.29	4.18	3.78	4.28	4.92	3.64	6.40	4.48	5.33	4.30	3.34	3.91	3.66	3.06	2.96	4.00	3.02	2.87	3.19	3.66	4.90
FOF	10.58	9.09	6.12	5.30	5.83	4.25	3.38	2.88	3.55	4.04	2.91	5.43	3.99	4.68	3.90	3.03	3.56	3.29	2.74	2.61	3.58	2.70	2.64	2.86	3.29	4.22
SOF	12.00	13.67	13.16	10.86	9.86	11.22	9.50	10.25	7.61	8.03	9.55	11.05	8.65	10.36	8.77	8.66	8.49	10.04	10.05	11.29	10.42	10.59	7.08	9.83	9.54	9.95
EAF	71.17	73.11	77.09	81.94	81.49	82.35	85.53	84.94	87.32	86.14	86.57	82.21	85.16	83.09	85.52	86.68	86.42	85.07	85.87	83.70	84.23	85.54	89.43	85.84	85.59	83.81
AF	77.42	77.24	80.72	83.84	84.35	84.53	87.12	86.87	88.77	87.93	87.53	83.53	87.36	84.96	87.33	88.30	87.95	86.67	87.21	86.10	86.01	86.71	90.28	87.31	87.17	85.82
SF	74.73	76.05	77.77	78.29	79.40	76.13	77.42	73.47	79.53	77.99	77.08	79.37	85.02	83.13	86.82	87.82	87.35	86.51	86.96	85.37	85.99	86.65	89.28	86.91	86.61	81.90
NOF	77.08	77.74	77.61	81.42	81.18	79.34	80.37	81.07	79.28	78.79	81.03	81.70	81.00	81.92	82.64	83.61	85.04	85.87	88.18	84.22	88.58	90.07	90.64	88 54	86.16	82.94
GOF	77.59	77.80	77.62	81.53	81.27	79.46	80.53	81.26	79.45	78.94	81.25	81.91	81.24	82.21	82.97	83.79	85.19	85.93	89.37	86.29	89.32	90.87	90.97	89.52	86.74	83.30
NCF	57.54			63.93	64.60	60.50	62.29	59.68	63.09	61.46	62.74	64.78	68.90	68.30	71.76	73.43	74.39	74.26	76.65	72.03	76.16	78.20	80.94	77.00	74.68	68.02
GCF		59.23				60.58								68.50						73.79			81.26	77.85	75.18	68.30
U-Yrs	19	20	21	20	20	21	22	25	25	25	25	25	25	25	25	25	25	25	25	20	25	25	25	120	245	537
AGE	7.59	8.10	8.60	9.05	10.05	10.52	11.06	10.94	11.91	12.82	13.80	14.80	15.80	16.80	17.80	18.79	19.79	20.80	21.80	21.25	23.80	24.80	25.80	2004:	2004:	2004:
Year		1983		1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2000-2004	1995	1982-2004:

Date-10/13/05

NORTH AMERICAN ELECTRIC RELIABILITY COUNCIL GENERATING AVAILABILITY DATA SYSTEM

1982-2004 Historical Availability Statistics

FOSSIL Coal Primary 1000 MW Plus

	-																							•	•	
Net Generation MWHr/U-Yr	5.209.417	5,939,575	5,446,674	6,230,221	7,034,879	5,903,240	6,518,229	6,485,553	6,550,240	6,527,214	7,316,149	7,323,227	6,025,860	6,273,525	6,664,072	6,937,703	6,625,176	6,555,239	7,648,486	7,714,140	8,196,671	7,608,617	8,196,566	7,871,994	7,240,692	6,789,948
ity MW) Dep	1.232	1 225	1,223	1,231	1,231	1,235	1,235	1,235	1,241	1,188	1,253	1,253	1,253	1,253	1,253	1,238	1,234	1,234	1,235	1,234	1,235	1,234	1,236	1,235	1,239	1,236
Capacity (Net, MW) Max Dep	1.232		1,223	1,231	1,231	1,235	1,235	1,235	1,241	1,188	1,253	1,253	1,253	1,253	1,253	1,238	1,234	1,238	1,239	1,238	1,239	1,238	1,240	1,239	1,241	1,237
ARTS Actual	10 56	10 44	11.33	11.40	12.80	12.40	9.70	10.61	11.36	11.50	8.17	10.50	9.67	10.17	9.42	8.75	9.42	10.83	11.58	11.17	10.48	9.75	12.08	11.01	10.36	10.57
UNIT STARTS Attempts Act	10 56	10 44	14.89	12.10	13.70	13.20	10.30	11.01	11.82	11.92	8.67	10.67	10.00	10.75	10.42	9.17	9.83	11.33	11.75	11.17	10.65	10.08	12.92	11.31	10.81	11.12
WEFOR A		11 63	15.07	12.29	8.57	14.20	9.23	11.64	11.45	6.68	5.58	5.27	8.92	7.61	4.85	7.12	7.44	8.27	9.01	8.48	9.16	11.95	8.77	9.46	8.26	9.23
WFOR	11 51		13.16	10.18	6.41	11.86	6.15	6.99	8.99	5.00	4.77	4.26	8.20	6.53	3.86	5.97	6.04	6.56	7.54	7.10	7.60	10.73	7.54	8.09	6.94	7.41
CAPACITY WEIGHTED STATISTICS WAF WEAF WSOF WFOF	8 50	07 J	10.76	8.57	5.73	9.93	5.33	6.02	7.90	4.29	4.05	3.65	7.03	5.58	3.41	5.55	5.39	5.85	6.74	6.38	7.09	9.43	6.80	7.29	6.22	6.44
IGHTED S WSOF	17 75	11 05	14.68	14.03	9.23	14.86	11.22	13.48	11.85	13.33	12.84	12.66	13.72	14.11	11.36	6.18	10.78	10.77	10.60	9.38	6.50	12.02	9.69	9.65	10.15	11.71
ACITY WE WEAF		00.02			82.96	72.85	80.22	75.36		78.74	80.48	81.05	76.91	77.66	83.04	86.16	81.02	80.08	80.35	82.16	84.22	76.58	81.49	80.95	81.27	79.06
CAP WAF	72 66		04.20 74 55	77.40	85.04	75.20	83.45	80.51	80.25	82.38	83.11	83.69	79.26	80.31	85.23	88.27	83.83	83.38	82.66	84.24	86.41	78.56	83.51	83.07	83.64	81.85
 WSF		10.00	01.67	75.60	83.61	73.85	81.33	80.10	79.98	81.42	80.92	82.04	78.66	79.97	84.84	87.40	83.79	83.32	82.61	83.42	86.19	78.46	83.41	87 81	83.33	80.45
r of Units		n (nσ	10	10	10	10	11	11	12	12	12	12	12	12	12	12	12	12	12	12	12	12			
Number of Util. Units		- t	t 4	н и л	, г о	ъ С	5	ß	ъ	9	9	9	9	9	9	9	9	9	9	9	9	9	9		2004	2004:
Year		7061	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2000-2004	1995-2004	1982-2004

																								4 1 1		
ART	550.80	610.90	540.69	577.48	572.23	516.06	736.62	659.75	612.92	624.93	868.39	685.51	710.94	688.05	789.05	876.85	779.42	673.55	622.27	653.03	719.44	698.56	603.96	656.54	703.50	665.50
SR	100.00	100.00	76.09	94.21	93.43	93.94	94.17	96.37	96.11	96.48	94.23	98.41	96.70	94.60	90.40	95.42	95.83	95.59	98.55	100.00	98.40	96.73	93.50	97.35	95.84	95.05
EFOR	16.69	11.99	16.37	12.48	8.75	14.55	9.38	11.89	11.68	6.74	5.75	5.37	8.86	7.86	4.96	7.15	7.49	8.42	9.41	8.76	9.19	12.41	9.12	9.76	8.47	9.46
FOR	11.61	8.33	14.34	10.32	6.47	12.13	6.20	7.04	9.12	5.06	4.91	4.33	8.13	6.71	3.94	6.01	6.09	6.63	7.84	7.29	7.55	11.07	7.79	8.29	7.09	7.57
FOF	8.72	6.62	11.67	8.64	5.78	10.08	5.37	6.05	7.97	4.37	4.17	3.72	6.94	5.74	3.48	5.60	5.43	5.92	6.98	6.55	7.03	9.68	7.02	7.245	6.34	6.57
SOF	17.63	11.73	14.94	14.49	9.15	15.44	10.99	13.62	12.27	12.65	12.88	12.51	13.98	14.03	11.52	5.99	10.72	10.75	10.93	9.34	6.67	12.46	9.82	9.85	10.23	11.81
EAF	67.74	78.14	71.46	74.48	82.89	72.10	80.32	75.07	75.77	79.47	80.34	81.14	76.77	77.57	82.82	86.32	81.07	79.97	79.67	81.91	84.02	75.74	81.05	80.47	81.01	78.79
AF	73.64	81.64	73.37	76.87	85.07	74.48	83.63	80.33	79.76	82.98	82.95	83.77	79.08	80.23	85.01	88.42	83.85	83.34	82.09	84.11	86.30	77.85	83.17	82.69	83.43	81.62
SF	66.40	72.81	69.74	75.15	83.61	73.05	81.34	79.90	79.48	82.04	80.77	82.17	78.48	79.88	84.62	87.58	83.81	83.27	82.03	83.27	86.09	77.75	83.06	82.43	83.13	80.24
NOF	73.13	75.64	71.39	76.40	78.01	73.90	73.89	74.81	75.35	77.05	82.12	81.30	69.78	71.45	71.35	73.17	73.12	72.52	85.06	85.25	87.67	89.39	90.23		79.85	77.81
GOF	73.10	75.75	71.59	76.40	78.04	73.93	74.04	75.00	75.55	77.23	82.98	82.19	70.47	72.61	72.25	74.17	73.16	72.67	84.96	85.18	87.54	89.42	90.32		80.20	78.14
NCF	. 7	55.35	50.72	57.75	65.23	54.57	60.10	59.92	60.27	62.73	66.45	66.70	54.89	57.14	60.53	63.95	61.27	60.42	70.27	71.11	75.57	70.13	75.26	72.46	66.54	62.60
GCF	•	55.50	50.80	57.74	65.28	54.62	60.22	60.09	60.45	62.91	67.18	67.41	55.56	58.00	61.39	64.74	61.32	60.54	70.26	71.08	75.47	70.16	75.35	72.45	66.83	62.89
U-Yrs	6	6	6	10	10	10	10	10	11	12	12	12	12	12	12	12	12	12	12	12	12	12	12		120	256
AGE	8.11	9.11	10.11	10.10	11.10	12.10	13.10	13.98	13.82	13.58	14.58	15.58	16.58	17.58	•	19.58	20.58	21.58	22.58	23.58	24.51	25.58	26.58	2004:	2004:	2004:
Year	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2000-2004	1995 - 2004	1982-2004

Staff/104 Galbraith/18

CASE: UE 180/UE 181 WITNESS: Maury Galbraith

PUBLIC UTILITY COMMISSION OF OREGON

STAFF EXHIBIT 105

Exhibits in Support of Direct Testimony

July 18, 2006

NORTH AMERICAN ELECTRIC RELIABILITY COUNCIL GENERATING AVAILABILITY DATA SYSTEM DISTRIBUTION OF KEY PARAMETERS Date-10/13/05

	FOSSIL Oi	l Primary	All MW Si	zes 2000-2004	1 Data	
E		FREQUENCY		CUMULATIVE FREQUENCY	CUMULATIVE PERCENT	
-	0.0- 0.9	1	0.69	1	0.69	
	28.0- 28.9	1	0.69	2	1.38	
	36.0- 36.9	1	0.69	3	2.07	
	44.0-44.9	1	0.69	4	2.76	
	44.0 - 44.9 47.0 - 47.9	1	0.69	5	3.45	
	51.0- 51.9	1	0.69	6	4.14	
	55.0- 55.9	1	0.69	7	4.83	
	58.0- 58.9	1	0.69	8	5.52	
		2	1.38	10	6.90	
	62.0-62.9	1	0.69	11	7.59	
	63.0- 63.9	1	0.69	12	8.28	
	64.0- 64.9	1	0.69	13	8.97	
	65.0- 65.9	2	1.38	15	10.34	
	66.0- 66.9	3	2.07	18	12.41	
	68.0- 68.9	1	0.69	19	13.10	
	70.0- 70.9	1	0.69	20	13.79	
	71.0- 71.9	1	0.69	21	14.48	
	72.0- 72.9	3	2.07	24	16.55	
	73.0- 73.9	2	1.38	26	17.93	
	74.0-74.9		1.38	28	19.31	
	75.0- 75.9	2 7	4.83	35	24.14	
	76.0- 76.9	2	1.38	37	25.52	
	77.0- 77.9		2.76	41	28.28	
	78.0- 78.9	4 4	2.76	45	31.03	
	79.0- 79.9		4.14	51	35.17	
	80.0- 80.9	6	2.07	54	37.24	
	81.0- 81.9	3	2.07	57	39.31	
	82.0-82.9	3	1.38	59	40.69	
	83.0- 83.9	2	2.76	63	43.45	
	84.0- 84.9	4	2.76	67	46.21	
	85.0- 85.9	4	6.90	77	53.10	
	86.0- 86.9	10	4.14	83	57.24	
	87.0- 87.9	6		93	64.14	
u da	88.0- 88.9	10	6.90 6.90	103	71.03	
	89.0- 89.9	10		103	75.86	
	90.0- 90.9	7	4.83	110	80.00	
	91.0- 91.9	6	4.14	126	86.90	· · ·
	92.0- 92.9	10	6.90	130	89.66	
	93.0- 93.9	4	2.76	130	91.72	
	94.0- 94.9	3	2.07	133	92.41	
	95.0- 95.9	1	0.69	134	95.17	
	96.0- 96.9	4	2.76	140	96.55	
	98.0- 98.9	2	1.38	140	97.93	
	99.0- 99.9	2	1.38		100.00	
	100%	3	2.07	145	100.00	

Staff/105 Galbraith/2

NCF	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
-1.00.1	4	2.76	4	2.76
0.0- 0.9	13	8.97	17	11.72
1.0- 1.9	3	2.07	20	13.79
2.0- 2.9	4	2.76	24	16.55
3.0- 3.9	1	0.69	25	17.24
4.0- 4.9	12	8.28	37	25.52
5.0- 5.9	4	2.76	41	28.28
6.0- 6.9	3	2.07	44	30.34
7.0- 7.9	6	4.14	50	34.48
8.0- 8.9	3	2.07	53	36.55
9.0- 9.9	3	2.07	56	38.62
10.0- 10.9	5	3.45	61	42.07
11.0- 11.9	1	0.69	62	42.76
12.0- 12.9	2	1.38	64	44.14
13.0- 13.9	3	2.07	67	46.21
14.0- 14.9	2	1.38	69	47.59
15.0- 15.9	5	3.45	74	51.03
16.0- 16.9	2	1.38	76	52.41
17.0- 17.9	3	2.07	79	54.48
18.0- 18.9	1	0.69	80	55.17
19.0- 19.9	2	1.38	82	56.55
20.0-20.9	1	0.69	83	57.24 57.93
21.0- 21.9	1	0.69	84 85	58.62
24.0-24.9	1	0.69		60.00
25.0-25.9	. 2	1.38	87 88	60.69
26.0-26.9	1	0.69	89	61.38
27.0-27.9	1	0.69	90	62.07
28.0-28.9	1	0.69	90	62.76
29.0-29.9	1	0.69 0.69	92	63.45
30.0- 30.9	1	0.69	93	64.14
31.0- 31.9	1 1	0.69	94	64.83
33.0- 33.9	3	2.07	97	66.90
34.0- 34.9 35.0- 35.9	2	1.38	99	68.28
36.0- 36.9	2	1.38	101	69.66
37.0- 37.9	1	0.69	102	70.34
38.0- 38.9	2	1.38	104	71.72
39.0- 39.9	1	0.69	105	72.41
42.0-42.9	3	2.07	108	74.48
44.0-44.9	1	0.69	109	75.17
45.0-45.9	2	1.38	111	76.55
47.0- 47.9	3	2.07	114	78.62
48.0-48.9	2	1.38	116	80.00
49.0-49.9	2	1.38	118	81.38
50.0- 50.9	1	0.69	119	82.07
51.0- 51.9	2	1.38	121	83.45
52.0- 52.9	4	2.76	125	86.21
53.0- 53.9	1	0.69	126	86.90
54.0- 54.9	2	1.38	128	88.28
55.0- 55.9	1	0.69	129	88.97
56.0- 56.9	5	3.45	134	92.41
57.0- 57.9	1	0.69	135	93.10
58.0- 58.9	1	0.69	136	93.79
59.0- 59.9	1	0.69	137	94.48
60.0- 60.9	1	0.69	138	95.17
63.0- 63.9	2	1.38	140	96.55
65.0- 65.9	1	0.69	141	97.24
70.0- 70.9	1	0.69	142	97.93
74.0- 74.9	1	0.69	143	98.62
75.0- 75.9	2	1.38	145	100.00

FOR	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
0.0- 0.9	66	45.52	66	45.52
1.0- 1.9	30	20.69	96	66.21
2.0- 2.9	10	6.90	106	73.10
3.0- 3.9	13	8.97	119	82.07
4.0- 4.9	7	4.83	126	86.90
5.0- 5.9	6	4.14	132	91.03
6.0- 6.9	5	3.45	137	94.48
7.0- 7.9	1	0.69	138	95.17
8.0- 8.9	1	0.69	139	95.86
9.0- 9.9	2	1.38	141	97.24
11.0- 11.9	2	1.38	143	98.62
12.0-12.9	1	0.69	144	99.31
14.0- 14.9	1	0.69	145	100.00

EFOR	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
0.0- 0.9	24	 16.55	24	16.55
1.0 - 1.9	10	6.90	34	23.45
2.0- 2.9	7	4.83	41	28.28
3.0- 3.9	10	6.90	51	35.17
4.0- 4.9	7	4.83	58	40.00
5.0- 5.9	10	6.90	68	46.90
6.0- 6.9	8	5.52	76	52.41
7.0- 7.9	8	5.52	84	57.93
8.0- 8.9	4	2.76	88	60.69
9.0- 9.9	4	2.76	92	63.45
10.0-10.9	4	2.76	96	66.21
11.0- 11.9	3	2.07	99	68.28
12.0-12.9	4	2.76	103	71.03
13.0- 13.9	1	0.69	104	71.72
14.0-14.9	1	0.69	105	72.41
15.0- 15.9	2	1.38	107	73.79
16.0- 16.9	3	2.07	110	75.86
17.0- 17.9	1	0.69	111	76.55
18.0- 18.9	1	0.69	112	77.24
19.0- 19.9	2	1.38	114	78.62
20.0- 20.9	2	1.38	116	80.00
21.0- 21.9	1	0.69	117	80.69
22.0- 22.9	1	0.69	118	81.38
23.0- 23.9	2	1.38	120	82.76
24.0- 24.9	3	2.07	123	84.83
26.0- 26.9	1	0.69	124	85.52
34.0- 34.9	3	2.07	127	87.59
35.0- 35.9	· 1	0.69	128	88.28
36.0- 36.9	1	0.69	129	88.97
38.0- 38.9	1	0.69	130	89.66
40.0- 40.9	1	0.69	131	90.34
44.0- 44.9	1	0.69	132	91.03
47.0- 47.9	1	0.69	133	91.72 93.10
57.0- 57.9	.2	1.38	135	93.79
59.0- 59.9	1	0.69	136	94.48
61.0- 61.9	1	0.69	137	95.17
62.0- 62.9	1	0.69	138	95.86
69.0- 69.9	1	0.69	139	96.55
71.0- 71.9	1	0.69	140 141	97.24
76.0- 76.9	1	0.69		97.93
78.0- 78.9	1	0.69	142 143	98.62
85.0- 85.9	1	0.69	143	98.82 99.31
97.0- 97.9	1	0.69	144	100.00
100%	1	0.69	140	100.00

EFORd	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
0.0- 0.9	43	29.66	43	29.66
1.0- 1.9	14	9.66	57	39.31
2.0- 2.9	20	13.79	77	53.10
3.0- 3.9	11	7.59	88	60.69
4.0- 4.9	12	8.28	100	68.97
5.0- 5.9	6	4.14	106	73.10
6.0- 6.9	6	4.14	112	77.24
7.0- 7.9	10	6.90	122	84.14
8.0- 8.9	5	3.45	127	87.59
9.0- 9.9	4	2.76	131	90.34
10.0-10.9	2	1.38	133	91.72
11.0- 11.9	3	2.07	136	93.79
12.0 - 12.9	2	1.38	138	95.17
15.0- 15.9	2	1.38	140	96.55
18.0- 18.9	1	0.69	141	97.24
19.0-19.9	1	0.69	142	97.93
20.0-20.9	1	0.69	143	98.62
29.0-29.9	1	0.69	144	99.31
100%	1	0.69	145	100.00

YEAR	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
 1941	1	0.69	1	0.69
1947	2	1.38	3	2.07
1948	5	3.45	8	5.52
1949	4	2.76	12	8.28
1950	2	1.38	14	9.66
1951	3	2.07	17	11.72
1952	6	4.14	23	15.86
1953	7	4.83	30	20.69
1954	5	3.45	35	24.14
1955	5	3.45	40	27.59
1956	3	2.07	43	29.66
1957	1	0.69	44	30.34
1958	7	4.83	51	35.17
1959	4	2.76	55	37.93
1960	4	2.76	59	40.69
1961	- 5	3.45	64	44.14
1962	4	2.76	68	46.90
1963	6	4.14	74	51.03
1964	4	2.76	78	53.79
1965	3	2.07	81	55.86
1966	2	1.38	. 83	57.24
1967	2	1.38	85	58.62
1968	6	4.14	91	62.76
1969	2	1.38	93	64.14
1970	1	0.69	94	64.83
1971	2	1.38	96	66.21
1972	6	4.14	102	70.34
1973	3	2.07	105	72.41
1974	12	8.28	117	80.69
1975	5	3.45	122	84.14
1976	4	2.76	126	86.90
1977	9	6.21	135	93.10
1978	2	1.38	137	94.48
1979	1	0.69	138	95.17
1980	5	3.45	143	98.62
1981	2	1.38	145	100.00

RATING (MW)	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
0.0- 19.9 MW	3	2.07	3	2.07
20.0- 39.9 MW	6	4.14	9	6.21
40.0- 59.9 MW	16	11.03	25	17.24
60.0- 79.9 MW	14	9.66	39	26.90
80.0- 99.9 MW	6	4.14	45	31.03
100.0-119.9 MW	10	6.90	55	37.93
120.0-139.9 MW		6.21	64	44.14
140.0-159.9 MW	3	2.07	67	46.21
160.0-179.9 MW	8	5.52	75	51.72
180.0-199.9 MW	4	2.76	79	54.48
200.0-219.9 MW	2	1.38	81	55.86
220.0-239.9 MW	4	2.76	85	58.62
260.0-279.9 MW	1	0.69	86	59.31
280.0-299.9 MW	2	1.38	88	60.69
300.0-319.9 MW	5	3.45	93	64.14
360.0-379.9 MW	8	5.52	101	69.66
380.0-399.9 MW	3	2.07	104	71.72
400.0-419.9 MW	10	6.90	114	78.62
420.0-439.9 MW	4	2.76	118	81.38
500.0-519.9 MW	4	2.76	122	84.14
540.0-559.9 MW	2	1.38	124	85.52
560.0-579.9 MW	2	1.38	126	86.90
600.0-619.9 MW	r 5	3.45	131	90.34
620.0-639.9 MW	1	0.69	132	91.03
700.0-719.9 MW	1	0.69	133	91.72
740.0-759.9 MW		0.69	134	92.41
780.0-799.9 MW	1 2	1.38	136	93.79
820.0-839.9 MW	1	0.69	137	94.48
840.0-859.9 MW	4	2.76	141	97.24
860.0-879.9 MW	1 3	2.07	144	99.31
1000+ MW	1	0.69	145	100.00

CASE: UE 180/UE 181 WITNESS: Bill Wordley

PUBLIC UTILITY COMMISSION OF OREGON

STAFF EXHIBIT 200

Direct Testimony

July 18, 2006

CERTAIN INFORMATION CONTAINED IN STAFF EXHIBIT 200 IS CONFIDENTIAL AND SUBJECT TO PROTECTIVE ORDER NO. 06-111. YOU MUST HAVE SIGNED APPENDIX B OF THE PROTECTIVE ORDER IN DOCKET UE 180 TO RECEIVE THE CONFIDENTIAL VERSION OF THIS EXHIBIT.

1	Q.	PLEASE STATE YOUR NAME, BUSINESS ADDRESS AND
2		OCCUPATION.
3	A.	My name is Bill Wordley. My business address is 550 Capitol Street NE,
4		Suite 215, Salem, Oregon 97301. I am a Senior Economist in the
5		Economic Research & Financial Analysis Division of the Utility Program of
6		the Public Utility Commission of Oregon (OPUC).
7	Q.	WHAT IS YOUR EDUCATIONAL BACKGROUND AND WORK
8		EXPERIENCE?
9	Α.	My witness qualification statement is found in Staff/201, Wordley/1.
10	Q.	WHAT IS THE PURPOSE OF YOUR DIRECT TESTIMONY?
11	A.	In this testimony I will describe two of staff's proposed adjustments to the
12		power costs that PGE has included in its filed case. I will also describe
13		limitations with the company's power cost modeling, and staff's
14		recommendation that the company pursue stochastic power cost modeling
15		for use in rate making.
16	Q.	PLEASE SUMMARIZE THE TWO ADJUSTMENTS TO POWER COSTS.
17	A.	Staff proposes the following adjustments to PGE's power costs:
18		(1) A reduction of \$1,647,885 to match the costs and revenues from
19		ancillary services that PGE provides to other entities; and
20		(2) A reduction of \$12,352,530 to account for the extrinsic value
21		associated with PGE's flexible purchase power contracts and gas-fired
22		generating plants.
23	Q.	WHAT IS STAFF'S RECOMMENDATION REGARDING PGE'S POWER
24		COST MODELING?

1	1	
1	A.	The Commission should indicate a preference for stochastic power cost
2		modeling. Modeling the uncertainty and interaction associated with
3		system loads, electricity and natural gas market prices, hydroelectric
4		generation, and thermal unit availability provides a more realistic
5		simulation of PGE's system operations, the company's expected power
6		costs, and produces a distribution of power costs that can be used to
7		design a fair power cost adjustment mechanism.
8		Adjustment for Ancillary Services
9	Q.	WHAT ARE ANCILLARY SERVICES?
10	A.	The North American Electric Reliability Council (NERC) defines ancillary
11		services as:
12		Those services that are necessary to support the transmission of
13		capacity and energy from the resources to the loads while
14		maintaining reliable operation of the provider's transmission system
15		in accordance with good utility practice. (Source: NERC website)
16	Q.	HOW LONG HAS PGE BEEN SELLING ANCILLARY SERVICES?
17	A.	The company's response to staff discovery indicates PGE began selling
18		ancillary services in June 2005.
19	Q.	WHY IS STAFF PROPOSING AN ADJUSTMENT IN THIS CASE FOR
20		ANCILLARY SERVICES?
21	A.	Exhibit 202 is a copy of the company's response to staff DR 307. In that
22		response the company said:
23		In the 2007 test year revenue requirement, we do include the costs
24		of ancillary service sales, but not the corresponding revenues.
25		Staff's proposed adjustment corrects the mismatch of benefits and costs.

)

1	Q.	HOW WAS STAFF'S ADJUSTMENT CALCULATED?
2	A.	The company provided data in its response to staff DR 307 that indicated
3		revenue from ancillary services sales was (confidential) for the
4		eleven month period June 2005-April 2006. Staff annualized this value to
5		develop the proposed and the set of the set
6		Power Cost Modeling
7	Q.	WHERE ARE THE LIMITATIONS IN PGE'S POWER COST
8		MODELING?
9	A.	The company should be commended for committing resources and
10		expertise to the development and improvement of its MONET power cost
11		modeling capability. The concerns that staff has are not with the MONET
12		model logic and structure but rather with the some of the primary inputs to
13		the model.
14	Q.	WHICH INPUTS TO MONET CONCERN STAFF?
15	A.	The major variable inputs to MONET that concern staff are retail system
16		loads, market prices for electricity and natural gas, thermal power plant
17		forced outages, and hydro generation availability. These are the primary
18		driving variables to power costs in MONET.
19	Q.	WHAT CONCERNS DOES STAFF HAVE WITH THESE VARIABLE
20		INPUTS TO MONET?
21	A.	The major inputs to MONET are normalized/smoothed, deterministic and
22		assumed to be not correlated. In reality, these variables are not smooth,
23		volatile, uncertain, and correlated to some extent. Unfortunately, the
24		unrealistic representation of the major inputs in MONET yields a power
		•

cost estimate that is inconsistent with the expected actual operation of 1 2 PGE's system. Consequently, MONET's power cost estimate should not 3 be included in rates without adjustment. The extrinsic value adjustment proposed by staff will improve the company's MONET power cost 4 5 estimate. CAN YOU PROVIDE SOME EXAMPLES OF THE PROBLEM WITH THE 6 Q. MONET INPUTS THAT YOU HAVE IDENTIFIED? 7 Yes. For example, the hourly system load used in MONET assumes 8 Α. 9 "normal" weather (15-year average), which yields a smooth load shape. This is not how loads (or weather) occur on an actual basis. The 10 difference between the smooth loads in MONET and bumpy actual loads 11 contribute to a significant difference in the actual operation of the power 12 13 system compared to what is modeled in MONET. Power plant forced outages in MONET are assumed to be spread 14 evenly over all hours of the test year. In actual operation plant forced 15 16 outages are random. PGE simply "derates" or reduces the capacity 17 available from all power plants in all hours. This means that, even during profitable market conditions, MONET prevents the maximum generation 18 19 output from occurring in the modeling run, unrealistically limiting profit 20 margins and resulting in an increase to "modeled" power cost. 21 Much like the smoothed representation of system load, the power and natural gas price inputs to MONET are also smoothed. Again, this is not 22 23 how market prices occur on an actual basis. The smoothed 24 representation of prices prevents MONET from capturing profitable market

opportunities that occur in actual operation. Exhibit 203 is a comparison 1 of the shape of actual Mid-Columbia power prices, on and off-peak, and 2 3 actual Sumas gas prices for May 2006 to the representation of these prices in MONET. These graphs illustrate the difference between actual 4 and normalized prices. This difference contributes to a significant 5 difference in the actual operation of the power system to what is modeled 6 7 in MONET. Another limitation related to the primary inputs variables in MONET is 8 that there is no correlation assumed between the variables. Correlation is 9 a measure of the extent to which two variables change together. It is likely 10 that some level of correlation exists, for example, between loads and 11 power prices, between hydro conditions and power prices, and between 12 gas price and power price. By not capturing these correlations between 13

variables, MONET is not accurately portraying the real world of power operations.

16

14

15

17

18

19

20

21

22

23

24

Q.

WHAT DOES STAFF RECOMMEND REGARDING THE PROBLEMS YOU HAVE IDENTIFIED RELATED TO THE INPUTS TO MONET?

A. Staff recommends that the company actively pursue stochastic power cost modeling. Stochastic modeling can provide a more realistic simulation of PGE's actual power system operations. It can provide a realistic representation of the variability, and any interactions, associated with retail loads, natural gas and electricity market prices, hydroelectric generation, and thermal unit availability. In addition, stochastic power cost modeling provides a distribution of power costs that can be used to design a

1		reasonable PCA mechanism. This modeling will improve "normalization"
2		of power costs and assessment of power cost risk.
3	Q.	HAS STAFF RECOMMENDED STOCHASTIC POWER COST
4		MODELING BEFORE?
5	A.	Yes. In docket UE 165, staff testimony recommended stochastic power
6		cost modeling for PGE. In dockets UE 173 and UE 179, staff testimony
7		recommended stochastic power cost modeling for PacifiCorp.
8	Q.	WHAT COMMITMENT DID PGE MAKE IN UE 165 REGARDING
9		STOCHASTIC POWER COST MODELING?
10	A.	As part of a stipulation between staff and the company in UE 165, PGE
11		committed to work with staff to evaluate stochastic modeling of power
12		costs for possible incorporation into rates.
13	Q.	WHAT IS THE STATUS OF THAT EVALUATION EFFORT?
14	A.	The company hired a consultant who conducted an initial study on the
15		potential and issues surrounding stochastic power cost modeling. There
16		is still more work to do before a determination can be made regarding the
17		use of stochastically modeled power cost in rates. Staff supports the
18		company's efforts, and would like to see more progress on the company's
19		part soon. However, at this point, it is not clear to staff that PGE will make
20		any additional effort to develop stochastic power cost modeling capability
21		without the Commission indicating its desire for the company to continue
22		that development.

15

16

17

1 Q. ARE THERE INSTANCES WHERE PGE HAS USED STOCHASTIC 2 MODELING IN PROCEEDINGS BEFORE THE PUBLIC UTILITY 3 COMMISSION OF OREGON?

Yes. In the company's last Integrated Resource Plan (IRP docket LC-33), 4 Α. PGE used stochastic modeling to help identify the best resource plan. 5 (See Delivering New Choices for PGE's Customers, August 2002; Chapter 6 3, page 17 and Appendix M. Use of Stochastic Electric Prices in Our Plan) 7 In addition, PGE used its "spread-option" model to evaluate resource 8 alternative bids received in response to the company's 2004 request-for-9 proposals (RFP) for resource capacity. The RFP was conducted following 10 Commission acknowledgement of the company's resource action plan in 11 LC-33. The spread-option model includes and considers the volatility and 12 correlation between natural gas and power market prices in determining 13 14 the value of resources.

Q. IS IT APPROPRIATE TO TRANSFER THESE STOCHASTIC MODELING TECHNIQUES FROM THE RESOURCE PLANNING AND ACQUISITION ARENA TO THE RATEMAKING ARENA?

A. Yes. The elements that PGE has modeled stochastically for purposes of
resource planning and evaluating resource alternatives are some of the
same elements that have traditionally been, and currently are, normalized
in the determination of test year revenue requirements. Risk is an
important consideration in both resource planning and ratemaking. In
each arena, sound decision-making requires the best possible
measurement and assessment of the relevant risks. In the IRP arena, the

1		company and Commission evaluate the risks associated with alternative
2		portfolios comprised of existing resources and resource additions. The
3		goal is to select the least-cost and least-risk resource portfolio. In the
4		ratemaking arena, the company and Commission need to consider the
5		risks of the existing resource portfolio and evaluate alternative forms of
6		regulation. The goal is to select ratemaking methods that allocate risk
7		fairly and provide the company with the opportunity to earn the allowed
8		rate-of-return. Staff recommends that the Commission employ a
9		consistent approach when considering portfolio risk. It is inconsistent to
10		use sophisticated risk modeling when making IRP decisions, only to revert
11		to deterministic or point-estimate modeling when making ratemaking
12		decisions.
13	Q.	IS STAFF'S PROPOSED EXTRINSIC VALUE ADJUSTMENT RELATED
14		TO THE LIMITATIONS OF THE EXISTING MONET POWER COST
15		MODELING YOU HAVE DISCUSSED EARLIER IN YOUR TESTIMONY?
16	A.	Yes. If the company successfully implemented stochastic power cost
17		modeling, there would no longer be a need for staff's proposed extrinsic
18		value adjustment. Stochastic power cost modeling would mitigate the
19		concerns regarding the primary inputs to MONET discussed earlier, and
20		would capture the option (extrinsic) value of the of PGE's flexible
21		resources.
22	Q.	IS THIS CASE THE FIRST TIME STAFF HAS PROPOSED THE
23		EXTRINSIC VALUE ADJUSTMENT?

1	A.	No. While this is the first PGE case in which staff has presented written
2		testimony recommending an extrinsic value adjustment, it is not the first
3		time staff proposed this adjustment. (Staff also recently offered testimony
4		recommending an extrinsic value adjustment in PacifiCorp's current
5		general rate case, UE 179). Further, staff has proposed the extrinsic
6		value adjustment in settlement negotiations in the last three PacifiCorp
7		general rate cases (UE 147, UE 170, and UE 179).
8	-	Extrinsic Value Adjustment
9	Q.	WHAT IS EXTRINSIC VALUE OF POWER RESOURCES?
10	A.	Extrinsic value is the dollar value produced by the flexibility of a power
11		resource to operate profitably in a wholesale power market characterized
12		by volatile and correlated natural gas and electricity prices. This flexibility
13		is also called optionality. It is widely understood in the industry that
14		optionality has value. In the following passage from PGE's last IRP the
15		company acknowledges the concept of extrinsic value:
16		The optionality of physical plants, particularly the ability to shut
17		them off when market prices are low, allows them to push down
18		overall costs when market prices are volatile, although not on
19 20		average higher than under conditions of stable prices. (Delivering New Choices for PGE' Customers, August 2002; page 192)
21		While acknowledging the existence of optionality or extrinsic value in its
22		IRP, the company has not incorporated it into ratemaking.

Q. WHAT DO YOU MEAN BY FLEXIBILITY OF A POWER RESOURCE?

A. Flexibility of power plant is the ability to run or not run the plant. Flexible purchase power contracts contain specific provisions that allow the buyer to decide when to take delivery of power from the seller (e.g. call options).

Q.

HOW IS THIS FLEXIBILITY USED?

A. During actual operation of the power system, PGE has the option, depending on market conditions, to use or not use its flexible resources to make a positive margin. The company runs its power plants and takes delivery from its flexible purchase power contracts whenever the market price for power exceeds the cost of producing power from its plants or exceeds the cost of contract power. The company does not run its power plants or take delivery from its flexible purchase power contracts whenever the market price for power is less than the cost of producing power from its plants or less than the cost of contract power. This is called economic dispatch.

16

11

12

13

14

15

Q. HOW IS THE EXTRINSIC VALUE CREATED?

A. Extrinsic value comes from the profitable opportunities that result from
 application of economic dispatch of the company's flexible resources in
 the uncertain market. As discussed earlier in this testimony, this inherent
 uncertainty in market prices is not included in MONET; consequently
 PGE's power cost forecast needs to be adjusted for the extrinsic value of
 the company's flexible resources not captured by MONET.

 23
 Q.
 WHICH OF PGE'S POWER RESOURCES HAVE EXTRINSIC VALUE IN

 24
 THE TEST YEAR?

Generally, for a resource to have extrinsic value in any forecasted period, 1 Α. 2 the resource will not be dispatched or used to its full capacity, that is, the 3 resource has unused capacity. In the 2007 test year in this case, two of the PGE's power plants and three purchase power contracts have unused 4 5 capacity. HOW MUCH UNUSED POWER RESOURCE CAPACITY IS THERE IN 6 Q. 7 THE COMPANY'S FILLED CASE? All of the PGE's existing gas-fired generating plants have a lot of unused Α. 8 9 capacity in the company's filed case. The Beaver plant has 85% unused capacity in MONET. This is all of Beaver's available capacity; the other 10 15% is the forced outage derate. Coyote Springs has 39% unused 11 capacity in MONET (out of 88% total available capacity; with the other 12 13 12% being the forced outage derate). The three purchase power contracts with unused capacity in MONET are the PPM cold snap contract 14 at 100% unused, the PPM super-peak contract also with 100% unused 15 16 and the Morgan Stanley tolling contract with 12% unused. HOW DID STAFF ESTIMATE EXTRINSIC VALUE? 17 Q. Staff based its calculation of the extrinsic value on PGE's estimates of 18 Α. 19 extrinsic value developed for the evaluation of alternative bids in response 20 to the company's 2004 RFP for resource capacity. Staff took the 21 estimates of extrinsic value from the RFP bid evaluation and used these as the basis to develop extrinsic value estimates for each of the resources 22 with unused capacity in the company's filled case that were identified 23 24 above. Two of the three contracts in the test year with unused capacity

1		were evaluated in the RFP. Staff used those extrinsic value estimates
2		directly. For the third contract with unused capacity, staff based its
3		estimate on the heat rate in the contract compared to the heat rates in the
4		other two contracts. The extrinsic value for the Beaver and Coyote
5		Springs plants was based on the average extrinsic value (in \$/MWh) from
6		the two 2004 RFP bids that actually resulted in contracts, plus each plant's
7		specific MW capacity, heat rate (MMBtu/MWh), and unused capacity as
8		estimated by MONET. Finally staff included an estimated extrinsic value
9		for the 43 MW of dispatchable standby generation at customer's facilities
10		on PGE's system. Staff's estimate of extrinsic value is \$13,990,685. (See
11		Exhibit 204, Alternative I)
12	Q.	WHY DID STAFF BASE THIS ITS ESTIMATE ON THE FULL DERATED
13		AVAILABLE CAPACITY OF THE GAS PLANTS?
13 14	A.	AVAILABLE CAPACITY OF THE GAS PLANTS? Staff used the available resource capacity values that PGE used in its
	A.	
14	А.	Staff used the available resource capacity values that PGE used in its
14 15	А.	Staff used the available resource capacity values that PGE used in its filling. An alternative for the Commission to consider would be based on
14 15 16	А.	Staff used the available resource capacity values that PGE used in its filling. An alternative for the Commission to consider would be based on historical capacity utilization. In 2001 Beaver ran at 67% of capacity and
14 15 16 17	Α.	Staff used the available resource capacity values that PGE used in its filling. An alternative for the Commission to consider would be based on historical capacity utilization. In 2001 Beaver ran at 67% of capacity and Coyote Springs at 87% (source: FERC Form 1). Using these historical
14 15 16 17 18	А.	Staff used the available resource capacity values that PGE used in its filling. An alternative for the Commission to consider would be based on historical capacity utilization. In 2001 Beaver ran at 67% of capacity and Coyote Springs at 87% (source: FERC Form 1). Using these historical capacity utilization values as a cap yields an estimate of \$12,352,530 for
14 15 16 17 18 19	A.	Staff used the available resource capacity values that PGE used in its filling. An alternative for the Commission to consider would be based on historical capacity utilization. In 2001 Beaver ran at 67% of capacity and Coyote Springs at 87% (source: FERC Form 1). Using these historical capacity utilization values as a cap yields an estimate of \$12,352,530 for extrinsic value (Alternative II in Exhibit 204).
14 15 16 17 18 19 20	Α.	Staff used the available resource capacity values that PGE used in its filling. An alternative for the Commission to consider would be based on historical capacity utilization. In 2001 Beaver ran at 67% of capacity and Coyote Springs at 87% (source: FERC Form 1). Using these historical capacity utilization values as a cap yields an estimate of \$12,352,530 for extrinsic value (Alternative II in Exhibit 204). Yet another alternative would be using a 10-year average (Coyote
14 15 16 17 18 19 20 21	A.	Staff used the available resource capacity values that PGE used in its filling. An alternative for the Commission to consider would be based on historical capacity utilization. In 2001 Beaver ran at 67% of capacity and Coyote Springs at 87% (source: FERC Form 1). Using these historical capacity utilization values as a cap yields an estimate of \$12,352,530 for extrinsic value (Alternative II in Exhibit 204). Yet another alternative would be using a 10-year average (Coyote Springs came online in 1995) of capacity utilization, which is 24% for

1	Q.	WHAT IS STAFF'S RECOMMENDED ADJUSTMENT FOR EXTRINSIC
2		VALUE?
3	A.	Staff recommends alternative II, a reduction of \$12,352,530. The
4		alternative II approach acknowledges the extrinsic value in the unused (by
5		MONET) resource capacity, while limiting that capacity utilization to what
6		has been used in the past. This limitation recognizes operating
7		considerations such as minimum generation unit up and down times,
8		generating unit ramp rates (e.g. from zero to maximum generation, and
9		from maximum to zero generation), and gas delivery constraints.
10	Q.	WHY DID STAFF USE THE COMPANY'S ESTIMATES OF EXTRINSIC
11		VALUE FROM AN EARLIER DOCKET?
12	A.	Staff used the most recent and only PGE-specific data available to it in
13		calculating the adjustment. Staff asked the company in Staff DR 306 to
14		provide estimates of extrinsic value based on the MONET model run that
15		supported the company's filing in this docket, but the company response
16		was that 'We have not performed the extensive studies requested". So
17		staff used the only estimate of extrinsic value it has, which was one
18		developed and used by PGE to help evaluate RFP bids. Extrinsic value is
19		an important benefit that always needs to be included in the total value
20		determination of any power resource alternative.
21	Q.	IS STAFF'S EXTRINSIC VALUE ADJUSTMENT CONSISTENT WITH
22		NORMALIZED RATEMAKING?
23		Yes. This adjustment improves normalized rate-making by recognizing
24		characteristics of company assets that provide value not captured by

"traditional" normalized rate-making for power costs. The company, but
not customers, has been benefiting from the extrinsic value of the
resource capacity not dispatched by MONET. Customers are paying the
full cost of the company's resources, and are entitled to all benefits
derived from those investments. Staff's recommended adjustment
remedies this mismatch between costs and benefits.

|| Q.

7

8

DOES THIS CONCLUDE YOUR TESTIMONY?

A. Yes.

CASE: UE 180/UE 181 WITNESS: Bill Wordley

PUBLIC UTILITY COMMISSION OF OREGON

STAFF EXHIBIT 201

Witness Qualification Statement

July 18, 2006

Staff/201 Wordley/1

WITNESS QUALIFICATION STATEMENT

NAME:	Bill Wordley		
EMPLOYER:	Public Utility Commission of Oregon		
TITLE:	Senior Economist, Economic Research & Financial Analysis Division		
ADDRESS:	550 Capitol Street NE Suite 215, Salem, Oregon 97301-2115.		
EDUCATION:	All course work towards Masters in Economics Portland State University		
	B.S. Portland State University Major: Mathematics		
EXPERIENCE:	Since August 2000 I have been employed by the Public Utility Commission of Oregon. Responsibilities include research and providing technical support on a wide range of cost, revenue and policy issues for gas, electric and telephone utilities. Active participation in all primary energy rate cases in Oregon during past six years, including providing testimony in UM 995, UE 116, UE 134, UE 170, and UE 173.		
	From March 1999 to August 2000 I worked as a consultant in the energy field working for electric utilities and utility organizations. Work included load forecasting and operations planning.		
	From 1972 to 1999 I worked for PacifiCorp in various analytical and management positions dealing with long and short-term load, sales, and revenue forecasting, power operations planning, power contract optimization, merger and acquisition support, strategic planning support, market research, retail market planning, load-resource analysis, and power contract administration. I testified in some 30 regulatory proceedings in Oregon, Washington, Idaho, Montana, Wyoming, and California.		

CASE: UE 180/UE 181 WITNESS: Bill Wordley

PUBLIC UTILITY COMMISSION OF OREGON

STAFF EXHIBIT 202

Exhibits in Support of Direct Testimony

CERTAIN INFORMATION CONTAINED IN STAFF EXHIBIT 202 IS CONFIDENTIAL AND SUBJECT TO PROTECTIVE ORDER NO. 06-111. YOU MUST HAVE SIGNED APPENDIX B OF THE PROTECTIVE ORDER IN DOCKET UE 180 TO RECEIVE THE CONFIDENTIAL VERSION OF THIS EXHIBIT.

Staff/202, Wordley/1

May 17, 2006

TO: Vikie Bailey-Goggins Oregon Public Utility Commission

FROM: Patrick G. Hager Manager, Regulatory Affairs

PORTLAND GENERAL ELECTRIC UE 180 PGE Response to OPUC Data Request Dated April 20, 2006 Ouestion No. 307

Request:

Please provide, in electronic format, detail for 2005 (actual data) and 2007 (test period projection) that identifies all revenue from auxiliary services provided by the company to other parties. For all revenue components, please identify counter-party and specific auxiliary service provided, for example, contingency reserves. Where are these revenues included in the Company's filing in this docket?

Response:

Attachment 307-A is an Excel workbook which includes actual data from June 2005, when we first began selling ancillary services, through April 2006. All sales listed in Attachment 307-A were to the California Independent System Operator (ISO). The services provided were day-ahead and hour-ahead spinning reserves. Attachment 307-A is proprietary and confidential, and subject to the protective order in this docket (Order No. 06-111).

Attachment 307-A shows that rates, as well as revenues, vary widely from month to month. It is also very difficult to project 2007 on the basis of only 11 months of experience. Finally, MONET does not include an estimate of these ancillary service sales, but it also does not include an estimate of the effect of making these sales on our hydro dispatch. In practice, sales of ancillary services often competes with optimal economic dispatch of our hydro resources, moving dispatch into non-peak hours.

In the 2007 test year revenue requirement, we do include the costs of ancillary service sales, but not the corresponding revenues. However, given the considerations discussed in the preceding paragraph, there is considerable risk around making a revenue projection for the test year.

Adoption of the Annual Variance Tariff proposed in PGE Exhibit 400 would ease concern about including an ancillary services revenue estimate in the test year revenue requirement.

Attachment 307-A is Confidential and Subject to Protective Order No. 06-111. It is provided under separate cover.

g:\ratecase\opuc\dockets\ue-180\dr-in\opuc - pge\dr_307.doc

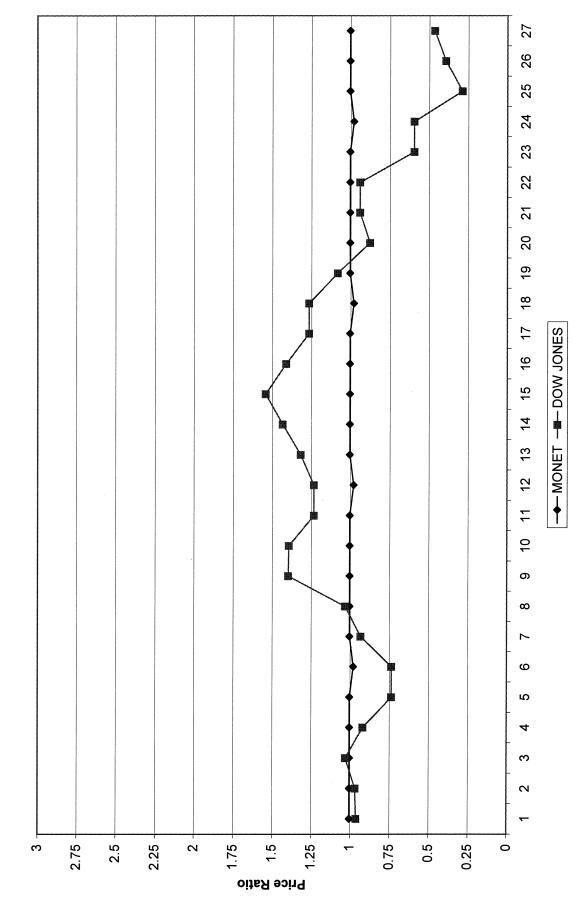
Staff/202 Wordley/3

1

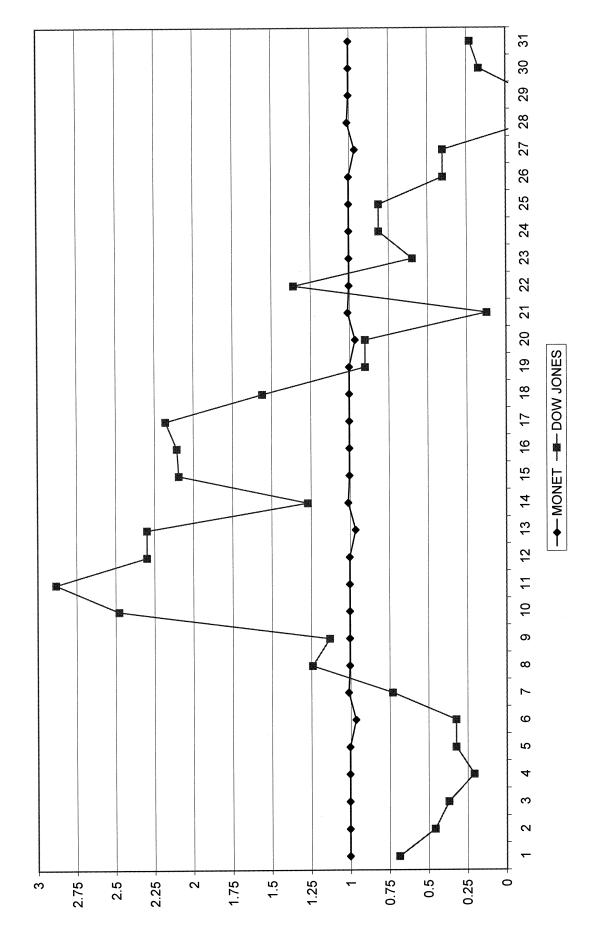
This page is confidential.

You must have signed the protective order in this docket in order to view this page.

CASE: UE 180/UE 181 WITNESS: Bill Wordley

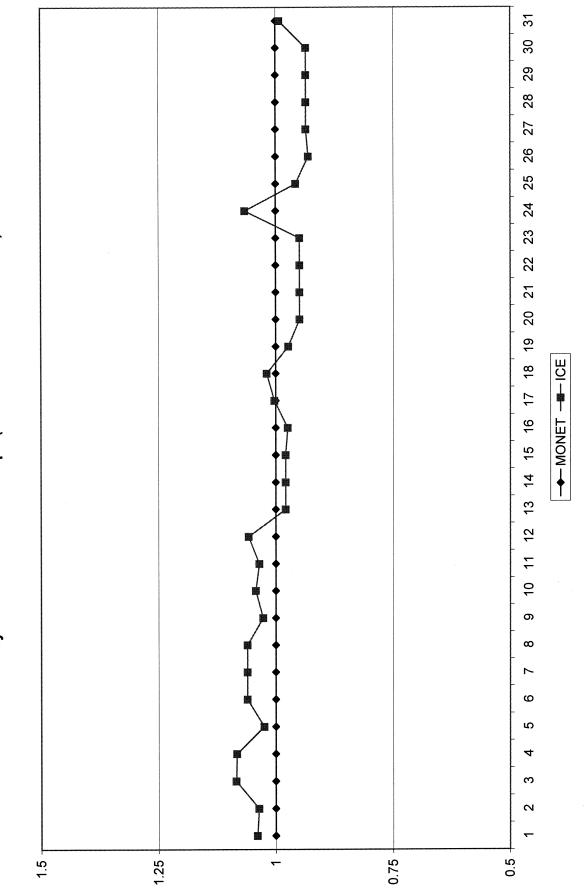

PUBLIC UTILITY COMMISSION OF OREGON

STAFF EXHIBIT 203


Exhibits in Support of Direct Testimony

Staff/203 Wordley/1

Note: May 2006 had 27 on-peak price days.



May On-Peak Electricity Price Shape (MONET v. 2006 Dow Jones Index)

May Off-Peak Electricity Price Shape (MONET v. 2006 Dow Jones Index)

Staff/203 Wordley/2

May Natural Gas Price Shape (MONET v. 2006 ICE Index)

Staff/203 Wordley/3

CASE: UE 180/UE 181 WITNESS: Bill Wordley

PUBLIC UTILITY COMMISSION OF OREGON

STAFF EXHIBIT 204

Exhibits in Support of Direct Testimony

CERTAIN INFORMATION CONTAINED IN STAFF EXHIBIT 204 IS CONFIDENTIAL AND SUBJECT TO PROTECTIVE ORDER NO. 06 111. YOU MUST HAVE SIGNED APPENDIX B OF THE PROTECTIVE ORDER IN DOCKET UE 180 TO RECEIVE THE CONFIDENTIAL VERSION OF THIS EXHIBIT.

Staff/204 Wordley/1

This page is confidential.

You must have signed the protective order in this docket in order to view this page.

UE 180/UE 181
Extrinsic Value of Thermal Plants
Staff Calculation

Staff/204, Wordley/2

		Capacity* MW	Heat Rate* MMBtu/MWh	CF%	Filled UE 180 Potential CF% Unus	180 Unused CF%	Unused MWh	Extrinsic Value \$/MWh**	sic Val	en
Alternative I	Beaver	562	10.0258	0.0	79.2	79.2	3,899,111	2	θ	7,798,222
	Coyote Springs	256	7.5788	41.8	92.8	51.0	1,143,776	4	Ф	4,575,103
Alternative II	Beaver	562	10.0258	0.0	67.3	67.3	3,313,260	7	Ф	6,626,520
	Coyote Springs	256	7.5788	41.8	87.6	45.8	1,027,163	4	θ	4,108,650
Alternative III	Beaver	562	10.0258	0.0	24.2	24.2	1,191,395	7	ф	2,382,790
	Coyote Springs	256	7.5788	41.8	61.4	19.6	439,612	4	Ф	1,758,447

2005 PGE FERC Form 1
 ** based on contracts average of \$3/MWh (see Staff/204, Wordley/1); split \$2 for Beaver and \$4 for Coyote Springs since Coyote Springs has lower heat rate

CASE: UE 180/UE 181 WITNESS: Ed Durrenberger

PUBLIC UTILITY COMMISSION OF OREGON

STAFF EXHIBIT 300

Direct Testimony

Docket UE 180/UE 181

1	(
2	
3	/
4	
5	(
6	
7	/
8	(
9	/
10	
11	(
12	/
13	(
14	
15	/
16	
17	
18	
19	
20	
21	
22	
23	

Q. PLEASE STATE YOUR NAME, OCCUPATION, AND BUSINESS ADDRESS.

A. My name is Ed Durrenberger. My business address is 550 Capitol Street NE Suite 215, Salem, Oregon 97301-2551.

Q. PLEASE DESCRIBE YOUR EDUCATIONAL BACKGROUND AND WORK EXPERIENCE.

A. My Witness Qualification Statement is found in Exhibit Staff/301.

Q. WHAT IS THE PURPOSE OF YOUR TESTIMONY?

A. I will discuss an adjustment I propose to the power costs related to coal losses at Boardman

Q. DID YOU PREPARE AN EXHIBIT FOR THIS DOCKET?

A. Yes. I prepared Exhibit Staff/302, consisting of 6 pages.

Q. PLEASE DESCRIBE THE COAL RAIL TRANSPORTATION LOSSES THAT PGE HAS INCLUDED IN TESTIMONY.

A. The coal losses I am concerned with are described in testimony in PGE/400,
Lesh-Niman on pages 52 and 53. The testimony discusses Powder River
basin coal that is brought from Wyoming and Montana to the Boardman,
Oregon plant by rail car. The one way distanced is approximately 1,121 miles.
This adjustment is for the cost of the coal that the Company reposts is lost in
transit.

Q. HOW MUCH COAL DOES THE COMPANY REPORT LOOSING?

A. The Company reports annual coal losses as the result of transport from the mines to the plant of 1% of the coal purchased. The financial consequence of this loss is \$354,000 annually.

Q. HOW MUCH COAL IS THIS?

A. In Exhibit Staff/302 page 4, the company reports average annual purchases of coal for the Boardman plant, from 1999 to 2002, of 2.2 million tons. The one percent coal loss represents 22 thousand tons annually that the Company would have to be loosing each year along the rail, nearly 20 tons every mile.

Q. IS THIS A REASONABLE AMOUNT OF COAL LOSS?

- A. Rail car coal losses have been studied extensively and the company cited
 studies supporting coal losses of 1% and more under some circumstances.
 Whether this is a reasonable loss for the trip from the Powder River Basin to
 Boardman is a matter of conjecture since the Company's studies of their fuel
 losses looked at the weight of coal in the cars leaving the mine and compared
 it to the weight of coal being fed to the power plant and used an annual survey
 of the fuel pile to account for inventory.
- 18

19

20

22

23

Q. WHAT DO YOU PROPOSE?

- A. I recommend this annual adjustment be disallowed in its entirety.
- Q. WHY ARE YOU PROPOSING TO DISALLOW THE COMPANY'S
- 21

ADJUSTMENT?

A. When the Company's coal loss problem was studied several years ago, (See Exhibit Staff/302 page 4) three out of the four years of data showed a loss but

UE 180 DIRECT TESTIMONY 300.DOC

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

inexplicably one year showed a net gain. I have misgivings about adding \$366 thousand per year to power costs on an old study that produced invalid data 25% of the time.

The same studies that indicated that coal losses from rail cars could be as high as or higher than 1% also discussed the application of control measures that could cost effectively control losses. In light of this and the Company providing no analysis that indicates that allowing over twenty tons of coal dust to escape into the atmosphere as fugitive dust each year is appropriate either economically or environmentally, I find this write-off unsupportable.

Also, there may be issues at the Boardman plant that are contributing to the coal losses. The Company's study doesn't distinguish losses that may occur in transit from losses that occur with furl stock at the plant. The subject merits a more detailed and current investigation.

For these reasons I cannot determine that the coal losses cited are real, cannot be controlled in a cost effective manner and represent an ongoing expense that justifies recovery in power costs

Q. DOES THIS CONCLUDE YOUR DIRECT TESTIMONY?

18

A. Yes.

UE 180 DIRECT TESTIMONY 300.DOC

CASE: UE 180/UE 181 WITNESS: Ed Durrenberger

PUBLIC UTILITY COMMISSION OF OREGON

STAFF EXHIBIT 301

Witness Qualification Statement

WITNESS QUALIFICATION STATEMENT

NAME:	Ed Durrenberger
EMPLOYER:	Public Utility Commission of Oregon
TITLE:	Senior Revenue Requirement Analyst
ADDRESS:	550 Capitol St. NE, Ste. 215, Salem, Oregon 97301
EDUCATION:	B.S. Mechanical Engineering Oregon State University, Corvallis, Oregon
EXPERIENCE:	I have been employed at the Public Utility Commission of Oregon since February of 2004. My current responsibilities include staff research, analysis and technical support on a wide range of electric and natural gas cost recovery issues.
OTHER EXPERIENCE:	I have over twenty years of operations and maintenance experience managing a boiler plant in a heavy industrial manufacturing environment. I have also managed manufacturing and production in high tech equipment manufacturing.

CASE: UE 180/UE 181 WITNESS: Ed Durrenberger

PUBLIC UTILITY COMMISSION OF OREGON

STAFF EXHIBIT 302

Exhibits in Support of Direct Testimony

Staff/302 Durrenberger/1

June 6, 2006

Vikie Bailey-Goggins Oregon Public Utility Commission

FROM:

TO:

Patrick G. Hager Manager, Regulatory Affairs

PORTLAND GENERAL ELECTRIC UE 180

PGE Response to OPUC Data Request Dated May 16, 2006 Question No. 468

Request:

With regard to the testimony in PGE/ 400, Lesh-Niman/ pages 52-53, starting on line 10, the coal rail transportation losses; please provide the documentation cited showing the coal losses. Does all the coal purchased and consumed get weighed? Do the weight measuring devices at the mine and at the plant have the same level of accuracy? Are they calibrated and certified regularly? How is the coal pile measured in the study? Was the amount of fuel in the coal pile physically measured such as by a fuel cut off or other means that could account for compaction and settling? Did the actual coal pile size changed significantly (by more than 10%) during the study period? Does the company have any more recent coal rail transportation loss data and, if so, what is the current loss figure?

Response:

Attachment 468-A is an Excel file, "DR_468_Attach A.xls," which provides the calculation of the 1% coal loss factor. Attachment 468-B is a Word file, "DR_468_Attach B.doc," which describes our approach to the calculation.

All coal is weighed, both at the mine and at the pulverizer feeder scales. The scales at the mine are certified (accurate to within $\pm 0.25\%$). The scales at the pulverizer feeder scales are also accurate to within $\pm 0.25\%$ (calibrated quarterly).

In an uncompacted coal pile, the density will vary with height. Therefore, we compact the pile prior to the annual survey, which results in a more uniform density from top to bottom. This maximizes the survey's accuracy.

As can be seen in column f of Attachment 468-A, the coal pile size changed by more than 10% in each of the survey years.

PGE does not have more recent coal rail transportation loss data.

g:\ratecase\opuc\dockets\ue-180\dr-in\opuc - pge\dr_468.doc

UE 180/UE 181

Staff/302 Durrenberger/3

UE 180 Attachment 468-A

Coal Loss Spreadsheet

BOARDMAN COAL PLANT Coal Survey vs. Book (amount in Tons) 100% Plant

* New scales installed in 1997 resulted in more accurate measurements and contributed to a large adjustment in 1998.

** Year 2000 and 2001 differences were not booked to inventory because the percentage difference to book inventory was less

than the owners' agreement to book the difference only if it differs by 5% or more.

*** A Coal base of 51,395 tons is an established tonnage of unusable coal that is subtracted out of Survey results.

UE 180/UE 181

Staff/302 Durrenberger/4

UE 180

PGE's Response to OPUC Data Request No. 468 Attachment 468-A

DR_468_Attach A.xls06/05/20062:24 PM

UE 180/UE 181

Staff/302 Durrenberger/5

UE 180 Attachment 468-B

Explanation of Coal Loss Calculation

Staff/302 Durrenberger/6

UE 180 PGE's Response to OPUC Data Request No. 468 Attachment 468-B

Boardman Coal Losses

Introduction:

May 2, 2003

In the coal industry, loss of coal in-transit is a commonly accepted fact, much like the loss of electrical energy over transmission lines. PGE has for a long time adjusted for power line losses in transmission, but has not adjusted for the coal that is lost during transportation and storage. Quantifying the amount of coal that is lost during transport is an imperfect art, but new technologies are improving the accuracy of measuring in-transit loss. PGE is now able to adjust coal transportation losses by a quantifiable amount. For the 2004 RVM, we are now including a 1% coal loss factor in calculating fuel costs at the Boardman Plant.

Background:

Northern Powder River Basin Coal travels by train 1,121 miles from the Campbell Sub in Montana to the Boardman plant, outside of Boardman, Oregon. Once the coal arrives at Boardman, it is stored in open piles until the coal is fed across conveyer belt scales on its way to the boiler. Yearly surveys of the coal pile at Boardman are taken. Typically, there is an inventory discrepancy between the expected amount of coal in the pile (given the amount leaving Campbell Sub minus the amount burned) and actual survey results. This difference is due to several factors, but is primarily attributed to in-transit wind erosion. In-transit wind erosion was intensely studied in the 1970's and early 1980's, with documented losses of between 2 and $3\%^1$. Industry standards suggests that 1 to 2% in-transit losses are probable². The difference between the total amount of coal purchased at the mine and ultimately burned at Boardman from 1999 to 2002 averages 1%, well within acceptable industry standards.

Boardman:

Coal loss calculations are performed yearly, coinciding with the annual coal pile survey. The coal loss is the difference between the actual surveyed amount in the coal pile and the expected calculated book inventory amount, before adjustments. The actual amount in the existing pile is determined by surveying the coal pile during Boardman's yearly spring maintenance outage. The survey takes into account both the volume of the pile and its density to calculate total tonnage. At Campbell Sub the coal is loaded into open railcars, then the cars are weighed, supplying the purchase tonnage. At Boardman, the coal is weighed on conveyor belt scales on its way to being burned in the boilers. Implementation of the conveyor belt scales was completed during the 1997 spring outage, improving weight accuracy of coal burned. Purchases since the last survey are added to the adjusted book inventory, amounts burned since the last survey are subtracted from inventory to calculate the book inventory before adjustments.

> Coal $Loss_{(y)}$ = Book Inventory_(y) – Adjusted Book Inventory_(y-1) – (Surveyed Amount_(y) – Surveyed Amount_(y-1))

If the difference between the survey and the book inventory is greater than 5% of book inventory, book inventory is adjusted to equal survey results. If the difference is less than 5% the book inventory is not adjusted. Starting in 2003 the inventory books will be adjusted to reflect the surveyed amounts yearly, independent of the difference between surveyed and book inventory amounts.

¹ G.H Denton, R.E. Hassel, and B.E. Scott, "Minimizing In-transit Windage Losses of Olga Low Volatile Coal," (paper presented at the 1972 Coal Show, American Mining Congress, Cleveland, Ohio, May 10, 1982), as cited by S. J. Blubaugh, D. O. Owen, Phd., and A. J. Sobol all of Nalco Chemical Company, in "Mine Applied Dust Prevention for Residual Dust Control" (Paper presented at the EPRI Conference, Pensacola, Florida, January 23-25, 1991.).

² K.H. Nimerick and G.P. Laflin, "In-transit Wind Erosion Losses of Coal and Methods of Control, "Mining Engineering, August (1979),1236-1240

CERTIFICATE OF SERVICE

UE 180/UE 181

I certify that I have this day served the foregoing document upon all parties of record in this proceeding by delivering a copy in person or by mailing a copy properly addressed with first class postage prepaid, or by electronic mail pursuant to OAR 860-13-0070, to the following parties or attorneys of parties.

Dated at Salem, Oregon, this 18th of July, 2006.

Stephanie S. Andrus Assistant Attorney General Of Attorneys for Public Utility Commission's Staff 1162 Court Street NE Salem, Oregon 97301-4096 Telephone: (503) 378-6322

UE 180 Service List (Parties)

JIM DEASON (Q) ATTORNEY AT LAW	521 SW CLAY ST STE 107 PORTLAND OR 97201-5407 jimdeason@comcast.net
ROBERT VALDEZ	PO BOX 2148 SALEM OR 97308-2148 bob.valdez@state.or.us
AF LEGAL & CONSULTING SERVICES	
ANN L FISHER (Q) ATTORNEY AT LAW	2005 SW 71ST AVE PORTLAND OR 97225-3705 energlaw@aol.com
BOEHM KURTZ & LOWRY	
KURT J BOEHM (Q) ATTORNEY	36 E SEVENTH ST - STE 1510 CINCINNATI OH 45202 kboehm@bkllawfirm.com
MICHAEL L KURTZ (Q)	36 E 7TH ST STE 1510 CINCINNATI OH 45202-4454 mkurtz@bkllawfirm.com
BONNEVILLE POWER ADMINISTRATION	
GEOFFREY M KRONICK LC7 (Q)	PO BOX 3621 PORTLAND OR 97208-3621 gmkronick@bpa.gov
CRAIG SMITH	PO BOX 3621L7 PORTLAND OR 97208-3621 cmsmith@bpa.gov
BRUBAKER & ASSOCIATES INC	
JAMES T SELECKY (Q)	1215 FERN RIDGE PKWY - STE 208 ST. LOUIS MO 63141 jtselecky@consultbai.com
CABLE HUSTON BENEDICT HAAGENSEN & LLOYD LLP	
TAMARA FAUCETTE	1001 SW 5TH AVE STE 2000 PORTLAND OR 97204 tfaucette@chbh.com
CHAD M STOKES	1001 SW 5TH - STE 2000 PORTLAND OR 97204 cstokes@chbh.com
CITIZENS' UTILITY BOARD OF OREGON	
LOWREY R BROWN (Q) UTILITY ANALYST	610 SW BROADWAY - STE 308 PORTLAND OR 97205 lowrey@oregoncub.org

JASON EISDORFER (Q) ENERGY PROGRAM DIRECTOR	610 SW BROADWAY STE 308 PORTLAND OR 97205 jason@oregoncub.org
COMMUNITY ACTION DIRECTORS OF OREGON	
JIM ABRAHAMSON (Q) COORDINATOR	PO BOX 7964 SALEM OR 97303-0208 jim@cado-oregon.org
CONSTELLATION NEWENERGY INC	
WILLIAM H CHEN REGULATORY CONTACT	2175 N CALIFORNIA BLVD STE 300 WALNUT CREEK CA 94596 bill.chen@constellation.com
DANIEL W MEEK ATTORNEY AT LAW	
DANIEL W MEEK (Q) ATTORNEY AT LAW	10949 SW 4TH AVE PORTLAND OR 97219 dan@meek.net
DAVISON VAN CLEVE PC	
S BRADLEY VAN CLEVE (Q)	333 SW TAYLOR - STE 400 PORTLAND OR 97204 mail@dvclaw.com
DEPARTMENT OF JUSTICE	
STEPHANIE S ANDRUS (Q) ASSISTANT ATTORNEY GENERAL	REGULATED UTILITY & BUSINESS SECTION 1162 COURT ST NE SALEM OR 97301-4096 stephanie.andrus@state.or.us
EPCOR MERCHANT & CAPITAL (US) INC	
LORNE WHITTLES MGR - PNW MARKETING	1161 W RIVER ST STE 250 BOISE ID 83702 Iwhittles@epcor.ca
KAFOURY & MCDOUGAL	
LINDA K WILLIAMS (Q) ATTORNEY AT LAW	10266 SW LANCASTER RD PORTLAND OR 97219-6305 linda@lindawilliams.net
LEAGUE OF OREGON CITIES	
ANDREA FOGUE (Q) SENIOR STAFF ASSOCIATE	PO BOX 928 1201 COURT ST NE STE 200 SALEM OR 97308 afogue@orcities.org
MCDOWELL & ASSOCIATES PC	
KATHERINE A MCDOWELL ATTORNEY	520 SW SIXTH AVE - SUITE 830 PORTLAND OR 97204 katherine@mcd-law.com

NORTHWEST ECONOMIC RESEARCH INC	
LON L PETERS (Q)	607 SE MANCHESTER PLACE PORTLAND OR 97202 Ipeters@pacifier.com
NORTHWEST NATURAL	
ELISA M LARSON (Q) ASSOCIATE COUNSEL	220 NW 2ND AVE PORTLAND OR 97209 elisa.larson@nwnatural.com
NORTHWEST NATURAL GAS COMPANY	
ALEX MILLER (Q) DIRECTOR - REGULATORY AFFAIRS	220 NW SECOND AVE PORTLAND OR 97209-3991 alex.miller@nwnatural.com
OREGON ENERGY COORDINATORS ASSOCIATION	
KARL HANS TANNER (Q) PRESIDENT	2448 W HARVARD BLVD ROSEBURG OR 97470 karl.tanner@ucancap.org
PACIFICORP	
LAURA BEANE MANAGER - REGULATORY	825 MULTNOMAH STE 2000 PORTLAND OR 97232 laura.beane@pacificorp.com
PORTLAND CITY OF - OFFICE OF CITY ATTORNEY	
BENJAMIN WALTERS (Q) DEPUTY CITY ATTORNEY	1221 SW 4TH AVE - RM 430 PORTLAND OR 97204 bwalters@ci.portland.or.us
PORTLAND CITY OF - OFFICE OF TRANSPORTATION	
RICHARD GRAY STRATEGIC PROJECTS MGR/SMIF ADMINISTRATOR	1120 SW 5TH AVE RM 800 PORTLAND OR 97204 richard.gray@pdxtrans.org
PORTLAND CITY OF ENERGY OFFICE	
DAVID TOOZE SENIOR ENERGY SPECIALIST	721 NW 9TH AVE SUITE 350 PORTLAND OR 97209-3447 dtooze@ci.portland.or.us
PORTLAND GENERAL ELECTRIC	
RATES & REGULATORY AFFAIRS	RATES & REGULATORY AFFAIRS 121 SW SALMON ST 1WTC0702 PORTLAND OR 97204 pge.opuc.filings@pgn.com
DOUGLAS C TINGEY (Q)	121 SW SALMON 1WTC13 PORTLAND OR 97204 doug.tingey@pgn.com

PRESTON GATES ELLIS LLP	
HARVARD P SPIGAL	222 SW COLUMBIA ST STE 1400 PORTLAND OR 97201-6632 hspigal@prestongates.com
SEMPRA GLOBAL	
THEODORE E ROBERTS	101 ASH ST HQ 13D SAN DIEGO CA 92101-3017 troberts@sempra.com
LINDA WRAZEN	101 ASH ST HQ8C SAN DIEGO CA 92101-3017 Iwrazen@sempraglobal.com
SMIGEL ANDERSON & SACKS	
SCOTT H DEBROFF	RIVER CHASE OFFICE CENTER 4431 NORTH FRONT ST HARRISBURG PA 17110 sdebroff@sasllp.com

UE 181 Service List (Parties)

CITIZENS' UTILITY BOARD OF OREGON	
JASON EISDORFER ENERGY PROGRAM DIRECTOR	610 SW BROADWAY STE 308 PORTLAND OR 97205 jason@oregoncub.org
PORTLAND CITY OF - OFFICE OF CITY ATTORNEY	
BENJAMIN WALTERS DEPUTY CITY ATTORNEY	1221 SW 4TH AVE - RM 430 PORTLAND OR 97204 bwalters@ci.portland.or.us
PORTLAND CITY OF - OFFICE OF TRANSPORTATION	
RICHARD GRAY STRATEGIC PROJECTS MGR/SMIF ADMINISTRATOR	1120 SW 5TH AVE RM 800 PORTLAND OR 97204 richard.gray@pdxtrans.org
PORTLAND CITY OF ENERGY OFFICE	
DAVID TOOZE SENIOR ENERGY SPECIALIST	721 NW 9TH AVE SUITE 350 PORTLAND OR 97209-3447 dtooze@ci.portland.or.us
PORTLAND GENERAL ELECTRIC	
DOUGLAS C TINGEY (Q) ASST GENERAL COUNSEL	121 SW SALMON 1WTC13 PORTLAND OR 97204 doug.tingey@pgn.com