

In the Community to Serve®

8113 W. GRANDRIDGE BLVD., KENNEWICK, WASHINGTON 99336-7166 TELEPHONE 509-734-4500 FACSIMILE 509-737-7166 www.cngc.com

September 20, 2021

Oregon Public Utility Commission Attn: Filing Center P.O. Box 1088 Salem, OR 97308-1088

RE: UM 2178 Natural Gas Fact Finding Per EO 20-04

Attention: Filing Center

Enclosed for filing is Cascade Natural Gas Corporation's (Cascade or Company) UM 2178 supplemental filing containing the revised presentation that was presented during the Natural Gas Fact Finding Workshop #3 on September 14, 2021. Cascade has amended the original presentation to included analysis regarding potential rate impacts to the Company's various rate classes, as well as a clarifying statement on its total system cost slides.

If there are any questions regarding this request, please contact me at (509) 734-4546 or via email at Brian.Robertson@cngc.com.

Sincerely,
CASCADE NATURAL GAS CORPORATION
/s/ Brian Robertson
Brian Robertson
Supervisor, Resource Planning

UM 2178 CNGC Enclosed

UM 2178 CNGC Natural Gas Fact Finding Supplemental Presentation.pptx

Cascade Natural Gas — UM 2178 Fact Finding Results

September 14th, 2021

Agenda

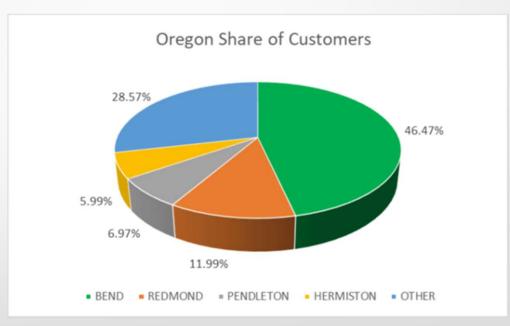
- Introduction to Cascade
- Top Level Model Inputs
- Baseline Emissions
- Energy Efficiency
- Renewable Natural Gas Biogas and Hydrogen
- CCIs
- Modeling Results
- Questions

Introduction to Cascade

About Cascade

Today, Cascade's service territory covers about 32,000 square miles and extends over 700 highway miles from end to end, encompassing a diverse economic base as well as varying climatological areas.

Cascade delivers natural gas service to more than 299,000 customers with approximately 77,000 customers in Oregon and 222,000 customers in Washington. The Company's customers reside in 96 communities--28 in Oregon and 68 in Washington.


Cascade's service area consists of smaller, rural communities in central and eastern Oregon, as well as communities across Washington.

About Cascade

- Cascade's residential customers represent approximately 13% of the total natural gas delivered on Cascade's system
- Commercial customers represent roughly 10%, and the approximately 500 core industrial customers consume around 2% of total gas throughput.
- The remaining non-core industrial customers represent the balance of the 75% of total throughput.

About Cascade

- The climate of the service territory is almost as diverse as its geographical extension. Oregon's service territory is in rural areas throughout northern central and central Oregon as well as eastern Oregon.
- All regions of Oregon have semi- arid climates with periods of arctic cold in the winter and heat waves in the summer.
- The western Washington portion of the service territory, nicknamed the I-5 corridor, has a marine climate with occasionally significant snow events.
- In general, the climate in the western part of the service territory is mild with frequent cloud cover, winter rain, and warm summers.
- Cascade's eastern Washington service territory has a semi-arid climate with periods of arctic cold in the winter and heat waves in the summer.

Understanding UM 2178

- Initiated in response to Executive Order 20-04, which establishes GHG reduction goals that will be mandated under DEQ's Climate Protection Program (CPP)
- From OPUC 6/8/2021 Year One Work Plan:
 - "The purpose of this Fact Finding will be to analyze the potential natural gas utility bill impacts that may result from limiting GHG emissions of regulated natural gas utilities under the DEQ's Climate Protection Program and to identify appropriate regulatory tools to mitigate potential customer impacts."
- Costs are evaluated under expected conditions (Base Case) as well as several sensitivities as outlined by the OPUC

UM 2178 - Deliverables

- Cascade has provided its emissions reduction model, which evaluates potential resources for carbon mitigation relative to each other
 - All workpapers supporting the inputs and assumptions have also been provided
- Results are provided as both a resource stack and impact to costs. Resource stacks are mostly illustrative, as costs are the primary deliverable

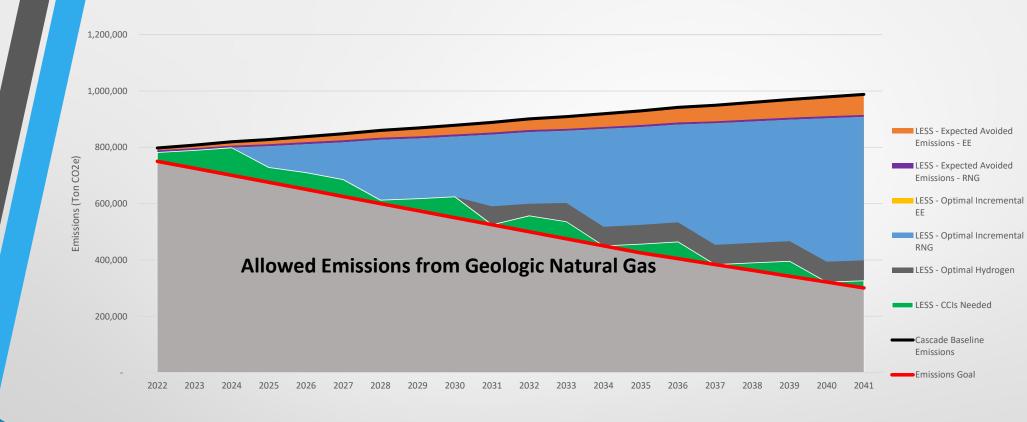
UM 2178 – Risk Analysis

- Uncertainties surrounding CCIs
- Hydrogen Resource Potential & Costs
- RNG Potential & Costs
- New/Incomplete guidance around CPP rulemaking
- Load uncertainties

Emissions Reduction Model – Top Level Overview

- Excel Based Model Solver using GRG Nonlinear optimization to minimize costs
- Inputs
 - Knowns
 - Unknowns
 - Scenario-based variables
- Outputs
 - Optimal Resource Mix
 - Delta to costs over planning horizon
 - Projected impact to revenue requirement

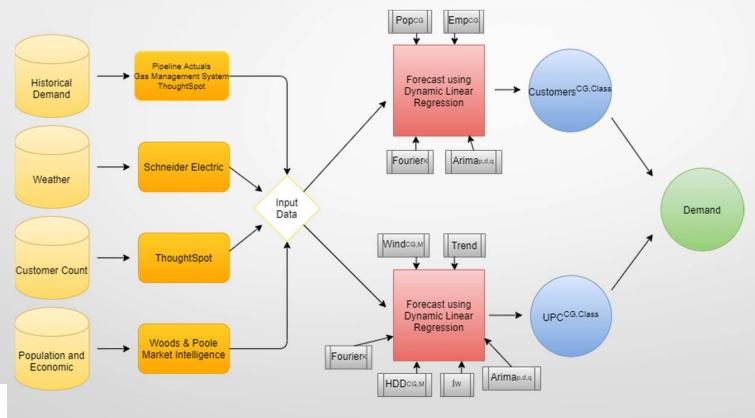
Model Inputs – Known Values


- Baseline Emissions Load Forecast from Integrated Resource Plan (IRP)
- Expected Energy Efficiency (EE) Conservation Potential Assessment (CPA)
- Expected RNG Intel from internal subject matter experts
- Cost/Quantity of Community Climate Investment (CCI) Credits Proposed OAR 340-271
- Emissions Targets Function of all other inputs

Model Inputs – Unknown Values

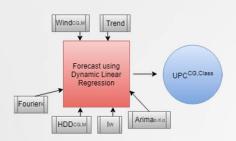
- Maximum Incremental EE Broken down into 4 buckets, grouped by similar levelized costs
- Maximum Incremental RNG Based on 2019 AGF/ICF Study
- Maximum Incremental Hydrogen Calculated as a function of load for a given year

Baseline Emissions



Demand Forecast

- The Cascade demand forecast developed for the IRP is a forecast of customers, core natural gas demand, and core peak demand for the next 20 years.
- Demand is forecasted at:
 - the citygate and citygate loop level;
 - the rate schedule level; and
 - the daily level.
 - Resulting in ~200 models


Process

- $C^{CG,Class} = \alpha_0 + \alpha_1 Pop^{CG} + \alpha_2 Emp^{CG} + Fourier(k) + ARIMA \in (p,d,q)$
- Model Notes:
 - C = Customers; CG = Citygate; Class = Residential, Commercial, Industrial, or Interruptible; ARIMA∈(p,d,q) = Indicates that the model has p autoregressive terms, d difference terms, and q moving average terms; Pop = Population; Emp = Employment; Fourier(k) = Captures seasonality of k number of seasons.

Use Per Customer Forecast

- Therms/ $C^{CG,Class} = \alpha_0 + \alpha_1 HDD^{CG, M} + \alpha_2 I_w + \alpha_4 WIND^{CG, M} + Trend+ Fourier(k) + ARIMA <math>\in$ (p,d,q)
- Model Notes:
 - Therms/C = Therms per customer; CG = Citygate; Class = Residential, Commercial, Industrial, or Interruptible; HDD = Heating Degree Days; M= Month; I_w = Indicator Variable set to 1 if it is a weekend; T = Trend Variable increasing by 1 for each day forecasted; WIND = Daily average wind speed.

Non-Core Outlook

- Cascade forecasts the load for its non-core customers going out five years.
- Unlike the core, non-core (or transportation) customers are customers who schedule and purchase their own gas, generally through a marketer, to get gas to the citygate. The customer then uses Cascade's distribution system to receive the gas.
- Cascade's transportation customers include all types of industrial customers. These include farms that may not use any gas during the winter to food manufacturers that average 800,000 therms per month throughout the year.
- Electric Generation customers are excluded from Cascade's emission reduction requirements, and thus not included in this analysis.

Converting Customer Natural Gas Usage to GHG Emissions

 Cascade calculates the projected approximate GHG emissions from combustion of natural gas delivered to customers per the equation below:

Metric Tons of CO_2 = Therms of forecasted natural gas deliveries to customers \times 1 dekatherm/10 therms \times 1 mmbtu/1 dekatherm \times 53.06 kg CO_2 /1 mmbtu natural gas \times 1 metric ton/1,000 kg

- DEQ also requires the following additional GHG emissions from natural gas combustion to be included in compliance:
 - Nitrous oxide (N₂O) 40 CFR Part 98 Subpart C, Table C-2 emission factor of 1 x 10⁻⁴ kg CO₂/1 mmbtu natural gas
 - Methane (CH₄) 40 CFR Part 98 Subpart C, Table C-2 emission factor of 1×10^{-3} kg CO₂/ 1 mmbtu natural gas
- N₂O and CH₄ combustion emissions are not included in this modeling analysis and would increase annual compliance requirements by approximately 0.002%

Energy Efficiency

Energy Efficiency's Role in Emissions Reduction

- LDCs will be working hard to pursue every viable avenue to GHG emissions reductions to ensure we are able to reduce emissions below the required threshold. Meeting thresholds means pursuing all available pathways to decarbonization, including expanded energy efficiency.
- Every therm conserved through energy efficiency efforts reduces the total carbon associated with gas usage in homes and buildings.
- Energy Trust is the designated vehicle for non-LI natural gas energy efficiency programs in the state of OR. Cascade has partnered with the Energy Trust of Oregon for over a decade to deliver cost-effective energy efficiency services to core gas customers in our service area.

Energy Trust and Cost-Effective Conservation

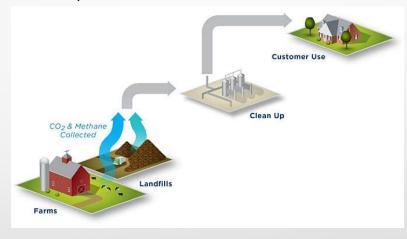
- Energy Trust offers a suite of rebates to qualified customers for baseload energy reductions, and for utilizing high efficiency equipment in place of lower efficiency gas equipment. This includes access to custom EE options for commercial/industrial facilities on core rate schedules.
- Funds for the EE programs operated via the Energy Trust are collected via Public Purpose Funds from core customers. However, natural gas fuel suppliers will soon be responsible for most transport customer emissions under the CPP, meaning that there will be a need for expanded services (such as those offered by Energy Trust) to serve these facilities.
- There is no PPC collection from transport customers as they have been responsible for their own emissions reductions to-date. However, there will need to be a vehicle to support these now required emissions reductions.

Energy Trust and Cost-Effective Conservation (cont.)

- Energy Trust conducts a Conservation Potential Assessment for LDCs has been based on cost-effectiveness thresholds and calculations approved by the OPUC. Cost effectiveness is based on a modified Total Resource Cost/Societal Cost Test and is anchored to the avoided cost of gas. This is identified in Cascade's model as "Expected EE"
- Energy Trust has currently identified all technical potential for core customers. There
 is additional technical potential that can be achieved in all sectors, including the
 transport sector.

Beyond Cost-Effective

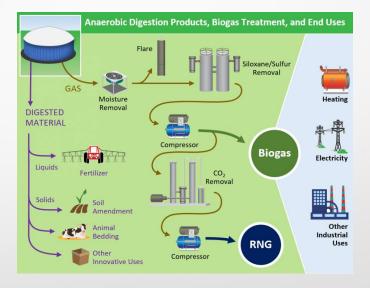
- Technical core potential is based on incremental savings that could be achieved beyond what
 is considered cost-effective under the TRC/SCT. The TRC/SCT is not based on carbon
 reductions, but on therm savings.
- Cascade has partnered with ETO to evaluate what additional pathways to decarbonization are possible beyond Cost-Effective EE. The results of this analysis are included in the model as "Incremental EE" and will require an alternative valuation methodology
- This methodology should be considered to factor for the GHG reductions that could be achieved by acquiring the additional therm savings identified by Energy Trust that would be available through expanded energy efficiency efforts. These efforts will lead to GHG emissions reductions consistent with the CPP.



Renewable Natural Gas – Biogas and Hydrogen

What is Renewable Natural Gas (RNG)?

 RNG is pipeline quality natural gas produced from various biomass sources through biochemical processes such as anaerobic digestion or gasification.¹



Renewable Natural Gas

Examples:

- Biogas from Landfills
 - Collect waste from residential, industrial, and commercial entities.
 - Digestion process takes place in the ground, rather than in a digester.
- Biogas from Livestock Operations
 - Collects animal manure and delivers to anaerobic digester.
- Biogas from Wastewater Treatment
 - Produced during digestion of solids that are removed during the wastewater treatment process.
- Other sources include organic waste from food manufacturers and wholesalers, supermarkets, restaurants, hospitals, and more.¹

Blending Hydrogen with Geologic Gas

- Cascade is excited to explore the opportunities presented by blending hydrogen into its system
- There are many factors to account for when attempting to quantify hydrogen as a future resource
 - Regional availability of hydrogen
 - Safety aspects with hydrogen blends
 - Cost of hydrogen
 - Source of hydrogen
 - End-use appliances/systems

Hydrogen Rainbow

Model Inputs – RNG Quantities and Costs

- RNG limits in the model are set based on Cascade's potential share of statewide RNG projected values in the Company's service territory
- The 2019 AGF study provides RNG potential by 2040 by state, and adoption curves for the various types of RNG are then used to generate acquisition curves for each resource
- RNG cost projections are derived from the Combined RNG Supply-Cost Curve from the 2019 AGAFStudy
 - Cascade's position is that a majority of its RNG purchases will occur in the first half of the provided curve due to regional policy adoption supporting RNG acquisition
 - The study's combined cost curve is used because Cascade's model is agnostic to the type of RNG acquired with regards to carbon intensity

Model Inputs – Hydrogen Quantities and Costs

- Cascade's position is that the constraining factor for maximum hydrogen acquisition will be the amount that can be safely blended with geologic gas
 - According to a technical report by the Gas Technology Institute, "If less than 20% hydrogen is introduced into distribution system the overall risk is not significant for both distribution mains and service lines." Also, the National Renewable Energy Laboratory's research findings indicate adding hydrogen blends at 20% or less to existing natural gas pipeline systems would result in only minor increases in safety risk
 - This is a volumetric quantity. Hydrogen burns at a lower heating volume, and all modeling is done in therms (energy) vs. volume. The adjusted safe blending quantity of hydrogen energy is approximately 7.4%
- Costs are modeled as a declining curve based on data from Platts
 - Only Green Hydrogen costs and volumes are modeled, but the Company believes there is potential with Blue Hydrogen as well

Community Climate Investment (CCI) Credits

Community Climate Investment Credits

- Community Climate Investment (CCI) Credits provide a different mechanism for demonstrating compliance
- CCI Credits are proposed as an instrument issued by DEQ to track a covered fuel supplier's payment of community climate investment (CCI) funds.
- CCI funds means money paid by a covered fuel supplier to a community climate investment (CCI) entity to support implementation of DEQ-approved community climate investment projects.
- CCI Credits may be generated and distributed by DEQ to a covered entity when a covered entity contributes funds to approved CCI entities.
- If no CCI entities are approved, no CCI funds can be contributed.
- CCI Credits may be used by covered fuel suppliers in lieu of a compliance instrument to demonstrate compliance, but there is a limit to the percent of a covered entity's total compliance obligations that CCI Credits can be used in demonstrating compliance for each compliance period.

Community Climate Investment Credits (cont.)

- Covered entities are limited in using CCI credits for demonstrating compliance as follows:
 - Up to 10 percent of compliance obligation in 2022-2024
 - Up to 15 percent of compliance obligation in 2025-2027
 - Up to 20 percent of compliance obligation in 2028-2030 and thereafter
- Covered entities are limited in the amount of CCI Credits that can be acquired (or generated and distributed by DEQ) in each compliance period per the following equation and maximum quantities:

OAR 340-271-9000

Maximum number of CCI credits that can be generated/distributed = Percentage for compliance period (see table below) x average annual compliance instruments distributed in the compliance period x number of years in

compliance period

DEQ State of Oregon Department of Environmental Quality	climate investment credits as described in OAR 340-271-0820(3)	
Compliance period		Percent used by DEQ for generation and distribution of CCI credits
Compliance period 1 for distribution of CCI credits from 2022 through 2024		12%
Compliance period 2 for distribution of CCI credits from 2025 through 2027		18%
Compliance period 3 for distribution of CCI credits from 2028 through 2030, and for each compliance period thereafter		25%

Community Climate Investment Credits (cont.)

- The following attributes also apply to CCI credits in the proposed rule:
 - Meant to represent one metric ton of allowable greenhouse gas emissions for compliance demonstration.
 - Cost of CCI Credits are equal to the carbon dioxide social cost of carbon projections developed by the Interagency Working Group on Social Cost of Greenhouse Gases and are adjusted for inflation annually.
 - Can be banked indefinitely unless no longer a covered entity or use for demonstrating compliance.
 - Cannot be traded or transferred to another covered entity.
 - Represents a regulatory instrument and is not personal property, a security or other form of property.

Community Climate Investment Credits (cont.)

Unadjusted CCI Credit Contribution

Cost, Annually March 1

(OAR 340-271-9000 Table 7)

2023 \$

2050 \$

Projected CCI credit contribution costs

Equation in OAR 340-271-0820(3)(a)(A):

CCI Credit Contribution Amount =
CCI Credit Contribution Amount in
Table 7 x CPI-U West for January of
the calendar year for the price in
Table 7 that is currently in effect /
CPI-U West for January 2021

2024	P	02.00	3.10%	P	294.07	P	67.10
2025	\$	83.00	3.32%	\$	304.46	\$	91.15
2026	\$	85.00	3.45%	\$	314.97	\$	96.57
2027	\$	86.00	3.56%	\$	326.20	\$	101.19
2028	\$	87.00	3.65%	\$	338.12	\$	106.11
2029	\$	89.00	3.73%	\$	350.74	\$	112.60
2030	\$	90.00	3.79%	\$	364.03	\$	118.17
2031	\$	91.00	3.83%	\$	377.96	\$	124.06
2032	\$	93.00	3.85%	\$	392.50	\$	131.66
2033	\$	94.00	3.86%	\$	407.66	\$	138.22
2034	\$	95.00	3.88%	\$	423.47	\$	145.11
2035	\$	97.00	3.89%	\$	439.96	\$	153.93
2036	\$	98.00	3.90%	\$	457.13	\$	161.59
2037	\$	99.00	3.91%	\$	475.00	\$	169.62
2038	\$	101.00	3.92%	\$	493.62	\$	179.83
2039	\$	102.00	3.92%	\$	512.97	\$	188.73
2040	\$	103.00	3.93%	\$	533.13	\$	198.07
2041	\$	105.00	3.93%	\$	554.11	\$	209.86
2042	\$	106.00	3.94%	\$	575.91	\$	220.20
2043	\$	108.00	3.94%	\$	598.60	\$	233.19
2044	\$	109.00	3.94%	\$	622.21	\$	244.63
2045	\$	110.00	3.94%	\$	646.73	\$	256.60
2046	\$	112.00	3.94%	\$	672.24	\$	271.57
2047	\$	113.00	3.94%	\$	698.74	\$	284.80
2048	\$	114.00	3.95%	\$	726.31	\$	298.66
2049	\$	116.00	3.94%	\$	754.95	\$	315.88

Inflation

(Cascade 2020-IRP)

3.01%

3.95%

81.00

117.00

Adjusted CCI

Credit Contribution

Cost

83.44

87.16

331.18

CPI-U West

Projection

285.59

294.67 \$

784.74 \$

Jan 2021 CPI-U West = \$277.24

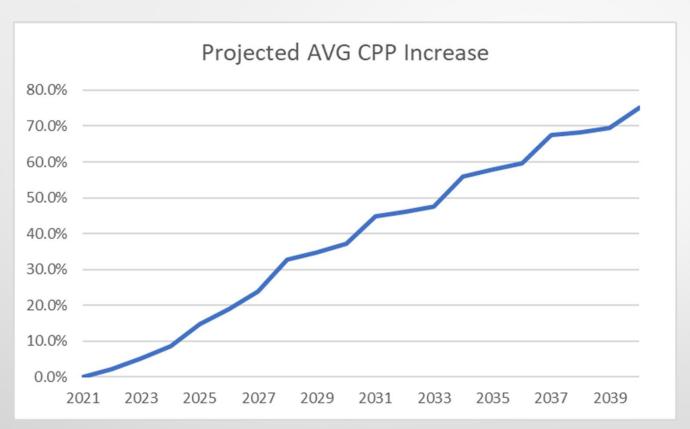
Community Climate Investment Credits (cont.)

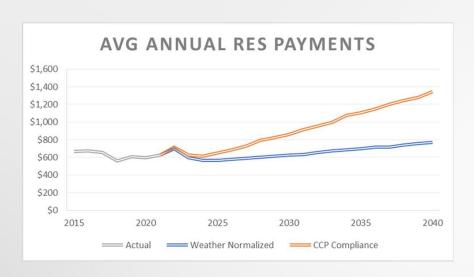
- Purpose of CCI Credits:
 - Reduce anthropogenic GHGs by an average of at least 1 MT CO2e per CCI credit
 - Reduce other non-GHG air emissions particularly in and near environmental justice communities in Oregon;
 - Promote public health, environmental, and economic benefits for environmental justice communities in Oregon to mitigate impacts from climate change, air contamination, energy costs, or any combination of these; and
 - Accelerate the transition of residential, commercial, industrial and transportation-related uses of fossil fuels to lower carbon sources of energy in order to protect people, communities and businesses from increases in the prices of fossil fuels

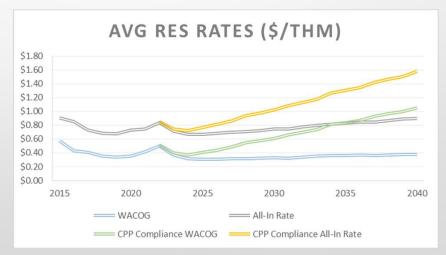
Modeling Results

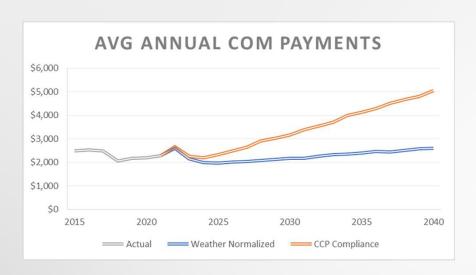
Total System and Incremental Costs for Base Case and Sensitivities

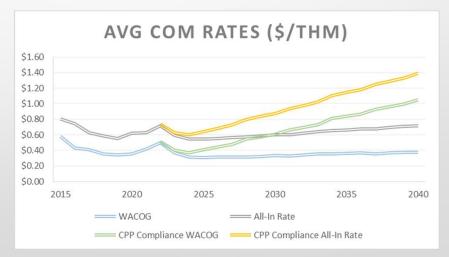
- Base Case
- Customer Growth
 - Current IRP forecasted load growth through 2025; no new customers beginning from 2025 through 2030;
 -0.75% customer growth beginning in 2031 through the end of model's time horizon.
- RNG Availability
 - Limit RNG availability to the annual percentages set by SB 98 and found in ORS 757.396(1).
- More Aggressive Timeline on Climate Policy
 - CPP targets of 45% below baseline by 2030, 80% below baseline by 2040.
- No CCI Credits

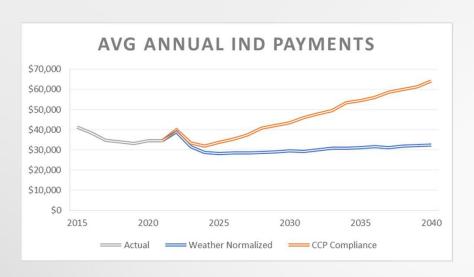

Base Ca	ase
Customer Growth?	2020 OR IRP
RNG Supply Availability	2019 AGA/ICF Study
45% Reduction Target Year	2035
80% Reduction Target Year	2050
CCI Guidence	DEQ CPP Proposed Rulemaking
Resource	Stack
1,200,000	
1,000,000	
	LESS - Expected Avoided Emissions - EE
800,000	LESS - Expected Avoided Emissions - RNG
	LESS - Optimal Incremental EE
Emissions (Ton 600,000 — 0	LESS - Optimal Incremental RNG
600,000	LESS - Optimal Hydrogen
No.	LESS - CCIs Needed
Sign of the state	Cascade Baseline Emissions
Allowed Emissions from Geologic Natural Gas	Emissions Goal
Allowed Ellissions from deologic Natural das	
200,000 —	
200,000 ——	
200,000 ——	

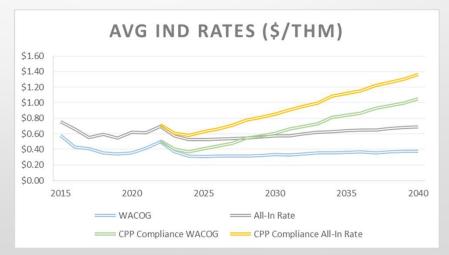

Rate Impact Analysis

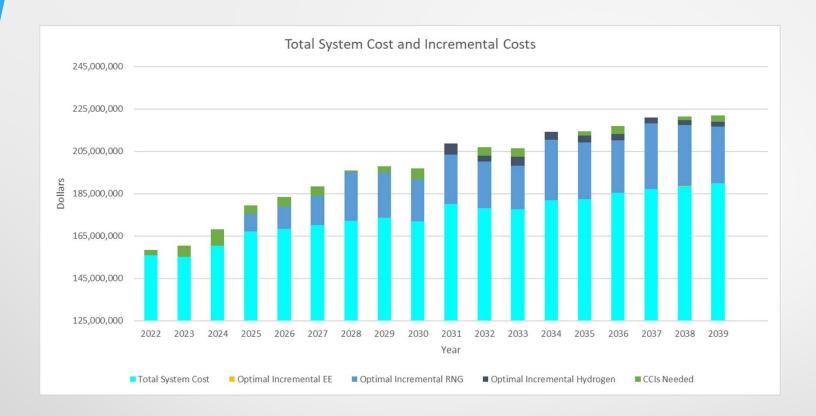

- Cascade used historical system cost broken out by RCI with an inflation factor for projected.
- WACOG uses historical and projected costs for the period.
- CPP compliance was applied to RCI classes on a uniform percentage increase to the underlining system costs.

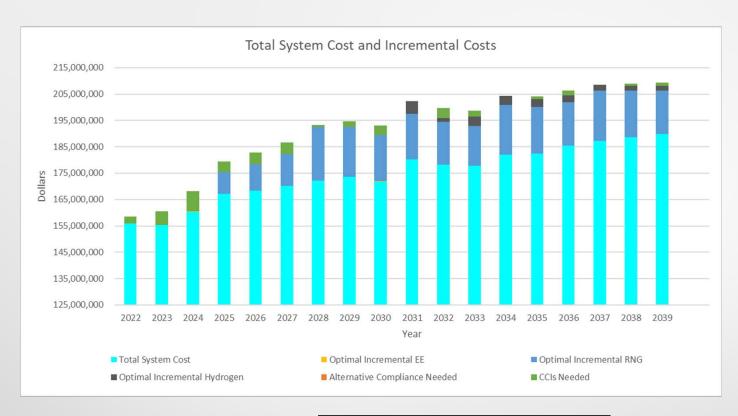




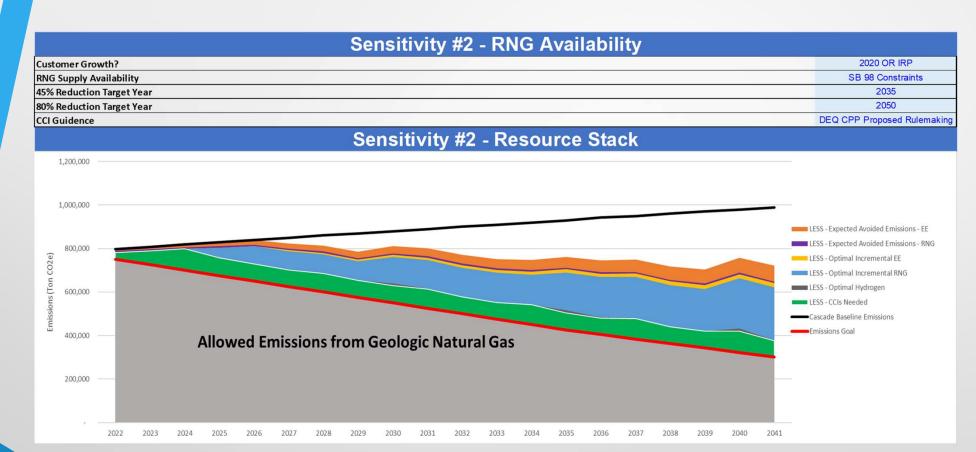


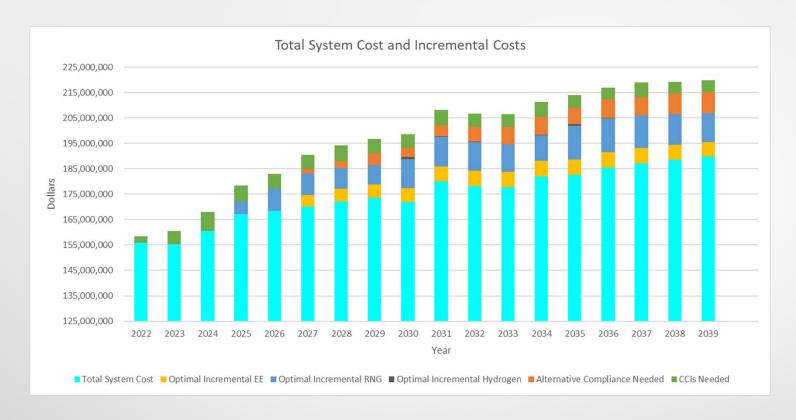




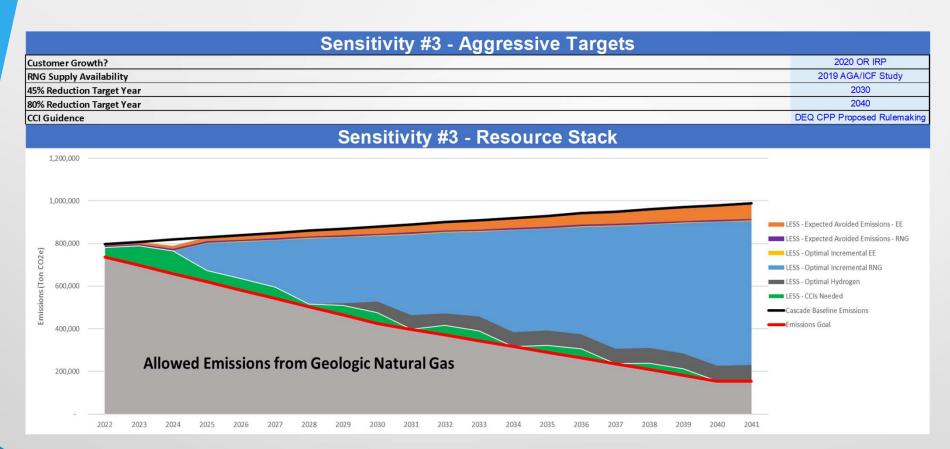


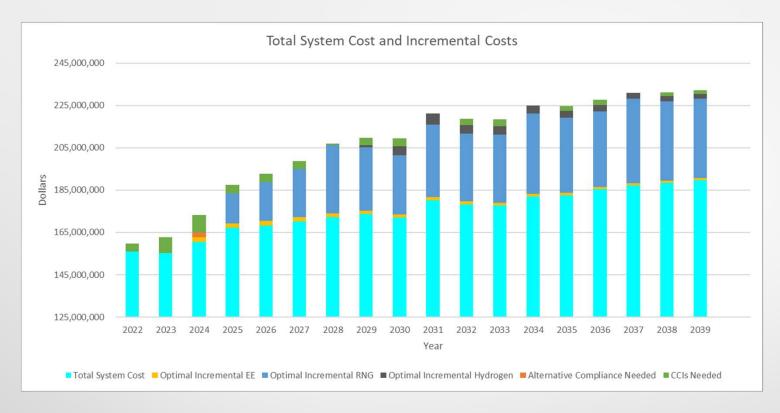
	Years			
Data Item	2022-2025	2026-2030	2031-2035	2036-2039
Total System Cost	638,770,304	856,212,411	900,511,713	751,056,344
Optimal Incremental EE	53,117	81,426	74,661	50,915
Optimal Incremental RNG	8,256,677	88,515,721	120,874,453	111,351,037
Optimal Incremental Hydrogen	-	-	19,357,358	10,212,810
CCIs Needed	19,392,683	17,932,489	9,782,555	8,454,179


	Sensitivity #1 -Declining Growth	
ustomer Growth?		Declining Per UM2178
NG Supply Availability		2019 AGA/ICF Study
5% Reduction Target Year		2035
0% Reduction Target Year		2050
CI Guidence		DEQ CPP Proposed Rulemakin
	Sensitivity #1 - Declining Growth	
900,000		
800,000		
700,000		
		LESS - Expected Avoided Emissions - EE
600,000 —		LESS - Expected Avoided Emissions - RNG
600,000 —— 8		LESS - Expected Avoided Emissions - RNG LESS - Optimal Incremental EE
CO2 e)		LESS - Optimal Incremental EE LESS - Optimal Incremental RNG
CO2e)		LESS - Expected Avoided Emissions - RNG LESS - Optimal Incremental EE LESS - Optimal Incremental RNG LESS - Optimal Hydrogen
CO2 e)		LESS - Expected Avoided Emissions - RNG LESS - Optimal Incremental EE LESS - Optimal Incremental RNG LESS - Optimal Hydrogen LESS - CCIs Needed
CO2 e)		LESS - Expected Avoided Emissions - RNG LESS - Optimal Incremental EE LESS - Optimal Incremental RNG LESS - Optimal Hydrogen LESS - CCIs Needed Cascade Baseline Emissions
Emissions (Ton CO208)	lowed Emissions from Geologic Natural Gas	LESS - Expected Avoided Emissions - RNG LESS - Optimal Incremental EE LESS - Optimal Incremental RNG LESS - Optimal Hydrogen LESS - CCIs Needed
Emissions (Ton CO208)	lowed Emissions from Geologic Natural Gas	LESS - Expected Avoided Emissions - RNG LESS - Optimal Incremental EE LESS - Optimal Incremental RNG LESS - Optimal Hydrogen LESS - CCIs Needed Cascade Baseline Emissions
Emissions (Ton CO208)	lowed Emissions from Geologic Natural Gas	LESS - Expected Avoided Emissions - RNG LESS - Optimal Incremental EE LESS - Optimal Incremental RNG LESS - Optimal Hydrogen LESS - CCIs Needed Cascade Baseline Emissions
(a) CO	lowed Emissions from Geologic Natural Gas	LESS - Expected Avoided Emissions - RNG LESS - Optimal Incremental EE LESS - Optimal Incremental RNG LESS - Optimal Hydrogen LESS - CCIs Needed Cascade Baseline Emissions
Emissions (100 COO,000	lowed Emissions from Geologic Natural Gas	LESS - Expected Avoided Emissions - RNG LESS - Optimal Incremental EE LESS - Optimal Incremental RNG LESS - Optimal Hydrogen LESS - CCIs Needed Cascade Baseline Emissions

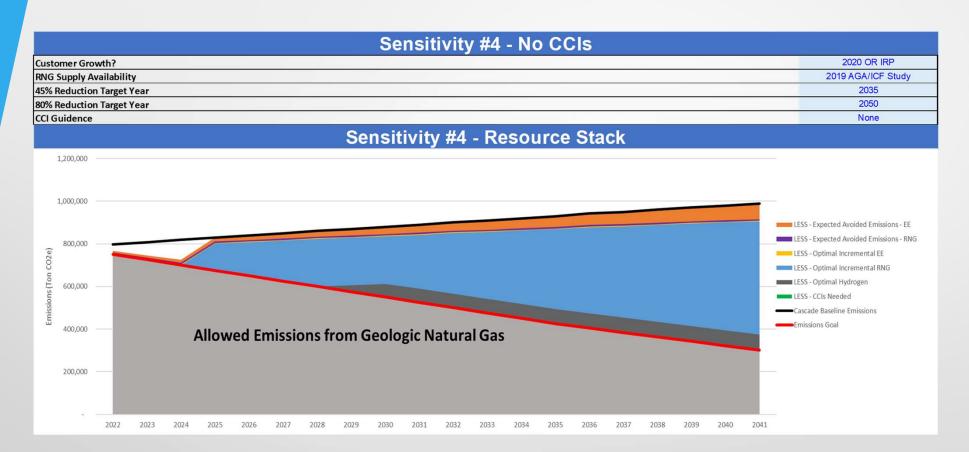


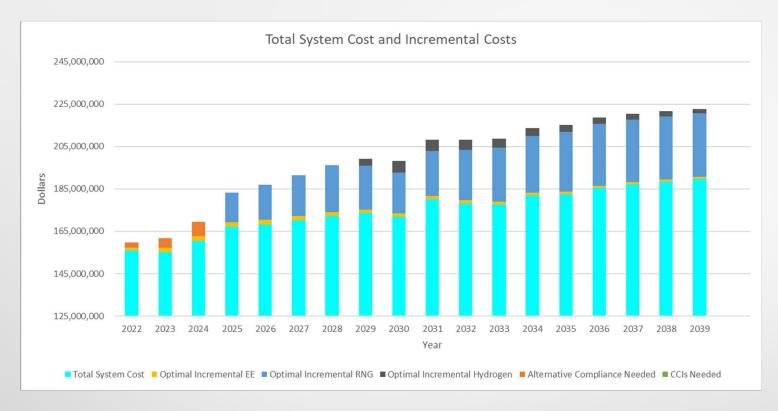
	Years				
Data Item	2022-2025	2026-2030	2031-2035	2036-2039	
Total System Cost	638,770,304	856,212,411	900,511,713	751,056,344	
Optimal Incremental EE	53,117	81,426	74,661	50,915	
Optimal Incremental RNG	8,256,694	78,802,504	85,223,688	69,628,251	
Optimal Incremental Hydrogen	0	-	16,212,259	8,461,791	
Alternative Compliance Needed	0	0	0	0	
CCIs Needed	19,392,671	15,204,902	6,928,953	3,892,581	





	Years			
Data Item	2022-2025	2026-2030	2031-2035	2036-2039
Total System Cost	638,770,304	856,212,411	900,511,713	751,056,344
Optimal Incremental EE	-	20,108,623	30,559,103	23,568,321
Optimal Incremental RNG	5,025,791	44,581,151	56,889,996	49,843,525
Optimal Incremental Hydrogen	-	1,043,098	859,169	249,172
Alternative Compliance Needed	0	12,304,216	30,750,717	30,704,795
CCIs Needed	21,671,842	28,799,112	27,270,900	19,763,272





	Years				
Data Item	2022-2025	2026-2030	2031-2035	2036-2039	
Total System Cost	638,770,304	856,212,411	900,511,713	751,056,344	
Optimal Incremental EE	4,625,251	9,120,704	6,527,963	3,846,056	
Optimal Incremental RNG	14,077,899	131,045,615	172,381,761	150,717,962	
Optimal Incremental Hydrogen	-	5,478,997	20,372,356	10,212,810	
Alternative Compliance Needed	2,229,354	0	0	0	
CCIs Needed	23,345,754	15,720,216	8,163,794	6,336,872	

	Years				
Data Item	2022-2025	2026-2030	2031-2035	2036-2039	
Total System Cost	638,770,304	856,212,411	900,511,713	751,056,344	
Optimal Incremental EE	7,733,419	9,120,704	6,527,963	3,846,056	
Optimal Incremental RNG	13,827,294	98,084,109	125,854,686	118,273,505	
Optimal Incremental Hydrogen	0	8,662,012	21,023,083	10,212,810	
Alternative Compliance Needed	13,827,611	0	0	0	
CCIs Needed	-	-	-	-	

Questions?

Cascade Natural Gas — UM 2178 Fact Finding Results

September 14th, 2021

