# **CAPACITY** Idaho Power Resource Planning Perspective

By: Mitch Colburn, Director, Resource Planning and Operations June 14<sup>th</sup>, 2019 Portland, Oregon

# **Resource Planning**

### Plan to meet the following:

- 1. Peak-hour demand
- 2. Energy needs
- 3. Reserve requirements
- 4. Flexible capacity needs



# 2017 Summer Peak

#### Load and Resources

#### July 7, 2017 3,422 MW



Note: Each resource represents the incremental addition provided to reach the total demand for the system.

# July 2017 Load, Wind, and Solar MW



## **Capacity Value Concept – Conventional Generation Hydro & Thermal Plants**

- Capacity Value is the percentage of the nameplate capacity that reliably available during specified hours (i.e. peak demand).
- Aka "peak capacity factor," or "contribution to peak" or sometimes "effective load carrying capability (ELCC)"



## **Capacity Value Concept – Solar PV**

- **Rated Capacity**: Nameplate capacity
- Actual Capacity: Maximum amount of electrical load that the system could serve at moment's notice. Changes with time
- **Operating Capacity:** Capacity at which the generator is currently operating. Changes with time



## **Capacity Value Concept – Solar PV**

 Increased solar generation on the grid changes the loadnet solar patterns and can shift the peak-net solar.

 High penetration levels of solar result in what is known as the "Duck Curve".



## **Peak Demand vs. Solar Output**



# Solar Capacity Value – IPC System (Summer)

Existing:

|                                    | Capacity Value (% of Nameplate Capacity) |
|------------------------------------|------------------------------------------|
| Existing Solar PV (289.5 MW)       | 61.86%                                   |
| Projects in Construction (26.5 MW) | 47.92%                                   |





## Peak Capacity Factors – Planning View (Summer)

- Hydro 100% (energy limited)
- Natural gas 100%
- Battery storage 100% (energy limited)
- Wind 5%
- Solar Depends

# **Summary – Planning Perspective**

#### 1. Peak-hour demand

-Plan to meet by combining expected peak-hour output of resources

#### 2. Energy needs

-Plan to meet by combining expected monthly energy contributions of resources

#### 3. Reserve requirements

-Incremental above expected peak-hour demand

-Reliability driven

#### 4. Flexible capacity

-Needed for ramping & variability (i.e. intermittent resources)

-Amount needed depends on resource mix