General Capacity Investigation Oregon PUC

Phase I Workshop: What is Capacity

June 14, 2019 John Fazio NW Power and Conservation Council

Outline

- Energy, Capacity and Flexibility
- Hydroelectric sustained-peaking capability
- Associated System Capacity Contribution (ASCC)
- Adequacy Reserve Margin (ARM)
- Validation of ARMs and ASCCs
- Optional:

Why solar ASCC is so much higher than its standalone capacity value for the PNW power supply

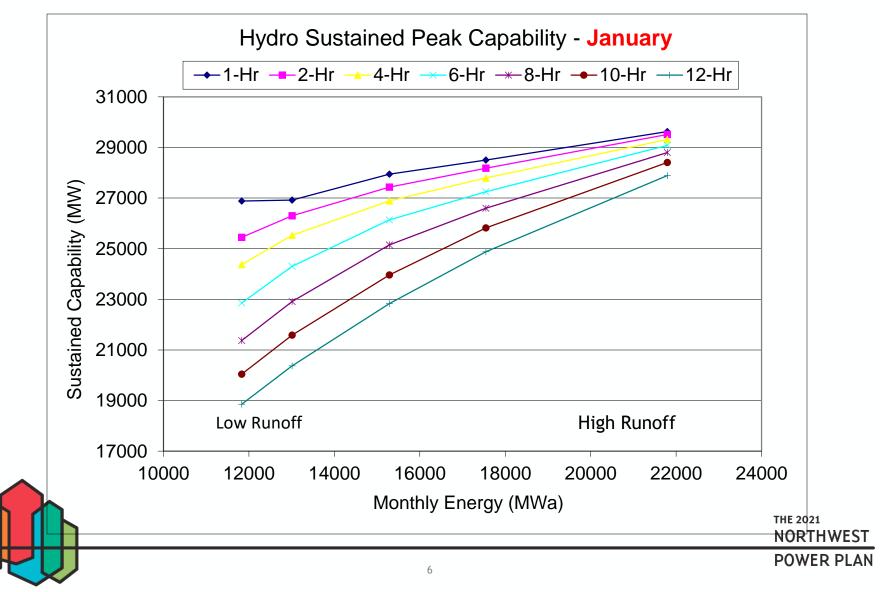
General Definitions

- Energy = <u>Quantity</u> Measured in megawatt-hours or average megawatts (1 aMW = 8,760 MW-hrs)
- Capacity = <u>Rate</u> of producing energy Measured in megawatts
- Flexibility = <u>Ramping</u> capability The ability of the power system to continuously match generation to system demands

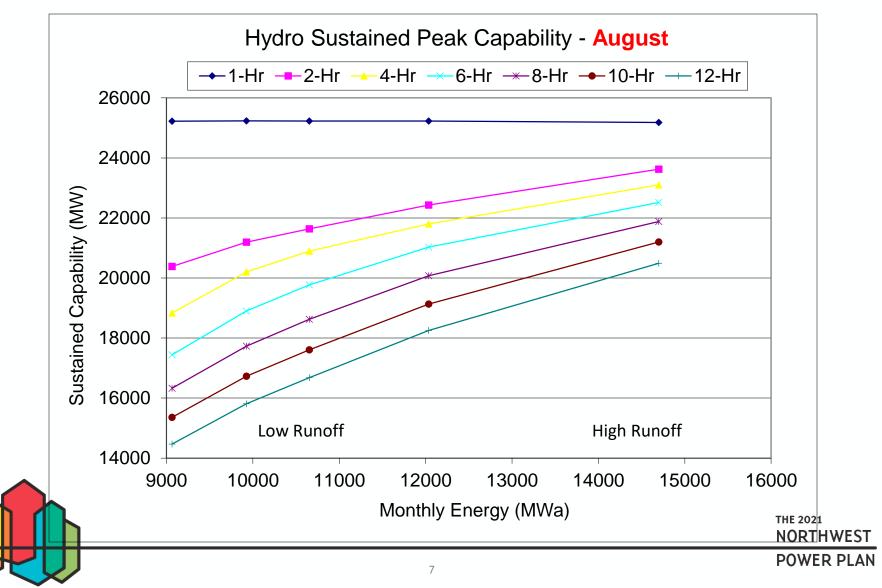
Another way to think about it

- Energy equates to fuel Must have sufficient fuel to meet the highest expected <u>annual average</u> energy demand
- Capacity equates to machines Must have sufficient machine capability to meet the highest expected <u>hourly</u> demand
- Flexibility = equates to ramping Must have sufficient machine flexibility to increase or decrease generation moment by moment to balance within-hour scheduling mismatches

Capacity of Hydroelectric Systems (with limited storage)


• Single-Hour Capacity

- Maximum power capability during peak-demand hour
- Single-hour hydro capacity = 34,222 MW
- Cannot be sustained over a cold snap or heat wave
- Sustained-Peak Capacity
 - Maximum average power capability during a limited number of peak-demand hours
 - Sustained-peak hydro capability ~ 23,000 MW¹
 - Can be sustained over a cold snap


¹For 6 peak hours/day in January during the lowest runoff water year

THE 2021 NORTHWEST POWER PLAN

Sustained-Peak Capacity varies by <u>Month</u>, <u>Water</u> <u>Condition</u> and <u>Duration</u> of Peak

Sustained-Peak Capacity varies by <u>Month</u>, <u>Water</u> <u>Condition</u> and <u>Duration</u> of Peak

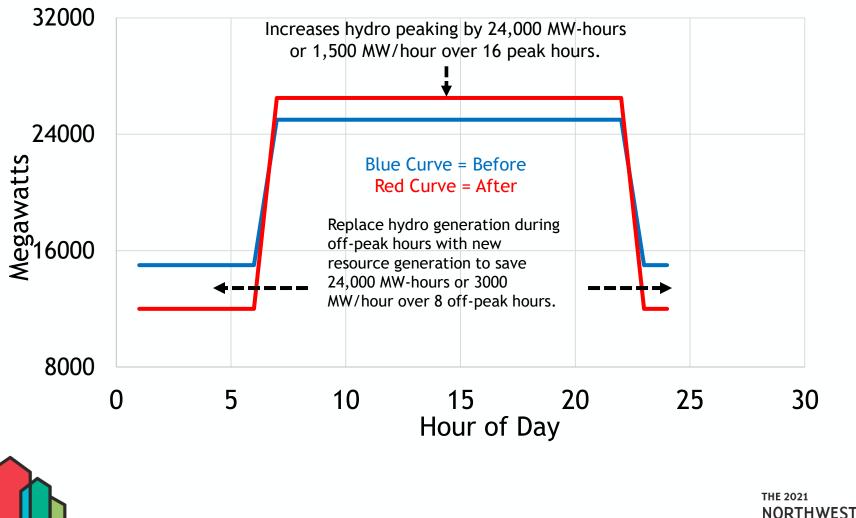
Standalone Capacity vs. Net System Capacity

- Standalone capacity is the percentage of nameplate capacity that can be counted on <u>with no interaction</u> <u>with available storage (i.e. hydroelectric system)</u>
- Net system capacity is the percentage of nameplate capacity that can be counted on <u>when allowed to</u> <u>interact with storage facilities (i.e. hydroelectric system)</u>

THE 2021 NORTHWEST POWER PLAN

Power Plan Adequacy Requirements (ARM and ASCC)

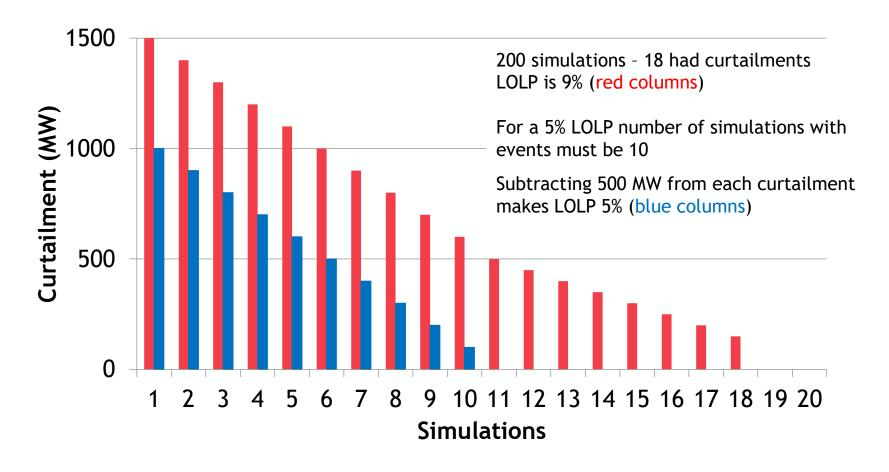
- The Adequacy Reserve Margin (ARM) is the amount of surplus capacity (or energy) needed, over the expected weather-normalized peak load (or average load), to ensure adequacy, in units of percent of expected load.
- The ARM is used in the Regional Portfolio Model as the adequacy test for resource buildouts.
- The Associated System Capacity Contribution (ASCC) is the net firm capacity gained when a resource is added to a power supply with storage, in units of percent of nameplate capacity.
- ASCC values are used to calculate ARMs and to assess if a power supply meets the ARM standard.


Associated System Capacity Contribution

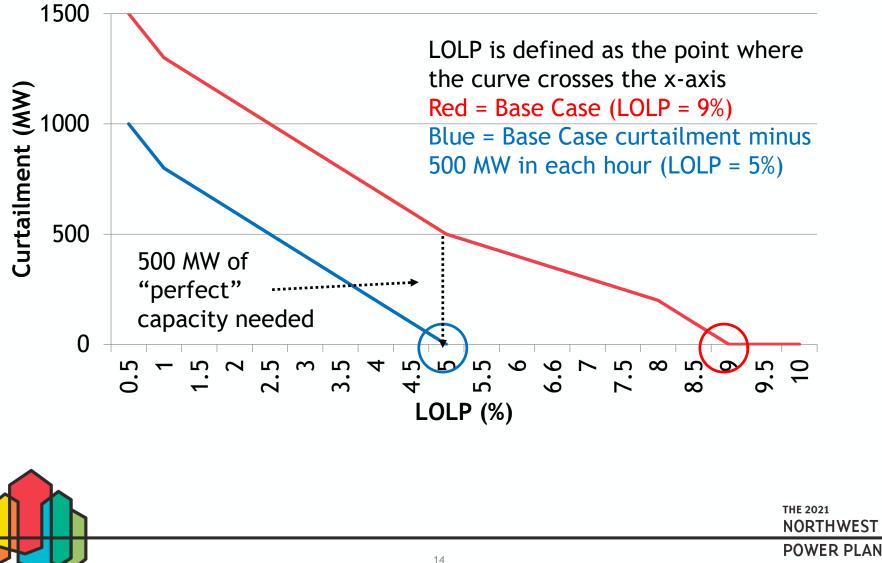
- ASCC is the net firm capacity gained when a resource is added to a power supply with storage (e.g. hydroelectric system).
- During off-peak hours (conditions allowing), the added resource can be operated to replace hydro generation, which saves water
- Saved water translates into added hydro capacity
- ASCC = Resource's stand-alone capacity + Added hydro capacity

Hydro Capacity Gained with New Resource

Using Hydro Storage to Increase Capacity

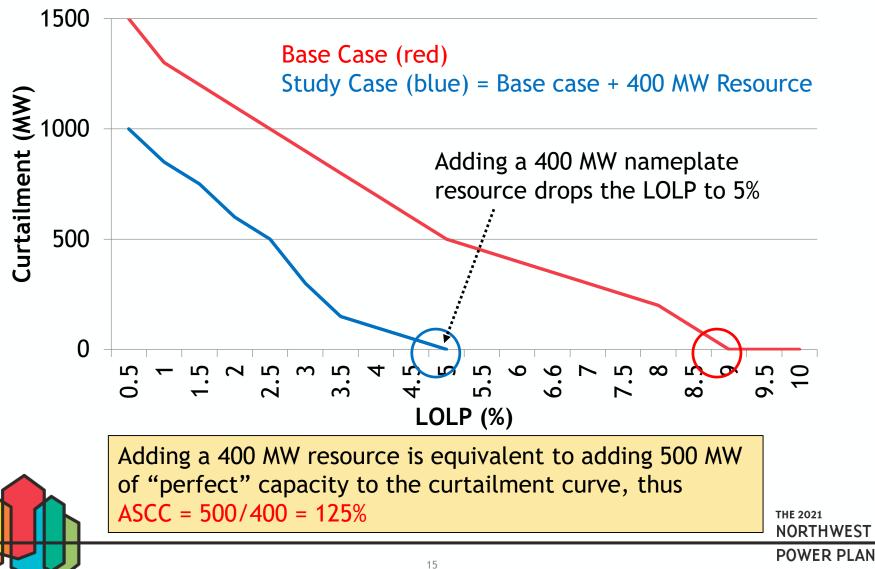

Calculating ASCC

- 1. <u>Base case</u>: Begin with an inadequate supply (i.e. LOLP >> 5%)
- 2. Determine how much "perfect" capacity is needed to reduce LOLP to 5% (cap-need-base)
- 3. <u>Study case</u>: Add a new resource (with nameplate-capacity)
- 4. Determine how much "perfect" capacity is needed to reduce LOLP to 5% (cap-need-study)
- 5. ASCC = <u>(cap-need-base cap-need-study)</u> nameplate-capacity



Peak-Hour Curtailment Duration Curve

(Largest hour curtailment per game, sorted highest to lowest)



Peak-Hour Curtailment Duration Curve (Same as before but LOLP on x-axis)

Peak-Hour Curtailment Duration Curve

(Same as before but LOLP on x-axis)

ASCC Values (%) from the 7^{th} PLan^{1,2}

Resource	Fall	Winer	Spring	Summer
Solar PV	26	81	81	42
Energy Efficiency	124	101	114	116
Wind	3	11	11	8
Gas-Fired Turbine	128	100	102	120
Geothermal	128	100	102	120

¹The net gain in peaking capability should be attributed to the hydro system. ²Incremental capacity gains diminish as more resource is added.

ASCC vs. ELCC

- The ASCC is essentially the same as the Effective Load Carrying Capability (ELCC)
- The Council chose to use a different name because of the way in which it calculates ASCC
- ELCC is more typically calculated using Expected Unserved Energy (EUE) instead of using the curtailment duration curve
- ELCC is more precise because it accounts for all shortfall hours but it takes longer to assess (more iterations)
- ASCC is faster and is sufficient for the analytical tools used to develop the power plan

Calculating ELCC using EUE

- Begin with an adequate power supply (however it is defined)
- Record the EUE
- Add an increment of load and record the increase in peak hour load
- The resulting EUE is larger because the new system (with higher load) becomes less adequate
- Add increments of new resource until the EUE matches the original EUE (for an adequate supply)
- The ELCC (in units of percent) tells us how much peak load each unit of new resource can serve without affecting adequacy
- <u>Example</u>: If ELCC is 10% then 100 MW of resource can serve 10 MW of peak load adequately
- ELCC = 100 X <u>increase in peak load</u> added nameplate capacity

Adequacy Reserve Margin

- The Adequacy Reserve Margin (ARM) is the amount of surplus capacity (or energy) needed, over the expected weather-normalized peak load (or average load), to ensure adequacy.
- The Council's 5% Loss-of-Load-Probability (LOLP) standard is translated into an Adequacy Reserve Margin (ARM).
- Seasonal (quarterly) ARM's are used in the Council's Regional Portfolio Model to ensure that resulting resource strategies yield adequate future power supplies.

Calculating ARMs

- The capacity ARM is calculated by subtracting the expected peak load from the aggregate capacity of a system whose LOLP is exactly 5%, divided by the load.
- The energy ARM is calculated by subtracting the expected average load from the aggregate average generating capability of a system whose LOLP is 5%, divided by the load.
- Aggregate capacity takes ASCC values into account, which include forced outage rates and maintenance.
- Expected peak and average loads are weather-normalized
- ARM_E (energy) = (average capability average load)/average load
- ARM_c (capacity) = (peaking capacity peak load)/peak load

ARM_C (Capacity) (Based on a power supply just at a 5% LOLP)

Resource Type	Adequacy Reserve Calc	Value (MW)	
Thermal	Nameplate	15,000	
Wind	ASCC value of 5%	250	
Hydro	Lowest 10-hr sustained peak	20,625	
Solar	ASCC value of 25%	125	
Imports	Max per hour	2,500	
Total Resource		38,500	
Load	Peak-hour Load	35,000	
ARM Capacity	(Resource - Load)/Load	10%	

Example of How the ARM_C Works

For a Future Operating Year	
Peaking capability	41,000 MW
Peak load	39,000 MW
Implied adequacy reserve	(41,000 - 39,000)/39,000 = 5%
ARM Capacity Requirement	10%
Assessment:	System is inadequate
Action:	More resource needed
Resource need = (ARM * Load) + Load	(0.1 * 39,000) + 39,000 = 42,900 MW
Incremental resource need = Resource need - peaking capability	42,900 - 41,000 = 1,900 MW

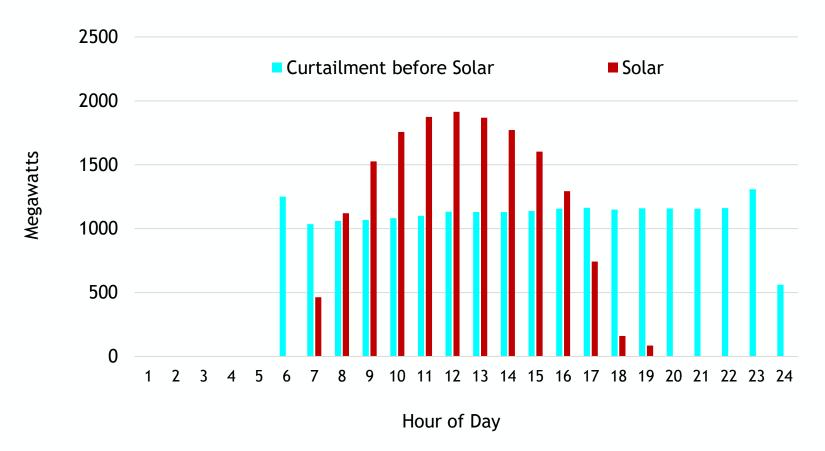
For this example, to meet the 10% ARM requirement, an additional 1900 MW of capacity must be added to the system.

THE 2021 NORTHWEST POWER PLAN

Validating ASCC and ARMs

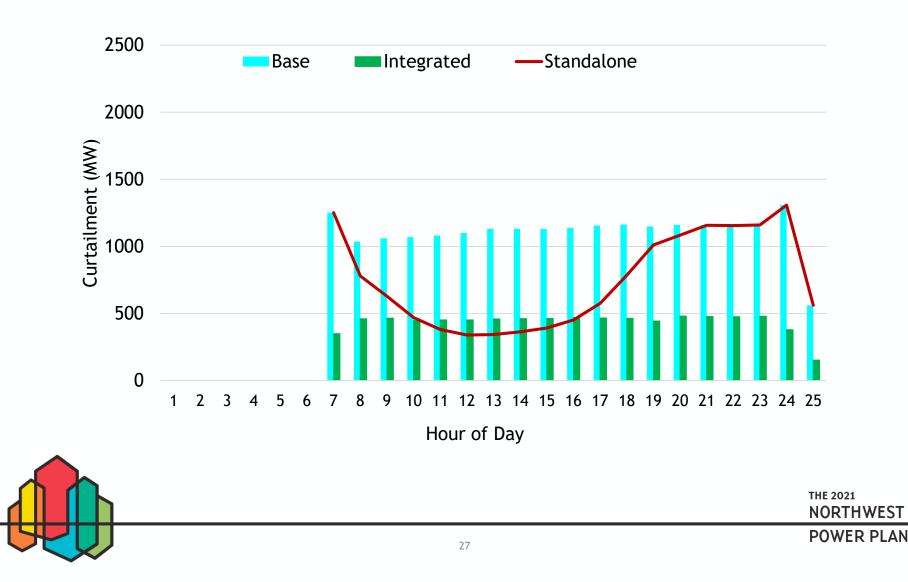
- From the 7th power plan, several future year resource buildouts were selected to test for adequacy
- Goal: LOLP should be between about 2% and 5% (i.e. to ensure an adequate but not overbuilt supply)
- For all tested years from the 7th plan output, the LOLP fell within the desired range.
- Without using the ASCC values, future resource mixes were always overbuilt (i.e. LOLP = 0%)

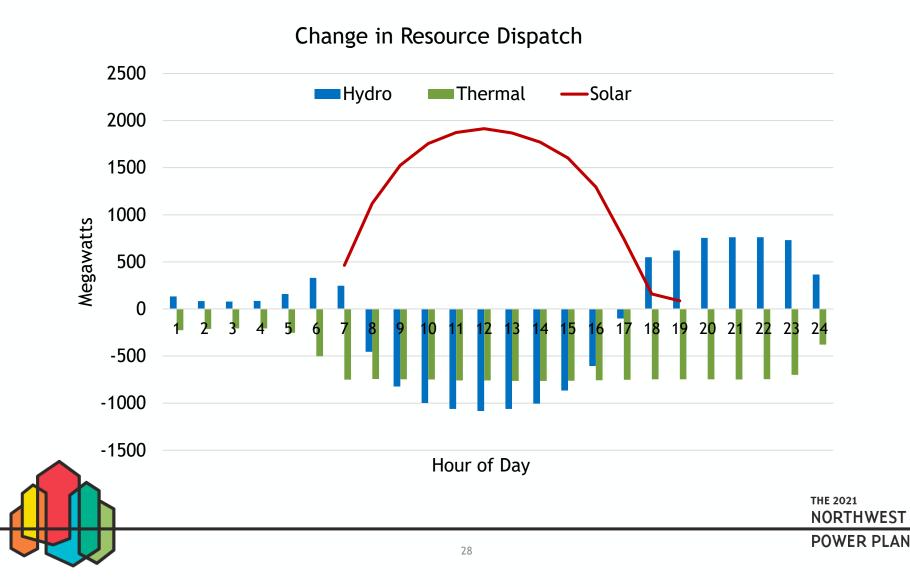
Optional



Why Solar Integrated Capacity is so much higher than its Standalone Capacity

- Simulated curtailment events range from one hour to over 24 hours
- About 1/3 of all curtailment events are 18 hours in duration (because the hydro system is used to flatten out anticipated peak hours shortfalls)
- Since solar only provides generation roughly between 7am and 7pm, not all of the 18-hour shortfall events will be satisfied
- However, when coupled with hydro storage, the combined effect can satisfy many more longer-duration curtailment events
- Example is provided in the following slides...


Typical Shortfall Event and Solar Generation


- Some curtailments occur when solar is not generating
- As a standalone resource, surplus solar generation cannot be shifted into other hours

THE 2021 NORTHWEST POWER PLAN

Curtailment with Standalone and Integrated Solar

Integrating Solar affects Hydro & Thermal Resources

