UM 1751 WORKSHOP 2

Implementation of HB 2193 Energy Storage Guidelines February 29, 2016

<u>Reminder</u> – Please add your name to the sign in sheet.

Welcome & Introductions

- Welcome and thank you for your participation.
- Reminders:
 - <u>Sign In</u>: Please add your name & contact information to the sign-in sheet.
 - <u>Phone Participants Sign in</u> please email your name and contact information to <u>elaine.prause@state.or.us</u> to "sign-in" electronically.
 - <u>Microphone Use</u> please speak into the microphone (5 inches away) for the benefit of phone participants.
 - <u>Notice List</u> Sign up for the UM 1751 notice list by emailing a request to <u>puc.hearings@state.or.us</u> (include UM 1751 in subject line).

Agenda

- Welcome and introductions
 - Quick review of UM 1751
 - Questions for today
- Presentations
 - ODOE and Clean Energy Group
 - o PNNL
 - PGE and Strategen
 - PacifiCorp
 - Solar City
 - $\circ \mathsf{AES}$
- BREAK
- Next steps (11:40-12)

Recap of HB 2193, UM 1751

Phase 1	Phase 2	Phase 3
PUC adopts guidelines <u>by 1/1/17</u> for proposals submitted in Phase 2	Utilities submit one or more ES project proposals to the commission <u>by 1/1/18</u>	Commission may authorize projects
 Rule or Order, PUC staff prefer Order Docket UM 1751 Workshops started January 2016 	 Data to identify potential system locations Complements other planning efforts Project details and cost-effectiveness evaluation Treatment of confidential information 	 Capacity up to 1% peak 2014 load Consistency with guidelines Reasonable and in the public interest May have above market cost
2016	2017	By 2020

Goals for Phase 1

- 1. Adopt guidelines by order by 1/1/17
- 2. Guidelines provide direction to utilities regarding what needs to be included in their proposals
 Onsider values listed in statute plus "other"
 Onsider encouraging different types

Goals for Workshop #2

1. Continue exploratory phase

What services can energy storage provide?

- How to assess the value of services from energy storage?
- What tools are available to help with the analysis?
- Lessons learned in service valuation?
- 2. Better understanding for how to address valuation of energy storage in guidelines

Presentations

- 1. ODOE and Clean Energy Group Diane Broad and Todd Olinsky-Paul
- 2. PNNL Patrick Balducci
- 3. PGE and Strategen Joe Ross and Mark Higgins
- 4. PacifiCorp Hui Shu and Ian Andrews
- 5. Solar City Brian Warshay
- 6. AES- Kiran Kumaraswamy

Energy Storage Technology Advancement Partnership (ESTAP)

Energy Storage Update

Oregon PUC February 29, 2016

Todd Olinsky-Paul ESTAP Project Director Clean Energy States Alliance

Thank You:

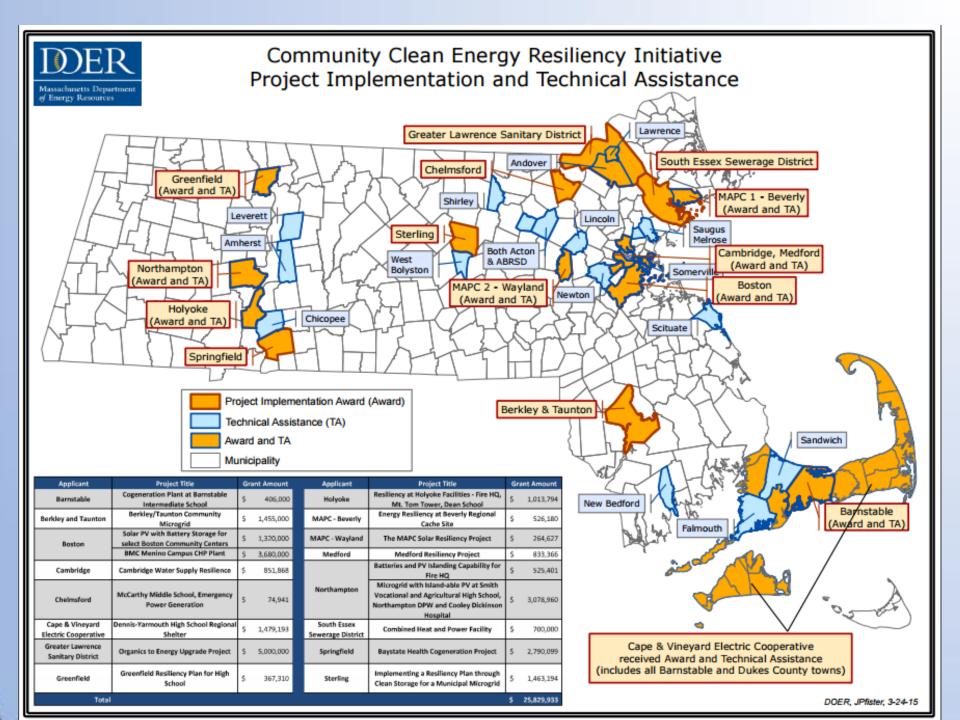
Dr. Imre Gyuk U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability

Dan Borneo Sandia National Laboratories

ESTAP is a project of CESA

Clean Energy States Alliance (CESA) is a non-profit organization providing a forum for states to work together to implement effective clean energy policies & programs:

State & Federal Energy Storage Technology Advancement Partnership (ESTAP) is conducted under contract with Sandia National Laboratories, with funding from US DOE.


Sandia

National

aboratories

U.S. DEPARTMENT OF

Municipal Utility Analysis - Massachusetts

- Analysis conducted by Sandia National Laboratories
- Based on 1 MW/1MWh lithium ion battery installed on distribution grid, with 3 MW solar PV
- System to be owned and operated by a western MA municipal utility
- Potential value streams:
 - Energy arbitrage revenues (buy low, sell high)
 - Reduction in transmission obligation to ISO-NE (cost savings based on monthly peak hour)
 - Reduction in capacity obligation to ISO-NE (cost savngs based on annual peak hour)
 - Resilient power provision to municipal police station and emergency dispatch center (non-monetizable benefit)

Arbitrage basis

Final Real-Time Locational Marginal Prices (\$/MWh)

9/2/2014

Hour	HUB	WCMA	NEMA	SEMA	СТ	RI	NH	VТ	ME
1	44.23	44.35	44,48	44.03	44,40	44.39	43.85	43.75	41.88
2	38.15	38.31	38.22	37.84	38.36	38.17	37.74	37.75	36.11
3	32.98	33.11	33.01	32.68	33.09	32.96	32.67	3.2.54	31.54
	28.23	28.34	28.26	28.01	28.26	28.19	28.02	27.90	27.13
5	28.06	28.19	28.07	27.83	28.17	27.97	27.89	27.81	26.98
6	32.97	33.10	32.98	32.67	33.11	33.09	32.86	3.2.82	31.77
7	37.33	37.46	37,49	37.03	37.51	37.24	37,44	37.29	36.38
8	40.87	40.99	41.07	40.62	41.05	40.90	41.01	40.86	39.96
9	35.01	35.09	35.25	36.10	35.06	41.63	35.25	34.96	34.33
10	45.85	45.99	46.13	46.51	46.09	50.20	46.07	45.92	44.34
П	73.81	74.12	74.15	73.39	74.69	73.55	74.11	74.15	71.31
12	89.80	90.11	90.35	89.45	93.48	89.51	90.14	\$9.86	86.67
13	185.70	186.25	187.11	185.44	190.47	185.53	186.15	184.95	178.01
14	554.71	555.62	560.77	555.12	558.00	555.55	555.69	551.95	530.00
15	206.54	206.72	209.37	207.47	308.93	207.60	206.72	205.66	196.51
16	70,45	70.57	71.51	70.86	158.68	70.91	70.15	70,67	65.38
17	86.23	\$6.34	\$7.48	\$6.72	168.94	\$6.71	\$5.96	\$6.14	\$0.60
18	133.90	134.22	135.05	134.18	174.45	134.14	133.38	133.73	126.21
19	72.92	73.14	73.35	72.90	107.74	72.81	72.65	73.38	68.10
20	75.16	75.35	75.60	75.14	\$2.61	75.08	75.14	75,41	71.28
21	74.36	74.62	74.61	74.20	75.75	73.96	74.14	74,76	70.18
22	55.07	55.27	55.32	54.86	\$5.76	54.56	54.81	54.91	52.16
23	38.60	38.75	38.82	38.36	39.02	38.21	38.48	38.42	36.99
24	54.55	54.76	54.98	54.15	\$5.00	54.01	54.41	54.12	52.48
AVG	88.98	\$9.20	\$9.73	88.98	104.53	\$9.45	\$8.95	\$\$.74	84.85
On Peak AVG	114.94	115.20	116.00	115.08	138.17	115.68	114.99	114.73	109.50
Off Peak AVG	37.06	37.20	37.19	36.78	37.24	37.00	36.86	36.75	35.53

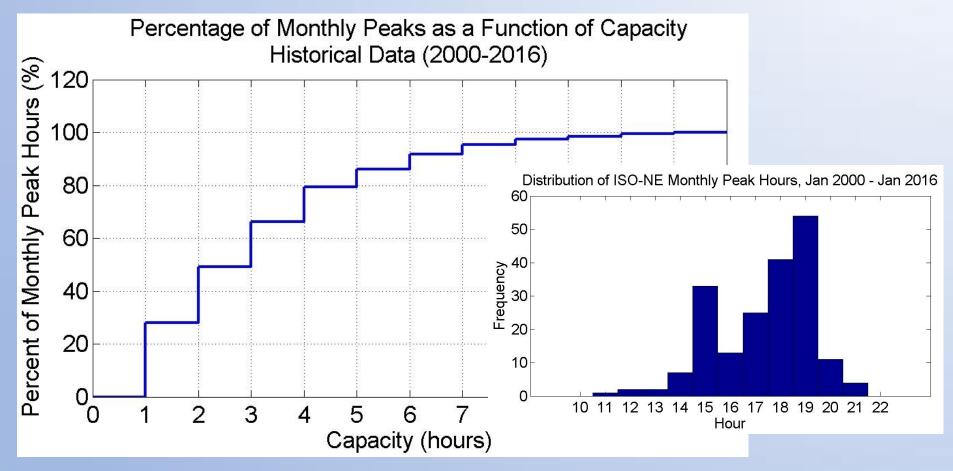
Energy Arbitrage

- Analyzed 33 months of data (January 2013-September 2015)
- Optimization using perfect foresight
- Cycling limitations were not included

Maximum Potential Arbitrage Revenue, Average Monthly Arbitrage Opportunity for a 1 MW Plant.

	1 MWh	2 MWh	3 MWh	4 MWh
Monthly Average	\$3,395	\$5,117	\$6,227	\$6,949
Annual Savings	\$40,738	\$61,407	\$74,722	\$83,383

Reduction in Transmission Obligation (Regional Network Service (RNS) payments) to ISO-NE


- Monthly payment based on maximum load
- Payment for using transmission facilities to move electricity into or within New England
- Current pool rate, effective June 1, 2015: \$98.70147/kW-yr
- Need to "hit the hour" to reduce load, or else no benefit
- Having a multi-hour battery (more capacity) provides no increase in benefit, but increases the odds of "hitting the hour"

s Sav	vings for 1	Hour Energy St	ora
	Power	Annual	
	(MW)	Savings (\$)	
	1	\$98,707	
	2	\$197,403	
	3	\$296,104	
	4	\$394,806	

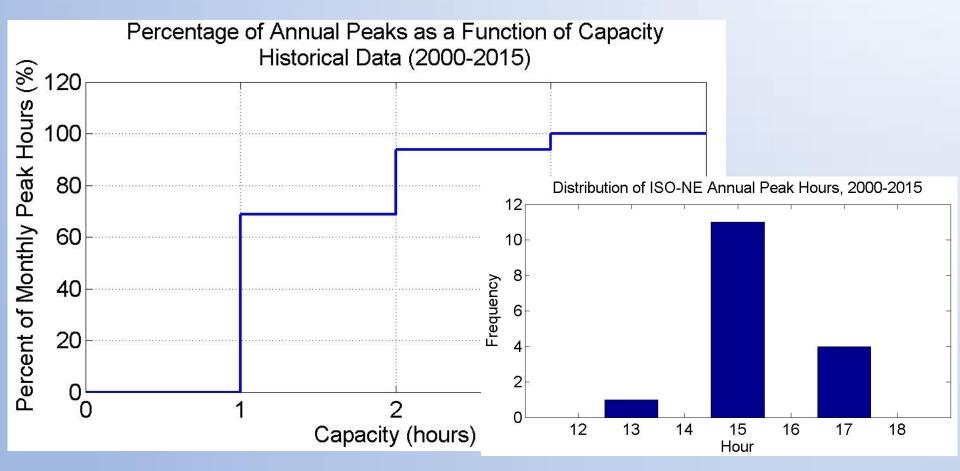
RNS Savings for 1 Hour Energy Storage System.

Impact of Energy Storage Capacity on Transmission Savings

Increased energy storage capacity increases the likelihood of hitting monthly peaks

Reduction in Capacity Obligation to ISO-NE

- Each load serving entity is responsible for a fraction of the Forward Capacity Market obligations
- Based on one annual peak hour
- Rates due to triple in three years
- Increasing capacity does not increase revenue, just increases the odds of "hitting the hour"


Capacity Clearing Price, ISO-NE.

Year	Price (\$/kW-Month)
2010-2011	\$4.254
2011-2012	\$3.119
2012-2013	\$2.535
2013-2014	\$2.516
2014-2015	\$2.855
2015-2016	\$3.129
2016-2017	\$3.150
2017-2018	\$7.025
2018-2019	\$9.551

Capacity Clearing Price, ISO-NE.					
Year	Price (\$/kW- Month)	1 MW	2 MW	3 MW	4 MW
2015-16	\$3.129	\$51,477	\$102,958	\$154,443	\$205,932
2016-17	\$3.150	\$51,822	\$103,649	\$155,479	\$207,315
2017-18	\$7.025	\$115,572	\$213,153	\$346,744	\$462,344
2018-19	\$9.551	\$157,128	\$314,269	\$471,424	\$628,591

Impact of Storage Capacity on Capacity Savings

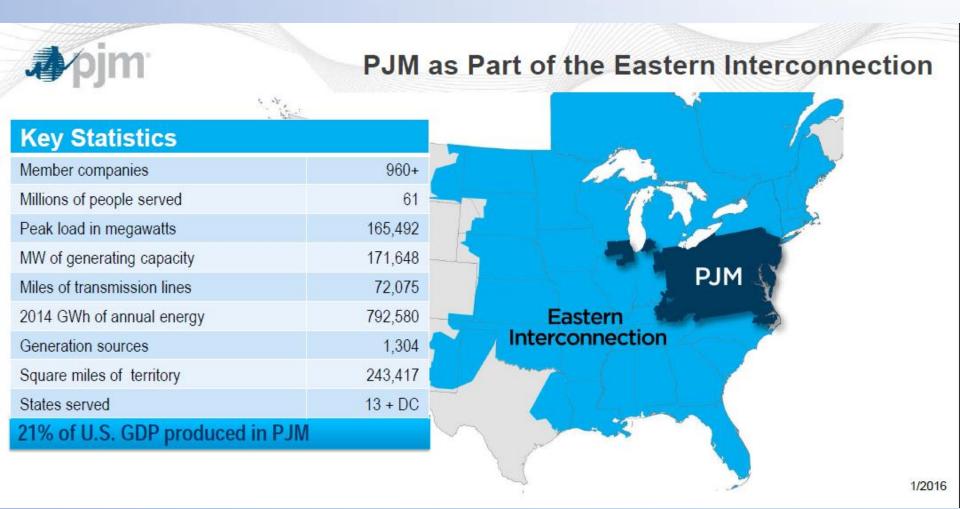
Increased energy storage capacity of limited benefit, due to distribution of annual peaks

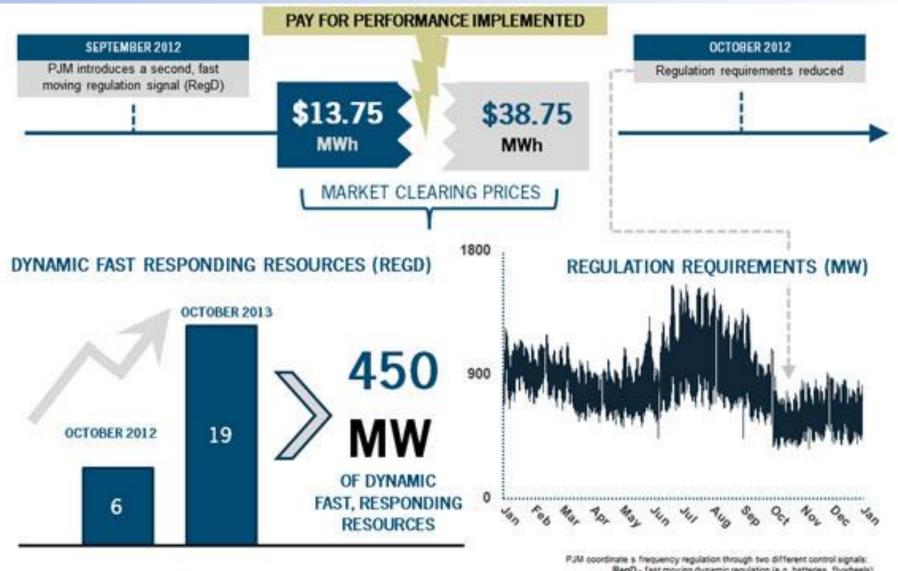
Grid Resilience

- Municipality has identified 10kW as the critical load at community police and dispatch station
- Resilience is not monetizable but is valued highly by the community and the state

Days of Back-up Power for Critical Loads				
	1 MWh	2 MWh	3 MWh	4 MWh
Days	4.167	8.333	12.5	16.667

Summary of Monetizable Benefits

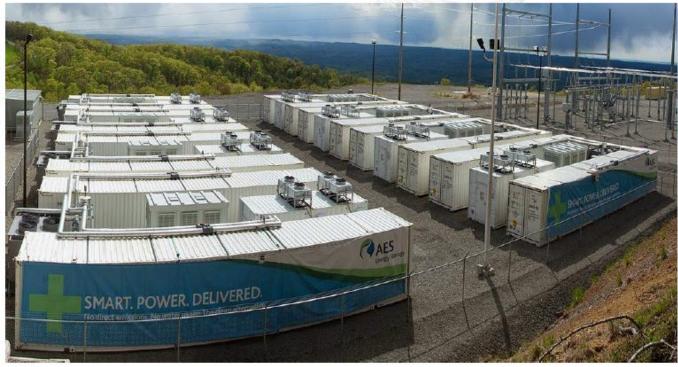

• Total potential revenue, 1MW, 1MWh system


Description	Total	Percent
Arbitrage	\$40,738	16.0%
RNS payment	\$98,707	38.7%
FCM obligation*	\$115,572	45.3%
Total	\$255,017	100%

• For a capital cost of ~1.7M, the simple payback is 6.67 years

*2017-2018 data. Rates will be higher in 2018-2019, resulting in additional savings.

Frequency Regulation in PJM



RegD - fast moving dynamic regulation (e.g. batteries, flywheels) RegA - Traditional regulation resources (e.g. single cycle gas turbines)

Grid-Scale Energy Storage – 250+ MW in Operation

Total Advanced Storage

Grid Connected – 263 MW Under Construction – 53 MW Under Study – 674 MW*

32 MW AES energy storage facility at 98 MW Laurel Mountain Wind Farm, WV

"historically, only a small percentage are actually delivered in-service Source: PJM

Grid-Scale Energy Storage – 250+ MW in Operation

Total Advanced Storage

Grid Connected – 263 MW Under Construction – 53 MW Under Study – 674 MW*

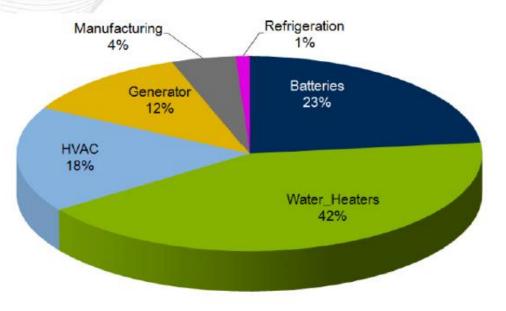
Invenergy's Beech Ridge 32 MW energy storage project in West Virginia (paired with 100 MW wind energy)

*historically, only a small percentage are actually delivered in-service

Source: PJM

FY2015 Renewable Electric Storage Incentive Solicitation Results

October 22, 2014 - Board Approved Solicitation & Evaluation Process December 08, 2014 - Applications Due; 22 Received => Evaluated March 18, 2015 – Board Approved 13 Applications for Incentive Award


- <u>22 Applications Received</u>
- \$4,694,642 Requested
- \$70,000 to \$468,708 per
- \$323,585 to \$1.86 million
- 13,430 kW total capacity
- 250 kW to 1,500 kW
- 19 Li-ion & 3 Lead Carbon
- 18 public & critical, 4 not

- <u>13 Applications Approved</u>
- \$2,908,804 Awarded
- \$70,000 to \$468,708 per
- \$330,766 to \$1.855 million
- 8,750 kW total capacity
- 250 kW to 1,500 kW
- 13 Li-ion projects
- 13 public and critical

DR Market Participation: Regulation Market

Regulation	Zone	January 2016
Locations	RTO	293
MW	RTO	22

Note: Percent of CSP Reported Load Reduction MWs

Take-Aways

- Energy storage is installed and operational in many states
 - Utility scale
 - Behind the meter
- Energy storage can provide many valuable benefits
 - Demand charge management
 - Demand response
 - Frequency regulation
 - Renewables integration
 - Resilience
 - T&D investment displacement/deferral
- It is possible to provide resilience to critical facilities AND generate revenues/cost savings, so that storage systems will pay for themselves
- Energy storage can compete today in open markets under pay-forperformance conditions
- As prices continue to fall, energy storage will find new markets and applications

Support CESA | Member Login | Join

ABOUT US

MEMBERSHIP PROJECTS

RESOURCE LIBRARY

WEBINARS

CONTACT US

SEARCH

Home / Projects / Energy Storage Technology Advancement Partnership

Energy Storage Technology Advancement Partnership

More CESA Projects

Overview

ESTAP Resource

Library

************************ ESTAP Webinars

ESTAP News

ESTAP Listserv Signup

ESTAP

Project Director: Todd Olinsky-Paul

Contact: Todd Olinsky-Paul, Todd@cleanegroup.org

SIGN UP FOR THIS e-MAILING LIST

The Energy Storage Technology Advancement Partnership (ESTAP) is a federal-state funding and information sharing project, managed by CESA, that aims to accelerate the deployment of electrical energy storage technologies in the U.S.

The project's objective is to accelerate the pace of deployment of energy storage technologies in the United States through the creation of technical assistance and co-funding partnerships between states and the U.S. Department of Energy.

ESTAP conducts two key activities:

Disseminate information to stakeholders 1) through:

- The ESTAP listserv (>2,000 members)
- Webinars conferences information undates

NEW RESOURCES

October 14, 2015 Resilience for Free: How Solar+Storage Could **Protect Multifamily** Affordable Housing from Power Outages at Little or No Net Cost By Clean Energy Group

September 30, 2015 Webinar Slides: Energy Storage Market Updates, 9.30.15

UPCOMING EVENTS

December 16, 2015 ESTAP Webinar: State of the U.S. Energy Storage Industry,

More Events

LATEST NEWS

November 30, 2015 Massachusetts Takes the Lead on Resilient

Thank You

Todd Olinsky-Paul Project Director Todd@cleanegroup.org

ESTAP Website: <u>http://bit.ly/CESA-ESTAP</u>

ESTAP Listserv: http://bit.ly/EnergyStorageList

"Grid Edge Demonstration" ESS at EWEB

- EWEB will install a total of 500 kW / 903 kWh
 - Utility Operations Center
 - Water Pumping Station
 - Communications Facility

Each of the three sites have diesel gen. back-up and will have 25-75 kW PV

- Energy storage demonstration will validate these value streams
 - Grid ancillary services voltage support, regulation services, peak/shift capacity, demand response
 - Storing solar energy from an existing PV system
 - Resiliency
 - >> Black start capability (Self Excitement), disaster Preparedness
 - >> able to sustain basic level of self-supplied energy indefinitely
 - Reduced emissions (EV charging primarily from PV system)
- Microgrid Controller/Interoperability platform supporting interface with Distributed Energy Resources, Energy Storage System, advanced power/energy management applications, and utility SCADA system → "active management"

Please contact ODOE for more information

Diane Broad Senior Policy Analsyt, Oregon Dept. of Energy

Diane.Broad@state.or.us

503-378-4035

ODOE Website http://www.oregon.gov/energy/Pages/energy-storage.aspx

Proudly Operated by Battelle Since 1965

Evaluating the Cost Effectiveness of Energy Storage Projects

Patrick J. Balducci Pacific NW National Laboratory

UM 1751 Energy Storage Workshop #2 February 29, 2016 Salem, OR.

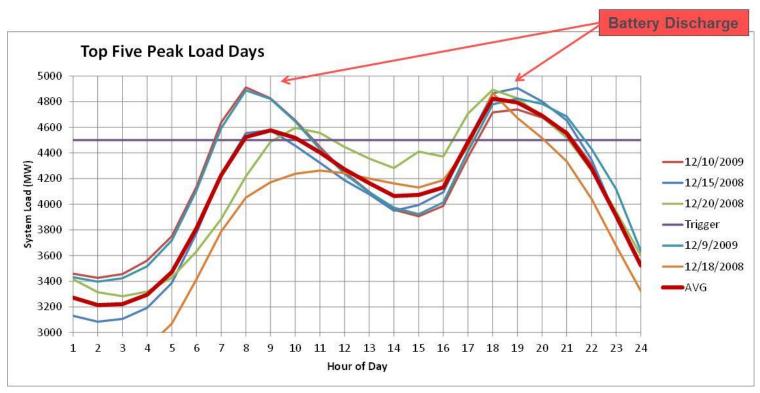
Key Questions Discussed in This Session

- What grid services can energy storage systems (ESSs) provide, and what is the significance of "stacking benefits"?
- Are the values associated with grid services provided by ESS consistent between, or specific to, individual utilities? If specific, why do they differ and what is the nature of these differences? How can they be measured?
- How can utilities effectively site, size and control energy storage in order to maximize benefits, and how important is this process?
- What are the primary challenges and barriers to expanded energy storage adoption?

Key Concepts

- ESSs provide services or functions or values; a use case is a service that is specific to an installation
- Energy storage comes in many forms:
 - Battery energy storage (li-ion, flow batteries, na-s)
 - Compressed air energy storage
 - Pump storage hydro
 - Flywheels
- Categories of services:
 - Bulk energy arbitrage and capacity
 - Ancillary services regulation, spin and non-spin reserve, load following
 - Transmission congestion relief and asset deferral
 - Distribution deferral and voltage support
 - Customer benefits bill reduction, outage mitigation, power quality
- Services/functions/values have to be stacked properly to avoid double counting, and a simulation/co-optimization process is required
- ESSs have both power and energy capacities and optimal sizing is important.

Grid Functions and Tools to Estimate Values



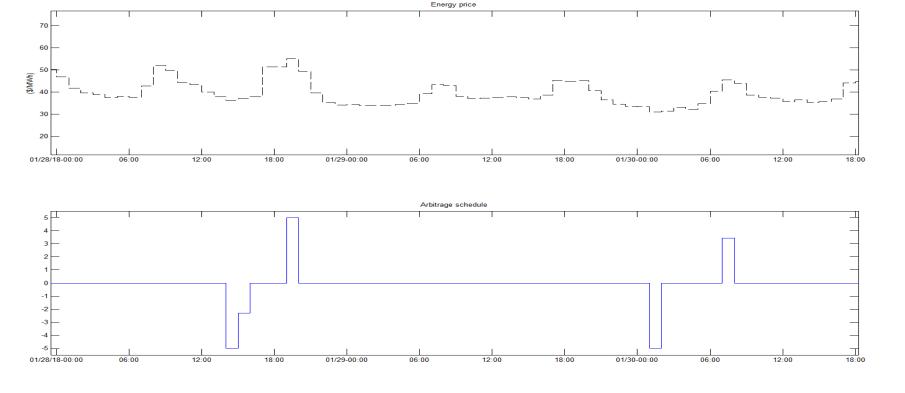
Proudly Operated by Battelle Since 1965

Location/Service	Analysis Tools
Transmission System	
Arbitrage	Production cost modeling
Balancing Regulation	Stochastic model w. & w/o valuation, KERMIT
Capacity	Financial models
Distribution System	
Transformer Deferral and Volt/VAR Control	GridLab-D, OpenDSS
Upgrade Deferral	Financial Models
PV Integration	Gridlab-D, OpenDSS
Outage Mitigation	
Customer Side	
Industry, School, Multifamily	Optimization tools
Bundled Services	Energy Storage Evaluation Tool (E3/EPRI), Battery Storage Evaluation Tool (PNNL), ESWare™ (24M), ES-Select™ (DNV-KEMA)

Benefit 1 – Peak Shaving

- Capacity value based on the incremental cost of next best alternative investment (peaking combustion turbine) with adjustments for the incremental capacity equivalent of energy storage and line losses
- Distribution upgrade deferral based on present value benefits of deferring investment in distribution system upgrades

Key Lesson: Values will differ based on presence of markets, local distribution system conditions, and valuation policies.

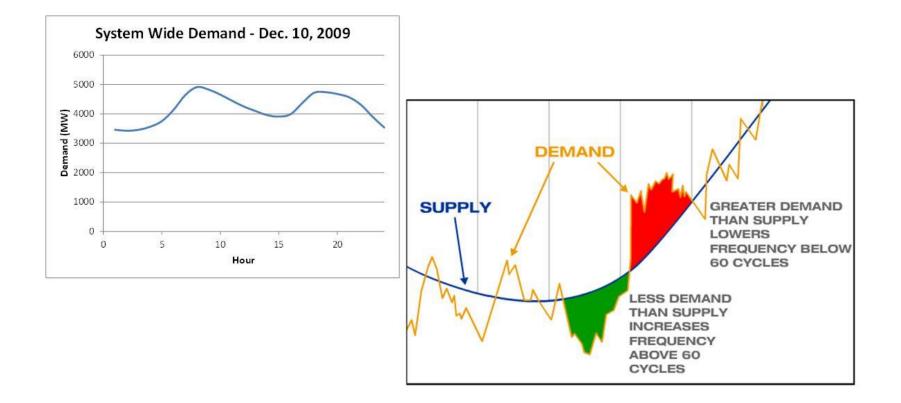


Proudly Operated by Battelle Since 1965

Benefit Example 2 – Energy Arbitrage

- Hourly indexed day-ahead energy market for mid-Columbia used to determine peak / off-peak price differentials
- Value obtained by purchasing energy during low price hours and selling energy at high energy price hours – efficiency losses considered

Key Lesson: Profitability differs significantly by region; profit also affected by round trip efficiency of the ESS.



Proudly Operated by Battelle Since 1965

Benefit Example 3 – System Flexibility

Reduces cost and emissions associated with idling fossil-fuel burning plants

Pacific Northwest

NATIONAL LABORATORY
Proudly Operated by Battelle Since 1965

Benefit Example 4 – Outage Mitigation

Pacific Northwest NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

Outage data

- Outage data obtained from utility for multiple years
- Average annual number of outages determined and outages randomly selected and scaled to approximate average year
- Outage start time and duration

Cost per Outage (\$2008)* Residential Small C+1 Large C + I Duration \$2 \$210 \$7,331 Momentary Less than 1 hr \$738 \$4 \$16,347 2-4 hours \$7 \$3,236 \$40,297 8-12 hours \$12 \$3,996 \$46,227

Source: Sullivan, M., Mercurio, M., and J. Schellenberg. 2009. "Estimated Value of Service Reliability for Electric Utility Customers in the United States." Prepared for U.S. Department of Energy by Lawrence Berkeley National Laboratory. Berkeley, CA.

Customer and load information

- Number of customers affected each outage obtained from utility
- Customer outages sorted into customer classes using utility data and assigned values
- Load determined using 15-minute SCADA information

Alternative scenarios

- Perfect foreknowledge energy storage charges up in advance of inclement weather
- No foreknowledge energy on-hand when outage occurs is used to reduce outage impact

Key Lesson: Benefits, which can be very large, accrue primarily to the customer and are largely dependent on the effective placement of the ESS. If focused on utility benefits, we would focus on violation costs or lost energy sales.

Energy Storage for the Puget Sound Energy (PSE) Region*

Proudly Operated by Battelle Since 1965

Project objective: Analyze and demonstrate the benefits of electrical energy storage on the distribution grid

Situation

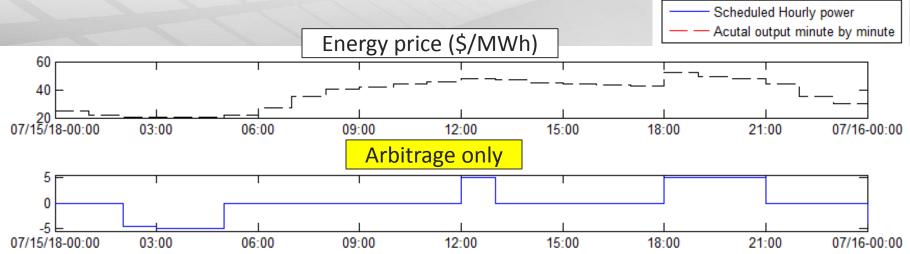
 25MVa transformers at radial substations at Murden Cove and Winslow operate at or above target load

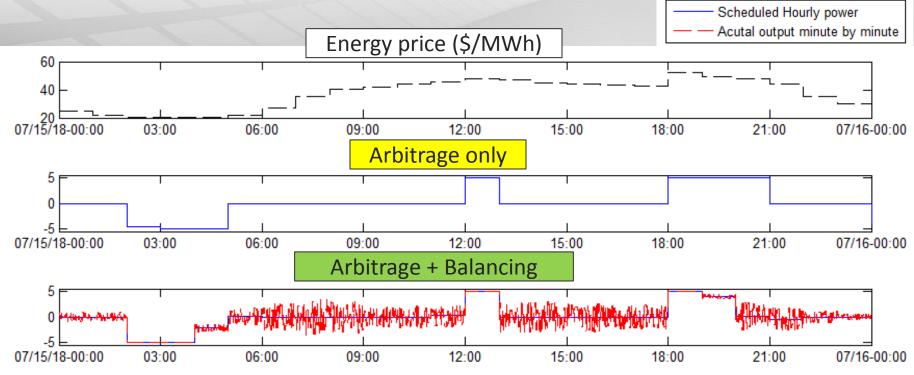
Requirements

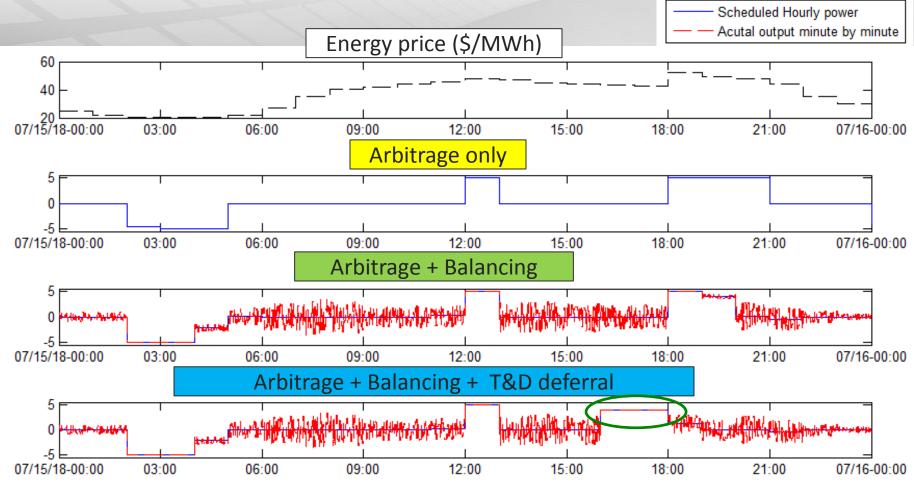
- Multiple hours of capacity required
- Small footprint to fit within a substation
- Year-round operation capabilities
- Flexibility to perform multiple applications (e.g., balancing svcs., islanding)

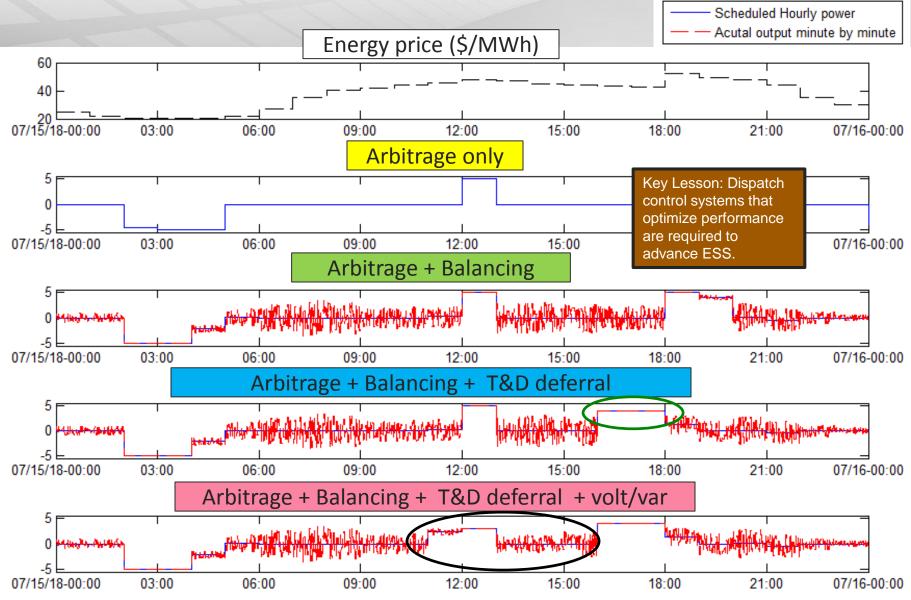
Novel technical solution

 Containerized, electrochemical energy storage with a 2nd generation flow battery technology

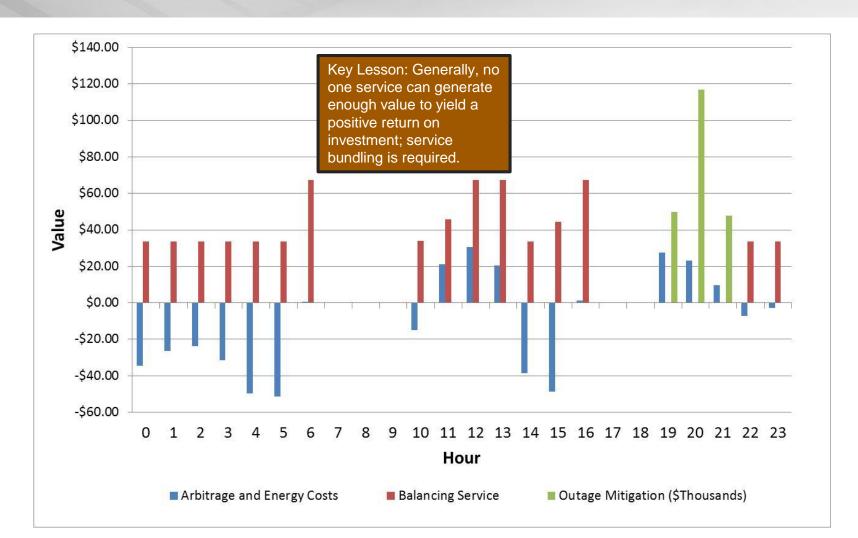

*Research Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability, Energy Storage Program and the Bonneville Power Administration.


Battery Storage Evaluation Tool (BSET) User Interface

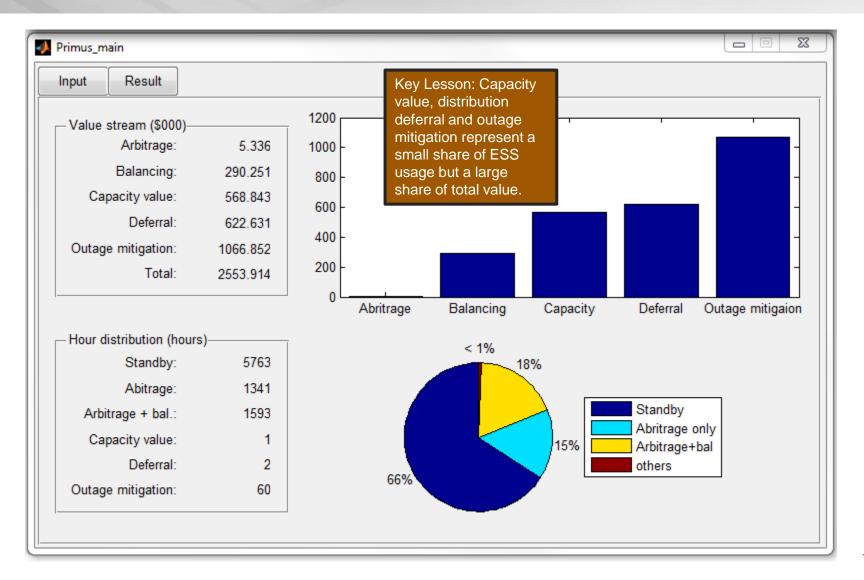



Proudly Operated by Battelle Since 1965

nput Result					
Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965	Chargir Ener	ng efficiency: ng efficiency: rgy capacity: ver capacity:	0.80654 0.83594 16 MWh 4 MW	Default	 Price select All 50 prices Single price 24 25 26
 Bainbridge Island Baker River 24 	Input files Prices:	Intial SOC:	0.5 dsx	Browse	27 28 29 30 31 32
 ✓ Arbitrage ✓ Balancing 	Balancing sig.: Capacity value: Deferral:		Reserve_2020_W_1 pacityValue.xlsx leferral.xlsx	Browse Browse Browse	Run
Capacity value	Outage: Outage power:	.\Input\BI\Out	age.xlsx agePower.xlsx	Browse Browse	Cancel
 Planned outage Random outage 	Output Output:	.\Output\Bl		Browse	Plot



Hourly Value at Bainbridge Island for 24-Hour Period



Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

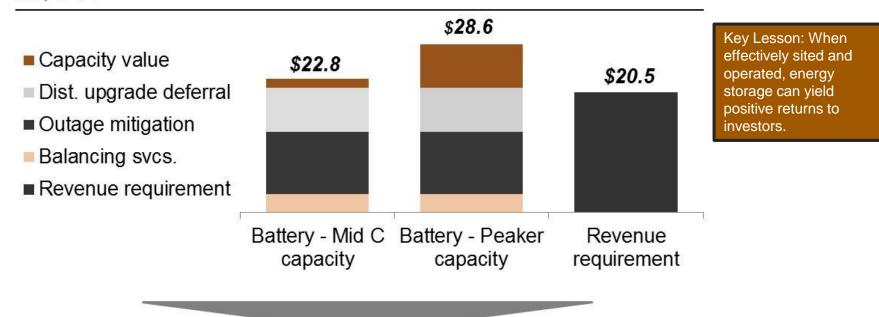
BSET Output

Proudly Operated by Battelle Since 1965

Bainbridge System Cost Estimate

Budget Summary	Total Cost (\$)	\$/kW
Energy Farm Price	9,200,000	2,300
Siting	25,000	6
Electrical	564,000	141
Thermal Mgt	283,000	71
Site/Civil	318,000	80
Installation	247,000	62
Communications	185,000	46
IT	110,000	28
Overheads	2,266,000	567
WA Sales Tax	1,057,000	264
Contingency	505,000	126
TOTAL	14,760,000	3,690

- Greenfield build
 - Some costs shared with future substation; subtracted from future sub costs
- Balance of plant (BOP) cost is ~20% of total cost
- Learning may reduce future costs
- Overhead costs may decline
- \$20.5 million in revenue requirements.


Key Lesson: Site-specific non-battery costs can be significant (\$750-\$1,500 per kW).

Economics and Additional Benefits Bainbridge Island, WA

Proudly Operated by Battelle Since 1965

Present value of storage benefits/costs \$M, USD

- Regardless of capacity assumption economics "pencil out"
- Additional "difficult to quantify" value in
 - Knowledge transfer
 - Institutional know-how
 - Public awareness

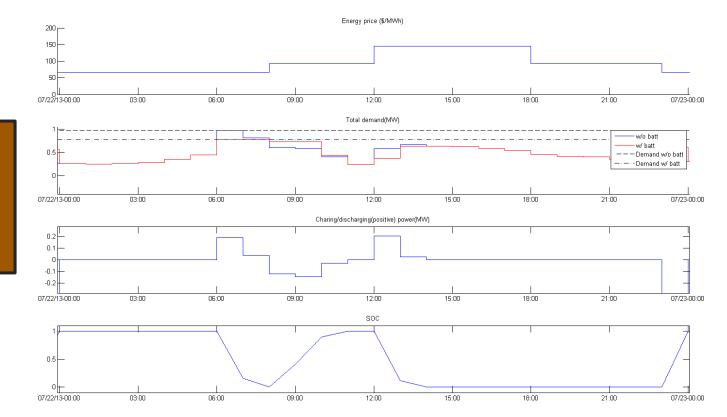
Washington Clean Energy Fund Use Case Matrix

Proudly Operated by Battelle Since 1965

Use Case and application as described in PNNL Catalog	Avista	PSE	Sno – MESA1	Sno – MESA2	Sno - Controls Integration
UC1: Energy Shifting					
Energy shifting from peak to off-peak on a daily basis	Y	Y	Y	Y	
System capacity to meet adequacy requirements	Y	Y	Y	Y	
UC2: Provide Grid Flexibility					
Regulation services	Y	Y		Y*	
Load following services	Y	Y		Y*	
Real-world flexibility operation	Y	Y		Y*	
UC3: Improving Distribution Systems Efficiency					
Volt/Var control with local and/or remote information	Y		Y	Y	
Load-shaping service	Y	Y	Y	Y	
Deferment of distribution system upgrade	Ŷ	Y			
UC4: Outage Management of Critical Loads		Y			
UC5: Enhanced Voltage Control					
Volt/Var control with local and/or remote information and during enhanced CVR events	Y				
UC6: Grid-connected and islanded micro-grid operations					
Black Start operation	Y				
Micro-grid operation while grid-connected	Y				
Micro-grid operation in islanded mode	Y				
UC7: Optimal Utilization of Energy Storage	Y	Y			Y

* A simulated set of signals will be provided by PNNL to test these use cases.

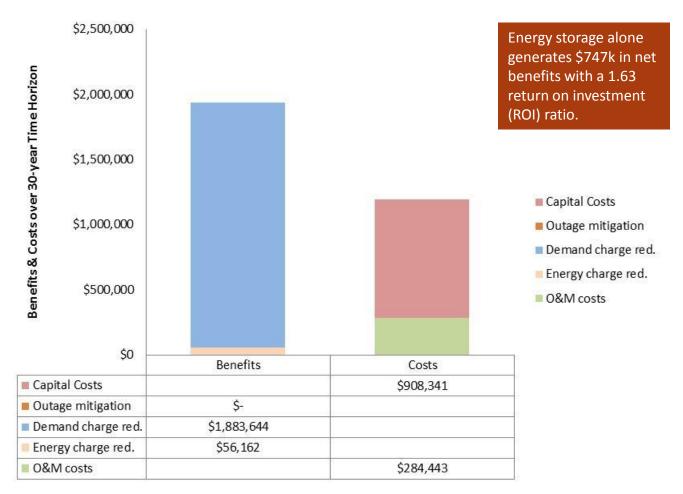
BSET – Behind-Meter User Interface


Proudly Operated by Battelle Since 1965

Battery Sizing through Extensive Search for BSBM					
۹ ۹ 🏷	لات ا				
Input Result Plot					
Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965	Battery parameters Load Save \$000/MWh 500 \$000/MWh 500 \$000/MWV 150 Energy (MWh) Power (MWh) Others \$000 100 Min 0.5 Step 0.2 Life (yr.) 15 Step 0.5 Max 0.7 Discount% 8 Max 2 Max 0.7 Intial SOC 0.5				
- Services	_ Input files				
✓ Energy charge reduction	Energy Price:\Input\BSBM\energy_price.csv Browse				
Demand charge reduction	Load Profile:\Input\BSBM\oad_profile.csv Browse				
✓ Demand charge reduction	Demand Price:\Input\BSBM\demand_price.csv Browse				
Run Cancel	Output Output:\Output\BSBM\SizingSearch Browse				
	Iteration 1/16 starts				

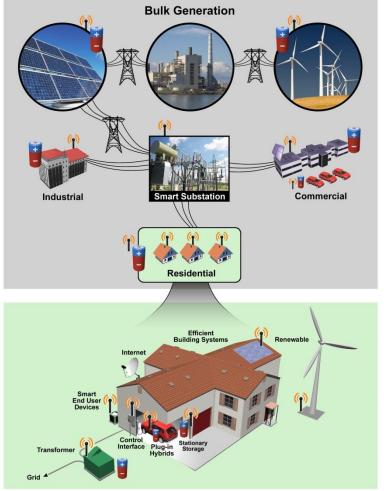
Proudly Operated by Battelle Since 1965

Battery Operation for An Illustrative Day


Key Lesson: The vast majority of energy storage benefits in behind-the-meter placements are tied to reductions in demand charges due to energy shifting.

Financial Results

Proudly Operated by Battelle Since 1965


Scenario 1. 500 kW / 500 kWh energy storage

Siting, Sizing, and Controlling Energy Storage to Maximize Benefits

Proudly Operated by Battelle Since 1965

Maximizing the Value of Storage Means:

- Optimal location
- Optimal size
- Optimal control
- Optimal battery system design

			Location			
			Transmission	Distribution	Customer-side	
	1 X	Transmission	х	х	х	
		Distribution		х	х	
	2	Customer-side			х	

Potential Projects for Evaluation in PSE Region

Proudly Operated by Battelle Since 1965

Bainbridge Island

Two substations serving two-thirds of Bainbridge Island – Murden Cove built in 1980 and Winslow built in 1966 – are approaching their maximum capacity

Crystal Mountain

Reliability problems associated with long, isolated feeder in mountainous region

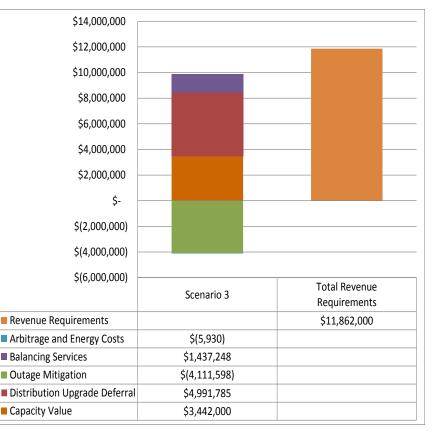
Baker River 24

Long low-performing radial line where energy storage could be employed to isolate outages

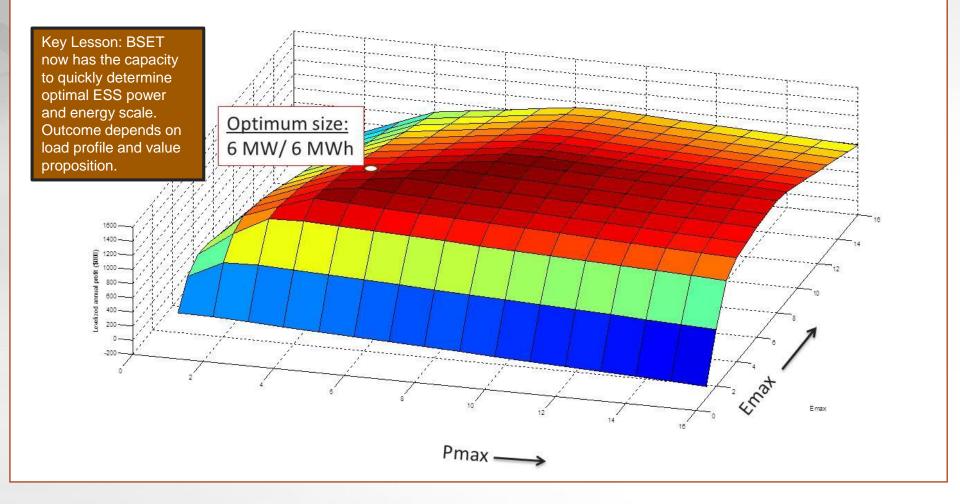
Chico 12

Worst performing circuit where a new \$10-\$15 million substation is being considered to address reliability and capacity issues

Summary of Results (PV Benefits and Revenue Requirements Over 20-year Time Horizon)


Proudly Operated by Battelle Since 1965

\$35,000,000 \$30,000,000 \$25,000,000 \$20,000,000 \$15,000,000 \$10,000,000 \$5,000,000 \$-\$(5,000,000) Total Revenue Scenario 3 Requirements ■ Revenue Requirements \$20,493,000 Arbitrage and Energy Costs \$(13,384) Key Lesson: Proper \$3,104,871 Balancing Services siting is extremely \$10,632,260 Outage Mitigation Distribution Upgrade Deferral \$7,454,000 failed because the Capacity Value \$7,443,000


Bainbridge Island

important. Baker River alternative distribution investment (placing lines underground) was more effective at improving reliability.

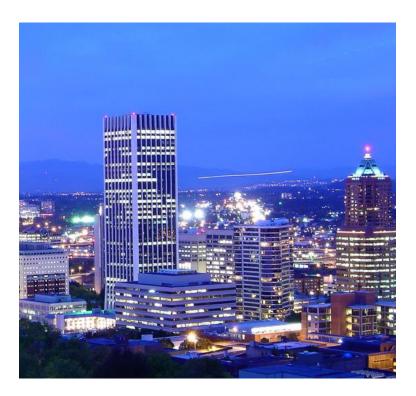
Baker River

Sizing Energy Storage Optimally to Maximize Net Benefits

Pacific Northwest

Proudly Operated by Battelle Since 1965

Conclusions


- Resource adequacy requirements and penetration of renewable, intermittent power are driving the need for investment in ESSs
- We have developed procedures to site and size ESSs and have made our tool (BSET) available for use; DOE has demonstrated a willingness to provide analytical support for proposed and existing ESS projects
- PNNL is currently supporting Portland General Electric's analysis of its Salem Smart Power Center; PNNL has provided BSET to PacifiCorp and partnered on a proposal to the Washington CEF
- Any single use would rarely yield positive returns on investment; services usually must be bundled and co-optimized
- We are evaluating a broader set of use cases through our Washington CEF engagement; use case values differ significantly by utility
- Maximizing the value of energy storage requires optimal siting, sizing, control and design of the ESS
- Dispatch control systems that optimize performance are required to advance energy storage.

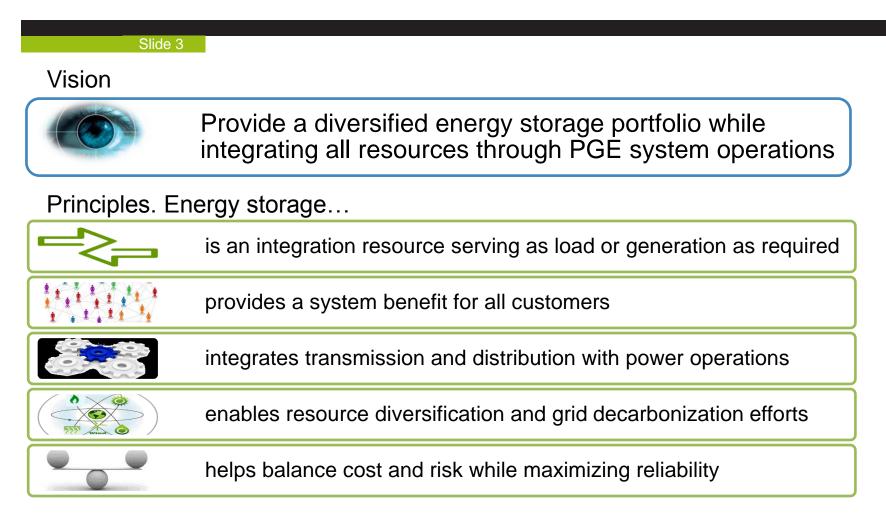
ENERGY STORAGE GUIDELINE DEVELOPMENT

UM 1751

PGE Update

Monday, February 29, 2016

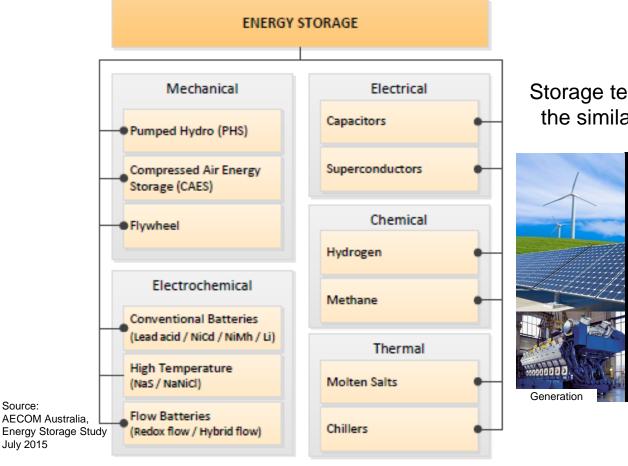
© 2016 Portland General Electric. All rights reserved.


Agenda

Slide 2

- PGE vision and principles
- Energy storage definition
- Use cases
- Use case definitions
- Valuation methodology overview

Energy Storage


Energy Storage

Slide 4

Source:

July 2015

Broadly, the definition of energy storage includes any system for absorbing energy at one time and releasing energy at a later time.

Storage technologies can be grouped by the similarities of the storage medium.

Electric

Use Cases

Use Categories

Duration Of Output Energy (Continuous)

		-	07 (
	Short (< 2 min)	Medium (2min – 1 hr)	Long (1 hr +)
Economic				Energy Shifting
Dispatch				System Peak Capacity
	Frequency Response	Contingenc	y Reserves	Black Start
Ancillary	Regulation			
Services				
		Ramping		Avoid Curtailment / Min Load
Integration		Follo	wing	
Ū				Forecast Error
	System Inertia / Power Quality			Infrastructure Deferral
Asset Optimization		System R	eliability	
				Transmission Congestion Relief
				Micro-grid
	Dynamic Response			Sustained Response

Use Case Definitions

Slide 6

Economic Dispatch

- System Peak Capacity:
 - Instances of high system demand (load in excess of dispatched resources and purchases) where PGE has to dispatch additional peaking resources, call on peaking contracts, or procure capacity.
- Energy Shifting:
 - Provide load in off-peak or over-generation hours (charging) and energy in peak hours (discharging).

Use Case Definitions

Slide 7

Ancillary Services

- Frequency Response:
 - Online and available capacity capable of responding to frequency events. Expressed in megawatts per 0.1 Hertz. Events are typically evaluated on a 20-52 second window. Required by NERC BAL–003–1 standard.

Contingency Reserves:

- Capacity available to respond to disturbance events (e.g. generator loss) or to mitigate operating emergencies. Requirement is 3% of load and 3% of generation, at least half spinning (online, 10 minute response, delivered for one hour) and the remaining non-spinning (offline, 10 minute response, delivered for one hour).Required by NERC BAL–002 standards.
- Regulation:
 - Upward and downward generator capacity capable of responding to automatic generation control used to balance second-to-second changes. Required by NERC BAL–001–1 standard.

Use Case Definitions

Slide 8

Integration

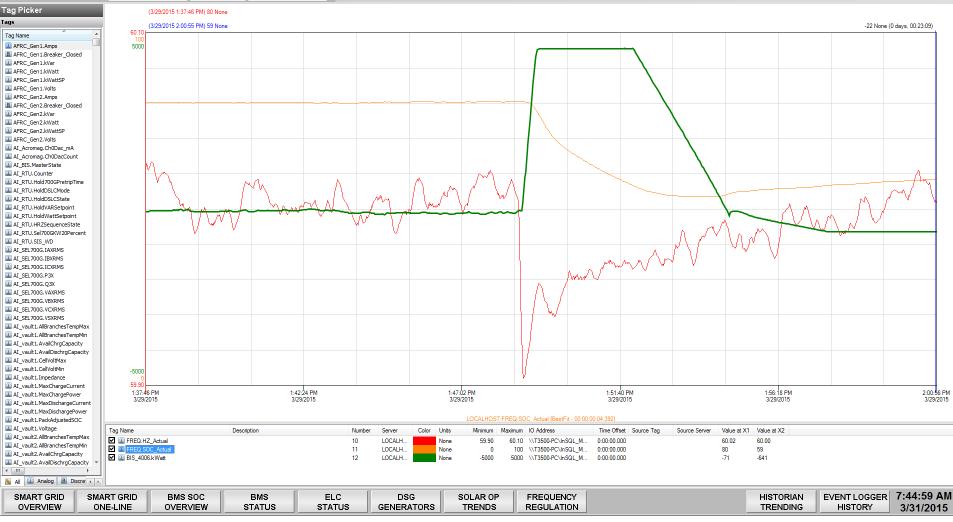
- Forecast Error:
 - Upward and downward generator capacity held to respond to errors in the day-ahead and hourahead forecasts.
- Following:
 - Capacity used to offset Variable Energy Resource (VER) generation and load fluctuations within the interval.
- Ramping:
 - Capacity to respond to sudden large output changes occurring in shorter durations (e.g. cloud cover of solar array) that require response from other generation assets.

Asset Optimization

- Infrastructure Deferral:
 - The use of energy storage device to avoid or defer upgrades on PGE's Transmission and Distribution systems.

Valuation Methodologies

Slide 9			
Data Sources	Applicable Use Cases	Opportunities	Challenges
Organized Markets	 System peaks Shifting demand Frequency response Contingency reserve Following and ramping 	 CAISO indicators, future EIM participation Transparent Easily available data Multiple Products 	 None in Pacific NW Price volatility Different interpretation of product definitions
Tariff (Costs and Prices)	 Frequency response Contingency reserve Forecast error Following and ramping 	 Public Definitions aligned with NERC/FERC 	Static valuesCan be stale
Engineering Studies (Avoided Operation Costs)	 Forecast error Following and ramping 	Detailed information	PGE specificPeriodic update
Capital Cost/Revenue Requirement Models (Deferrals)	 Infrastructure deferral 	 Standard costs Transparent methodology Industry norm model 	 Identify all components that can be deferred Need location


Valuation Methodologies

Slide 10						
Data Sources	Applicable Use Cases	Opportunities	Challenges			
Existing Bilateral Agreements	All uses cases	IndicativeOPUC reviewed	ConfidentialCan be staleIlliquid market			
Violation Penalties	Frequency responseContingency reserve	 FERC/NERC standards Align with product definition Some are WECC specific 	 Unclear costs and penalties Lack of costs and penalties data Step-wise 			
Production Cost / Simulation Models	 System peak Shifting demand Contingency reserve Forecast error Following and ramping Infrastructure deferral 	 Industry norm OPUC and Technical Review Committee accepted Customizable GHG reduction Reduced stops/starts 	 Model limitations Scaling issues and unrealistic results Only as good as inputs 			

🖆 🖬 🖨 🖬 🖬 🗹 🗐 | 🔤 🗠 🕾 🂖 🏈 🖉 🗖 🖿 🖄 🗞 🎘 🚳 🖼 🔊 🥐

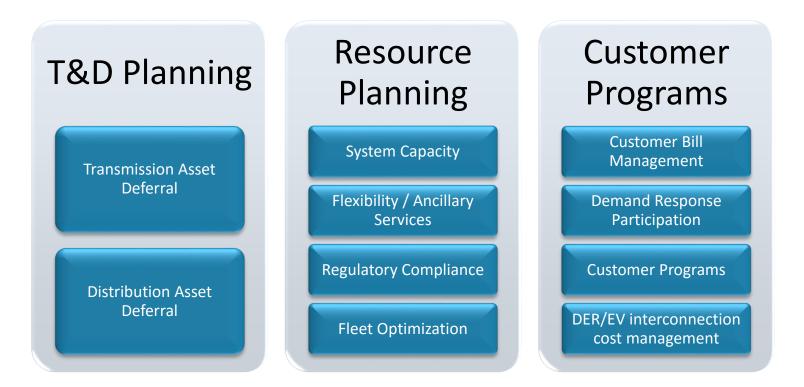
Storage Valuation Methodologies Observations & Best Practices

Mark Higgins

Prepared for Oregon Public Utilities Commission, UM 1751 February 29, 2016

www.strategen.com

Our Core Strengths


- » Unique focus in strategic advisory work in the clean energy industry
- » Unparalleled Experience in New Grid
 Technologies
- » Over 10 years consulting in PV and energy storage space

Consulting Lines of Business

- » Utilities: Focus on new grid technology implementation and strategy
- » Public Sector (Governments and Nonprofits): Consultant on dozens of regulatory proceedings in numerous states
- » Corporate: Strategy support for technology providers and project developers throughout the power sector ecosystem



» Storage cost effectiveness is limited when based on a single benefit stream

» When system needs are prioritized and benefits are stacked, storage has potential to lower ratepayer costs and to increase reliability and efficiency of the grid

Approach to Evaluating Storage Opportunities

1. Identify primary need

 Explore combinations of stackable benefits; discard incompatible value streams Optimize value streams and understand tradeoffs

Valuation Methodology: California

»Each utility has least cost – best fit methodology based on unique needs:

Utility-specific criteria

- Custom evaluation tools
- Proprietary, confidential evaluation criteria

»California Public Utilities Commission has Common Evaluation Protocol

 Provides transparency so stakeholders have common frame of reference

Net Market Value = Benefits minus Costs

Market Benefits	Market Costs
Capacity/Resource Adequacy ValueEnergy Value	 Fixed Capacity Payments and Fixed O&M Cost* Charging Costs and Variable O&M Cost
Ancillary Services ValueDistribution Investment Deferral Value	Network Upgrade CostGHG Compliance Cost (if applicable to project)
	Debt Equivalency CostMarket Participation Cost

*Includes developers' costs such as permitting, construction, decommissioning, etc.

Source: CPUC Energy Storage Workshop, July 28, 2015

California public assumptions will be updated in Fall 2016. Most recent avoided cost assumptions can be found here: <u>http://www.ethree.com/public_projects/cpuc5.php</u>

CALIFORNI

Valuation Methodology: Pacific Gas & Electric

Co-optimize Energy, A/S, Variable Cost => Charging/Discharging

+ Net Energy Value

- Value of discharging cost of charging using projected LMP
- + Ancillary Services Value
 - Regulation up/down/REM, Spin in a limited market

+ Capacity Value

- Generic Resource Adequacy using Net Qualifying Capacity
- Flexible RA using Effective Flexible Capacity

- Variable Cost

- Variable O&M price applied over *discharge* schedule
- includes fuel and start-up costs plus GMC, but not charging cost

- Fixed Cost

- Sum of capacity payment price times monthly contract capacity
- Fixed overhead (administrative costs plus cost of CAISO scheduling)

Adjustments for Localized Benefits and Portfolio Effects

+/- Location

- Preference for NP15 projects
- Local Capacity Requirements may warrant premium

- Transmission Network Upgrade Cost

• This is past first point of interconnection; cost to interconnect in bid

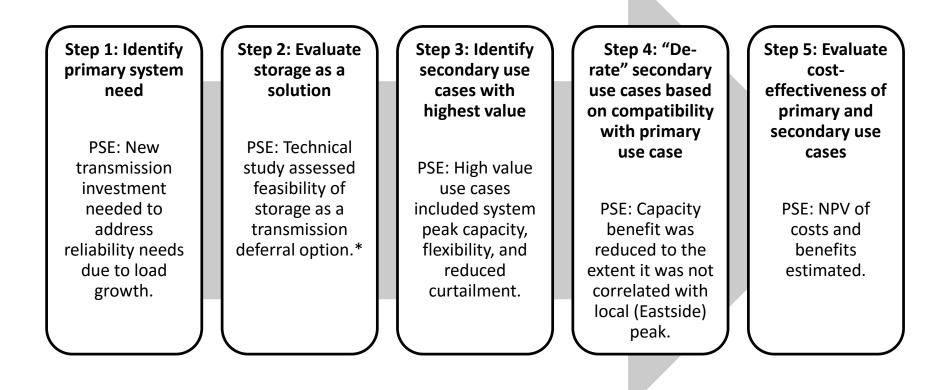
+ Transmission/Distribution Investment Deferral Value

- NPV of least expensive non-storage alternative
- If dual-use, meet reliability need first, remaining hours play in market

+ Increased Efficiency for Fossil Generation

- Value to smoothing out net load => fewer starts, better efficiency
- Portfolio-wide benefit, will probably depend on generic characteristics

+ Renewable Generation Curtailment Support


 Also, portfolio-wide: benefit of reduced curtailment, increased RPS

Source: PG&E Evaluation of Storage Offers Presentation, March 14, 2014

Case Study: Puget Sound Energy

Puget Sound Energy evaluated storage as part of non-wires alternatives assessment for Energize Eastside project (<u>www.energizeeastside.com</u>)

*Note: The preferred storage configuration was found to be technically infeasible, however, one of the alternate configurations was still evaluated for cost-effectiveness.

Cost-Benefit Analysis Tools

»Energy Storage Valuation Tool (ESVT) V4.0

Developed by EPRI

Free to members, available for purchase to non-members

»Energy Storage Computational Tool (ESCT) V1.2

- Developed by Navigant for DOE
- Public license:

https://www.smartgrid.gov/recovery_act/analytical_approach/energy_storage_computational_tool.html

»ES-Select

- Developed by Sandia and KEMA (now DNV GL)
- Public license:

http://www.sandia.gov/ess/tools/es-select-tool/

»Battery Storage Evaluation Tool (BSET)

Developed by PNNL

PNNL is developing a PGE-specific BSET tool with DOE grant funding

Public license:

http://www.sandia.gov/ess/docs/pr_conferences/2015/EESAT%202%20Wednesday/Balducci.pdf

»StorageVET-California (Coming late 2016 for public delivery)

- Advances prior work on ESVT with a public, web-hosted model
- Supports regulatory, planning, investment, and operations usage
- Use case development and review occurring through ESIC Analysis Working Group

1. Select Storage Te	chnology Perform	mance and Costs	
Energy Storage System	i-lon: 1 MW/2 Hour 👻	Discharge Duration (hr)	2 Define Custo
System Capital Costs (5) \$1.376,265.88	Discharge Capacity (kW)	sooo System
2. Select Grid Servic	es for Analysis		Select servic
3. Select System En	ergy Prices (not ;	applicable to behind-t	he-meter services)
Energy Price Selection, Early	Year Duke 2018	- Ca	
Energy Price Selection, Late V	Year N/A	▼ Cal	Energy pros
4. Select Financial a	nd Economic As	sumptions	-
Ownership Type	•	Discount Rate (%)	E Economic Inp
5. View Results	(Calcal	í.	
NPV Cost vs. Benefit	Calc	Daily Revenue	(S) Calc
Annual Services Revenue	(5) Calc	Daily Dispatch	(kV/h) Colc

Appendix

SCE Methodology

En	Price Forecasts: ergy, AS, Gas, GHG, RA, Volatility	M	ngestion Fixed Cost Credit / Collateral Transmission /Distribution Other Cost
Characteristics:			Monthly Cash Flows:
Capacity, Ramp rate,		2	Fixed Contract Cost
Charge and Discharge constraints,			Dispatch Cost
Degradation, etc.			Debt Equivalence Cost
Degradation, etc.	Dispetah Applysia		Transmission/Distribution
	Dispatch Analysis:		Upgrade Cost
Dispatch Costs:	Dispetate Cast		Risk Cost (credit / collateral)
Operating profile, VOM,	Dispatch Cost		Other Costs (if any) Benefits:
\$/MWh, Market	Energy Benefit AS Benefit		Energy Benefit
Participation, GHG,	AS Denem		AS Benefit
etc.			RA Benefit
			Grid Upgrade Deferral Benefit
SOUTHERN CALIFORNIA			Other Benefits (if any)
EDISON [®]			Discounted Sum = NPV

Source: SCE Procurement Plan Workshop Presentation, March 14, 2014

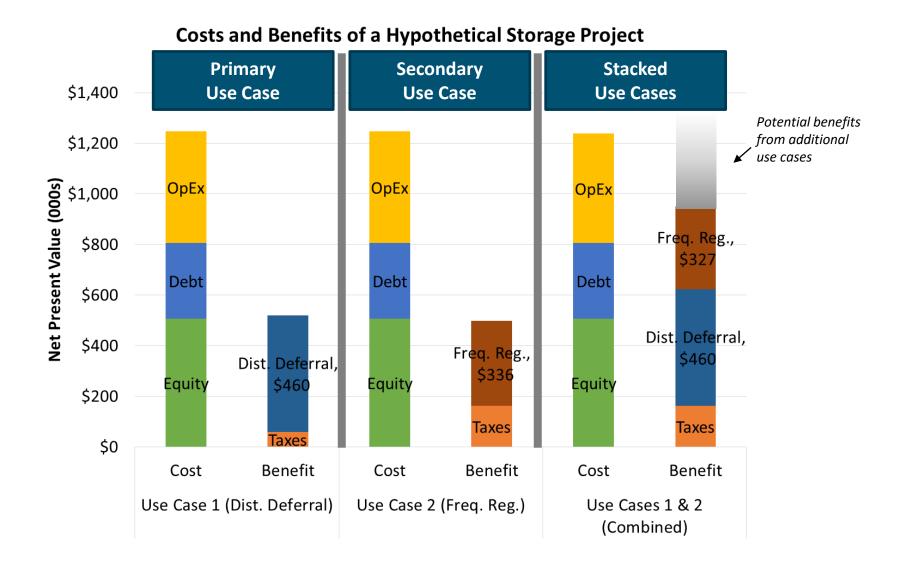
California IOU 2014 Storage RFOs Compared

» California IOUs launched RFOs on or before Dec 1, 2014.

» Applications due by Dec 1, 2015

Detail	SCE	SDG&E	PG&E
# of MWs Solicited	At least 16.3 MW	25 – 300 MW	74 MW
Size	1 MW min	500 kW min	10 MW min for transmission- connected, 1 MW min for distribution-connected
Functions Solicited	Resource adequacy (required) and energy shifting, ancillary (optional)	Local resource adequacy. Participation in CAISO energy market, A/S markets.	Distribution system investment deferral. Participation in CAISO energy market, A/S markets.
Points of Interconnection	Transmission or distribution	Transmission, distribution, and customer	Transmission, distribution, and customer
Contract Terms	Preference of 10 year max	No minimum or maximum duration	Preference of 10 year max

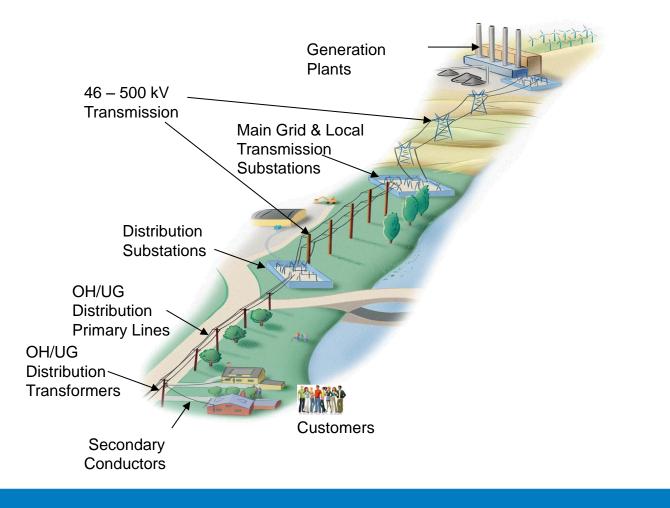
Source: CPUC Storage OIR Workshop presentation July 28 2105



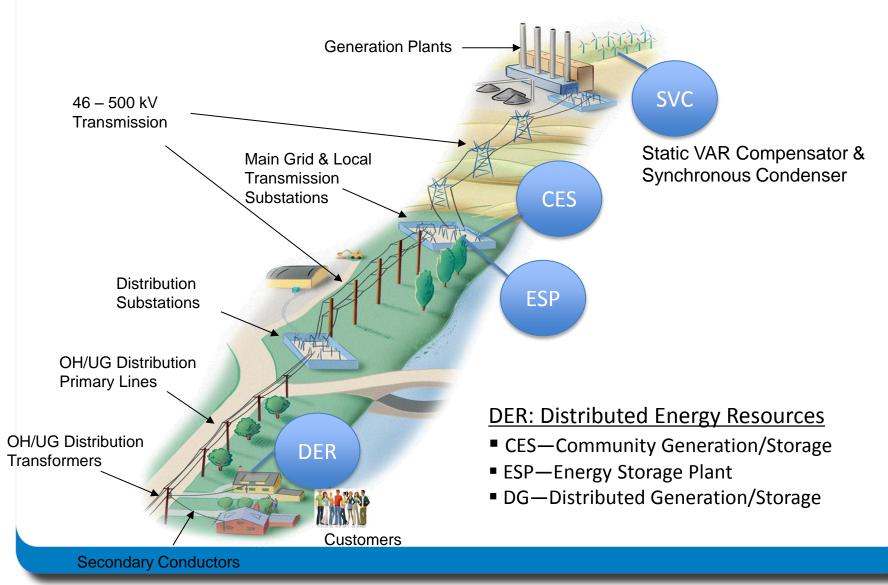
Other Solicitations Compared

Detail	HECO Energy Storage System RFP	Ontario Power Authority RFP	Kauai Island Utility Cooperative	Imperial Irrigation District RFQ	Austin Energy RFI
# of MWs Solicited	60 – 200 MW	0.5 – 2 (up to 5 MW for pumped hydro)	Open; 5 – 10 MW example	20 – 40 MW	10 – 170 MW
Size (MWh)	30 – 100 MWh	Not specified	ot specified Open; 20 – 40 N MWh example N		Not specified
Functions Solicited	Renewable generation variability, voltage and frequency regulation	Energy time shifting	Over generation curtailment, renewable generation variability	Provide reserves, ramping and frequency regulation	General energy storage
Contract Terms	Not specified	Ten years	Preference for performance contracts	Not specified	Not specified

Benefit Stacking: Dist. Deferral + Frequency Regulation

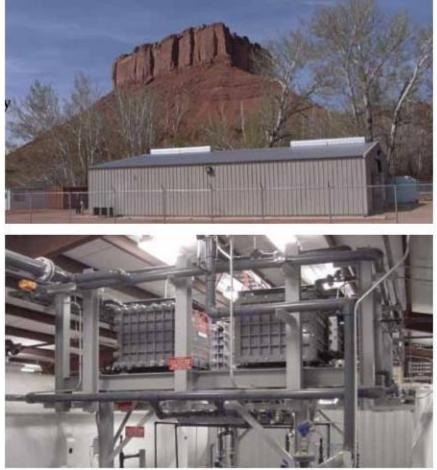

UM 1751 Energy Storage Workshop #2

February 29, 2016



The Power System of Today

The Power System of the Future



PacifiCorp's First Experience with Battery Storage

Castle Valley Vanadium Redox Battery Storage (VRB)

- 250 kW/8 hour; energy time shift
- End of very long 25 kV distribution feeder
- Load was growing; could not build new assets
- Near Moab, Utah near Arches NP
- "Early adopter" issues
- Installed in 2002
- In-service in 2004
- De-commissioned in 2008

UM 1751 Preliminary Objectives

Examine the potential value of applying energy storage system technology :

- Deferred generation and T&D
- Reduced need for generation during peak demand
- Improved renewable resource integration
- Reduced greenhouse gas emissions
- Improved reliability of T&D systems
- Reduced portfolio variable power costs
- Any other value reasonably related to application of energy storage

Context of this Discussion

- Focus on electric energy Battery Storage.
- Large utility scale Pumped Storage or Compressed Air Energy Storage are important storage options. Understanding the granularity and flexibility of Battery Storage systems will help in valuing other large utility storage technologies.
- Focus on utility-owned storage, not customer-owned storage (peak demand shaving or reliability objectives).
- Key objectives are to identify optimized use cases, which may include simultaneous stacking ("benefit stacking").
- Applying our interpretations of "value use" cases to fit in the UM 1751 categories.
- Need to adopt common language for use cases and which buckets to put them in.

What quantifiable values can be measured and recognized that provide net benefits to customers?

Deferred Generation and T&D

- Deferred Generation deferred generation capacity benefit will depend on the following factors:
 - Timing, type and cost assumptions of deferred resource.
 - Performance characteristics of deferred resource and storage resource. Need to factor in differences in ancillary services performance of the peaking resource to the performance of the storage resource (i.e. ramp rate and energy).
- Deferred Transmission & Distribution a time value of money analysis. Ten year deferral has a value of approximately \$644,000 / \$1 million in deferred expenditures (excluding energy recharge costs). Site specific analysis is needed.
- Potential for reduced transmission wheeling charges.
- Other use case applications when not in peak shaving mode.

Reduced Need for Generation During Peak Demand

- Arbitrage or Electric Energy Time Shift
- Deterministic values prepared under perfect knowledge
- Critical factors that influence arbitrage benefits:
 - Energy storage duration
 - Cycle efficiency
 - Seasonal loads and resource balances
 - Cost of peaking fuel and peaking resource type
 - O&M cost of "storage" (cycle cost, depth of discharge cost)
- 1 MW/4 MWhr battery value over 20 years = \$400k+
- Prediction: Traditional peak periods and values will change

Improved Renewable Resource Integration

- Avoided balancing charges reducing forecast error (especially for utility wind)
- Benefit in the form of capacity firming
 - Intermittency from shading or wind
- Time shifting (especially for solar PV) for peak management

Reduced Greenhouse Gas Emissions

- Storage is a generator, but fundamentally it is a net consumer of energy
- Storage may be an approach to reduce/eliminate the need for curtailment from intermittent renewable sources to assist in achieving RPS targets.
- Sources of reduced GHG emissions include reducing the operation of fossil-based integration resources for intermittent resources (i.e. gas-based generation)
- Storage may increase GHG emissions depending on sources of recharge energy, cycle efficiencies and displaced resources
- Market values for GHG emissions will need to be developed

Improved Reliability of T&D Systems

- Frequency regulation (primary use case for storage in RTOs with established markets for primary ancillary services) - needed to balance short term imbalances via AGC to maintain frequency within a balancing authority. RTO-based pricing for these services would provide clearest indication of value.
- Outage mitigation
- Backup Power (compare to cost traditional sources reciprocating engines)
- Black Start (compare to cost of traditional solutions reciprocating engines, combustion turbines and hydro)
- Power quality volt/var control (compare to traditional solutions capacitor banks, other inverter-based sources)
- Note: Analysis that includes a benefit for deferred generation capacity should recognize the differences attributable to the battery storage resource and the generation resource

Reduced Portfolio Variable Power Costs

- Transfer spinning reserve (10 minute) requirements from traditional "spinning" sources to storage resources. Benefits:
 - Increased power sales from traditional reserve-carrying units (value from incremental margin from sales)
 - Improved heat rate benefits from the fossil reserve carrying units operating at a higher efficiency (value based on reduction in fuel costs per new MWh generated)
- Non-spinning reserves
 - Benefit associated with reduced need for Demand Response resources (curtailable loads). Contract costs & energy sales
- Reserves RTO pricing would provide clearest indication of value
- Recharge mode value based on heat rate benefits of operating the recharge energy source at higher loads (and efficiency)

Challenges

- Critical analysis is needed to avoid double counting benefits
- Hypothetical values do not equate to need (and therefore benefit, to customers)
- Need to identify use cases that can be pancaked
- Value scenarios change with application, underlying generation resources, storage technology, location and timing
- Value will change based on time of year and then-current loads and resources
- Value analysis needs to include O&M costs of storage
- Recognize value differences between perfect knowledge and actual events
- Translate aggregated value use cases to a "real world" control system

Valuing Storage in IRP Modelling

- PacifiCorp's Integrated Resource Plan (IRP) planning process selects resources to meet forecasted load and firm obligations with a planning reserve margin (13% in the 2015 IRP).
- Resources are selected based on minimizing the cost of meeting capacity (at the time of system peak) and energy needs.
- IRP modeling tools are used to compare the relative cost and risk of different resource portfolios, which includes peak capacity benefits, energy benefits and operating reserve benefits of one resource portfolio relative to some alternative.
- IRP models are not inherently designed to capture value streams such as T&D deferrals, improved reliability of T&D systems and avoided balancing charges.

Valuing Storage in IRP Modelling

- Modeling tools that capture other value streams are needed to evaluate potential incremental benefits (beyond what the traditional IRP models are capable of simulating).
- PacifiCorp is looking at available modeling tools and methods for incorporating site specific project opportunities within the IRP resource modeling framework.

Energy Storage and Distributed Energy Solutions

Our Vision

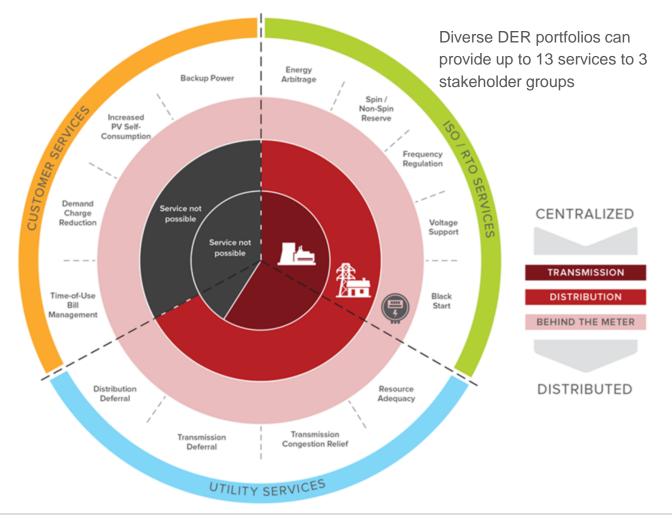
To create the most compelling energy company of the 21st century by delivering cleaner, cheaper power through distributed generation.

7,7,7,7,7,7,7

The second second

Leader in storage technology

- Developed suite of battery products + internal software
- Fully integrated grid scale and distributed storage
- Over 340 batteries deployed by SolarCity with significant increased deployment
- SolarCity is currently using Tesla's energy storage systems, but continually monitors the market for best in class options



SolarCity Uses Li-ion Storage Technology

- Highly versatile Lithium-Ion batteries can address both short and medium duration use cases
- Proven technology Lithium-Ion batteries have been proven to be a highly reliable and safe power supply through a broad range of applications (consumer electronics, automotive, electric utility, etc.)
- Cost Advantage As Lithium-Ion manufacturing scales notably due to electric vehicle deployment, Li-Ion battery pricing is positioned to benefit.

Stacked benefits of energy storage: Multiple benefits across all grid sectors

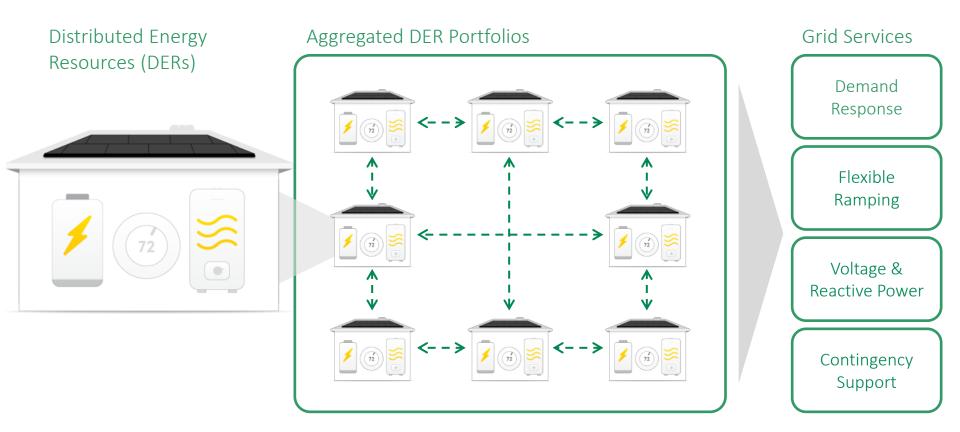
Reprinted with permission from Rocky Mountain Institute

Distributed storage currently focuses on a few customerfacing applications, but has the capability of providing a broad range of services

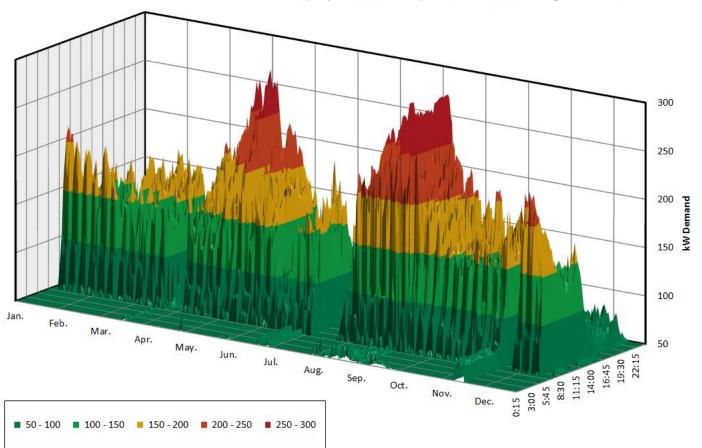
Energy/Load	Transmission	Congestion reduction / Investment deferral		
Shifting	Distribution	Congestion reduction / Investment deferral		
0	LSE/Utility	Minimize costs from load reduction (DR)		
	Customer	Reduce energy bills (demand charges and TOU)		
Back-up Power	Distribution	Microgrids		
and Resiliency	Distribution/Transmission	Support Renewable Integration/Firm Power		
	Customer	Back-up power		
Ancillarv	LSE/Utility	Frequency Regulation		
Ancillary Services	LSE/Utility LSE/Utility	Frequency Regulation Spinning Reserves		

SolarCity Launches Smart Energy Home in Hawaii

Customer Self Supply program offers a customized combination of solar, battery storage, smart electric water heater and Nest Learning Thermostat™

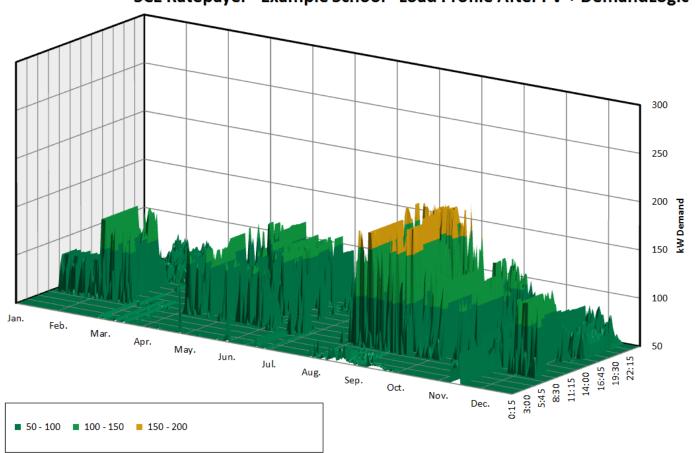

Feb 24, 2016

HONOLULU, Hawaii, Feb. 24, 2016 – SolarCity (NASDAQ: SCTY) is introducing a Smart Energy Home offering to new residential customers in Hawaii. It includes advanced technology: solar PV, battery storage, smart electric water heaters and the Nest Learning Thermostat[™]—all coordinated by a home gateway that controls the battery, water heater, thermostat and inverter to maximize solar PV generation and self-consumption.


SolarCi

Distributed Energy Resource Aggregation

Utilize portfolios of distributed energy resources to provide grid services

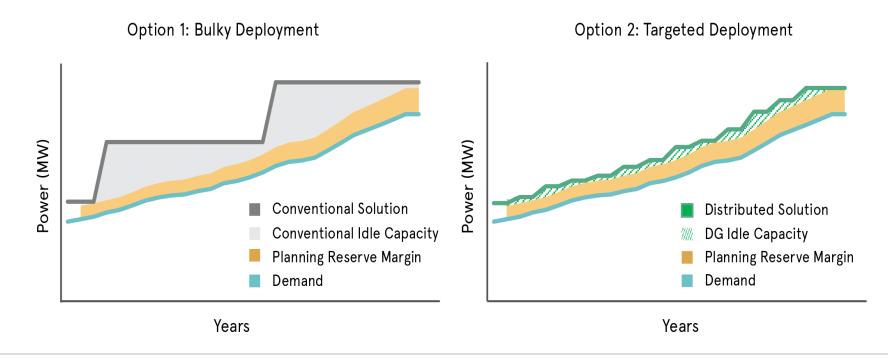


K-12 – Original Load Profile

SCE Ratepayer – Example School – Original Load Profile

K-12 – Load Profile after DemandLogic as seen by the Utility

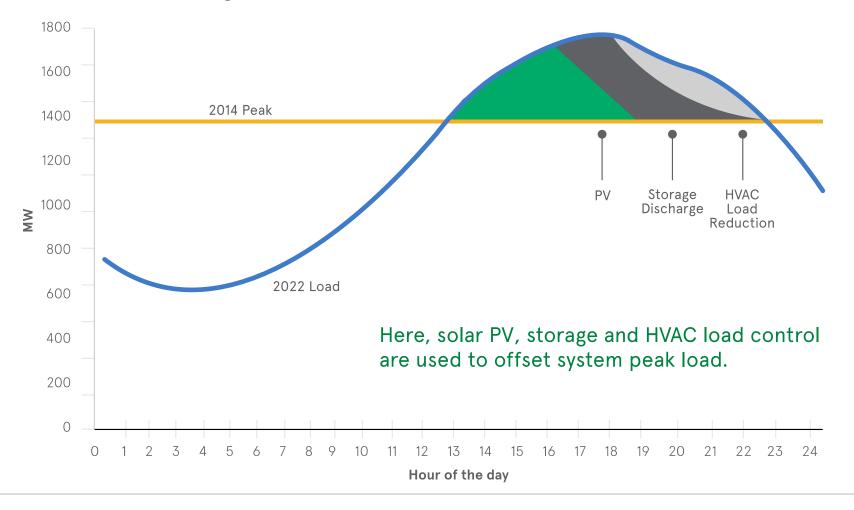
SCE Ratepayer - Example School - Load Profile After PV + DemandLogic


K-12 Economic Overview

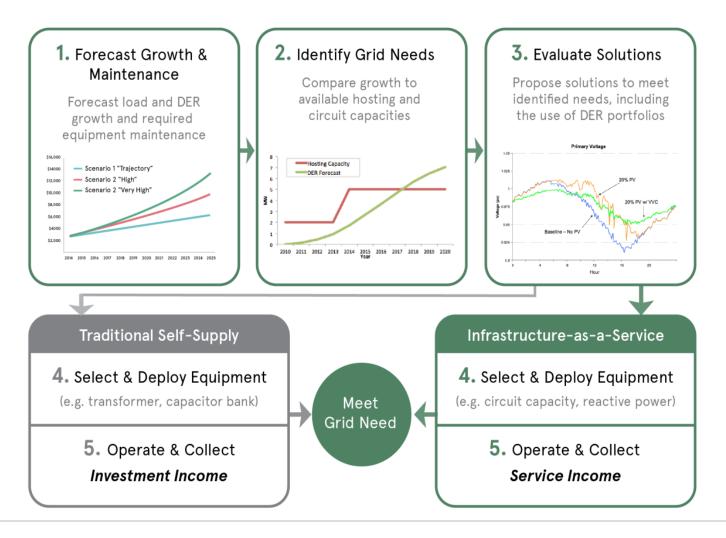
Avoided Energy Cost (\$/kWh)	\$0.145	PV System Size (kW)	315
Solar PPA Rate (\$/kWH)	\$0.125	Storage System Size (kW)	100
Avoided Demand Cost (\$/kWh)	\$10.25	Storage System Size (kWh)	
SolarCity Demand Rate (\$/kWh)	\$8.00		

		Demand			Energy			
Month	MAX Demand Reduction (kW)	Demand Payments to SolarCity	Utililty Demand Cost Reduction	Solar Production (kWh)	Energy Payments to SolarCity	Utility Energy Cost Reduction	Total Project Savings	
January	98	\$784	\$1,005	26,238	\$3,280	\$3,805	\$745	
February	98	\$784	\$1,005	30,583	\$3,823	\$4,435	\$832	
March	98	\$784	\$1,005	41,152	\$5,144	\$5,967	\$1,044	
April	98	\$784	\$1,005	29,347	\$3,668	\$4,255	\$807	
Мау	98	\$784	\$1,005	55,983	\$6,998	\$8,117	\$1,304	
June	98	\$784	\$1,005	55,847	\$6,981	\$8,098	\$1,337	
July	98	\$784	\$1,005	54,156	\$6,770	\$7,853	\$1,304	
August	98	\$784	\$1,005	52,782	\$6,598	\$7,653	\$1,276	
September	98	\$784	\$1,005	47,863	\$5,983	\$6,940	\$1,178	
October	98	\$784	\$1,005	34,307	\$4,288	\$4,974	\$907	
November	98	\$784	\$1,005	26,057	\$3,257	\$3,778	\$742	
December	98	\$784	\$1,005	18,593	\$2,324	\$2,696	\$592	
Annual Totals	1,176	\$9,408	\$12, 054	472,908	\$59,114	\$68,572	\$12,104	
	Savings f	rom DemandLogi	c: \$2,646		Savings from	Solar: \$9,458		

Benefits of Integrated Distribution Planning: Value of small & targeted solutions


- Large utility capacity projects are designed based on long-term dynamic forecasts and result in significant idle capacity
- Smaller, targeted DER solutions can offset some utility capacity projects and provide the utility more flexibility to meet dynamic load

SolarCity


Distributed energy resources (DERs) can offset system peak load.

Johanna and Santiago Load, CA 2022

SolarCity

Changing the utility incentive mechanism to include Distributed Energy Resources (DERs)

SolarCity

Thank You

Brian Warshay Grid Engineering Solutions <u>bwarshay@solarcity.com</u>

CA CSLB 888104

Utility-Scale Energy Storage: Proven and Cost-Effective for Meeting Capacity Needs

Kiran Kumaraswamy Market Development Director AES Energy Storage

February 29th, 2016

AES operates 116MW of advanced battery-based energy storage, the largest grid-connected fleet.

Los Andes Atacama, Chile 2009

Laurel Mountain West Virginia, USA 2011

Angamos Mejillones, Chile 2012

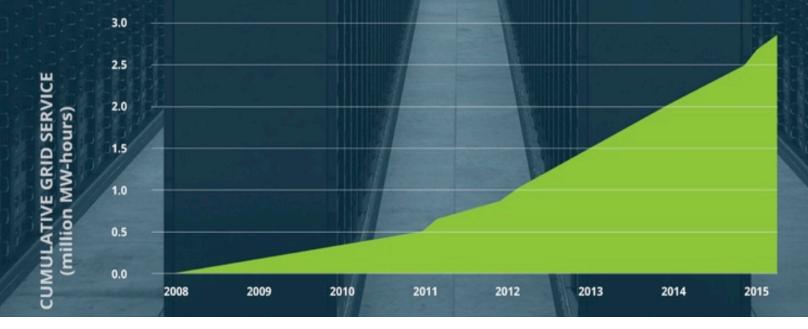
> Tait Ohio, USA Sep 2013

2015 Additions

10MW Warrior Run Cumberland, Maryland

10MW Zeeland Vlissingen, Netherlands

10MW Kilroot Belfast, N. Ireland


Contains Forward Looking Statements

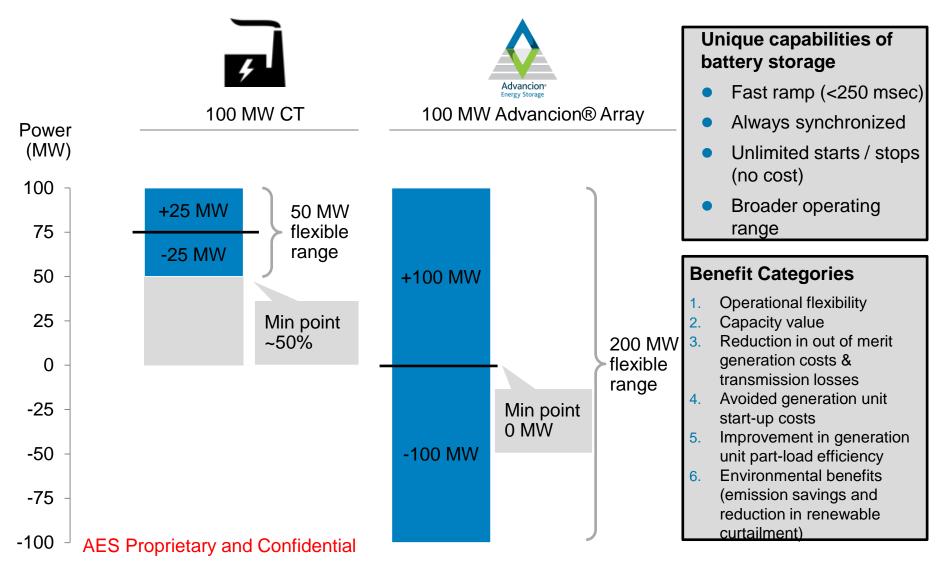
AES energy storage fleet has more than 3 million megawatt-hours of delivered service.

Advancion" Energy Storage

ADVANCION IS BUILT ON EIGHT YEARS OF REAL WORLD EXPERIENCE

AES Grid Storage Fleet Service Record 2008-2015

Flexible Peak Capacity: SCE selects 100MW

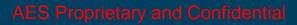

Competitive solicitation to meet peak capacity needs and provide flexibility

100 MW Interconnection (rendered) 200 MW of flexibility (discharge + charge)

Project Description:

- 2x50 MW advanced battery array
- Provides local capacity reliability
- 4 hour duration
- 24x7 power resource
- No emission or water
- 20-Year Tolling PPA

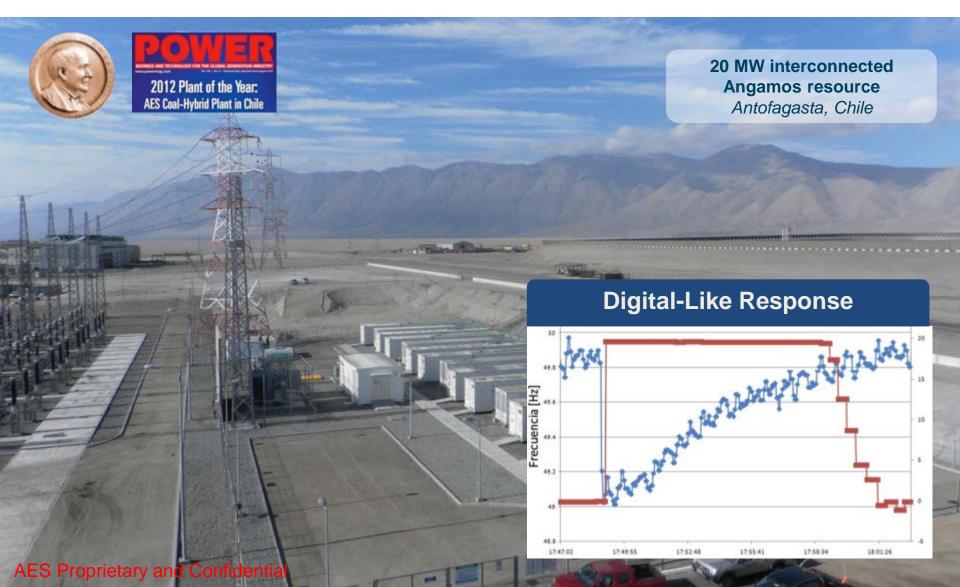
Storage provides up to 4 x the effective resources and unique flexibility compared to traditional peakers



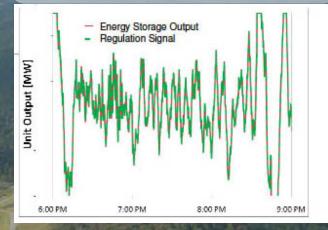
Capacity Release: Improving System Reliability in Chile

Initial project leading to over 50 MW of energy storage in Chile.

Benefits


- Avoided load shedding and emergency curtailment
- Increased energy production and reduced cost
- Increased system security
- Inertia-like performance

Estimated to Save Customers \$37 Million Annually


Energy storage unlocked low-cost generation in the CDEC-SING

Frequency Regulation: Integrating Renewables in PJM

AES storage resources save PJM customers \$20 million per year

Frequency regulation: Storage to serve TenneT

Initial 10MW storage online at end of 2015, providing 20MW of flexibility

 Primary Control Reserve (frequency regulation) for integrated market (DE, NL, CH, AU)

Impact:

Reduce total reserve cost
 Fast, accurate reserves
 Increased system flexibility
 Opportunity to explore fast
 resource benefits

20 MW Zeeland Resource Vlissingen, Netherlands

AES

Thank you.

 Kiran Kumaraswamy

 Market Development Director, AES Energy Storage

www.aesenergystorage.com Kiran.Kumaraswamy@aes.com