PORTLAND GENERAL ELECTRIC 2019 INTEGRATED RESOURCE PLAN

OPUC Public Hearing August 13, 2019

Integrated Resource Plan

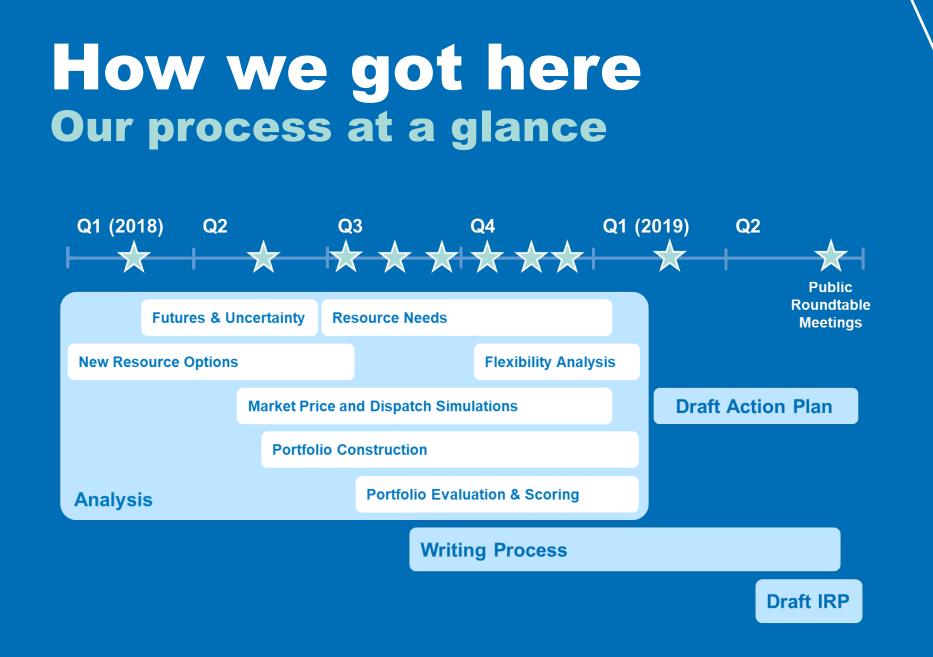
JULY 2019

Today's Agenda

- How we got here 2016 IRP Order and our process at a glance
- What we heard Stakeholder engagement in the 2019 IRP
- What we changed IRP themes and innovations
- What we found
 - Growing resource needs
 - Shifting resource economics
 - Portfolio analysis
- Preferred Portfolio
 - Meeting near-term needs
 - Renewable glide path
- Action Plan

PGE

- Customer actions
- Renewable actions
- Capacity actions


How we got here 2016 IRP Order

In addition to resource actions, the 2016 IRP Order included enabling studies and additional items to support the next IRP:

- ✓ Flexible Capacity and Curtailment Metrics Sections 1.4.1, 4.6, 6.1.3, 6.2.2, and External Study F
- ✓ Customer Insights
- ✓ Decarbonization
- Risks Associated with Direct Access
- ✓ Treatment of Market Capacity
- ✓ Accessing Resources from Montana
- ✓ Load Forecasting Improvements
- ✓ Portfolio Ranking and Scoring Metrics
- ✓ Distributed Resources
- ✓ Boardman Biomass

- Sections 1.4.2 and 2.1.2
- Sections 1.4.3 and 7.4.1, and External Study A
- Sections 1.4.4 and 4.7.3
- Sections 1.4.5, 2.4.2.1, and External Study E
- Sections 1.4.6, 5.2.1, and 5.5.4
- Sections 1.5.1, 4.1, and Appendix D
- Sections 1.5.2 and 7.2
- Section 1.5.3, 4.1.3, 5.1, and External Study C
- Section 1.5.4

What we heard Stakeholder engagement in the 2019 IRP

Strong participation across a wide range of groups and individuals

• 221 attendees at 14 public meetings, 58 written comments, five unique portfolio requests

Stakeholder values shared at the outset of our process

- Cost and risk
- Environmental sustainability
- Transparency

Key topics of interest raised throughout the process

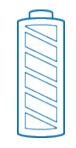
- External Studies: Decarbonization Study
- Resource Options: Wind, storage, and solar + storage assumptions
- Portfolio Analysis: Portfolio requests, portfolio optimization, scoring metrics
- Action Plan: Renewable and capacity actions
- Other: Transmission, procurement activities, Colstrip, and community engagement

What we changed IRP themes and innovations

Decarbonization

- Decarbonization Study and Decarbonization Scenario
- Electric Vehicle forecasting
- Carbon pricing and carbonconstrained portfolios

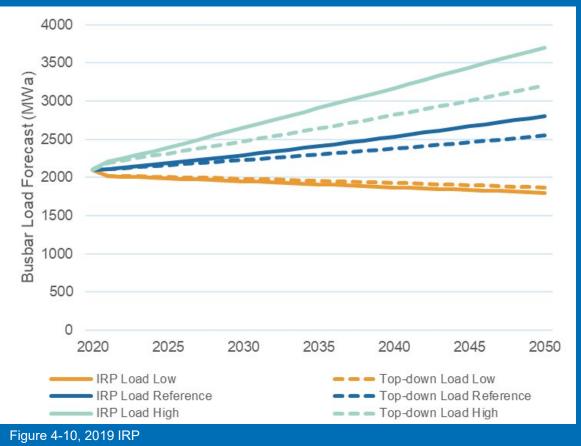
Uncertainty and Optionality


- ?
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
- Portfolio analysis considers 810 futures that explore uncertainty in future needs, technology costs, and market conditions
 - Value of optionality captured in risk metrics

Customer Decisions

- Distributed Energy Resource
 (DER) adoption forecasting
- Voluntary renewable program sensitivities
- Direct Access risks

Technology Integration and Flexibility



- Holistic approach to renewable integration costs, flexibility value, and flexibility adequacy
- Consideration of locational value
 in sensitivity analysis

What we found Growing resource needs

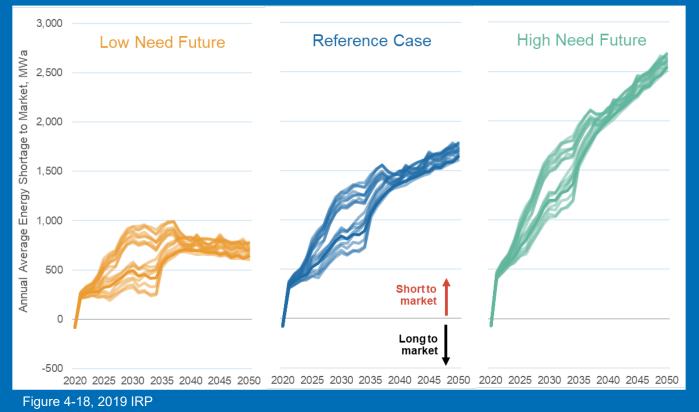
Load forecast across Need Futures

Variation across load futures is driven by the several factors, including:

- Economic conditions
- Energy efficiency
- Rooftop solar adoption
- Electric vehicle adoption

What we found Growing resource needs – Capacity

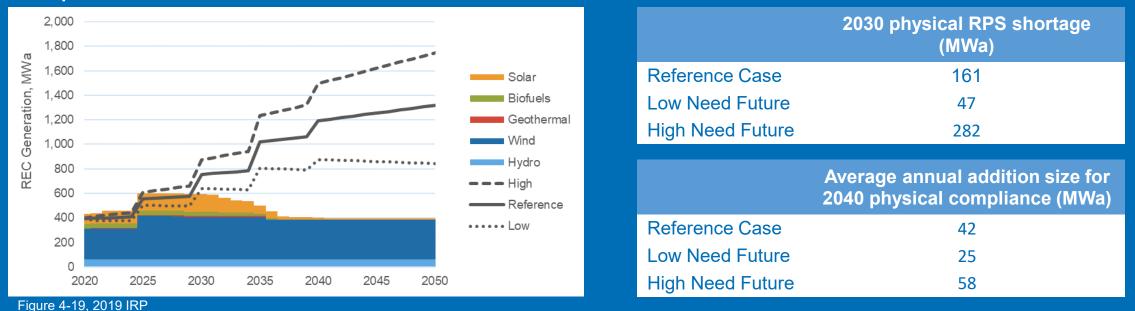
Capacity needs across Need Futures


```
Figure 4-13, 2019 IRP
```

- 685 MW of capacity need after accounting for DERs by 2025 in the Reference Case
- Uncertainty in load and DERs drives variation across capacity need futures
- Contract expirations drive approximately 350 MW of capacity needed through 2025

What we found Growing resource needs – Energy

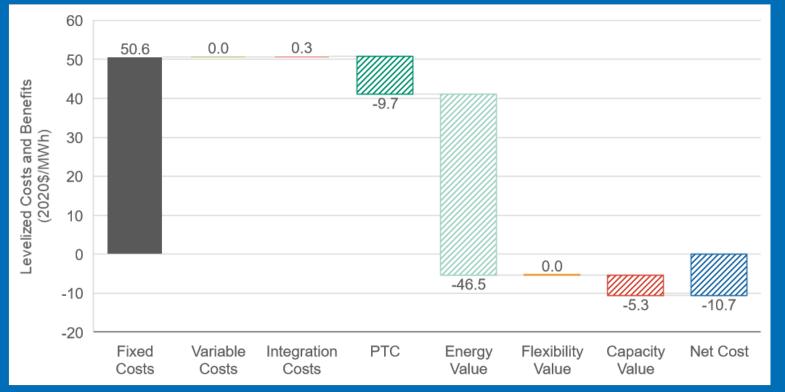
Energy shortage to market across Need Futures


	2025 shortage to market, MWa
Reference Case	515
10 th Percentile	344
90 th Percentile	907

- Forecasted shortage to market in 2025 is greater than 344 MWa in 90% of futures
- Market shortage generally grows over time across futures

What we found Growing resource needs – RPS

RPS position across Need Futures



- A strategy of REC bank depletion could facilitate RPS compliance through 2035, but would require approximately 1,500 MW of wind or 2,500 MW of solar by 2037
- IRP portfolios instead require physical RPS compliance on a planning basis to ensure continued steady progress toward long-term targets

What we found Shifting resource economics

Derivation of net cost of 100 MWa WA Wind (Reference Case)

- IRP analysis considers the cost of each resource net of value
- Some renewable resources may have negative levelized net costs (i.e., forecasted levelized benefits exceed levelized costs)

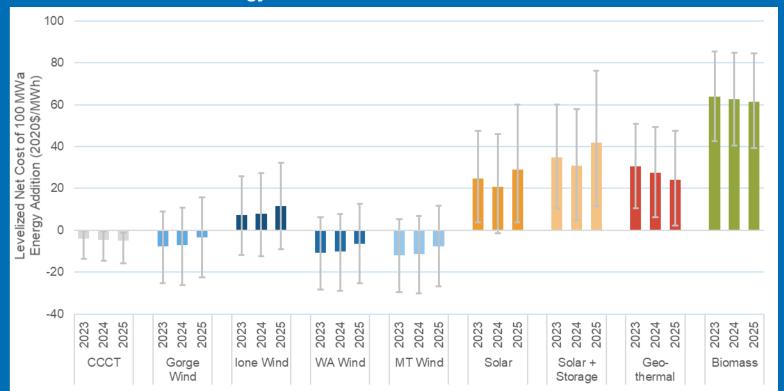


Figure 6-8, 2019 IRP

* Renewable resources are assumed to come online by December 31 in the year prior to the listed COD to qualify for federal tax credits

What we found Shifting resource economics

Levelized net cost of energy resources

- Renewable resources are forecasted to be the lowest cost energy resources on a levelized net cost of energy basis
- Resource net cost changes across technology and price futures

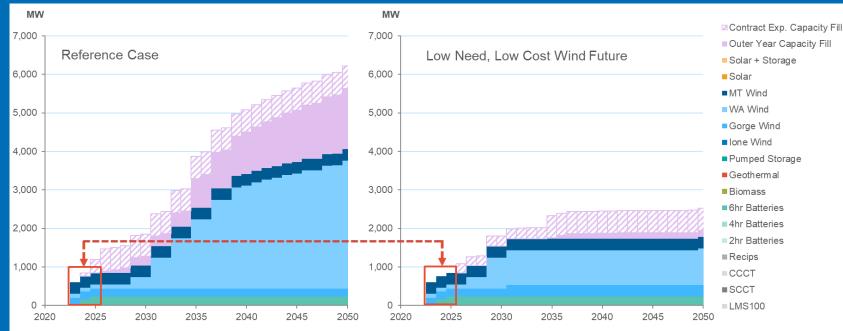
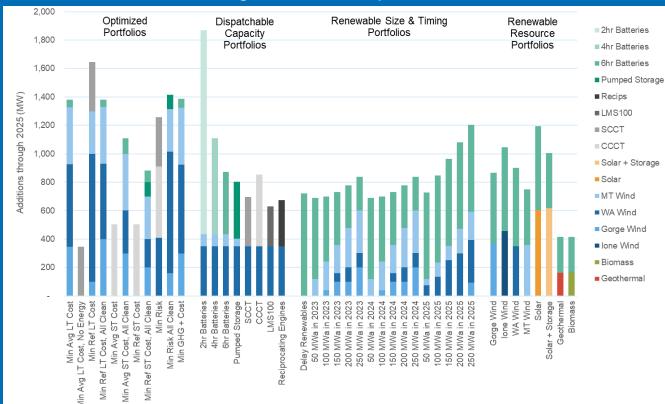

* Renewable resources are assumed to come online by December 31 in the year prior to the listed COD to qualify for federal tax credits

Figure 6-9, 2019 IRP

- PGE tested 43 portfolios across 810 futures that explored uncertainties in future needs, technology costs, and market conditions
- 32 portfolios were designed to compare across:
 - Renewable resource types
 - Dispatchable capacity types
 - Renewable addition size and timing options
- 11 portfolios utilized portfolio optimization to gain further insights
 - Stakeholders in the 2016 IRP suggested that PGE use optimization to create portfolios
 - Optimized portfolios tested various objective functions and constraints and addressed stakeholder requests:
 - Minimize cost, risk, GHGs + cost
 - Allow or disallow thermal resources


- To develop portfolios, PGE utilized ROSE-E, a new capacity expansion model
- Allows for flexible portfolio construction based on future developments
- Preserves optionality going forward

Example of flexible portfolio construction

Resource additions through 2025 across portfolios

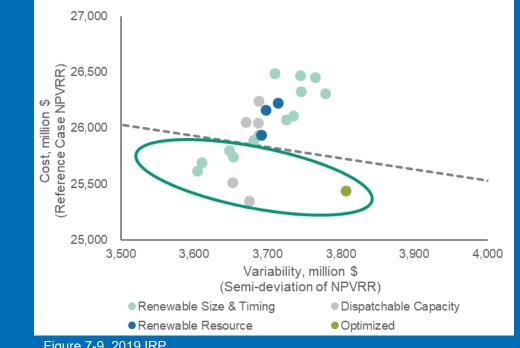

A multi-stage scoring process was used to determine the preferred portfolio

Figure 7-7, 2019 IRP

Cost vs. variability performance

Near-term resource additions in best performing portfolios

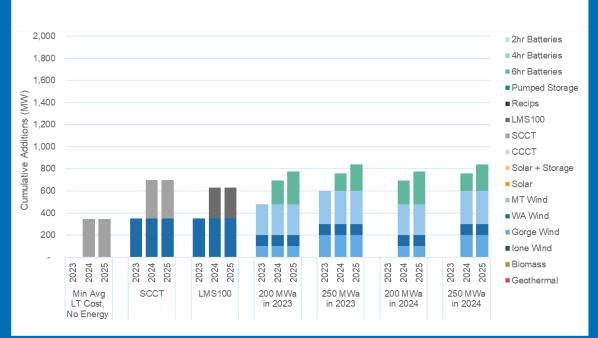


Figure 7-9, 2019 IRP

Figure 7-11, 2019 IRP

Seven portfolios met the screening criteria and performed best on the basis of cost and risk

- Customer Resources: All portfolios include all cost-effective energy efficiency and all forecasted DERs from the DER Study
- Renewable Resources: Six of the seven best portfolios include renewable additions, ranging in size from 150 MWa to 250 MWa, added in 2023 or 2024
- Capacity Resources: Four of the six best portfolios add storage to meet the remaining capacity needs

Near-term resource additions in best performing portfolios

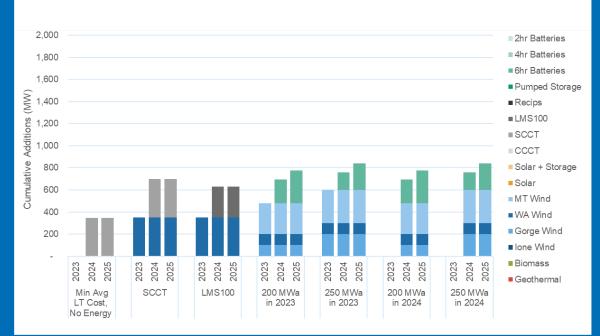


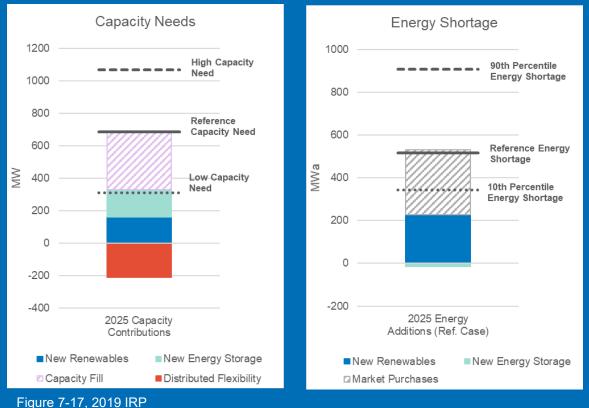
Figure 7-11, 2019 IRP

Seven portfolios met the screening criteria and performed best on the basis of cost and risk

Preferred Portfolio The Mixed Full Clean portfolio

The Mixed Full Clean portfolio was designed to capture the most common aspects of the best performing portfolios

- Customer Resources: The Mixed Full Clean portfolio includes all cost-effective energy efficiency and all forecasted DERs from the DER Study
- **Renewable Resources:** The Mixed Full Clean portfolio includes a 150 MWa renewable addition in 2023
- **Capacity Resources:** The Mixed Full Clean portfolio meets remaining near-term capacity needs with 6+ hour energy storage

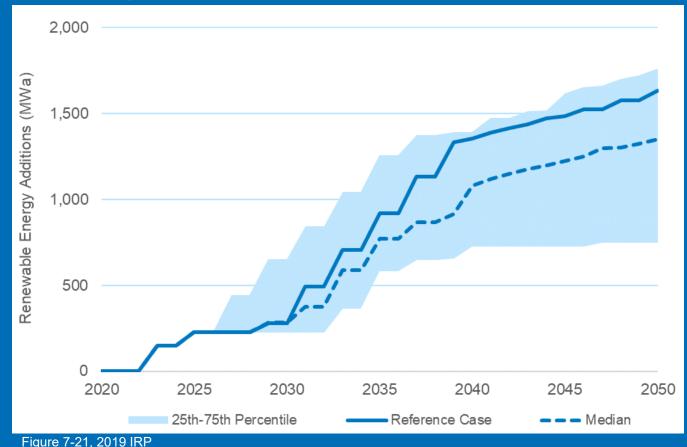

2.000 1.800 2hr Batteries 4hr Batteries Pumped Storage 6hr Batteries Additions LMS100 1.200 Recips CCCT SCCT 1,000 Solar + Storage Solar 800 Cumulative MT Wind WA Wind 600 Gorge Wind ■ Ione Wind 400 Biomass Geothermal 200 2023 2025 2024 Mixed Full Clean

Near-term additions in Mixed Full Clean portfolio

Figure 7-12, 2019 IRP

Preferred Portfolio Meeting near-term needs

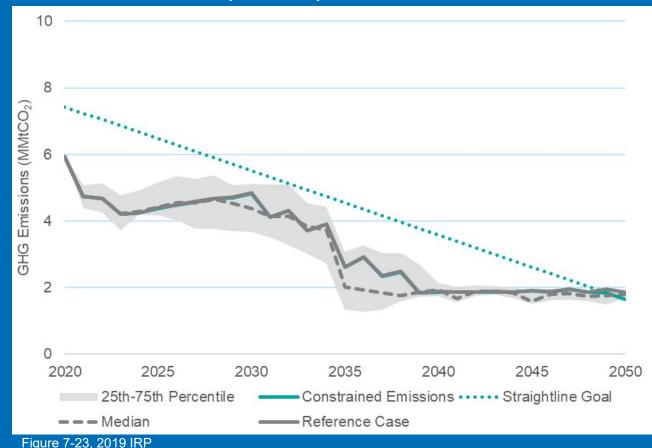
Contribution of resources in preferred portfolio to 2025 needs


 Preferred portfolio meets capacity needs with renewables, storage, and capacity fill

- Capacity fill resource provides flexibility to accommodate capacity from contracts, additional DERs, or other reductions in expected need
- Energy additions in preferred portfolio do not exceed forecasted market energy shortage
 - Market shortage provides flexibility to accommodate changes in need and additional sources of energy (e.g., voluntary renewable programs)

Preferred Portfolio Renewable glide path

Renewable glide path in preferred portfolio


- Renewable glide path indicates a wide range of future renewable procurement trajectories depending on needs, technology costs, and market conditions
- Near-term renewable addition in the preferred portfolio provides adequate flexibility to optimize future additions across futures

20

Preferred Portfolio Greenhouse gas emissions

GHG emissions for the preferred portfolio

- The resource additions in the preferred portfolio help PGE to continue to reduce GHG emissions over time
- Forecasted GHG emissions remain close to or below PGE's target emissions trajectory through 2050

21

2. Renewable Actions

3. Capacity Actions

Customer Actions

1.A. Seek to acquire all cost-effective energy efficiency, currently forecasted to be 157 MWa by 2025

1.B. Seek to acquire all cost-effective and reasonable distributed flexibility, currently estimated to include, by 2025:

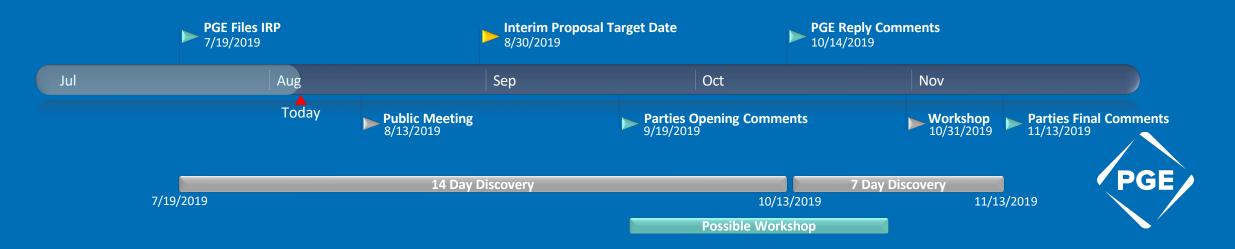
- 141 MW (Low: 73 MW, High: 297 MW) of winter demand response
- 211 MW (Low: 108 MW, High: 383 MW) of summer demand response
- 137 MW of dispatchable standby generation (9 MW incremental)
- 4.0 MW (Low: 2.2 MW, High: 11.2 MW) of dispatchable customer storage *Values are cumulative and at the meter

Renewable Actions

2. Conduct a Renewables Request for Proposals (RFP) in 2020, seeking up to approximately 150 MWa of RPS-eligible resources to enter PGE's portfolio by the end of 2023

- Timing allows PGE to capture $\geq 60\%$ PTC for customers
- Open to all RPS-eligible resources
- Propose cost containment screen similar to the 2018 Renewables RFP
- Propose to return value to customers of 2020 RFP resource RECs generated prior to 2030
- Interim approach for transmission

Transmission An interim solution for the Renewables RFP


- Cross-functional team developing a "pilot" for renewable resources
 - Opportunity for learning and better understanding risks
 - Allows for evaluation, adjustment, and off-ramps during pilot period
- Creating a comprehensive pilot proposal
 - Currently working to identify and address customer, stakeholder, and PGE impacts
 - RFP scoring methodologies and minimum thresholds, forecasting, cost impacts, etc.
- End goal of a broader solution to enable continued renewable development
 - Requires significant time and work beyond the 2019 IRP docket
 - Collaborative and comprehensive approach
 - PGE will bring results from the pilot to help guide the discussion

Transmission Status of interim solution

- Seeking to provide our proposal on a schedule that allows for sufficient process and opportunity for comments in this docket
 - Target date for addendum filing of August 30th
 - Propose holding a workshop between parties' opening and final comments
- Will be further reviewed and refined in the Renewables RFP process

Capacity Actions

3. Pursue a staged procurement process to secure capacity to maintain resource adequacy, while considering the impact of uncertainties

A. Pursue cost competitive existing capacity in the region via bilateral negotiations

B. Update the OPUC and stakeholders on PGE's resource needs in 2020

C. Conduct a non-emitting capacity RFP in 2021 for capacity needs remaining after above actions

Putting it all together

In the 2019 IRP, we designed an Action Plan that reflects our values, responds to customer and stakeholder feedback, and embraces the positive change that is shaping our industry

Decarbonization

The Action Plan provides PGE the opportunity to further decarbonize at low cost to customers if cost competitive resources are available in the market

Uncertainty and Optionality

The Action Plan allows PGE to respond flexibly as resource needs and conditions evolve, while maintaining optionality for future resource decisions

Customer Decisions

The Action Plan supports customer participation in the grid through expanded energy efficiency and distributed flexibility

Technology Integration and Flexibility

The Action Plan allows PGE to leverage new clean and flexible technologies, like energy storage and demand response

Thank you

For additional information, please contact us at <u>IRP@pgn.com</u> or visit us online at http://www.portlandgeneral.com/IRP

