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REPORT TO OPUC ON THE FEASIBILITY OF STOCHASTIC POWER COST 

MODELING 
 
 
I.  Introduction: 
 
In PGE’s last general rate case, Docket UE 180, parties expressed a wide range of views on the 
merits of stochastic modeling for net variable power costs (NVPC).  Given this discussion, the 
Commission stated that “we urge PGE to develop stochastic modeling to develop its NVPC 
forecast.  PGE should submit a report on the feasibility of using stochastic modeling in the 
Annual Update by September 1, 2007.”  (Order No. 07-015 at 12)  This report is PGE’s submittal 
pursuant to the Commission’s request.   
 
The report is organized as follows: 
 

• Section II discusses the history of PGE’s investigation of stochastic power cost modeling 
prior to Order No. 07-015. 

 
• Section III summarizes the work PGE has done since Order No. 07-015. 

 
• Section IV discusses issues related to the implementation of stochastic power cost 

modeling. 
 

• Section V notes the Commission direction that PGE would need to proceed with 
implementation of stochastic power cost modeling in its Annual Update process. 

 
 
II.  History Prior to Order No. 07-015: 
 
In Docket UE 165, PGE and Staff signed a Stipulation supporting a hydro-specific power cost 
adjustment mechanism (PCAM).  Although the Commission ruled against this particular PCAM 
proposal, PGE decided to pursue part of the Stipulation, specifically Section 12, which reads: 
 

12. PGE agrees to obtain appropriate consultation services for the purpose of evaluating the 

statistical distribution of net power costs, at a cost of up to $100,000.  The analysis will consider the 

volatility of hydro generation, electricity prices, natural gas prices, system load, forced outages, and any 

correlations between these variables.  Staff and PGE will work together to formulate a work statement to 

guide the work of the consultant.   PGE will schedule quarterly public workshops to provide progress 

reports and receive input from interested parties.  Staff and PGE reserve the ability to accept or reject the 

opinion or work product of the consultant for use in ratemaking, including in PGE’s next general rate case.  

The consultant will report results by December 31, 2005, unless Staff and PGE agree to a different date.  

PGE will not seek recovery of the cost of these consultation services from customers. 
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Through a targeted Request for Proposal process, PGE selected the PA Consulting Group (PA) 
to develop and report on preliminary stochastic modeling of PGE’s NVPC.  We also engaged 
Marty Howard, a local consultant, to act as a project manager and interface between PGE and 
PA.  In addition to overall management of PA’s work, Mr. Howard worked with PA regarding 
the provision of data and modeling algorithms and the discussion of statistical modeling issues.  
PGE spent more than $260,000 (incremental costs) on this project.   
 
PA visited with PGE personnel twice and produced a report, “Portland General Electric, Hourly 
Power Cost Simulation,” which was dated July 10, 2006.  This report became PGE Exhibit 1803 
in docket UE 180.  It is also Attachment A to this report.  PA developed statistical models with 
cross-correlations for loads, hydro output, gas prices, electric prices, and plant outages.  These 
stochastic inputs were then used to run 1,000 simulations, each simulation producing an annual 
PGE NVPC figure.  PA’s modeling construct produced base total NVPC that were almost the 
same as those from a Monet run with base inputs.  However, there was significant variation 
between some major components.   
 
PA analyzed the simulation results and provided preliminary answers to two primary questions: 
 

1. Are the mean, or average, NVPC from the simulation study higher or lower than a 
deterministic Monet forecast based on expected loads, hydro output, gas and electric 
prices, and plant outages? 

 
2. How might the distribution of simulation outcomes inform the structure of a PCAM 

mechanism, particularly the size and (a)symmetry of a possible deadband? 
 
In its final report, PA presented a number of preliminary conclusions, based on PGE’s plants at 
that time and the data set used for stochastic input development.  These conclusions included: 
 

• The mean NVPC in the simulation study were approximately $10 million greater than in 
the base Monet forecast. 

 
• The standard deviation of NVPC was at least $55 million. 

 
• Given the large size of the standard deviation relative to the mean vs. base differential, it 

would be “very difficult to use the numerical results of this prototype for ratemaking or to 
determine a ‘risk adder.’” 

 
• NVPC can increase much more than they can decrease (from the mean).   

 
 
 
III.  Work Performed After Order No. 07-015:  
 
After the Commission issued Order No. 07-015, PGE consulted with PA to determine the scope 
of work that would be required to implement stochastic power cost modeling for rate making 
purposes.   
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As a first step, PGE requested that PA produce a formal statement of the modeling performed 
and discussed in the report, “Portland General Electric, Hourly Power Cost Simulation.”  This 
statement included two primary elements:   
 

• Formal specifications of how stochastic inputs – loads, hydro output, gas and electric 
prices, and plant outages – were modeled. 

 
• Formal specification of the mathematical problem – how to meet load requirements at the 

lowest cost – solved in each iteration of the simulation study. 
 
PA discussed the formal problem statement and noted that one disadvantage of the preliminary 
modeling completed for the July 2006 report was that the calibration with Monet was not exact.  
PA suggested that the actual implementation of stochastic power cost modeling for rate making 
purposes should directly use the Monet model.  Each iteration of a simulation study would then 
be a Monet run with a set of stochastic input variables.  The Monet runs per se would then differ 
from those currently used for rate making only in that the input variables would be stochastic and 
the dispatch logic for PGE’s Coyote Springs and Port Westward plants would be simplified to 
decrease run time.   PGE and PA agreed that the modeling structures used in the preliminary 
work did not need major revision, although recalibration with new data would be necessary.  
PGE incurred approximately $15,000 of incremental costs (from PA and Marty Howard) to 
develop this post-Order No. 07-015 scope of work.   
 
PA then submitted a formal proposal to attempt to implement stochastic power cost modeling.  
Under this proposal, PA would complete the following five tasks: 
 

1. Recalibrate and revise input models.  (Note that no major revisions are foreseen.) 
 

2. Simulate input variables.  This would include running several iterations of the models 
completed in Step 1 and then collecting the results. 

 
3. Develop a Monet “wrapper.”  This software structure would use the results of Step 2 to 

run the simulated input data through Monet and keep track of results, iteration by 
iteration.   

 
4. Report and analyze Monet results.  The results from Step 3 would be transferred to an 

easy to access and analyze format (specifically an Excel add-on called “@Risk”).  This 
would facilitate statistical, graphical, and other forms of analysis. 

 
5. Help write a report on overall simulation results.  PA and PGE would jointly complete 

this step. 
 
PGE would again need to retain Marty Howard as a project manager.  We estimate that the total 
incremental costs for PA and Marty Howard would be approximately $300,000.  As noted above, 
PA has submitted a formal proposal, which is included as Attachment B.  However, we believe 
that this proposal likely underestimates the amount of work that we would need from PA and 
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others to fully implement stochastic power cost modeling.  Attachment B is confidential and 
subject to the protective order in Docket UE 180 (Order No. 06-111).  In addition to incremental 
costs for PA and Marty Howard, PGE would have to allocate significant labor time to the 
project.  
 
 
IV.  Issues Related to Further Work: 
 
If PGE proceeded with the stochastic power cost modeling work described in Attachment B, 
several issues would need to be addressed.  These include the following:   
 

• Parties would need to agree on an appropriate data set for use in (re)calibrating the 
stochastic input models.  This data set selection could be controversial, as it would reflect 
various views as to which past data are most reflective of a future test year.  For example, 
should the data set include the West Coast energy crisis period and, if so, how much 
weight should it be given?  

 
• Parties would need to agree to an appropriate interface between the data used to 

(re)calibrate the stochastic input models and data more specific to the test year.  The latter 
includes the most recent forward curves and gas and electric positions already taken.   

 
• A simulation study based on one calibration of the stochastic input models would 

produce a distribution of NVPC.  If the input models were stable, we theoretically would 
expect that, say 100 years of actual NVPC results would roughly follow the theoretical 
distribution.  However, the input models are not stable; they would require frequent 
recalibration as underlying real world conditions change.  Therefore, we would only 
experience a very few outcomes of a theoretical distribution before that distribution itself 
would change, due to changes in the underlying stochastic input models.  This also 
refutes the idea that “results will be fair over time.”   

 
• One possible use of stochastic power cost modeling is to inform the process of setting 

parameters of a PCAM.   However, the Commission has already set the parameters of 
PGE’s PCAM in Order No. 07-015.   

 
• The increased modeling complexity would raise a number of issues which include: 

 
• Longer run times, which could require the use of multiple computers over several 

hours or overnight. 
 

• Decreased ability of other parties to run the model themselves. 
 

• There would be a need to maintain two models, one with the simplified dispatch logic for 
Coyote Springs and Port Westward.  The simplified logic in the version used for 
stochastic modeling would have less precision.   
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• All of the above issues would make stochastic power cost modeling controversial.  It 
would complicate and be a source of conflict among parties in PGE’s Annual Update 
Tariff proceedings.   

 
 
V.  Commission Guidance: 
 
PGE is interested in continuing to study the potential of stochastic power cost modeling.  
However, as discussed in Sections III and IV of this report, there are a number of significant 
issues outstanding.  A more definitive study could take considerable time and a final approach 
agreed to by parties for PGE’s rate cases would likely not be ready for use in estimating 2009 net 
variable power costs.  Also, given their complexity, we might not reach consensus on all 
outstanding issues.  If PGE continued to develop stochastic power cost modeling, we would first 
hold a workshop to discuss with parties the modeling approach described in Section III.  We 
would then work with PA to complete that approach, as potentially modified by input from 
parties at the workshop.   
 
PGE has incurred incremental costs of approximately $275,000 on stochastic power cost 
modeling to date.  If the Commission agrees that we should continue development of this 
modeling approach, PGE requests an order allowing us to defer the associated future incremental 
costs.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

g:\ratecase\opuc\projects\report_08.31.07\finalreporttoopuc.doc 
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ATTACHMENT A 
 

PA CONSULTING JULY 10, 2006 REPORT 
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ATTACHMENT B 
 

PA CONSULTING PROPOSAL FOR FURTHER MODELING 
 

Confidential – Subject to Protective Order No. 06-111 
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1. INTRODUCTION 

PA Consulting Group has been retained by Portland General Electric to define a “cost 
simulation model”.  The basic simulation model would simulate the net variable power cost 
over a period of time subject to certain assumptions about loads, market prices, hedges in 
place and hydro conditions.  That model could then be run over a large sample of potential 
realizations of those assumptions in order to estimate the statistical properties of the 
distribution of net variable power costs. 

In the course of PA’s work on this assignment it became clear that an important factor limiting 
the precision of any probabilistic cost simulation is the availability of data describing the 
distributions and dependencies of its uncertain inputs.  PA produced a report explaining the 
level of detail at which data might be desired, the difficulties in assembling such data, and 
stopgaps or proxies that might be used on an interim basis.  The recommendation from that 
report was that PGE proceed with the definition of a flexible prototype simulation structure, 
which could be used to test different data relationships and resource modeling choices.  PA 
has described this flexible structure as a “sandbox”. 

This document is the Final Report from PA’s assignment.  It is organized as follows: 

• List of major assumptions that define the problem being modeled 

• Significant sections of the Data Issues Report 

• Overall structure of the prototype model 

• Input data modeling in the prototype.  This refers to the representation of variables such 
as load, gas price, power price and hydro conditions, and the relationships between them. 

• Resource modeling in the prototype.  A “resource” is any source or sink of the power 
distributed by PGE, or any hedge on PGE’s net variable power cost. 

PGE Report / August 31, 2007 
Attachment A 
Page 5



2. Underlying assumptions  

2-2 

Portland General Electric 7/10/06 

2. UNDERLYING ASSUMPTIONS 

2.1 NATURE OF THE SOLUTION SOUGHT 

PGE was seeking a simulation model that would produce information about the shape of the 
distribution of net variable power costs.  The “location” of that distribution is represented by 
the Resource Valuation Mechanism (RVM) forecast, that is, a base case Monet run.1  
Therefore the function of the probabilistic simulation is to perturb the Monet input parameters 
in a way that is consistent with historic distributions of those parameters, and report the shape 
of the ensuing distribution of net variable power costs (as well as any shifts in the mean). 

From this assignment, PGE was seeking a description of a model that it could easily 
implement if need be.  It might be desirable to incorporate the model into Monet but at the 
very least it should be compatible with Monet.  PA interpreted this to mean a simple Excel-
based model, which could use, when appropriate, the same logic as Monet (even reusing 
code from Monet or DLLs it calls). 

2.2 14-MONTH TIME HORIZON 

The question addressed by this simulation model is the extent by which Portland General’s 
actual costs for a year can differ from the cost forecast used for setting the revenue 
requirement in the RVM.  That revenue requirement is set in November and covers the 
following year.  Therefore the model has a 14-month time horizon, from Nov. 1 through Dec. 
31 of the following year (costs during the first two months are not accumulated).   

2.3 NO UNCERTAINTY ABOUT RETIREMENTS OR NEW CAPACITY 

Because the model horizon is only about a year and a quarter, we assume that PGE’s 
resource base is known.  It may change during that period – resources may be retired or 
added – but the schedule of retirements and additions during the model horizon is known with 
certainty.  Therefore, there is no need for estimation of the parameters of new candidate 
resources or for capacity expansion decision-making.  Furthermore, the technological 
parameters (heat rates, capacities, outage rates) of those resources are already known.  
“Disruptive technological change”, for example, would not affect the intra-year cost 
uncertainty, but rather would move the entire distribution of costs including the RVM forecast. 

2.4 SPOT MARKETS ARE FULLY LIQUID 

The first consequence of this assumption is that each resource may be modeled as if it were 
dispatched based solely on the price, rather than to meet load.  PGE’s Monet model accounts 
for load-following, to the extent that it refers to shaping supply to loads that change within the 
hour but achieve an anticipated average value, by reserving Mid-C hydro capacity and 

                                                 

1 The specific Monet run to which the prototype was constrained was based on the file M606PUC05-105-
06.xls that was provided to us. 
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assuming the net energy impact is nil.   If the anticipated average value is not achieved it 
represents a real-time load excursion described in the next paragraph.  

The second consequence is that all real-time load excursions beyond those anticipated as 
“load following” – in other words, all differences between the real-time integrated load for an 
hour and the day-ahead forecast – can be covered in the spot market.  It is not necessary to 
reserve hydro capability to cover those excursions, although available hydro capability could 
be used to respond to real-time price fluctuations.  It is explicitly assumed that there will 
always be sufficient spot liquidity to meet all demands or sink excess supply at the spot price 
(even though that price may be very high). 

2.5 DECISION VS. VALUATION TIMEFRAMES 

Because the real-time spot market is assumed to be perfectly liquid, and because any net 
imbalances are settled in real time, we assume that all energy – generated or purchased by 
PGE, or delivered to loads – is valued at the real-time spot price.  However, most resources 
need to be scheduled in advance.  Therefore “advance” prices, e.g., day-ahead prices, have 
to be used for dispatch decision-making.  In some cases, a basic schedule may have to be 
set based on the advance prices subject to a limited amount of flexibility to respond to real 
time spot prices. 
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3. DATA ISSUES 

3.1 DATA BY COMPONENT 

In this section we will review the different components we expect the simulation model to 
contain, and list the data required by each one.  As noted above, we are assuming that 
PGE’s power dispatch decomposes, so that energy resources are scheduled independently.  
The value of the energy from each resource is computed based on spot power prices; the net 
value of the resource is its energy value minus the generating cost (fuel and O&M).  Similarly 
the cost to serve load is computed based on spot prices.  The net variable power cost is the 
difference between the cost to serve load and the total net value of resources.  Each different 
resource type is a component of the model. 

3.1.1 Load 

The load component determines the cost to serve load.  It requires two different variables, 
namely hourly load and the real-time hourly spot price, both of which are uncertain.  
Forecasting hourly load may require a “hidden variable” such as temperature.  Given that the 
simulation model is completely decomposed and that we assume the real-time market is 
completely liquid no “load forecast” variables are necessary except for determining the 
reserve requirement (see the description of the hydro component below). 

3.1.2 Gas-fired plants 

The gas-fired power plant component includes PGE’s gas-fired power plants – Coyote, 
Beaver and Port Westward (when operational).  These plants are scheduled based on the 
gas price and an advanced power price, and “paid” based on spot power prices.  In addition, 
the Beaver plant may have some ability to modify its schedule to respond to real-time or near-
real-time price movements.  We understand that there is no regime of tradable NOx permits in 
the Northwest (when one is implemented the model would have to be modified to account for 
NOx costs, which are likely to covary with load and gas prices). 

A. DATA REQUIREMENTS – CERTAIN 

The gas-fired plant component requires the following data for each plant: 

• Definition of operating states.  These can be used to represent dynamic constraints 
on startup and shutdown, ramping, or a non-constant heat rate. 

• State transition matrix.  Note that the state detail may be ignored or approximated for 
this simulation model, relative to the detail in Monet. 

• Capacities 

• Measure of flexibility for Beaver, which is the one plant whose dispatch apparently 
can respond in near-real-time 

• Heat rates 

• Outage rates (may vary by operating state) 
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• O&M cost 

• Gas tariffs 

• Maintenance schedules 

B. DATA REQUIREMENTS – UNCERTAIN 

The gas-fired plant component requires the following uncertainty data:  

• Gas prices at Sumas and Stanfield.  AECO prices, Rockies (e.g., Opal) prices or 
even Henry Hub prices could be used as “hidden” variables 

• Day-ahead hourly Mid-C power prices, for use in dispatching 

• Mid-C power prices with a timing appropriate to Beaver’s scheduling flexibility 
(probably 4 hours ahead of real time) 

• Real-time Mid-C power prices 

3.1.3 Coal-fired plants 

The coal-fired power plant component includes PGE’s coal-fired power plants – Boardman 
and its share of Colstrip.  These plants are scheduled based on the coal price and an 
advanced power price, and “paid” based on spot power prices.  Although coal-fired plants 
incur costs associated with sulfur emissions we understand that there is no regime of tradable 
NOx permits in the Northwest (when one is implemented the model would have to be modified 
to account for NOx costs, which are likely to covary with load and gas prices). 

A. DATA REQUIREMENTS – CERTAIN 

The coal-fired plant component requires the following data for each plant: 

• Definition of operating states.  These can be used to represent dynamic constraints 
on startup and shutdown, ramping, or a non-constant heat rate.  Monet actually does 
not define operating states for these plants, which assumes that they will run pretty 
much baseloaded and satisfy all operating constraints. 

• State transition matrix.   

• Capacities 

• Heat rates 

• Outage rates (may vary by operating state), which includes transmission outages 

• O&M cost 

• Coal prices – Colstrip is a mine-mouth plant so its coal cost is likely to be known; 
Boardman currently has a long-term coal contract and it is reasonable to expect that 
even after that contract runs out it will be supplied on contracts of at least annual 
duration (so the coal price is not uncertain relative to this model’s 14-month horizon) 

• SO2 emissions rates  
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• SO2 allowance prices – we assume that SO2 allowance prices are certain because 
the sulfur market is national and associated with baseload generation 

• Maintenance schedules 

• Transmission costs 

B. DATA REQUIREMENTS – UNCERTAIN 

The coal-fired plant component requires the following uncertainty data: 

• Day-ahead hourly Mid-C power prices, for use in dispatching 

• Real-time Mid-C power prices 

3.1.4 Hydro plants 

The hydro power plant component includes PGE’s hydro plants and Mid-C contract.  These 
plants are scheduled with at most intra-month flexibility, that is, the total energy for each 
month is known at the scheduling time horizon (although it is uncertain at the 14-month 
horizon).   

A. DATA REQUIREMENTS – CERTAIN 

The hydro plant component requires the following data for each plant: 

• Capacity (for some plants this will be uncertain, that is, dependent on hydro 
conditions) 

• Overmonth storage, that is, the amount of that may be carried from month to month 

• Amount of capacity that must be withheld for load-following or reserves (may be 
expressed relative to load or total fossil generation) 

• Amount of capacity that must be scheduled to allow for downward load-following or 
downward regulation (again, may be expressed relative to load) 

• Outage rates (may be 0) 

• O&M cost 

• Maintenance schedules  

• Measure of rescheduling flexibility, which represents the ability to change the 
schedule to respond to day-ahead or real-time prices (and the way in which changes 
in energy usage are redistributed within the rest of the month) 

B. DATA REQUIREMENTS – UNCERTAIN 

The hydro plant component requires the following uncertainty data: 

• Monthly energy available by plant.   

• Monthly capacity by plant, for those plants whose capacity varies with hydro 
conditions 
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• Monthly run-of-river (minimum dispatch level) energy by plant 

• Monthly forecasted hourly Mid-C power prices, for use in dispatching 

• Day-ahead Mid-C power prices, for rescheduling 

• Mid-C power prices with a timing appropriate to Beaver’s scheduling flexibility 
(probably 4 hours ahead of real time), for rescheduling 

• Real-time Mid-C power prices 

The final model design may not include all the layers of rescheduling described above. 

Note that “hydro condition” or “hydro availability” may be a hidden variable that influences 
energy, capacity and must-run energy.  The Monet model that PGE currently uses for 
revenue requirement forecasting assumes that all hydro units other than Mid-C are inflexible 
– the hourly dispatch for every hour is fixed relative to the annual average.  The Mid-C 
contracts are assumed to be flexible within the month but not month-to-month.  Essentially, 
over-month storage is disregarded because energy has already been allocated to each 
month by the NWPP hydro model.   

The NWPP model may use rule curves but does not explicitly account for conditional hydro 
probabilities.  An example of a conditional hydro probability would be the probability that 
inflows in February would be consistent with historical hydro year 1955 given that January 
was consistent with historical hydro year 1937.  Assessing non-uniform conditional 
probabilities is a difficult task and would be facilitated by a historical forecast database.  We 
believe that the NWPP model deterministically applies the conditions of a specific historical 
hydro year in each month but have not yet seen model documentation.  

3.1.5 Hedges and term power purchases and sales 

This component describes PGE’s hedges and term power contracts, in place as of November 
for the following year and modified as improved load and hydro forecasts become available.  
Forward power contracts don’t really affect the distribution of net variable power costs except 
for moving its mean, but option contracts will affect it.  We have not examined PGE’s hedge 
book but we have been led to believe that it is dominantly forwards, fixed-for-float swaps and 
“vanilla” options priced either at Mid-C or COB. 

A. DATA REQUIREMENTS – CERTAIN 

The term transaction component requires the following data: 

• List of hedges and transactions 

• Transaction volumes by month 

• Fixed prices for transactions, by month 

• Identification of appropriate price indexes for transactions, by month 

B. DATA REQUIREMENTS – UNCERTAIN 

The hydro plant component requires the following uncertainty data: 
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• Monthly peak and offpeak average power prices, at Mid-C and COB 

• Daily peak and offpeak power prices, at Mid-C and COB 

3.1.6 Spot price model 

The spot price is not a model component in the same sense as the others.  We have 
mentioned it here merely in order to be able to list some additional “hidden variables” that 
may be used in forecasting the spot price: 

• Total Northwest hydro availability (as opposed to PGE hydro availability) 

• Total Northwest regional load 

• California load-resource balance 

• California intertie capacity  

 

 

3.2 SUMMARY OF DATA REQUIREMENTS 

3.2.1 Certain data (Technological coefficients) 

The following table lists the “certain data” identified above.  We also label these “technological 
coefficients” since for the most part they are measurable properties of the technologies 
implemented in PGE’s resource portfolio.  For some of these we have initial or stopgap data 
sources (to be used for the prototype model), and the second column of the table identifies 
them.  Blanks in the second column indicate that a source of initial data has not yet been 
identified. 

 

Table 1.  “Certain” data and preliminary sources 

Data requirement Source 

Definition of operating states, Beaver/Coyote Current Monet spreadsheet

Definition of operating states, Port Westward  

Definition of operating states, coal plants  

State transition matrix, Beaver/Coyote Current Monet spreadsheet 

State transition matrix, Port Westward   

State transition matrix, coal plants   

Capacities, existing fossil-fired and hydro plants Current Monet spreadsheet

Capacity, Port Westward  

Measure of flexibility for Beaver  Current Monet spreadsheet
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Table 1.  “Certain” data and preliminary sources 

Data requirement Source 

Heat rates, existing fossil-fired plants  Current Monet spreadsheet

Heat rate, Port Westward  

Outage rates, existing fossil-fired and hydro plants  Current Monet spreadsheet

Outage rate, Port Westward  

O&M cost, existing fossil-fired and hydro plants  Current Monet spreadsheet

O&M cost, Port Westward  

Maintenance schedules, existing fossil-fired and hydro plants  Current Monet spreadsheet

Maintenance schedule, Port Westward   

Gas tariffs  

Coal prices Current Monet spreadsheet

Colstrip transmission cost  

Overmonth storage for hydro plants  

Amount of hydro capacity that must be withheld for load-
following or reserves  

 

Amount of hydro capacity that must be scheduled to allow for 
downward load-following or downward regulation  

 

Measure of rescheduling flexibility for hydro plants  

List of hedges and transactions  

Transaction volumes by month  

Fixed prices for transactions, by month  

Identification of appropriate price indexes for transactions, by 
month 

 

 

3.2.2 Description of uncertainty data 

A complete description of any individual data series would cover five topics:  

• Name or general description of the attribute of interest 

• Numerical information (data element) to be used to represent the attribute of interest 

• Substitute or proxy data element to be used if needed 
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• Historical values available for use in modeling the distribution of this data element and its 
relationship to others.  Note that the data element described by the historical values may 
not be the same at the one to be forecasted 

• Data that have been identified or located representing either the historical values or a 
proxy 

The following table describes both the “uncertainty” data used by the model, as well as other 
“hidden” variables that might prove useful in modeling their distributions. 

This table does not describe the other data with which each data element may covary; there 
were just too many possibilities, given all the different similar variables (such as power 
prices).  Following the table we will list some generic covariances (generic because we refer 
to “power prices” rather than a specific power price data element) that may exist.  Time will 
not permit all potential covariances to be tested.   

Covariance does not imply causation; two correlated variables can have a common 
“causative” variable, but causation is not really a statistical concept.  For example suppose 
that there is a plausible reason to assume that the value of variable y is determined by 
variable x, and in fact the “true” dependence relationship is y = Ax + b + ε where ε is a 
normally distributed error.  This can equivalently be written x = A-1y – A-1b + ε’ (ε’ = -ε is a 
normally distributed error) even though there is no “plausible” model under which y “causes” 
x.   
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Table 2.  “Uncertainty” data, covariances and related historical data 

Attribute Numerical values Proxy Related Historical data Identified data 

  “Uncertainty” data 

Day-ahead power price 
at Mid-C 

Hourly values in $/MWh Day-ahead price at 
COB 

Daily on and offpeak 
prices, hourly “scalers” 
based on ratio of Dow-
Jones hourly indices 

Dow-Jones daily (day-
ahead) prices 1998-
2004, hourly prices 
2003-2004 

Day-ahead power price 
at COB 

Hourly values in $/MWh Day-ahead price at Mid-
C 

Daily on and offpeak 
prices, hourly “scalers” 
based on ratio of Dow-
Jones hourly indices 

Dow-Jones daily (day-
ahead) prices 1997-
2004, hourly prices 
2003-2004 

Daily peak and offpeak 
subperiod prices at Mid-
C 

Average (index) values 
in $/MWh 

Daily subperiod price at 
COB 

Daily on and offpeak 
prices 

Dow-Jones daily (day-
ahead) prices 1998-
2004 

Daily peak and offpeak 
subperiod prices at 
COB 

Average (index) values 
in $/MWh 

Daily subperiod price at 
Mid-C 

Daily on and offpeak 
prices 

Dow-Jones daily (day-
ahead) prices 1997-
2004 

Monthly peak and 
offpeak subperiod 
prices at Mid-C 

Average (index) values 
in $/MWh 

Monthly subperiod price 
at COB, daily subperiod 
price at Mid-C 

Monthly price indices at 
close of trading of 
forward contract 

 

Monthly peak and 
offpeak subperiod 
prices at COB 

Average (index) values 
in $/MWh 

Monthly subperiod price 
at Mid-C, daily 
subperiod price at COB 

Monthly price indices at 
close of trading of 
forward contract 

 

Short-term power price 
at Mid-C 

Hourly prices in $/MWh 
projected four hours 
ahead 

Real-time price at Mid-C   

Real-time power price 
at Mid-C 

Hourly values in $/MWh  Actual historical hourly 
prices preferably from 
PGE trading floor 

Dow Jones hourly 
prices 2003-2004 
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Table 2.  “Uncertainty” data, covariances and related historical data 

Attribute Numerical values Proxy Related Historical data Identified data 

Monthly projected Mid-
C prices, for hydro 
dispatch 

Forecast of hourly 
prices for the entire 
month 

Day-ahead prices at 
Mid-C 

  

Sumas gas price Daily values Stanfield gas price Daily historical prices Stanfield gas price 
1994-2005 (PA data) 

Stanfield gas price Daily values  Daily historical prices Stanfield gas price 
1994-2005 (PA data) 

Hydro energy Available hydro energy 
by plant 

 Not necessarily needed 
as BPA forecasts 
energy 

BPA white book 

Hydro capacity Monthly capacity by 
plant 

 Not necessarily needed 
as BPA forecasts 
energy 

BPA white book 

Run-of-river hydro Minimum hourly hydro 
dispatch, by plant 

   

PGE cost-of-service 
load 

Hourly load in MW  Historical hourly loads Hourly PGE total load 
2000-2004 and NCOS 
load for 2004; historical 
load from FERC form 
714, 1993-2004 

  Hidden data 

AECO gas price Daily values  Daily historical prices  

Rockies gas price Daily values  Daily historical prices  

Henry Hub gas price Daily values  Daily historical prices  

Hydro condition (PGE) Monthly energy  Historical hourly or daily PGE hourly plant 
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Table 2.  “Uncertainty” data, covariances and related historical data 

Attribute Numerical values Proxy Related Historical data Identified data 
available energy dispatch by 

plant 
dispatch 1993-2005.   

Hydro condition (NW) Monthly energy 
available 

Hydro condition (PGE) Historical hourly or daily 
energy dispatch by 
plant 

Federal system daily 
plant dispatch 1994-
2002.  Regional total 
monthly hydro energy 
1997-July 2005 from 
NWPP. 

Northwest regional load Total hourly load in 
MWh 

PGE control area load Historical hourly load Historical hourly load by 
control area from FERC 
form 714, 1993-2004 

California load-resource 
balance 

    

California intertie 
capacity 

   Hourly intertie capacity 
data from 1998 

Temperature Daily max/min 
temperatures 

 Historical max/min 
temperature at a 
particular weather 
station, e.g., PDX. 
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A. POTENTIAL RELATIONSHIPS (COVARIANCES) AMONG UNCERTAIN 
VARIABLES 

• Power prices may be related to (depend on) gas prices, regional load, hydro 
conditions, other power price variables, California load-resource balance, intertie 
capacity. 

• Gas prices may be related to (depend on) California load-resource balance, regional 
loads, or other gas price variables. 

• PGE load may be related to (depend on) regional load, temperature. 

• Temperature may be related to (depend on) hydro conditions. 

• Historical hydro dispatch (historical data used to estimate hydro conditions) may be 
related to (depend on) load. 

 

3.3 ESTIMATION ISSUES FOR UNCERTAINTY DATA 

As noted above, the goal of the project for which PA was retained is to estimate the statistical 
properties of the distribution of net variable power costs.  This distribution is estimated by 
simulating costs over a distribution of the values for “uncertainty data”.  It is therefore 
important to estimate the distribution of those data.  Furthermore the distribution of 
uncertainty data may be joint and nonseparable, in other words, the different uncertain 
variables may be mutually dependent.  In this section we will address several of the key 
issues around that estimation.  Most of the general issues of modeling dependencies are in 
section 3.3.6 while the general issues of single-variable modeling are in 3.3.7. 

3.3.1 Descriptive vs. prescriptive modeling 

The most important issue in estimating the distribution of uncertainty data is to understand the 
precision with which that distribution must be estimated.  That depends on the use to which 
the end product – the estimated distribution of costs – is to be put. 

The cost simulation model at issue here may be used for ratemaking.  If the distributional 
outputs are to be used to set rates based on some kind of “risk-adjusted cost” it would be 
appropriate to invest considerable effort into the estimation of the underlying variables.  We 
can call this a prescriptive analysis, where the model is used to determine a “once and for all” 
value.  On the other hand, if there is an opportunity to “true up” the revenue requirement and 
the model is used to understand the likely size of the true up, the estimate can be less 
precise.  We can call this, by contrast, a descriptive analysis.  We will also use the term 
descriptive for a model used to determine a value subject to correction or true up, because it 
does not prescribe the value once and for all.  It is important to clarify which kind of analysis is 
desired for this project. 

As an analogy, consider the use of the Black-Scholes formula for option pricing.  The Black-
Scholes formula yields the price of a stock option based on two parameters, the risk-free 
interest rate and the “volatility” of the stock’s price.  There is an underlying assumption that 
the stock’s price evolves under geometric Brownian motion.  If the evolution assumption or 
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the volatility parameter is wrong, the Black-Scholes formula will give the wrong value – and 
usually neither assumption is wholly correct. 

Yet the Black-Scholes formula is used every day to value billions of dollars in options.  The 
key is that the valuation occurs every day.  Every day these options are revalued and the 
user, observing the market’s reaction to the previous day’s trading, is able to retune the 
parameters.  Furthermore, because portfolios are adjusted every day the exposure to pricing 
errors is controllable (one can exit a position taken in error).  If the formula were used to set 
the price for illiquid long-term options, with no opportunity to recover from error, it would be 
appropriate to invest considerably more time and effort into improving the modeling of the 
underlying random variables. 

3.3.2 Estimating the impact of specification error 

We believe that an important use for the cost simulation will be to determine the importance 
of precision in various inputs, and therefore the effort that ought to be invested in precisely 
estimating different relationships.  In this report, we describe a number of questions about 
data relationships.  Resolving all of them, and obtaining correct specifications for the joint 
distribution of the uncertainty variables, may be prohibitive.  It is therefore important to 
determine the value of information:  for each choice of models, how important is the 
difference? 

A prototype cost simulation model can provide a tool for answering that question.  A 
simulation model has three components: a deterministic simulation of dispatch and 
transactions; sampling from a distribution of input data; and a component that supervises the 
operation and reports results.  Dependence and distribution issues impact the second of 
those components.  Even if the deterministic simulation is just a prototype – not a complete or 
accurate representation of PGE’s operations – it should still provide good relative information, 
as to which errors in input specification would have the greatest impact on results.   

Again, the common use of the Black-Scholes model provides an analogy.  That model is 
descriptive rather than prescriptive, in two ways.  First, the model is used in an ongoing 
decision process, rather than to prescribe values “once and for all”.  Second the model is 
commonly used as a consistency check between “implied volatilities” of different options.  In 
this usage the model provides not just a numerical result, but more important, a validation of 
its inputs.   

3.3.3 Data availability 

Our ability to estimate distributions is limited by the data available.  Data unavailability could 
also affect the model design.   

When data are not available we seek proxies that can be used as close substitutes.  For 
example, as a proxy for “hourly forward prices” one often uses daily or monthly forwards to 
scale observations of hourly spot prices.  The choice of a proxy is usually based on 
theoretical considerations.  The underlying assumption is that the proxy is a good statistical 
predictor of the unavailable variable.  The sensitivity of the model results to bias in the proxy 
should be tested using a descriptive approach. 

There are several reasons why consistent historical datasets may not be available: 
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• Historical data may not exist because a particular data item has no historical 
analogue – for example, non-Cost of Service load. 

• Trading or dispatch decisions may be based on data that is not archived.  While 
actual (metered) load is surely archived, daily forecasts of future loads may not be. 

• While historical values for some data may be archived, e.g., historical forward 
curves, the form in which the data is saved may make it costly to retrieve or organize 
for forecasting (e.g., daily reports that are not written to a standardized format). 

• Data may be commercially sensitive, or its use might compromise commercially 
sensitive information.  Current forward curves are generally considered sensitive.  
Historical forward curves may not be as obviously sensitive, but the combination of 
the historical curves and historical trading data might reveal an organization’s trading 
strategies.  Similarly, one might be able to infer position or trading limits from 
historical transaction data. 

3.3.4 Impact of operation on recorded data 

Distributions of random variables ought to be forecast based on observations untainted by 
human activity that could serve to mask or mitigate the variability in the underlying variable.  
This is particularly a problem when modeling power prices and hydro availability.  In 
particular, the input variables to the cost simulation (the “uncertainty data”) describe the 
flexibility or range of generation available from hydro under dispatch control but the historical 
data for a given year describe an actual realization of hydro generation. 

• Power prices can depend on other exogenous variables, such as gas prices.   
However, they can also be affected by actions taken as a response to observed 
power prices, such as demand response or changes to the dispatch.  By “dispatch” 
in this context we should understand only the dispatch of PGE units and contracts, 
which the simulation model represents as a function of prices; the dispatch of non-
PGE units is an underlying uncertainty.  PGE generation could be used as an 
explanatory variable in a statistical model of power prices, but the model estimation 
would need to account for the mutual dependence by using, for example, a multi-
stage estimation.  

• The situation with hydro condition estimation is even more complex.  The data that 
are generally available describing historical hydro conditions are historical hydro 
generation values, which combine the effects of the hydrological state and dispatch 
decisions.  If one is modeling the dependence of price on hydro one has to account 
for the fact that hydro generation is partly dependent on price.  However, the form of 
that dependence in the past may not be the same in the future.  The physical layout 
of the hydro system (impairments) changes slowly over time; the rule curves and 
environmental restrictions change more frequently.  Historical hydro variables don’t 
necessarily jibe with the values available as input to a cost simulation model.  A 
separate model that derives monthly hydro capacity and available energy from 
hydrologic data such as precipitation represents the complexity of the Northwest 
hydro system.   
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3.3.5 Relationship between similar variables 

Some generic data items, such as “power prices”, are represented by multiple similar but non-
identical specific variables.  These can represent prices with different degrees of granularity 
(e.g., hourly, subperiod (peak/offpeak), daily or monthly), forward tenor (difference between 
the time or date at with the price is observed and the time of spot delivery) or delivery 
location.  The various prices are all different and the various aspects of PGE decision-making 
rely on different prices.  In fact, the differences between some of these prices are important to 
cost components such as the profit or loss from daily redispatch (trading).  The relationships 
between such similar variables are often quite hard to model; for one thing, the differences 
between the “true” values of the respective variable can be of the same order of magnitude 
as the precision with which they are reported, or the bid-ask spreads.  

In general theorists have paid the greatest attention to the modeling of forward tenor because 
it can be analogized to interest rate modeling, which is well studied.  For example, the 
Clewlow-Strickland forward curve evolution model assumes that forward prices of different 
tenors are correlated but changes to long-dated prices are much smaller (attenuated) than 
changes to short-dated prices.  Fitting such a model can be difficult.  During periods of 
extreme spot-price volatility one may question whether a forward-curve model still holds – if 
the volatility is clearly due to short-term effects the attenuation should be greater.  It is 
particularly difficult to answer this in the case of the 2000-2001 Western price shocks 
because liquidity in the forward markets basically dried up and publicly available historical 
long-dated prices are scarce or nonexistent. 

The relationship between prices at geographically separate locations may require a regime-
switching model.  When transmission capacity is available the price difference is often a 
constant related to transmission costs (sign depends on the direction of flow) but when 
transmission capacity is all being used the prices are really uncoupled.  Historical data about 
flows and capacities on interfaces is often hard to get.  Analysts often use a single averaged 
“locational basis”. 

The most complex relationship, though, may be between prices of different granularities.  For 
example, there is generally no “hourly forward price” or hourly forecast price.  It is customary 
to create a profile of “scalers” that represent the ratio between an hour’s actual load and that 
day’s average load, and average the profiles over a period of time.  This leads to a number of 
other questions, often ignored:  what is an appropriate measure of the “standard deviation” of 
a scaler profile?  Do forward prices scale the same as spot prices?  Does the actual variation 
in profiles over time really represent variability in some hours’ prices while others stay 
relatively constant (in which case the whole concept of a “scaler” profile would have to be 
rethought)?  The final question goes to the issue of the appropriate definition of averaging 
periods; commercially-defined peak and offpeak periods are convenient for contract 
standardization but not necessarily for hourly price forecasting. 

Fortunately, this complex relationship does not need to be modeled precisely.  For, what is 
important in modeling PGE dispatch is not applying a “good” hourly detail to forward indexes; 
rather it is applying an hourly detail that is faithful to PGE’s operational practice.  In this case, 
statistical modeling is not as important as continued dialog with PGE staff to ensure that their 
forecasting methods – right or wrong – are replicated in the model. 
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3.3.6 Relationships between dissimilar variables 

In section 3.2.2a above, we provided a list of possible covariances or relationships among 
variables.  To date, PA has focused its attention on possible relationships between power 
prices and gas prices, regional loads and hydro generation.  We did not yet have good data 
representing such variables as PGE load, California load-resource balance, or intertie 
capacity.  This analysis has involved most of the important issues in modeling relationships 
among variables: 

• Form of the relationship.  PA has modeled linear relationships between the input 
variables, between some of the variables and logarithms of the others, and where 
some of the variables are replaced by differences.  We have not yet tried to neither 
model more complex transformations such as a logistic, nor have we modeled any 
form of regime switching.  The simple linear model is appropriate for determining the 
existence and sense of a relationship, and can capture much of the variability.  We 
have usually found log-linear models useful for both “descriptive” and “prescriptive” 
analysis but we recommend a separate computational test of the potential impact of 
specification errors.  Furthermore, an R-squared value may not be a good measure 
of the applicability of the data model, as noted below. 

• Comparability of variables.  Available historical data series may not be appropriately 
comparable.  For example we believe there are good fundamental reasons that 
power prices should be related to “net thermal load”, that is, load minus hydro 
generation, and the coefficient of interest should be the common absolute value of 
the respective coefficients.  For that relationship to hold, the net thermal load should 
be the load in a region without many transmission constraints and with substantial 
internal liquidity, minus the total hydro available in the same region.  For load, we 
had the total load from FERC forms 714 of control areas identifies as being in the 
Northwest; for hydro generation we had the total generation for large Federal hydro 
plants, normalized to NWPP monthly hydro energy.  Neither of those really 
corresponds to the region that determines Mid-C prices (the locational price we 
modeled).  Although their coefficients were not of about the same absolute value the 
difference could be attributable only to their incomparability. 

• Statistical independence.   Dissimilar variables may not be statistically independent.  
One example, described earlier, is the relationship between price and hydro 
generation, since hydro generation responds to price expectations.  Relationships 
that involve such mutual dependence are often estimated using multistage 
regression.  However, in the extreme it may be necessary to employ a structural 
model of the relationship.  In the case of hydro conditions and prices, PGE already 
uses a regional model to determine monthly hydro availability.  A similar approach 
could be used to determine base case prices in each hydro condition, with the 
dependence on variables such as gas prices assessed separately.  This in turn 
depends on the assumption that gas prices and hydro conditions affect power prices 
separable (otherwise the regional price model must be run for combinations of power 
prices and hydro conditions which is probably prohibitive in time and effort). 

• Measure of goodness of fit.  We typically assess the relationships between variables 
using some form of linear least squares.  The common measure of goodness of fit is 
R-squared.  While choosing the model with the highest R-squared, or even using any 
model with “sufficiently high” R-squared, may be reasonable for a cost simulation to 
be used in a descriptive mode, it does not assure the precision one would want in a 
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prescriptive model.  In that case goodness of fit should be measured by the absolute 
size of the residuals rather than relative to the total variation in the dependent 
variable, and the residuals themselves should preferably come from holdout 
samples.   

• Stability of the relationship.  Any algorithmic approach based on historical 
observations assumes that data relationships are stable; it is hard to imagine an 
objective approach based on anything else.  (Delphi approaches are not sufficiently 
quantitative, especially for prescriptive modeling.)  Although markets do change, the 
stability assumption is a reasonable one.  Major market transformations will play out 
over periods of several years; the horizon of this model is only fourteen months, so 
data relationships derived with an emphasis on the last two years’ worth of data 
should not be too far off the mark.  Furthermore, it should be possible to provide 
manual override, where PGE or the OPUC staff can specify relationships to be 
imposed on the uncertainty data; however, when input data relationships are 
specified ad hoc the results should not be used prescriptively. 

3.3.7 Modeling distributions of variables and errors 

The uncertainty data we have described all involve independent uncertainties.  In other 
words, while one variable may be related to several others it is not completely determined by 
them.  Even though an uncertain variable may covary with many others, it involves an 
additional underlying uncertainty or error whose distribution must be simulated to provide 
inputs to the cost model.  An independent variable, unrelated to any others, must also have 
its distribution assessed.  The following issues are associated with distribution assessment: 

• Relationship between historical data and variables to be forecast or estimated.  Data 
about variables not particular to PGE will probably come from public sources.  Even 
for variables directly related to PGE’s dispatch we may have to fall back on public 
sources out of confidentiality concerns.  Public data are often subject to various 
forms of processing that distort their relation to the variable being described, or to the 
variable whose future distribution they are used to estimate.  An extreme example is 
the “system lambda” values filed with FERC, which often do not represent system 
marginal cost but rather a particular rule-based computation.  Load data may 
represent control area load rather than retail deliveries; PGE meter data we have 
seen so far only separate out NCOS load for 2004. 

• Choice of distribution.  It is convenient to sample from an analytically defined 
distribution function, such as a normal, lognormal, exponential or Weibull distribution, 
rather than to rely on historical data.  Extreme values are rare in historical data, but a 
large sample ought to include a number of extremes.  Analytic distributions are used 
to extrapolate as well as fill in the historical record.  However, it is often very difficult 
to distinguish between various choices of distribution without a theoretical model of 
the error process to guide the decision.  With no other information the most 
reasonable way to choose the error distribution would be to rely on the Central Limit 
Theorem, assuming a large number of independent sources of error.  If their effects 
add, the error distribution should be assumed normal; if their effects are 
multiplicative the error distribution should be assumed lognormal. 

• Closed-from distributions vs. sampling of historical residuals.  If there is no 
reasonable basis to choose an error distribution or if the distribution of historical 
residual shows clear non-normal behavior (e.g., multiple modes) one often has to fall 
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back on using a discrete distribution based on historical residuals.  This approach is 
more reasonable when there are a large number of historical residuals from which to 
choose – more than the number of samples to be taken – but it may be the only 
option when there is no obvious model for the data, even if the historical sample is 
small.  This is the case in modeling hydro conditions.  Hydrological conditions are 
represented by a large set of variables, reduced by a dispatch or regulation model to 
a set of energy and capacity values.  The analytic structure of the energy and 
capacity data is too complex to model.  Therefore one usually samples from a 
dataset associated with simultaneous historical observations of the hydrological 
variables, each historical year representing a distinct observation or item in the 
distribution. 
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4. MODEL STRUCTURE 

We concluded that a cost simulation model had to be flexible and easily modified to test 
different ways of representing both the interdependencies of input variables and those 
resources for which unique “best models” cannot be defined – such as the forward hedge 
portfolio.  We referred to this as a “sandbox” model because it provided a simple architecture 
for testing different approaches to individual resources.   

The overall structure of the cost simulation is a Monte Carlo model.  Different components of 
the simulation – different input models and resource models – are contained in separate 
workbooks (files), to make it easier to test different versions or configurations of the 
components and “mix and match”.  The names of the workbooks to be used for a particular 
run are specified in the Coordinator workbook.  We settled on @Risk, a product of Palisade 
Corporation, as a platform for prototyping the cost simulation because it is Excel-compatible, 
can run models spread over several workbooks, is easily manipulated, and includes a good 
functionality for defining and extracting inputs and outputs.2  @Risk manages the Monte Carlo 
simulation process. 

The overall architecture of the cost simulation is illustrated below: 

 

 
 

 

COORDINATOR 
• Assign names to ranges 

defining input variables 
• Accumulate resource volume 

and cost data 

Names Monthly costs 
and volumes 

 
Input 
(random 
variable) 
models 

Variable values 

Resource 
models 

Hedge 
portfolio 
model 

Reqmt 
forecasts 

Rebalanced 
portfolio 

 

                                                 

2 We did come across one sporadic problem with @Risk.  Some resource models, such as Beaver and 
Mid-C (which used DLLs), had to be calculated with VBA routines rather than just Excel workbook 
functions.  This had to occur after the @Risk “recalculation”, in which all the random variables are 
simulation.  But then to get a correct calculation of the summary outputs, which used spreadsheet 
functions, we had to recalculate certain sheets programmatically (from the VBA code).  @Risk would 
sporadically hang on the recalculation reporting an unknown error during the calculation. 
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The building blocks of the cost simulation are input models, resource models (of which the 
hedge portfolio model is a special case) and a Coordinator.   

The input variable models simulate the various random drivers for each iteration of the Monte 
Carlo simulation.  The input variable models are based on Excel worksheet functions, and 
possibly VBA functions, but not VBA subroutines, in order to ensure that they are computed 
as part of the basic @Risk “recalculation” step prior to any programmatic resource models.  
Each resource model has as its output one or more arrays of random variables such as 
monthly hydro availability, daily gas price or hourly load.  The input variable model “exposes” 
those arrays to the Coordinator by listing where each array is in the workbook and giving it a 
name.  The Coordinator will assign a workbook a name to that array so that it can be 
referenced by other input models and the resource model – it looks like a named range in the 
Coordinator workbook. 

The resource models simulate the operation of various resources (load, generators, physical 
power contracts and hedges).  The resource models can obtain the values of input variables 
from the ranges defined by the names in the Coordinator.  Each resource model can have up 
to four outputs:  hourly MWh volume (produced or, in the case of load, consumed); non-power 
cost to produce those MWh; value of production at spot prices (or cost of load at spot power 
prices); and net profit.  Each resource model includes a reserved range that tells the 
Coordinator where to find its output.   

The resource models can also include VBA routines to be run prior to the simulation (to set up 
parameters), after the @Risk recalculation (in order to run VBA routines or DLLs such as for 
dynamic programming models of Beaver or the Mid-C contracts), or after the main group of 
resource models.  The last option is for the use of the forward portfolio model:  the forward 
portfolio is rebalanced over time as information emerges about the net position to be realized, 
but that requires the net short position (load minus physical resources) already to have been 
computed. 

The Coordinator has three main functions.  First, it assigns names to all the outputs of the 
input variable models, as if those models were storing their outputs in an area identified with 
the Coordinator.  Second, it defines macros that call the VBA routines defined by the resource 
models, in the right order.  Finally it accumulates monthly values of the volume, cost, revenue 
and profit associated with the resource models and defines them as @Risk output variables. 

This architecture does not itself involve a mathematical specification.  Mathematical 
specifications will be given for some of the input and resource models in the next two 
sections. 
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5. INPUT COMPONENTS – PROTOTYPE 

In this section we describe the various input variables or drivers.  There are five “input 
models” associated with the prototype: 

• Temperature 

• Load 

• Hydro energy 

• Gas forward and spot prices 

• Power forward and spot prices 

We will describe load and temperature together but for expository purposes separate gas 
forward prices and spot prices into separate sections.  In each section we will describe the 
modeling we did to determine an underlying distribution for each variable, or its relation to 
other variables.  We will then describe how we simulate each variable; the simulation should 
be consistent with the modeling. 

The variables’ distributions are set up so that their expectations equal the variable values 
used in a Monet run to support the RVM.  These are the “Monet base case” or “Nov. 1” 
values. 

5.1 LOAD (AND TEMPERATURE) 

The first important factor influencing net variable power costs is load.  Load obviously 
influences the total power cost; it also influences the unit cost of power, because (all things 
being equal) higher loads are served on the margin by higher-cost units, and the higher the 
load the more load has to be served by non-PGE resources. There is generally a very strong 
correlation between load and temperature, and load and seasonality.  Therefore we modeled 
load as a function of temperature and time in the year, and also temperature as a function of 
time in the year. 

5.1.1 Temperature 

We fit temperatures for five years (2000-2004) to a mathematical model; however the model 
itself was not used as part of the simulation.  Rather, only the distribution of errors around the 
fitted model was used, as a description of the random fluctuations of temperature around the 
daily normals used in Monet.  The mathematical model was of the form: 

(1)  tt εtπβtπαtπβtπαtπβtπαmtTT ++++++++= 664422 3322110 sincossincossincos  

where T is the temperature in degrees Fahrenheit, t is the time (in years) since Jan. 1, 2000, 
and T0 is an intercept.  The m coefficient allows for any recent temperature trends while the α 
and β coefficients express seasonality (with a yearly period).  The model was fit over five 
years of data assuming all the εt were identically distributed.  The fitted coefficients were as 
follows: 
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T0 53.18 (0.23) 

m 0.59 (0.08) 

α1 -13.42 (0.16)

β1 -4.80 (0.16) 

α2 -0.47 (0.16) 

β2 2.42 (0.16) 

α3 0.11 (0.16) 

β3 0.04 (0.16) 

Having derived the structural model, we computed the standard deviations of the residuals for 
each month i.e., σ1 would be the standard deviation of the set of εt for all the days in January 
for 2000-2004, σ2 would be the standard deviation of the set of εt for all the days in February, 
etc.   

Although not all the coefficients in this model are statistically significant (e.g., α3) the R-
squared value of the regression, 82%, appears to be appropriate for a regression.  Therefore 
it is reasonable to use the monthly σm values as measurements of the error in a date based 
temperature forecast – e.g., daily normals – even if we don’t use the specific forecasting 
model above. In order to simulate temperatures around the PGE forecast (taken from a file 
supplied to us), we simulated the equation: 

(2)   ),(~,ˆ
)(tmtttt σNormalεεTT 0+=  

where tT̂  is the forecast temperature and m(t) is the month associated with day t.  The 
structural model derived above was not actually used. 

5.1.2 Load 

To model load as a function of season and temperature we started with a similar, but 
somewhat more complex model: 

(3)  
tttt

t

εWkdaydTATATA

tπβtπαtπβtπαtπβtπαmtLL

+⋅+++

++++++++=
3

3
2

21

3322110 664422 sincossincossincos
 

where L is the daily total PGE load, t is the time (in years) since Jan. 1, 2000, T is the 
temperature in degrees Fahrenheit, Wkday is a dummy variable that is 1 for weekdays and 0 
for Saturdays and Sundays, and L0 is an intercept.  The m coefficient allows for load growth 
over time, the α and β coefficients express seasonality (with a yearly period), the A 
coefficients express temperature dependence, and d encapsulates the difference between 
weekday and weekend loads.  This model was fit to five years of data (2000-2004).  The fitted 
coefficients were: 
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L0 80590.65 (4110.18)

m -1115.99 (32.77) 

α1 2623.96 (156.30) 

β1 188.27 (84.60) 

α2 581.91 (73.03) 

β2 217.69 (73.49) 

α3 -66.05 (65.86) 

β3 -428.09 (67.36) 

A1 11.19 (234.30) 

A2 -25.90 (4.34) 

A3 0.29 (0.03) 

d 5918.09 (101.51) 

As with the temperature model, we computed monthly standard deviations of the residuals, 
σm

(L).   

Note that not all of the coefficients in the above table are significantly different from zero.  The 
most glaring example is α3.  As it happens, and as will be explained below, we actually did not 
use the time-based (t-dependent) part of the structural model.   

The fitted load model did not replicate the forecasts tL̂  in the Monet base case, i.e., if we 
were to forecast load for day t based on the normal temperature tT̂  we did not get tL̂ : 

(4)  
WkdaydTATATA

tπβtπαtπβtπαtπβtπαmtLL

ttt

t

⋅+++

++++++++≠
3

3
2

21

3322110 664422 sincossincossincosˆ
 

The goal of this exercise was to estimate the potential variation of net variable power cost 
around the Monet forecast, assuming that the Monet base case used unbiased forecasts of 
those uncertain variables.  Therefore we normalized the load forecast to the Monet base 
case: 

(5)  ( ) ),(~,ˆˆˆˆ )(
)(

)()( L
tm

L
t

L
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3
2

21
3

3
2

21 ++++−−−=  

In other words, the fluctuation of load around its forecast is explained by fluctuations in 
temperature and an additional normal error.  The additional advantage is that the cost 
simulation will be estimating the cost to serve the same kind of load as Monet, which we 
believe to be an estimate of the cost-of-service load. 
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The daily load is converted to 24 hourly loads using a set of scale factors or “scalers”.  The 
raw data was again five years’ of loads.  Each hour was assigned the ratio of its load to the 
daily total (scaler).  Each day was characterized by the month (January to December) and 
whether it was a weekday (Monday-Friday) or weekend.  The scalers were averaged for each 
hour by month and weekday/weekend indicator.  Thus there are 576 scalers (24 hours for 12 
months and two daytypes) subject to 24 conditions (for each month and daytype the scalers 
add to 1).  The load for any hour is the simulated load for the day in which the hour occurs, 
times the appropriate scaler. 

5.2 HYDRO AVAILABILITY 

We did not have available a consistent set of historical and forecast hydro data.  We had 
three different sets of historical hydro data available – hourly generation from PGE-owned 
units, daily generation from a set of Federal units, and monthly generation data from the 
NWPP (including Canada).  We used the daily Federal data for the model of power prices 
described below. 

On the other had, we had limited hydro forecast data – basically the information in the 2004 
BPA White Book.  We constructed a distribution of monthly hydro energy based on two tables 
from that reference.  As a base we used the Water Year (WY) 1937 “Total Hydro Resources” 
and “Total Surplus/Deficit” for 2006 (Technical Appendix 1, pp. 94-95).  To construct a set of 
variations we used the “Surplus / Deficit by Water Year” from Technical Appendix 1 pp. 122-
123.  For each water year and month, the monthly energy equaled the WY1937 energy, 
minus the WY 1937 surplus/deficit, plus the surplus/deficit for the water year under 
consideration.  The fifty water years in the table yield a 50-point discrete distribution for each 
month, which is converted to a distribution of ratios by dividing by the average over all fifty 
years (not by the WY1937 value). 

The underlying random variable is a vector of 12 monthly energy ratios.  Thus, for each 
iteration of the simulation one of the fifty water years is chosen at random and the ratios for 
each month of that water year are used.  We have no basis to assume any correlation 
structure across the Northwest, so we assume that every hydro variable is governed by the 
same ratio.  In other words, if the ratio chosen for January is 0.85 then we assume that in 
January every hydro resource has 85% of its Monet base case energy. 

5.3 GAS FORWARD PRICES 

To simulate operation costs we would need a model of gas spot prices, but not necessarily 
forwards.  The bulk of PGE’s energy comes from hydro and purchases rather than gas so (at 
least initially) we felt we could ignore gas hedges.  However, we did not feel we were able to 
ignore power hedges.  As noted in the next section, we did not have enough historical data 
on power forwards to construct a model of Mid-C forward prices.  We did, however, have 
enough data on gas prices to construct a model of gas forwards, which we could combine 
with a model of the relationship between gas and power spot prices to produce an indicative 
model of the power forward curve.  It was therefore important to model the gas forward curve. 
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Since price simulation is a dynamic process that evolves over time, it is important to maintain 
consistency in modeling the spot and forward price processes. In Clewlow and Strickland’s3 
1999 paper, they established a consistent model for the entire forward curve. Their price 
model assumes the forward price is of the form: 

(6)   ( )
( )

( ) )(
,
, tdzeσ
TtF
TtdF tTα −−=  

Here F(t,T) is the forward price on date t for delivery on date T.  This equation has two 
volatility parameters; σ determines the level of volatility for spot and forward price returns, 
while α determines the rate at which the volatility of increasing-maturity forward prices 
decline, as well as the speed of mean reversion of the shortest-term price. These two 
parameters can be estimated from the prices of options on the spot price of energy, or 
forward contracts. 

We estimated σ and α based on a relatively short series of gas prices for delivery at Malin, in 
order to have a consistent set of forwards.  We obtained the annualized values σ=0.553 and 
α=0.482 (“annualized” means t is measured in years).  These parameters were used to 
simulate the evolution of the forward curve from the Monet base case.   

In other words, the Monet base case contained a set of forward prices, which we assumed 
were as of Nov. 1.  The model required a simulated gas forward curve for each day of the 
following calendar year.  The forward curve was simulated according to the formula: 

(7)   ( ) ( ) ),(~,)),(exp(),(, , 101 22

NormalεetεTtσTtFTtF t
tTtσ

t
Δ−⋅Δ⋅−=  

where )(),( tTαeσTtσ −−= , Δt=1/365.25 (one day).  The last term in (3) corrects for the bias 
introduced when one exponentiates a random variable.  It is important to note that this is a 
“curve” model, because εt depends only on t, not T. Furthermore, even though the 
parameters of the price process were based on Malin prices, which may be biased relative to 
the prices seen by PGE, the forward curve is evolved from Monet base case prices that 
should correct for any bias. 

5.4 GAS SPOT PRICES 

There are several methods one can take in developing a spot price process. The most 
prominent one is the Geometric Brownian Motion model with mean reversion. One can also 
add a jump term to the mean reversion process if historical data shows spikes with 
meaningful frequency, or when the jump term significantly affects the valuation.  

The other question of interest is the definition of mean (as to which the mean spot price 
should revert). One argument is that the spot simulation should preserve the value of forward 
price, so one can use the forward price as the expected mean.  However, the forward price 
for a given month (the “current month”) is frozen at the start of the month; fundamental market 

                                                 

3 “Valuing Energy Options in a One Factor Model Fitted to Forward Prices”, Les Clewlow and Chris 
Strickland, April 1999. 
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information about medium-term effects can arrive during the month and should impact the 
value toward which spot prices revert.  A compromise is to use the daily values of the forward 
price for the following month (the “prompt month”) normalized using the forward for the 
current month. 

The prototype model implements this model for spot gas prices.  Let t0 represent the day on 
which the current month’s forward contract closes, T0 the current month, and T1 the prompt 
month.  The prototype implements a simulation of the following model for the spot price S(t): 
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In the equation for p(t), the first term represents persistence with some reversion to 0, the 
second is a standard diffusion (geometric Brownian motion) and the third is a jump.  The jump 
probability is Λ·Δt and the jump amplitude is lognormal.  The fourth term (B) is the bias 
introduced by the reversion coefficient and exponentiation; it has a rather complex form: 

(9)  ( ) ( ) ( ) ( )( )ssγs ααttνetνσtνB −−⎟
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⎝
⎛ Δ⋅Λ−Δ⋅Λ+−Δ⋅Λ+++Δ⋅⋅Λ= 1111121 222 2

/  

The superscript s on σs and αs is to distinguish them from the similar parameters in the 
forward price process. 

σs and αs were estimated using approximately one year of Gas Daily prices at Malin.  They 
were actually taken from a simpler version of (8): 
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We fit model (8a) using an available set for prices spanning the period from Dec. 13, 2004 to 
Nov. 30, 2005.  The dataset contained 253 observations at an average separation of 1.39 
days, i.e., Δt=0.00381 years.  The estimate for α̂  was 0.0341 with a standard error of 0.048.  
We annualized it by dividing out Δt:  αs = tα Δˆ  = 89.47.  The standard deviation of the 
residuals was σ̂ =4.98%; we annualized it (in this case dividing by Δt ) to get σs 

= tσ Δˆ =80.6%.  Again, the fact that the prices are based on a simulated PGE forward curve 
should correct for locational biases.  

Calibrating a jump model is quite difficult, so we did not do so for this analysis.  We used 
values we consider to be representative:  Λ=6, ν=0.8 and γ=0.05.  We believe the use of 
these “typical” values is sufficient for prototyping the cost simulation model. 
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Note that by using a single gas price, and modeling it based on forwards, we are representing 
less detail Monet, which uses separate locational prices for gas for Beaver and Coyote called 
GAS_PGE_1 and GAS_PGE_CS respectively, with a basis differential of from $0.08 to $0.33.  
We based the gas prices in the prototype on GAS_PGE_1, that is, we used the monthly 
values of that price in Monet as the Nov. 1 forward curve, allowed it evolve under the models 
described in this section, and used the result for both Beaver and Coyote.  This is acceptable 
for prototyping the simulation; a production version ought to use different locational gas prices 
for the two plants. 

5.5 POWER SPOT AND FORWARD PRICES 

A key issue in the determination of net variable power costs is the relationship between power 
costs and other underlying cost drivers.  This is particularly important because while we had a 
good historical dataset for Mid-C spot power prices, including the “crisis period” of 2000-2001, 
we did not have a good dataset for Mid-C forward prices.  We felt it was important to include 
the crisis period in our model of power prices, more so than for gas prices – the crisis had to 
do with the relationship between power and other prices, since currently gas prices have 
been high without power prices spiking as much as in 2000-2001.  If the model of the 
relationship between power prices and other prices, especially gas prices, did not include the 
crisis period we felt it would “over-fit”, that is, the uncontrolled and independent influences on 
power prices would be understated. 

5.5.1 Spot price model 

We identified three key drivers of power prices to test:  gas prices, hydro energy availability 
and load.  The power price of interest is the price at Mid-C, which is a regional hub, so the 
price should represent regional conditions.  Therefore we felt we should consider regional 
hydro availability and regional load as explanatory variables.   

• Regional hydro energy was obtained from a dataset obtained from PGE containing 8 
years’ worth of daily generation from major plants in the Northwest, which we 
referred to as the “Federal” dataset.  Unfortunately this dataset ended in 2002 and 
no continuation was available.  

• Regional load was obtained from the EIA database of FERC form 714 responses.  
This database contains hourly loads and we summed the loads for all the reporting 
utilities in NWPA. 

• For gas prices we used historical daily prices at Stanfield OR as reported by 
Bloomberg. 

• The independent variable (power prices) was represented by historical daily prices at 
Mid-C as reported by Bloomberg.  We had data on both peak and offpeak prices. 

We tested several different models for peak power prices, selecting the “best fit” based on R2.  
The models were distinguished by whether they used raw values of the variables, or their 
logarithms.  We further tested several different error models beginning with ordinary least 
squares (OLS).  A Durbin-Watson test indicated the presence of autocorrelation so we tried 
an autoregressive error model with one lag (AR(1)), autoregressive with two lags (AR(2)), and 
an AR(2)-GARCH(1,2) model.  In PA’s judgment the best of these is the AR(2) model with all 
variables represented by their logarithms: 
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In this specification, PPd is the peak power price on day d, GPd is the gas price, PLd is the 
total load over peak hours, Hd is the hydro energy, and φd is the error; the actual random 
shock is εd.  All variables are significant at a 95% confidence level (even 99%).  The model 
coefficients are: 

LL0 -4.736 (0.592)

a 0.501 (0.070) 

b 1.850 (0.141) 

c -0.578 (0.073)

A1 -0.738 (0.024)

A2 -0.231 (0.024)

The standard deviation of the shock εt is 0.200.  The R2 of the autoregressive model is quite 
high at 95.9%. 

When we performed a similar regression for offpeak power prices, the coefficients for offpeak 
load and hydro energy were not significantly different from zero; however, if we used the 
onpeak load as an explanatory variable, its coefficient was significant.  Since the onpeak load 
influences onpeak price, we tested a regression of offpeak prices on onpeak prices, which 
seems to work best: 

(11)   ddd δPPaLOPOP ++= ln'ln 0  

The model coefficients are: 

LOP0 -0.232 (0.029)

a’ 0.974 (0.008) 

The standard deviation of δd is 0.302.  The R2 of this model is 91.1%|.  Given that high value 
of R2, and the fact that the independent variable (ln PPd) is already autoregressive, we did not 
use estimate (11) with an autoregressive error model. 

5.5.2 Use of spot price model to construct forward curves 

We assumed that forward prices depend on forward versions of these same drivers, in the 
same way as spot prices.  Thus, for example, the price for August power as of March 15 
should depend on the August gas forward as of March 15 and the load and hydro energy 
expected, on March 15, to be realized in August (at the “maturity date”).   

Unfortunately, the model only simulates the values load and hydro energy and not the 
accretion of information about hydro conditions or the evolution of load forecasts.  In order to 
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construct power forward curves as well as to model hedge rebalancing (discussed below) we 
require a model of the information arrival process.  In order to drive the prototype we use a 
quadratic model of information arrival.  The graph below shows how a forecast would 
increase over time to meet the actual value: 

TimeForecast

Actu
al 
valu

Initial 
(11/1) 
foreca
st

11/1 Maturity 
 

Essentially at any date t between the date of the base case forecast (which is Nov. 1, 
denoted t0) and the maturity date T, the state of knowledge of variable vT is assumed to be 
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We use the following formula as an estimate of the onpeak power forward price as of day d 
for delivery on day D (denoted PF(d,D); PF(0,D) is the monthly forward price from the Monet 
base case – as of Nov. 1 –GF(d,D) is the gas forward and PLD

0, HD
0 are the base-case 

expectations of load and hydro availability respectively): 
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Here B is a bias due to all the exponentiation.  We were not able to come up with a closed-
form representation for B analogous to (9) so we estimated it by simulating (13) setting B=0, 
and then letting B be the ratio of its expectation to PF(0,D).  Actually, rather than using a table 
of B values for all possible parameters d and D, we fit a linear function of the form 
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The offpeak power forward price, OF, was simulated using: 

(15)   ( ) ( )20 /'),(/),(),(),( δVδa deDoPFDdPFDOFDdOF −⋅=  

where Vδ is the variance of δd. 
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Finally, daily average peak and offpeak power prices were simulated using similar formulas 
but based on the actual gas price, hydro availability and load rather than forwards and “partial 
knowledge” values (PPd

0, OPd
0, GPd

0 are the values used in the Monet base-case forecast): 
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'
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Here φd and δd are as in equations (13) and (15).  In equation (16) B is a bias similar to the 
bias in (13) and, similarly, was assessed empirically. 

Hourly spot prices were computed from the peak and offpeak averages using scalers, similar 
to the load scalers described above. 
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6. RESOURCE MODELS – PROTOTYPE 

In this section we describe the various resources.  A “resource” is anything that contributes 
positively or negatively to the net variable power costs.  Load is a resource, as are 
generators; the market-based cost associated with serving load is netted out against the 
profits obtained by selling generated energy into the market.  In other words, the cost 
simulation is a “mark to market” model. 

There are eight “input models” associated with the prototype: 

• Load 

• Beaver power plant 

• Coyote power plant 

• Boardman power plant 

• Colstrip power plant 

• Mid-C hydro contracts 

• Portland General hydro resources 

• Forward hedges 

Some of these resources were modeled using the same DLLs as in Monet, although in one 
case (Coyote) we used a much simpler model because the DLL took too long to run.  We will 
explain the simplification used as well as the tests carried out to check the impact of the 
substitution. 

For every iteration the model records 180 items of information for each resource.  For each 
month it records: 

• MWh (generation or load) – peak, offpeak and total 

• Average MW – peak, offpeak and total 

• Total fuel or contract cost – peak, offpeak and total.  This applies to power plants, 
which obviously have fuel costs, but also forward hedges, for example, the cost of a 
swap is the fixed price swapped for the market price.  It does not apply to load, which 
only has a cost based on spot power. 

• Total revenue or cost at spot power prices – peak, offpeak and total. 

• Net profit (revenue minus costs) – peak, offpeak and total.  The net variable power 
costs is the (negative of the) sum of the monthly net profit figures. 

6.1 LOAD 

The resource model for load is quite straightforward.  The simulated load (described in 5.1) is 
multiplied by the simulated Mid-C price for each hour, which represents a negative value for 
“revenue at spot power price”. 
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6.2 BEAVER POWER PLANT 

The operation of the Beaver plant is simulated by dynamic programming using the same DLL 
(bcdispatch.dll) and subroutine (dll_bcd_optimize) as in the Monet model.  The operating 
states, transition matrix, capacities, heat rates and O&M costs were taken directly from the 
Monet base case.  This demonstrates the ability to use Monet components directly. 

The DLL is used to dispatch the plant based on simulated gas prices and Mid-C power prices.  
The “fuel cost” in each hour is actually the sum of the fuel and VOM costs. 

6.3 COYOTE POWER PLANT 

We initially modeled the Coyote plant as for Beaver, using the same dynamic programming 
routine as in the Monet model.  However, it became clear that because of the size of the 
Coyote model – 492 states based on 6 separate operating states and 72-hour minimum 
uptime – it took too much time to run.  It would not be reasonable to run a Monte Carlo 
simulation involving such a complicated operational model. 

We constructed a grossly simplified Coyote model, where each day the plant either runs or 
not, and if it runs then in each hour the model can freely choose any of the six operating 
states (minimum load; mid load; maximum steam turbine load (full load); full load plus misting; 
full load plus misting and duct burner; and full load plus misting and duct burner with no 
steam extraction).  One might argue that in optimal daily cycling the plant would not run in 
offpeak hours, but since its minimum uptime is 72 hours it does have to run in offpeak hours 
for most of its operating days.  We call this the “daily commit” model. 

We also constructed a somewhat less grossly simplified model based on weekly commitment:  
the commitment decision would be made for a week at a time, and for each week the plant 
would follow one of four patterns:  on all week, on from 7AM Monday through 10PM Friday, 
on from 7AM Monday through 10PM Saturday, or off all week.  The first few hours could be 
adjusted if needed to transition from the previous week’s end state, respecting the plant’s 
startup and cooldown ramp rates.  In each operating hour the model would freely choose any 
of the six operating states.  We call this the “weekly commit” model. 

We tested this simplified models against 100 iterations of the prototype input models.  In other 
words we ran a Monte Carlo simulation of the input variables for 100 iterations (actually these 
were early versions of the input models) and dispatched each Coyote model against each set 
of inputs.  We then compared the annual total “net revenue” from each of the simplified 
models against the original dynamic programming (DP) version using linear regression.  In 
other words, we estimated the following two models by regression: 

(18)   εbtDailyCommivenueReNetaDPvenueReNet ++⋅= )()(  

(19)   '')(')( εbitWeeklyCommvenueReNetaDPvenueReNet ++⋅=  

ε, ε’ are normally distributed errors.  The coefficient values (with standard errors) and R-
squareds were: 
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 Daily Commit Weekly Commit 

Intercept (b) -4070(150) 1649(72) 

Coefficient (a) 1.055(0.0045) 0.9799(0.0024) 

R2  99.8% 99.9% 

Both simplified models appear to be quite good predictors of, and therefore acceptable 
substitutes for, the full dynamic programming model.  What is most important is that they are 
much more efficient:  each ran in about 1.5% the time of the DP model.  For the results 
reported below we used the “Daily Commit” model, which is simpler to implement and easier 
to understand. 

6.4 BOARDMAN POWER PLANT 

The Boardman plant was modeled assuming daily cycling:  it could start any hour from 1 to 7, 
and shut down any hour from 22 to 24, or not run at all (or be on forced outage).  While 
running it was allowed to run either at minimum or maximum loading.  The ownership fraction 
(65%), operating characteristics, forced outage rate and coal prices were taken from the 
Monet base case.  The only random variable that impacts Boardman is its outage status 
(available or on outage). 

6.5 COLSTRIP POWER PLANT 

The Colstrip plant was modeled as two units (3 and 4) with slightly different characteristics 
(Colstrip 4 had more capacity in the summer and a lower coal cost in the second half of the 
year).  Those characteristics, as well as the forced outage rates, coal prices and ownership 
fractions (20% of each) were taken from the Monet base case.  Both units were allowed 
actually to cycle hourly, which appears to be how Monet models them. The only random 
variables that impact the Colstrip units are their outage statuses (available or on outage). 

6.6 PORT WESTWARD POWER PLANT 

The Port Westward plant was not modeled, since it was not included in the M606PUC05-105-
06.xls Monet run we were using as a comparative, and it does not contribute to 2006 net 
variable power costs.  The modeling of the Beaver, Coyote, Boardman and Colstrip should 
have been sufficient to demonstrate the ability of this modeling approach to represent fossil-
fired generators. 

6.7 MID-C HYDRO CONTRACTS 

The four Mid-C contracts – Priest Rapids, Rocky Reach, Wanapum and Wells – were 
modeled as a single dispatchable hydro plant, with energy specified monthly and the 
obligation to provided reserves to cover PGE’s other generation.  This dispatch modeling was 
done by dynamic programming using the same DLL (midccomp.dll) and subroutine 
(dll_midc_optimize) as in the Monet model.  All the parameters describing the contracts, and 
the base-case monthly energy and capacity, came from the Monet base case; however, for 
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each iteration of the simulation model the monthly values were multiplied by the vector of 
hydro availabilities (see 5.2).  Note that both energy and capacity are multiplied by the same 
scaling value. 

6.8 PORTLAND GENERAL HYDRO RESOURCES 

There are nine other PGE-owned or –contracted hydro resources:  Round Butte, Pelton, Oak 
Grove, North Fork, Faraday, River Mill, Bull Run, Sullivan, Portland Hydro Project.  The 
Monet model represents each of them with a set pattern of hourly releases based on weekly, 
monthly and hourly factors; they do not respond to load or prices.  We modeled them as 
depending only on hydro availability, using the same hydro availability as for Mid-C:  for each 
simulation iteration, each hourly generation value is multiplied by the hydro availability for that 
month. 

6.9 FORWARD HEDGES 

From our discussions with PGE staff as well as regulators it became clear that it would be 
important to allow the model to represent a hedge rebalancing process, whereby PGE 
modifies its hedge portfolio through the year.  As it was described to us, PGE does not (by 
policy) rebalance its hedge portfolio in response to price movements but in response to its 
evolving view of its short position.  This in turn can depend on price movements – increases 
in the spark spread should encourage greater operation of Beaver, Coyote, Boardman and 
Colstrip, and reduce the short position. 

Specifically it is our understanding that by Nov. 1 PGE is 90% hedged for the coming year. 
The hedges are a mix of forwards and options; for simplicity the prototype model represents 
only options.  During the year, PGE rebalances the hedges and increases the coverage to 
100%.  The rebalancing is based on PGE’s forecast of its short position and therefore 
requires the same kind of information arrival modeling as does the power forward curve 
model (see 5.5.2). In this case we also allow for an error in PGE’s forecast of its short 
position; that is, the arriving information can be incorrect. 

Basically we assume that as of Nov. 1 PGE fills 90% of its expected short position L0.  Then 
on day d, PGE purchases an additional amount of energy for each forward month M equal to 
k(L’, M, d).  Here L’ represents a “perturbed” or unreliable estimate of the net short position 
and k() is the same quadratic information arrival process as in 5.5.2. 

Specifically, for each iteration the net short position (load minus all generation) in month M 
could be exactly computed as LM.  We assume there is a random error in forecasting LM; the 
forecast FM is normally distributed with mean LM and standard deviation equal to 2% of LM.  
The 2% figure is an assumption made just to drive uncertainty into the modeling.  On day d, 
then, enough additional forward contracts for month M are bought to bring the total position to  
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The term in curly brackets {} is the fraction of the load forecast that is expected to be filled by 
day d; it grows linearly from 0.9 to 1.0.  The term in square brackets [] is the information 
arrival coefficient. 

Note that the forward rebalancing for each iteration needs to be evaluated after the input 
variables have been simulated and the other resource models computed, because it depends 
on the short position (“filtered” using the information arrival coefficients).  The forecast short 
position is a clouded view of the actual short position in each iteration, which depends on the 
energy produced by each resource.  Therefore the resource models have to be executed, to 
provide their actual energy values, prior to computing the forward rebalancing. 
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7. PROTOTYPE RESULTS 

PA constructed a prototype of the cost simulation model in order to demonstrate the behavior 
one can expect from such a model and the range of analysis possible with it.  Two 
advantages of the modular “sandbox” construction were apparent early on, namely the ability 
to isolate and correct individual model components easily, and the ability to test and 
substitute different or simpler versions of a component model (such as the Coyote model 
noted above). 

We first tried to compare the results of the cost simulation model with the Monet base case 
run.  To do so we substituted the Monet gas and power prices for the price models in the 
simulation model and set relative hydro energy for each month to 1 (expected value).  The 
prototype results were not the same as Monet’s.  This could have been due to errors in the 
simulation model, which was only a proof of concept rather than a polished model. 

The simulation model reported nonzero energy costs associated with the PGE hydro units.  
These nonzero costs were variable O&M reflecting the O&M costs found in the Monet model, 
ranging from $0.19/MWh for North Fork and Faraday to $5.02/MWh for Round Butte.  Monet 
reports no O&M costs for any plant, and no costs at all for any PGE hydro resources or 
contracts except Portland Hydro Project and the Mid-C plants.  The costs reported for those 
plants are fixed contract costs.

The following table summarizes the differences between Monet and the prototype’s “base 
case”: 

 Monet Cost simulation prototype with Monet prices

Resource Cost (K$) Energy(GWh) Cost (K$) Energy(GWh) 

Coyote  66,645   1,183   64,667   1,073  
Beaver  9,867   128   -     -    
Mid-C  *   2,848   8,978   2,993  
Boardman  35,484   2,867   14,223   2,760  
Colstrip  14,133   2,087   20,181   2,278  
PGE Hydros  4,293   1,992   4,788   2,056  
Total market  509,347   8,528   528,105  9,104  

Spot  93,256   1,454   528,105  9,104  
Hydro 
contracts 

38,759* N/A *  

Fwd/other  377,332   7,073  **  
Total  639,770   19,633   640,943   19,633 

*-Monet does not really report a variable cost for the Mid-C plants; it reports only a fixed 
contract charge.  That charge has been incorporated into the “market” number below.  The 
simulation prototype, on the hand, reports the variable O&M costs for the Mid-C plants (and in 
fact it includes variable O&M in each plant’s costs).  The simulation does not report the fixed 
costs of the Mid-C contracts, or any other long-term contracts already in the Monet file.  On 
the other hand, Monet does not report variable O&M. 
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**-Since there was no evolution of forward prices in the base case, all market prices are spot. 

Some of the differences between the prototype simulation model and the Monet base case 
are due to modeling differences, for example the simplified Coyote dispatch.  Others are due 
to its “prototype” nature; we had a limited amount of time to ensure a perfect match between 
the model and the base case.   

Despite these differences, it is useful to examine the prototype results in more detail to see 
what kind of insights a model of this type might eventually be able to provide, keeping in mind 
its simplified and prototype nature.  The following figure gives the histogram of results from a 
1000-iteration run of the cost simulation prototype: 

Net variable power cost -- 1000 simulation iterations
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Visually the distribution appears quite skewed.  Estimates of its statistical parameters are: 

 

Median (M$) 643.73

Mean (M$) 650.86

Standard deviation (M$) 55.10

Skewness 0.697

(Excess) kurtosis 0.669
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The last two items are dimensionless measures of the shape of the distribution.  The positive 
skewness indicates that the distribution is asymmetric, with much more significant outliers to 
the right (higher costs).  Thus its mean is to the right of (greater than) its median.  The 
positive kurtosis indicates the distribution has a higher peak and “fatter tails” than a normal 
distribution, in other words, that the departures from the mean are likely to be larger than in a 
normal distribution. 

It is often tempting, when facing a skewed distribution like the one above, to assume that it 
fits a lognormal rather than normal distribution (both the skewness and kurtosis of a normal 
distribution are zero).  In fact this distribution is significantly more skewed and has fatter tails 
than a lognormal distribution:  the corresponding parameters of a lognormal distribution with 
this mean and standard deviation are 0.255 (skewness) and 0.115 (kurtosis). 

One must use these numbers with care.  As noted earlier, many of the parameters underlying 
the simulation are only imprecisely estimated; in many cases the data used in computing the 
estimates are only proxies for the values whose properties were being estimated.  
Furthermore the model itself is a prototype constructed in such a way as to make it easier to 
test different estimation or approximation techniques.  Section 3.3.1 drew a distinction 
between descriptive and prescriptive models; this prototype is of the descriptive class. 

The numbers themselves are estimates of the statistics of an underlying cost distribution, not 
the statistics themselves, and they may be subject to bias or error.  For example, the $55.10 
million “standard deviation” is really the square root of the sample variance.  The sample 
variance is generally an unbiased estimator of the variance – that is, tends neither to under 
nor overestimate it – but its square root is actually a biased estimator of the standard 
deviation, so that the standard deviation is probably somewhat more than $55.10 million.4   

The $55.10 million also understates the variability in power costs because the simulation 
parameters are themselves uncertain.  Recall that several of the input variables were 
represented using parametric statistical models to capture their interrelationships.  The 
parameters were estimated from historical data, necessarily with some uncertainty.  (The 
uncertainty in the estimation is also a proxy for the possibility that the wrong family of 
statistical models was used.)   

The flexibility of the simulation prototype allows us to get a feel for the additional variability 
introduced by that parameter uncertainly.  We simulated the impact of uncertainty in just one 
of the input models, the model of peak power prices (equation (10) on page 5-30).  The table 
of coefficients for that equation indicates the standard error of each estimate.  We ran twenty 
separate 100-iteration simulations using the cost simulation, with different values of those 
coefficients:  for each run the coefficient values were chosen from normal distributions with 
the associated mean and variance.  A scatter plot of the results follows: 

                                                 

4 See, e.g., S. L. Sclove, “Concerning the Sample Standard Deviation,” University of Illinois – Chicago, 
http://www.uic.edu/classes/idsc/ids571/samplvar.pdf as of 5/16/06.  Specifically, if the sample variance 
is denoted S2, so that its square root is S, and the (underlying) standard deviation is σ, then E(S2)=σ2 
but (E(S))2 = E(S2) – Var(S2) < E(S2). 
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Results of varying the coefficients in the peak price model
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The simulated costs from these twenty runs ranged from $645.6 million to $653.8 million.  
The uncertainty attributable to this parameter model, as well as the uncertainty in other 
parameter models, contributes positively to the uncertainty in net variable power cost. 

This cost simulation model can qualitatively indicate the degree to which there is a greater-
than-normal risk of bad outcomes (high costs).  Here “normal” really means both “in a normal 
distribution” and “anticipated in the normal course of life”.  Without using the specific 
numerical values produced by this simulation it is clear that there is significant cost risk:  the 
distribution is quite positively skewed and leptokurtic.  The prototype simulation model 
indicates that PGE’s risks are magnified relative to an estimate based on normal distributions. 

The standard deviation of the distribution is $55 million, not a trivial sum even though it is only 
about 8.5% of the expected costs.  Given the amount of hedging assumed in the model, 8.5% 
is a quite significant variation.  It is almost as large as PGE’s total net income for 2005 ($64 
million) or 2003 ($60 million as restated) and 60% of PGE’s net income for 2004 ($92 
million).5  Furthermore, the difference between the expected value of $650.86 million and the 
base case value of $640.94 is positive and statistically significant (p>.999).  We had expected 
that the relationship between hydro conditions and price (in poor hydro conditions more load 
is exposed to high power prices) would move the mean, and we had been quite surprised 
when the effect did not show up in an earlier version of the prototype.  That serves to 
demonstrate the dangers of drawing definitive conclusions from early versions of a 
mathematical model. 

                                                 

5 Net income figures are from Portland General Electric’s Annual Report on Form 10-K filed March 16, 
2006. 
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Although the power price model described in section 5.5 included gas and load as 
explanatory variables as well as hydro conditions, on a monthly or annual basis the only 
variable significantly correlated with power prices is hydro energy.  The following table gives 
the correlations observed between the simulated series of various input variables.  Recall that 
the prototype included some complex models for and dependencies among the input 
variables (sections 5.3-5.5). 

CORRELATIONS OF MONTHLY AND ANNUAL AVERAGES OF UNCERTAIN VARIABLES 

Month Load & 
Peak price 

Load & 
Gas price 

Load & 
Hydro 

Peak price 
& Gas price 

Peak price 
& Hydro 

Gas price 
& Hydro 

January 18% 3% -3% 19% -85% 0% 
February 11% -1% -2% 11% -90% -1% 
March 14% -1% -3% 18% -89% -4% 
April 13% 3% -2% 17% -89% -1% 
May 8% 4% 2% 15% -90% -1% 
June 11% 0% -3% 20% -87% -5% 
July 18% 1% 0% 19% -83% -4% 
August 22% -2% -3% 23% -72% 1% 
September 20% -2% -6% 15% -74% 3% 
October 9% -3% 4% 17% -64% 3% 
November 25% -3% -2% 20% -52% 4% 
December 16% -2% 1% 14% -76% 1% 
Total 10% 2% -4% 14% -96% -2% 

In order to understand the influence of various variables on the results of the cost simulation, 
we performed linear regressions of the simulated cost for each month on the average load in 
that month, average peak period power cost, average gas cost, and relative hydro energy.  
To put all variables on a common footing they were normalized to have mean zero, unit 
standard deviation (the means were subtracted and the result divided by the standard 
deviations).  We also included interaction terms.  Thus, for each month of the simulation we fit 
the model: 

Cost = a*Load + b*(Peak Price) + c*(Gas Price) + d*Hydro + e*Load*(Peak price) 
+ f*Load*(Gas price) + g*Load*Hydro + h*(Peak price)*(Gas price) + 
k*(Peak price)*Hydro + m*(Gas price)*Hydro + C0 + ε 

where a, b, c, d, e, f, g, h, k and m are the model coefficients, C0  is an intercept and ε is a 
normally distributed error.  The following table gives the coefficient values and standard errors 
(in parentheses), where coefficients in bold have a statistically significant difference from 
zero (at the 95% confidence level) and coefficients in normal font do not: 
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Month Avg 
Load 

Peak 
Price 

Gas 
Price 

Hydro Load * 
Peak 
price 

Load * 
Gas price 

Load * 
Hydro 

Peak 
price * 
Gas price 

Peak price 
* Hydro 

Gas price 
* Hydro 

Intercept 

January 2.03 
(0.14) 

-0.85 
(0.31) 

4.71 
(0.15) 

-9.88 
(0.29) 

0.06 
(0.27) 

0.66 
(0.15) 

-0.24 
(0.28) 

-1.19 
(0.24) 

-1.15 
(0.13) 

-2.99 
(0.24) 

68.30 
(0.18) 

February 1.31 
(0.07) 

-0.50 
(0.19) 

3.07 
(0.07) 

-9.72 
(0.18) 

-0.07 
(0.17) 

0.13 
(0.07) 

-0.06 
(0.18) 

-0.13 
(0.10) 

-0.70 
(0.08) 

-1.36 
(0.10) 

52.56 
(0.09) 

March 1.15 
(0.05) 

0.13 
(0.12) 

1.51 
(0.05) 

-5.44 
(0.11) 

-0.07 
(0.12) 

-0.06 
(0.05) 

-0.05 
(0.11) 

0.08 
(0.06) 

-0.29 
(0.06) 

-0.59 
(0.06) 

55.58 
(0.06) 

April 0.85 
(0.04) 

-0.08 
(0.10) 

1.38 
(0.04) 

-5.12 
(0.09) 

0.07 
(0.09) 

0.00 
(0.04) 

0.03 
(0.09) 

0.02 
(0.05) 

-0.23 
(0.04) 

-0.63 
(0.05) 

42.90 
(0.04) 

May 0.55 
(0.04) 

-0.05 
(0.09) 

0.91 
(0.04) 

-4.04 
(0.08) 

0.14 
(0.08) 

-0.01 
(0.04) 

0.06 
(0.08) 

0.00 
(0.04) 

-0.13 
(0.03) 

-0.43 
(0.04) 

44.91 
(0.04) 

June 0.58 
(0.03) 

-0.08 
(0.07) 

0.82 
(0.03) 

-3.66 
(0.06) 

0.08 
(0.06) 

-0.10 
(0.03) 

0.03 
(0.06) 

0.06 
(0.03) 

-0.19 
(0.03) 

-0.32 
(0.03) 

37.05 
(0.03) 

July 1.40 
(0.05) 

-0.52 
(0.10) 

3.00 
(0.05) 

-4.49 
(0.10) 

0.15 
(0.10) 

-0.08 
(0.05) 

0.09 
(0.10) 

0.03 
(0.06) 

-0.03 
(0.05) 

-0.55 
(0.06) 

54.54 
(0.06) 

August 1.55 
(0.07) 

-0.72 
(0.10) 

4.26 
(0.07) 

-2.95 
(0.10) 

-0.17 
(0.10) 

-0.19 
(0.06) 

-0.11 
(0.10) 

0.17 
(0.07) 

-0.19 
(0.06) 

-0.11 
(0.06) 

59.62 
(0.07) 

September 0.94 
(0.06) 

-0.19 
(0.09) 

2.39 
(0.06) 

-2.66 
(0.09) 

0.02 
(0.08) 

-0.21 
(0.06) 

0.03 
(0.09) 

0.07 
(0.05) 

0.01 
(0.06) 

-0.31 
(0.05) 

55.69 
(0.06) 

October 0.74 
(0.06) 

-0.29 
(0.08) 

3.62 
(0.07) 

-2.31 
(0.09) 

0.13 
(0.08) 

-0.04 
(0.07) 

0.23 
(0.08) 

-0.17 
(0.07) 

-0.11 
(0.08) 

-0.59 
(0.06) 

54.69 
(0.07) 

November 1.47 
(0.08) 

-0.02 
(0.09) 

3.93 
(0.08) 

-2.46 
(0.09) 

-0.06 
(0.09) 

0.01 
(0.08) 

0.10 
(0.09) 

-0.15 
(0.09) 

0.02 
(0.08) 

-0.88 
(0.08) 

56.32 
(0.08) 

December 1.70 
(0.09) 

0.19 
(0.15) 

4.83 
(0.09) 

-5.44 
(0.15) 

0.06 
(0.15) 

0.25 
(0.10) 

0.19 
(0.14) 

0.10 
(0.13) 

-0.05 
(0.10) 

-1.07 
(0.13) 

66.94 
(0.11) 

Total 3.98 
(0.51) 

2.56 
(2.05) 

29.56 
(0.54) 

-39.20 
(1.98) 

1.81 
(1.89) 

-0.01 
(0.53) 

0.93 
(1.90) 

-0.99 
(0.72) 

-1.29 
(0.48) 

-7.01 
(0.70) 

649.82 
(0.61) 

Note:  values in parentheses are standard errors, not p values.
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On a monthly basis, hydro condition is the most important determinant of net variable power 
cost.  Although the coefficient on the interaction term between peak price and hydro energy is 
significant, it is still quite small compared with the intercept, so that the interaction will not 
have a large effect.  In fact, the interaction between gas price and hydro conditions appears 
to be more important, especially in January and on an annual-average basis.  Especially 
during the first half of the year, in low hydro conditions it appears that increased use of gas-
fired plants may be limiting the impact of power price increases. 
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8. USES OF A COST SIMULATION MODEL TO SUPPORT THE REGULATORY 
PROCESS 

During the course of this project, Portland General Electric staff explained to PA some of the 
context in which the project was initiated.  Apparently there have been discussions between 
Portland General and the Public Utility Commission of Oregon about the variability in PGE’s 
power costs, and whether it is appropriate for ratepayers to cover that variability, at least in 
part, through an annual true-up.  If there were no true-up then PGE shareholders would bear 
that risk, providing cost insurance to ratepayers.   

In addition to the public policy question of appropriateness, there are several analytic 
questions that one might try to address with a cost simulation model, e.g., how large is the 
risk and whether one can compute a risk adjustment to the revenue requirement to 
compensate the utility for bearing it.  This project was initiated to determine how to structure a 
model that could answer the first of those questions, and whether such a model could also 
answer the second. 

Utilities are generally given the opportunity to earn a return, but not a guarantee that the 
return will be earned.  The return is put at risk to the utility’s operational performance and to 
factors under the control of utility management.  Whether fuel price risk, for example, is 
appropriately placed on the utility may depend on the tools the utility has or has not been 
given with which to mitigate it.  Certain risks may just be too large for the utility reasonably to 
mitigate.  In that case ratepayers, with greater overall financial resources, may appropriately 
be asked to bear the risk.  A simulation model can help characterize the size of the risk. 

Using our prototype model we have estimated the standard deviation, that is, the typical 
range of variation, in net variable power costs.  We arrived at a figure of $55.1 million.  This 
figure may not be accurate – it could easily be off by, say, $10 million either way.  But we can 
still make a qualitative statement that the risk is quite sizable.  At $55 million, the standard 
deviation is over half the company’s net income in any of the last three years.  Suppose the 
standard deviation of net variable power costs actually were $50 million.  If the net variable 
power costs were normally distributed, there would be a 10% chance that the costs would 
exceed the net income in two of those three years.  Because the cost distribution is positively 
skewed and fat-tailed the probability is actually greater than 10%. 

Uncertainty in the estimate of standard deviation would make it very difficult to use the 
numerical results of this prototype for ratemaking or to determine a “risk adder”.  The same 
problem might apply to other simulation models.  As with the Black-Scholes model it is 
actually quite difficult to calibrate a model that depends on distributional inputs.  Therefore if a 
simulation should only be used for ratesetting if it is in an environment that permits rapid and 
frequent recalibration of the model and adjustment of the rates based on it.  
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9. SUMMARY AND CONCLUSION 

PA Consulting Group developed a set of assumptions for a probabilistic cost simulation 
model.  The role of the model would be to characterize the uncertainty in PGE’s annual net 
variable power cost.  There are many factors that influence net variable power cost, some of 
which are related to yet subtly different from others.  To properly identify all those factors, and 
model their variability, would be an immense effort; furthermore, information about many of 
them is not easily available.  PA produced a “data issues report” that described the data that 
would be desirable for such a model; the availability or unavailability of some data; and 
potential substitutes or proxy data as well as weaknesses in some of those substitutes. 

PA concluded that a cost simulation model had to be flexible and easily modified to allow 
easy substitution of different submodels for uncertain inputs and resource dispatch.  PA 
specified an architecture for such a “sandbox” model that relies on the @Risk add-in to run a 
set of spreadsheets in a Monte Carlo fashion.  A central “coordinator” manages variable 
names to allow different component spreadsheets to be “plugged” in or out.   

We proceeded to develop a prototype of the simulation model.  In principle the “base case” of 
such a prototype, with all random variables set to nominal or expected levels, should produce 
answers identical to a reference model (in this case a specific Monet run).  That did not 
happen here, partly because the prototype involved simpler dispatch logic for some resources 
and partly because of the unfinished nature of prototypes. 

Even if the base case doesn’t line up exactly with the reference model, a cost simulation 
model can still provide useful information about the distribution of costs.  The base case 
values depend on specific input levels and a good match between specific numerical results 
of different models can be difficult to achieve.  If the inputs are inaccurate, the specific 
numerical outputs – the locational rather than shape parameters of the distribution – will be 
undependable.  A simulation model can confirm one’s intuition about the cost impacts of the 
relationships among inputs, as well as the approximate magnitude of that impact – e.g., the 
fact that the expected cost exceeded the “base case” cost by approximately 18% of the 
standard deviation in costs. 

A cost simulation can provide valuable qualitative information about the distribution of net 
variable power costs. The shape of the distribution of outputs depends on the shapes of the 
distributions of the inputs and the relationships between the inputs and outputs, that is, the 
mathematical properties of the model.  In other words, distributional shape data encapsulates 
information about the assumed relationships between inputs and outputs, and those 
relationships should look the same even if the inputs themselves are inaccurate.   

Under the assumptions of the prototype model we conclude that the distribution of net 
variable power costs is positively skewed (the mean is larger than the median) and leptokurtic 
(exhibits “fat tails”, that is, somewhat elevated chances of extreme values).  It is both more 
skewed and more leptokurtic than a parametric distribution often used to model costs, the 
lognormal distribution.  On the other hand, the mean of the distribution does not seem to 
depart far from the base case cost.  That means that it is not possible to “risk-adjust” the cost 
distribution (for instance to set a revenue requirement) just by moving the mean to account for 
correlation of inputs.  The precision afforded by a descriptive model such as this is not fine 
enough to permit one to estimate a “risk adder” but we can say that there is significant 
variability in the costs. 
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The approach to cost simulation that PA has prototyped promises to help in the 
understanding of the way costs vary with uncertain inputs such as hydro conditions and 
market prices.  It is particularly valuable because of its simplicity and flexibility.  PA is willing 
to help PGE implement such an approach or to talk about ways to incorporate it into the 
Monet architecture. 
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APPENDIX A:   COMPONENTS OF PROTOTYPE COST SIMULATION MODEL 

This appendix briefly lists the components of the prototype cost simulation, Monet (base 
case) data used, other parameters, inputs (from other components) and outputs. 

A.1 TEMPERATURE SIMULATION 

A.1.1 Base Case data used 

• Expected (normal) temperatures 

A.1.2 Other parameters 

• Description of randomness in temperature distribution  

A.1.3 Inputs from other components 

• None 

A.1.4 Outputs 

• Daily temperature and expected temperature 

A.2 LOAD SIMULATION 

A.2.1 Base Case data used 

• Base case daily loads 

A.2.2 Other parameters 

• Description of randomness in load distribution  

• Hourly load scaling factors 

A.2.3 Inputs from other components 

• Daily temperature 

A.2.4 Outputs 

• Hourly PGE load 

A.3 GAS PRICE SIMULATION 

A.3.1 Base Case data used 

• Initial forward curves 

A.3.2 Other parameters 

• Parameters of price models  
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A.3.3 Inputs from other components 

• None 

A.3.4 Outputs 

• Daily gas forward curve 

• Daily gas spot price 

A.4 HYDRO SIMULATION 

A.4.1 Base Case data used 

• None 

A.4.2 Other parameters 

• Historical distribution of hydro conditions  

A.4.3 Inputs from other components 

• None 

A.4.4 Outputs 

• Monthly hydro energy relative to average 

• Monthly hydro capacity relative to average 

A.5 MID-C POWER PRICE SIMULATION 

A.5.1 Base Case data used 

• Initial forward curves 

A.5.2 Other parameters 

• Parameters of price model  

A.5.3 Inputs from other components 

• Daily gas forward curve 

• Daily gas prices 

• Daily peak subperiod loads 

• Hydro conditions 

A.5.4 Outputs 

• Daily on/offpeak forward power curve 

• Daily on/offpeak spot power price 
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A.6 COST TO SERVE LOAD 

A.6.1 Base Case data used 

• None 

A.6.2 Other parameters 

• None 

A.6.3 Inputs from other components 

• Hourly loads 

• Mid-C power prices 

A.6.4 Outputs 

• Cost to serve load from market (net variable power costs = cost to serve load from 
market minus value of production from other resources, plus costs of other 
resources) 

A.7 PGE HYDRO SIMULATION 

A.7.1 Base Case data used 

• Base case energy 

• Monthly, daily, hourly allocation factors 

• VOM costs 

A.7.2 Other parameters 

• None  

A.7.3 Inputs from other components 

• Hydro energy relative to base case 

• Mid-C spot power prices 

A.7.4 Outputs 

• PGE hydro plants’ production in MWh 

• Dollar value and cost of production (VOM) from PGE hydro plants 

A.8 MID-C HYDRO SIMULATION 

A.8.1 Base Case data used 

• Base case energy 

• VOM costs 
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• DLL code to optimize Mid-C dispatch 

• Parameters of Mid-C optimization DLL routine 

A.8.2 Other parameters 

• None  

A.8.3 Inputs from other components 

• Hydro energy relative to base case 

• Mid-C spot power prices 

• MWh outputs of other PGE plants (for spinning reserve requirement) 

A.8.4 Outputs 

• Mid-C hydro plants’ production in MWh 

• Dollar value and cost of production (VOM) from Mid-C hydro plants 

A.9 COLSTRIP SIMULATION 

A.9.1 Base Case data used 

• Monthly capacity, heat rate, maintenance schedule and forced outage rate by unit 

• PGE ownership share 

• Monthly coal prices 

• VOM costs 

A.9.2 Other parameters 

• None  

A.9.3 Inputs from other components 

• Mid-C spot power prices 

A.9.4 Outputs 

• Colstrip production in MWh 

• Dollar value and cost of production (fuel + VOM) from Colstrip plant 

A.10 BOARDMAN SIMULATION 

A.10.1 Base Case data used 

• Monthly capacity and heat rate by state (min load / full load) 

• Monthly maintenance schedule and forced outage rate 
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• PGE ownership share 

• Monthly coal prices 

• VOM costs 

A.10.2 Other parameters 

• None  

A.10.3 Inputs from other components 

• Mid-C spot power prices 

A.10.4 Outputs 

• Boardman production in MWh 

• Dollar value and cost of production (fuel + VOM) from Boardman plant 

A.11 BEAVER SIMULATION 

A.11.1 Base Case data used 

• List of operating states and allowable transitions 

• Monthly capacity and heat rate by state 

• VOM costs by state 

• DLL code to optimize dispatch by dynamic programming 

A.11.2 Other parameters 

• None  

A.11.3 Inputs from other components 

• Spot gas prices 

• Mid-C spot power prices 

A.11.4 Outputs 

• Beaver production in MWh 

• Dollar value and cost of production (fuel + VOM) from Beaver plant 

A.12 COYOTE SIMULATION 

A.12.1 Base Case data used 

• Simplified list of operating states and allowable transitions 

• Monthly capacity and heat rate by state 
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• VOM costs by state 

• DLL code to optimize dispatch by dynamic programming 

A.12.2 Other parameters 

• None  

A.12.3 Inputs from other components 

• Spot gas prices 

• Mid-C spot power prices 

A.12.4 Outputs 

• Coyote production in MWh 

• Dollar value and cost of production (fuel + VOM) from Coyote plant 

A.13 FORWARD POWER CONTRACTING SIMULATION 

A.13.1 Base Case data used 

• None 

A.13.2 Other parameters 

• Description of purchase strategy 

A.13.3 Inputs from other components 

• Expected load, expected production from all resources (used to compute expected 
purchase requirement) 

• Mid-C forward power prices 

A.13.4 Outputs 

• Daily forward purchases by tenor in MWh 

• Dollar value and MTM of forward portfolio 

A.14 SPOT MARKET SIMULATION 

There is no spot market component in the design of the cost simulation as described in 
section 4.  All energy produced or delivered is valued at the simulated spot price, that is, 
“marked to market”.  To the extent that simulated loads are greater than the generation 
simulated from all PGE’s resources, power is implicitly bought on the spot market and priced 
at the simulated Mid-C spot power price. 
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