BEFORE THE

PUBLIC UTILITY COMMISSION OF OREGON

NW Natural

Rebuttal Testimony of Barbara Summers

UM 1744
Carbon Emission Reduction Program
Combined Heat \& Power (CHP)
Cost Recovery

Table of Contents

I. INTRODUCTION. 1
II. CARBON REDUCTION CALCULATION METHODOLOGY. 2
III. SIMPLE PAYBACK VS. INTERNAL RATE OF RETURN (IRR) 8
IV. CUSTOMER INCENTIVE. 12
V. RISK SHARING 19
VI. CONCLUSION 19
i - REBUTTAL TESTIMONY OF BARBARA SUMMERS - Table of Contents

I. INTRODUCTION

Q. Please state your name.

A. My name is Barbara Summers.
Q. Are you the same Barbara Summers who previously submitted direct testimony and reply testimony in this proceeding?
A. Yes, my title address, and job responsibilities with Northwest Natural Gas Company (NW Natural or the Company) have not changed.
Q. What is the purpose of your testimony?
A. The purpose of my rebuttal testimony is to respond to new analysis of the Combined Heat and Power (CHP) Solicitation Program (CHP Program) submitted by Staff in its Reply Testimony, Staff/300 and Staff/400. Specifically, I will respond to: 1) the criteria for choosing a carbon reduction calculation methodology; 2) the new analysis of simple payback vs. internal rate of return; 3) the new analysis of the customer incentive; and 4) Staff's argument for NW Natural to share in the risk of the program. I will also provide an update regarding the Environmental Protection Agency's (EPA) eGRID, which recently released new eGRID numbers on October 8,2015 . Based on the new eGRID numbers, Washington State University (WSU) re-ran the RELCOST model for the CHP Program and the results are included in my rebuttal testimony.

II. CARBON REDUCTION CALCULATION METHODOLOGY

Q: Do you have an update to your testimony regarding EPA's eGRID model?
A. Yes, I do. On October 8, 2015, the EPA released its new version of the eGRID model. The current eGRID numbers are attached in Exhibit NWN/501. For the Company's subregion, the Northwest Power Pool (NWPP) eGRID numbers have decreased from $842 \mathrm{CO}_{2}$ lbs./MWh to $655 \mathrm{CO}_{2}$ lbs./MWh for baseload emissions and increased from $1,340 \mathrm{CO}_{2}$ lbs./MWh to $1,579 \mathrm{CO}_{2}$ lbs./MWh for nonbaseload emissions. It does not mean that more fossil fules are being added to the portfolio; rather, it means that more fossil fules are being dispatched to meet non-baseload.
Q. How will the increase from $1,340 \mathrm{CO}_{2}$ Ibs./MWh to $1,579 \mathrm{CO}_{2}$ Ibs./MWh of the non-baseload value affect the program?
A. NW Natural requested WSU to remodel all prototypes with the 2012 EPA eGRID numbers. Based on that analysis described below, NW Natural is recommending no additional changes to the CHP Program based on the update.
Q. Before knowing about the latest update to the eGRID model, Staff questioned the use of the eGRID model for calculating the GHG emission reductions from the CHP Program. What are Staff's concerns with NW Natural's proposal?

2 - REBUTTAL TESTIMONY OF BARBARA SUMMERS
A. Staff analyzed the four primary methodologies available for calculating the GHG benefits of CHP and recommended that the Northwest Power and Conservation Council (NWPCC) methodology be used.

Q: Does NW Natural agree with the analysis performed by the Commission Staff?
A. No. While the Staff analysis provides adequate criteria for choosing a carbon reduction calculation methodology, NW Natural would evaluate the criteria differently. The chart below from Staff's testimony is provided again for reference:

The Company disagrees with Staff's "Transparency" evaluation. Staff states that that "[the NWPCC model] may not grant the kind of accessibility that the EPA eGRID model does...[as it] does use a propriety licensed model which is not easily understandable or accessible to those stakeholders uninitiated to complex dispatch modeling." (Staff/300, Klotz/18). eGRID, on the other hand, is a publically available model that can be easily reviewed by all stakeholders. Despite this major difference, Staff scores the NWPCC model and eGRID as

3 - REBUTTAL TESTIMONY OF BARBARA SUMMERS
equally transparent. NW Natural would change the NWPCC's score for Transparency to "concern that the methodology challenges the criteria but may still present merit" (Yellow). (Staff/300, Klotz/21).

Second, for the "Frequency of Updates" criterion, Staff notes the NWPCC updates their model roughly every five years, further explaining "[F]or the purposes of the NW Natural's CHP proposal this interval may be sufficient." (Staff/300, Klotz/18). The NWPCC data is given a yellow (or "concern but presents merit"). Staff originally evaluated the EPA data a score of "does not meet the stated criteria" (red). However, the prior eGRID update was released in 2014, and the latest update was made October 8, 2015. NW Natural believes that if NWPCC updates every five years show "concern," than the frequent updates to the eGRID numbers demonstrate that eGRID meets the criteria (green).

Q: Staff believes that the geographic region selected by EPA's CHP

 Partnership for the specific purpose of calculating displaced emissions from CHP is "too far reaching." Staff states that "[t]his model incorporates plants in Arizona, Utah, Wyoming, and Colorado that do not serve load in Oregon." (Staff/300, Klotz/12). Do you agree?A: No. States outside the Pacific Northwest should also be included in models estimating carbon reductions. The boundaries of the Northwest power system are porous - over the course of a year, the region imports and exports power in large quantities, including coal and natural gas generation.

The NWPCC fully acknowledges the importance and relevance of the broader regional system. For example, the Sixth Northwest Conservation and Electric Power Plan (Sixth Plan) clearly states that "the Northwest transmission system is closely integrated into the overall western system". ${ }^{1}$ Indeed, the accompanying map in the Sixth Plan, figure 7.1, shows major transmission infrastructure covering a region that is actually larger than the NWPP eGRID subregion.

PacifiCorp is an excellent example. Eighty percent of PacifiCorp's energy is natural gas and coal, including marginal gas peaking units. ${ }^{2}$ The majority of these natural gas and coal facilities are located in the states of Utah, Wyoming, Colorado, and Arizona. At least a portion of the carbon emissions associated with new CHP in Oregon will have the practical result of reducing gas fired generation and carbon emissions in states outside of the Northwest.

Q: Does EPA speak to why it believes a larger region makes sense when calculating GHG benefits in the electric grid?

[^0]A. Yes. In its recently released Preamble to the Clean Power Plan (CPP), EPA argues that the larger regions should be used when determining GHG benefits under the CPP. Specifically the agency states:

We concluded that, absent a compelling reason to adopt a smaller regional scale for evaluation of CO 2 emission reduction opportunities for the electric power sector -- which we have not found, as discussed below -- the interconnections should be the regions used for evaluation of the [best system of emissions reduction] for CO 2 emission reductions from the electric power sector because of the fundamental characteristics of electricity, the industry's basic interconnected physical infrastructure, and the interdependence of the affected EGUs within each interconnection. ${ }^{3}$

An effort to draw conclusions regarding emissions from a more narrow set of resources - as suggested by Staff - appears to be counter to the policy direction indicated by EPA that favors a much broader regional approach.

Q: Would you recommend adding a criterion to the Staff's evaluation?

A. Yes. The Company would add: "Is the measure currently available to be used." On this measure, EPA's eGRID should score as "green" or "meets." The NWPCC would not meet this criterion. Staff explains the process going forward would require the Council staff to begin work on this measure "beginning after the publication of the Final $7^{\text {th }}$ Power Plan". (Staff/300, Klotz/22). The Plan is expected to be final in the January/February timeframe, if there are no delays. Staff's testimony does not provide a clear path forward as to when the measure

[^1]
6 - REBUTTAL TESTIMONY OF BARBARA SUMMERS

Emission Reduction Model						
Criteria						
	Geographic Inclusion	Frequency of Updates	Currently Available	Purpose of Methodology	Transparency	Broad Market Support
eGRID	Broader coverage, more consistent with transmission system	Data set now updated with future updates every 1-2 years				
NWPCC	Narrower coverage linked more to Oregon, less consistent with transmission system	Data set updates every 5 Years	Not now available	Designed for EE could work for CHP	Proprietary model not easily understood	
ODOE				Not developed for CHP	Dataset is not readily available	Methodology has not gained much support
Utility Emission Models			Published in IRP filings	Not developed for CHP	Concerns over transparency	Currently unknown

III. SIMPLE PAYBACK VS. INTERNAL RATE OF RETURN (IRR)

Q. Please summarize Staff's concerns with the Company's use of simple payback.
A. Staff states that the Company's use of the simple payback methodology to determine the customer incentive level "confuses and distracts from the traditional regulatory standard which is to allow the utility an opportunity to earn its authorized return." (Staff/400, St. Brown/10). In the alternative, Staff recommends using the IRR methodology to evaluate the appropriate incentive level for CHP Program participants. (Staff/400, St. Brown/10).
Q. Does the Company have concerns with Staff's analysis regarding the use of the IRR methodology?
A. No. IRR and both simple and discounted payback are calculated in the WSU model and have been relied on by NWN in determining its recommended customer incentive level. The IRRs and Payback are summarized in the Tables regarding the "Basecase" and "Technical Potential" in the Customer Incentive section of my testimony below. We are, however, concerned with the Staff's application of IRR to our CHP Program. In Staff's Reply Testimony, Staff relies on the book "Investment Analysis and Portfolio Management," Chapter 13 "Computing Bond Yields" to provide the criteria for investment decisions using

IRR under the CHP Program. (Staff/400, St. Brown/8; Staff/401, St. Brown/5). ${ }^{4}$ The Company believes that the decision for a business to invest in CHP is far more complex than a decision for an investor to invest in a bond. A company will not simply "compare the discount rate . . . to your cost of capital, and accept any investment proposal with an IRR equal to or greater than your cost of capital." (Staff/400, St. Brown/8). Staff's assertion that all projects that exceed a company's IRR are adequately incented, does not recognize the capital allocation process of most private and public entities. Most organizations have more potential investments than available capital. The Pew Center on Global Climate Change and ICF International's Survey of Corporate Energy Efficiency Strategies (Pew Survey), states that the "need for capital to pay for projects was the greatest single ongoing challenge, outnumbering any other single item by a four-to-one ratio." ${ }^{5}$ (NWN/503, Summers/11).

The IRRs are not the same for all projects based on the uncertainty of future cash flows, especially for investments that are not typical to the company/industry or reasonably priced into the Company's cost of capital. Risk is an important component for an IRR and different projects will have different risks associated with them.
Q. Are there other concerns with Staff's analysis of the IRR methodology?

[^2]9 - REBUTTAL TESTIMONY OF BARBARA SUMMERS
A. Yes. Staff relies on an abstract from the Pew Survey, which states:
"Respondents IRR criteria [for investing in energy efficiency] were mostly in the 10-15\% range, though one reported a 35% IRR threshold." (Staff/400, St. Brown/15; Staff/401, St. Brown/14). Staff then uses the IRR range of $10-15 \%$ for energy efficiency from the Pew Survey to argue that the proposed payback under the CHP Program is excessive. (Staff/400, St. Brown/16).
Q. What is your concern with the above statements and analysis?
A. First, the Pew Survey does not represent a fair data sample to compare to the CHP Program. The Pew Survey is based on 48 companies, ranging in size from $\$ 8$ billion to $\$ 99$ billion in revenues with "demonstrated commitment to climate and energy issues." (NWN/503, Summers/1-2). The survey states that it "deliberately sought larger companies with strong energy/climate commitments, because the goal is to elicit best practices, not average practices. In this sense, the sample is intentionally not representative of the U.S. corporate population." (NWN/503, Summers/2)(emphasis added).

Second, Staff seems to ignore that the Pew Survey equally supports a simple payback methodology. The Pew Survey reports that 91% of the respondents use a standard financial criterion to assess energy efficiency projects, and that simple payback and internal rate of return were the most common criteria. (NWN/503, Summers/7). Six of the 15 companies that provided their simple payback period identified a payback period of three years.

10 - REBUTTAL TESTIMONY OF BARBARA SUMMERS

Even though simple payback appears to be commonly accepted in industry, Staff discounted the Company's use of a simple payback as "confus[ing] and distract[ing]." (Staff/400, St. Brown/10).

Third, only 10 out of 48 companies responded to the survey question that asked for the participating companies' IRR figures. Of the 10 companies, 5 reported IRRs of 10-15\%. The other 5 companies reported IRR figures of 18%, $20 \%, 22 \%, 25 \%$, and 35%. The remaining companies' IRR figures are unknown. As such, Staff's reliance on the IRR range of $10-15 \%$ seems to be questionable given its reliance on such a small sample size and that half of the respondents provided higher IRRs.

Fourth, the Pew Survey is generally geared towards low risk energy efficiency investments. It is not specific to CHP, and does not take into account its additional risks and obstacles. On the other hand, Primen's 2003 Distributive Energy Market Study, ${ }^{6}$ which is relied upon in ICF International's Assesment of Technical and Economic Potential for CHP In Oregon, ${ }^{7}$ conducted in-depth interviews with 100 managers and executives at companies that had existing CHP systems or a strong interest in acquiring such systems in the 10 MW range. Then, surveyed another 806 businesses; 406 Mass Market businesses (10 kW to

[^3]11 - REBUTTAL TESTIMONY OF BARBARA SUMMERS

299 kW demand) and 400 th Large businesses (300 kW to 10 MW demand), again with questions targeted specifically at CHP, to include:

- 130 surveys with Manufacturing companies
- 115 surveys with Schools, Colleges, \& Universities;
- 100 with Restaurant and
- 461 with a mix of other SIC categories (excluding agriculture, mining, and construction).

IV. CUSTOMER INCENTIVE

Q. Staff has readdressed issues with the customer incentive level. Could you summarize Staff's concerns?
A. Staff states that customers would participate in the program if the customer incentive was less than $\$ 30$ per metric ton of carbon dioxide equivalent (MTCO2(e)) of emissions reduction because: 1) returns for customers would be twice that of NW Natural's cost of capital or exceeding twice that cost of capital; 2) the Company might be overstating the incremental costs of a CHP project and thus overstating the costs needing payback; and 3) customers have a benefit, due to improved power reliability, associated with building CHP which is not identified in the Company's payback computations. (Staff/400, St. Brown/3).
Q. How do you respond to these new issues?
A. First, regarding the returns for customers, the Company's 7.78% after tax cost of capital (or twice that much) does not represent the IRR required for corporate

12 - REBUTTAL TESTIMONY OF BARBARA SUMMERS
investment in energy efficiency or CHP. As mentioned above, half of the respondents in the Pew Survey reported an IRR criteria greater than 15% for energy efficiency projects, which are viewed as low risk investments compared to CHP.

Second, the Company is not overstating the incremental costs of a CHP Project. The estimates are based on vendor supplied data. For all but the 45 megawatt (MW) prototype, WSU used the 2010 U.S. Energy Information Administration (EIA) data. The installed costs are based on EIA estimates for a packaged system cost plus hot water interconnections, grid interconnection, site labor and materials, construction management, engineering, permitting, fees, contingency, and interest during construction. The EIA data is based on a study done by Oakridge National Labs (ORNL) where they monitored the installation of 281 sites which accounted for expected variations from site to site. The breakdown of installed costs for the 45 MW prototype is based on EPA data compiled by ICF from vendor-supplied data and published in the 2014 Catalog of CHP Technologies, Technology Characterization, Combustion Turbines, March 2015.

Third, power quality is a potential benefit of CHP, however that benefit exists presently and is not improved by the proposed program. The lack of a market for natural-gas fueled CHP in Oregon suggests that the power quality benefit has not motivated customers to install CHP. In addition, Staff has not
proposed any way to quantify this benefit or explained how it would impact a customer's decision to install CHP when the payback term or IRR are otherwise not acceptable.

Q. Has the Company performed any additional modeling of the IRR and

 payback using the updated eGRID numbers described above?A. Yes, we have. NW Natural requested that WSU re-run its model with just released 2012 eGrid non-baseload emissions to evaluate IRR and Payback. This is attached as Exhibit NWN/504. The table below summarizes the model using the base case at current Energy Trust of Oregon incentive levels and models a $\$ 30$ per MTCO2(e) incentive and $\$ 0.00$ incentive. The project IRRs and Paybacks are compared for the 2010 and updated 2012 eGrid recommendations.

Even though NW Natural does not believe the EPA estimates overstated the costs of the 45 MW prototype, NW Natural requested that WSU add a 45 MW prototype at 70\% of EPA reported installed costs to illustrate the impact on payback and IRR. The Company added $\$ 2$ Million to the estimate for the 45 MW units and $\$ 1.2$ million to the estimate for the 21.7 MW unit to account for the potential need for compression.

14 - REBUTTAL TESTIMONY OF BARBARA SUMMERS

Prototype	IRR		Payback		Zero 844 Incentive (Unaffected by eGrid)	
	2010	2012	2010	2012	IRR	Payback
Hospital 800,000 sf with Two 800 kW Recip Engines	10.6\%	12.7\%	6.2	5.6	4.9\%	8.9
Reciprocating Engine - 500 kW	12.2\%	14.9\%	5.7	5.0	5.2\%	8.7
Reciprocating Engine - 4.3 MW	28.9\%	32.0\%	2.9	2.7	18.7\%	3.9
Gas Turbine 21.7 MW, without compression	22.3\%	Not Run	4.1	Not Run	13.7\%	5.4
Gas Turbine 21.7 MW, with compression	20.9\%	21.7\%	4.3	4.3	12.7\%	5.7
Gas Turbine 45 MW, without compression	20.2\%	Not Run	4.4	Not Run	11.9\%	5.8
Gas Turbine 45 MW, with compression	19.9\%	19.9\%	4.5	4.5	11.2\%	6.0
Gas Turbine 45 MW, 70\% CapEx, with Compression	33.8\%	35.2\%	3.0	3.0	20.6\%	4.0

Technical Potential (100\%-95\% Availability and 100\% utilization of available waste
heat)

Prototype	IRR		Payback		Zero 844 Incentive Unaffected by eGrid)	
	2010	2012	2010	2012	IRR	Payback
Hospital - 800,000 sf with Two 800 kW Recip Engines	13.6%	16.7%	5.3	4.7	4.9%	8.9
Reciprocating Engine - 500 kW	15.9%	19.9%	4.8	4.1	5.2%	8.7
Reciprocating Engine - 4.3	34.6%	39.5%	2.6	2.4	18.7%	3.9
MW						
Gas Turbine - 21.7 MW, without compression	27.2%	Not Run	3.7	Not Run	13.7%	5.4
Gas Turbine - 21.7 MW, with compression	25.5%	26.8%	3.9	3.8	12.7%	5.7
Gas Turbine - 45 MW, without compression	24.9%	Not Run	3.9	Not Run	11.9%	5.8
Gas Turbine - 45 MW, with compression	24.9%	24.9%	4.0	4.0	11.2%	6.0
Gas Turbine - 45 MW, 70\% CapEx, with compression	41.6%	44.0%	2.7	2.6	20.6%	4.0

Q. Staff cites the San Diego Gas and Electric (SDGE) CHP Request for Offers
the appropriate level of incentives for a CHP Program to stimulate the market. (Staff/400, St. Brown/10). Do you agree?
A. No. The California CHP market is a mature market as a result California's Standard Offer 4 Contracts in response to the Public Utility Regulatory Policies Act (PURPA). There are 4,994 MWs of operating natural gas fueled qualifying facility (QF) Status Cogeneration facilities today in California. The San Diego Gas and Electric RFO is designed to transition from the existing QF CHP PURPA Program for larger CHP units. The Transition Period is a period in which a CHP Facility will either obtain a new power purchase agreement, sell into the wholesale market, shut down, or cease to export to the grid. The Oregon cogeneration market is nothing like the California cogeneration market. NW Natural is attempting to stimulate the Oregon CHP market to achieve a reduction in Carbon emissions. Staff's comparison is overly broad and is not analogous to the current state of CHP in Oregon.
Q. Staff continues to advocate for a reverse auction for the CHP Program. Why does the Company believe that a reverse auction would impair the CHP Program
A. In addition to the reasons provided in the Application and earlier rounds of testimony, reverse auctions will not be effective for the CHP Program because reverse auctions are most effective in highly competitive markets when the requirements are simple. In a June 1, 2015, Memorandum to Chief Officers and

Senior Procurement Executives, from Anne Rung, Administrator, Executive Office of the President, Office of Management and Budget regarding the Effective Use of Reverse Auctions, Executive Director Rung makes this point:

Is the requirement suited for a reverse auction? Reverse auctions are not a one-size-fits- all tool. Reverse auctions are likely to be most effective in a highly competitive marketplace when requirements are steady and relatively simple and might otherwise be acquired using either a sealed bid or achieving best value through "low price technically acceptable" source selection criteria, and result in fixed price agreements. These circumstances would typically exist in acquisitions for commercial items and simple services that often fall under the [simplified acquisition threshold]. As with any procurement, market research must be conducted to understand the marketplace and to determine if it is reasonable to assume that the potential benefits of a reverse auction can be achieved. (NWN/505, Summers/2).

In the case of carbon reduction, a competitive market does not exist and no regulatory mandates or laws exist that require commercial or industrial industries to reduce carbon emissions at the state or federal levels.

Additionally, the reverse auction concept is designed to drive prices down to a single award. A single award is not consistent with the objectives of the proposed program. NW Natural's program is designed to award multiple customers with the goal of providing certainty and technical support to encourage broad interest and participation, until such point where NW Natural has reached its base case.

18 - REBUTTAL TESTIMONY OF BARBARA SUMMERS

V. RISK SHARING

Q. Staff has proposed that NW Natural should share in the cost risks associated with the CHP Program if the program is poorly administered or mismanaged. (Staff/300, Klotz/4). Do you believe this request is appropriate, specifically for the CHP Program?
A. No. The costs of the CHP Program are tied to the success of the program. NW Natural will only pay participants for measured and verified carbon savings from CHP. If the program is not successful - for whatever reason - our ratepayers will only pay a proportional amount in relation to the carbon savings. For instance, if the Company only reaches 50% of the base case carbon reductions, customers will only pay for those savings.

VI. CONCLUSION

Q. Does this conclude your testimony?

A. Yes.

BEFORE THE

PUBLIC UTILITY COMMISSION OF OREGON

NW Natural

Exhibit 501 of Barbara Summers

UM 1744
Carbon Emission Reduction Program Combined Heat \& Power (CHP)

eGRID 2012
Summary Tables

eGRID2012 Summary Tables

(created 10/05/15)

1. eGRID2012 Subregion Emissions - Greenhouse Gases
2. eGRID2012 Subregion Emissions - Criteria Pollutants
3. eGRID2012 Subregion Output Emission Rates - Greenhouse Gases
4. eGRID2012 Subregion Output Emission Rates - Criteria Pollutants
5. eGRID2012 Subregion Resource Mix
6. eGRID2012 NERC Region Emissions
7. eGRID2012 NERC Region Output Emission Rates
8. eGRID2012 NERC Region Resource Mix
9. eGRID2012 Grid Gross Loss (\%)
10. eGRID2012 State Emissions and Input Emission Rates
11. eGRID2012 State Resource Mix
12. eGRID2012 Generation by Fuel Type and CO_{2} Emission Rates
13. eGRID2012 Subregion Emissions - Greenhouse Gases

eGRID subregion acronym	eGRID subregion name	Carbon dioxide (CO_{2})		Methane (CH_{4})		Nitrous oxide ($\mathrm{N}_{2} \mathrm{O}$)		Carbon dioxide equivalent $\left(\mathrm{CO}_{2} \mathrm{e}\right)$	
		$\begin{gathered} \text { Emissions } \\ \text { (tons) } \end{gathered}$	Total output emission rate (lb/MWh)	$\begin{gathered} \text { Emissions } \\ \text { (lbs) } \end{gathered}$	Total output emission rate (lb/GWh)	$\begin{gathered} \text { Emissions } \\ \text { (lbs) } \end{gathered}$	Total output emission rate (Ib/GWh)	$\begin{gathered} \text { Emissions } \\ \text { (tons) } \end{gathered}$	Total output emission rate (lb/MWh)
AKGD	ASCC Alaska Grid	3,382,037.0	1,268.73	140,402.7	26.34	40,490.5	7.59	3,389,787.2	1,271.64
AKMS	ASCC Miscellaneous	384,195.8	481.17	29,787.0	18.65	5,666.3	3.55	385,386.8	482.66
AZNM	WECC Southwest	102,534,225.3	1,152.89	3,317,864.6	18.65	2,686,986.1	15.11	102,985,545.7	1,157.96
CAMX	WECC California	67,187,988.1	650.31	6,429,630.8	31.12	1,172,434.9	5.67	67,437,084.4	652.72
ERCT	ERCOT All	205,873,315.5	1,143.04	6,015,952.8	16.70	4,443,235.0	12.33	206,625,056.6	1,147.21
FRCC	FRCC All	118,861,947.3	1,125.35	8,459,346.4	40.05	2,503,826.1	11.85	119,338,507.3	1,129.86
HIMS	HICC Miscellaneous	1,760,031.8	1,200.10	199,673.8	68.08	37,202.0	12.68	1,767,894.6	1,205.46
HIOA	HICC Oahu	5,939,881.8	1,576.38	681,311.9	90.41	162,405.3	21.55	5,972,208.4	1,584.95
MROE	MRO East	21,794,875.8	1,522.57	695,782.7	24.30	731,606.9	25.55	21,915,580.6	1,531.00
MROW	MRO West	145,305,369.2	1,425.15	5,627,262.8	27.60	4,947,215.7	24.26	146,130,871.2	1,433.25
NEWE	NPCC New England	38,377,520.5	637.90	8,764,225.4	72.84	1,288,397.3	10.71	38,669,246.4	642.75
NWPP	WECC Northwest	95,734,309.7	665.75	3,622,959.4	12.60	2,983,818.8	10.38	96,234,699.4	669.23
NYCW	NPCC NYC/Westchester	15,851,201.7	696.70	1,160,747.0	25.51	133,430.3	2.93	15,882,764.1	698.08
NYLI	NPCC Long Island	7,280,232.8	1,201.20	947,931.1	78.20	119,618.7	9.87	7,308,726.9	1,205.90
NYUP	NPCC Upstate NY	16,873,346.4	408.80	1,287,300.2	15.59	315,913.7	3.83	16,935,829.7	410.31
RFCE	RFC East	112,888,707.9	858.56	6,954,055.7	26.44	3,020,840.1	11.49	113,429,807.1	862.68
RFCM	RFC Michigan	68,119,780.7	1,569.23	2,635,889.2	30.36	2,093,696.0	24.12	68,471,962.7	1,577.34
RFCW	RFC West	391,126,291.4	1,379.48	9,701,816.8	17.11	12,286,300.3	21.67	393,132,519.0	1,386.55
RMPA	WECC Rockies	57,993,856.1	1,822.65	1,378,226.1	21.66	1,790,072.3	28.13	58,285,775.9	1,831.82
SPNO	SPP North	59,782,627.7	1,721.65	1,403,934.9	20.22	1,885,096.3	27.14	60,089,349.8	1,730.49
SPSO	SPP South	117,500,299.0	1,538.63	3,627,540.2	23.75	3,050,862.7	19.98	118,011,271.9	1,545.32
SRMV	SERC Mississippi Valley	95,886,176.4	1,052.92	3,816,210.1	20.95	1,931,912.9	10.61	96,225,693.1	1,056.65
SRMW	SERC Midwest	113,709,694.8	1,710.75	2,603,196.3	19.58	3,655,614.1	27.50	114,303,633.0	1,719.68
SRSO	SERC South	146,477,427.2	1,149.05	5,777,614.3	22.66	3,948,687.2	15.49	147,150,138.6	1,154.32
SRTV	SERC Tennessee Valley	153,167,116.4	1,337.15	3,982,959.3	17.39	4,761,521.4	20.78	153,946,973.3	1,343.96
SRVC	SERC Virginia/Carolina	135,132,027.1	932.87	6,937,947.2	23.95	4,229,617.5	14.60	135,860,466.3	937.90
U.S.		2,298,924,483.4	1,136.53	96,199,568.7	23.78	64,226,468.3	15.88	2,309,886,780.4	1,141.95

eGRID subregion acronym	eGRID subregion name	Nitrogen oxides (NO_{x})				Sulfur dioxide (SO_{2})	
		$\begin{gathered} \text { Emissions } \\ \text { (tons) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Total output } \\ & \text { emission } \\ & \text { rate (lb/MWh) } \end{aligned}$	Ozone season emissions (tons)	Ozone season total output emission rate (lb/MWh)	$\begin{gathered} \text { Emissions } \\ \text { (tons) } \\ \hline \end{gathered}$	Total output emission rate (lb/MWh)
AKGD	ASCC Alaska Grid	6,915.85	2.5944	2,806.53	2.8050	2,108.78	0.7911
AKMS	ASCC Miscellaneous	4,812.53	6.0272	2,012.32	6.9876	275.47	0.3450
AZNM	WECC Southwest	115,206.61	1.2954	52,010.92	1.2331	39,065.16	0.4392
CAMX	WECC California	34,618.62	0.3351	15,715.99	0.3307	20,665.19	0.2000
ERCT	ERCOT All	109,604.19	0.6085	52,291.10	0.5994	346,399.70	1.9233
FRCC	FRCC All	65,764.23	0.6226	32,261.83	0.6497	134,754.30	1.2758
HIMS	HICC Miscellaneous	7,464.00	5.0894	2,947.14	4.8250	5,732.57	3.9088
HIOA	HICC Oahu	7,869.41	2.0885	3,309.46	2.0767	19,550.87	5.1886
MROE	MRO East	17,598.10	1.2294	8,484.76	1.2619	59,760.10	4.1748
MROW	MRO West	164,050.95	1.6090	69,021.42	1.5795	299,484.96	2.9373
NEWE	NPCC New England	24,559.21	0.4082	8,725.84	0.3221	60,433.63	1.0045
NWPP	WECC Northwest	104,109.15	0.7240	41,249.74	0.6687	109,096.30	0.7587
NYCW	NPCC NYC/Westchester	7,583.66	0.3333	3,652.65	0.3396	1,458.43	0.0641
NYLI	NPCC Long Island	4,376.57	0.7221	2,479.14	0.7690	5,949.92	0.9817
NYUP	NPCC Upstate NY	11,393.39	0.2760	5,027.66	0.2818	26,821.30	0.6498
RFCE	RFC East	104,919.63	0.7980	50,809.70	0.8539	185,487.76	1.4107
RFCM	RFC Michigan	65,732.87	1.5142	29,263.66	1.4687	196,167.89	4.5190
RFCW	RFC West	341,864.18	1.2057	152,302.40	1.2266	961,849.06	3.3924
RMPA	WECC Rockies	62,952.61	1.9785	27,836.57	2.0068	51,254.96	1.6109
SPNO	SPP North	47,993.46	1.3821	23,430.37	1.3908	59,998.41	1.7279
SPSO	SPP South	125,199.34	1.6394	59,061.00	1.6322	194,323.79	2.5446
SRMV	SERC Mississippi Valley	89,229.17	0.9798	43,888.72	1.0275	134,574.22	1.4777
SRMW	SERC Midwest	85,901.12	1.2924	40,059.74	1.3795	212,369.32	3.1951
SRSO	SERC South	96,692.66	0.7585	45,953.42	0.7621	274,933.11	2.1567
SRTV	SERC Tennessee Valley	110,837.27	0.9676	51,044.65	0.9966	259,061.01	2.2616
SRVC	SERC Virginia/Carolina	96,438.08	0.6658	46,098.34	0.6916	155,846.09	1.0759
U.S.		1,913,686.86	0.9461	871,745.09	0.9460	3,817,422.30	1.8872

3. eGRID2012 Subregion Output Emission Rates - Greenhouse Gases ${ }^{\text {Summers/4 }}$

eGRID subregion acronym	eGRID subregion name	Total output emission rates			Fossil fuel output emission rate CO_{2} $(\mathrm{lb} / \mathrm{MWh})$	Non-baseload output emission rates		
		$\begin{gathered} \mathrm{CO}_{2} \\ \text { (lb/MWh) } \end{gathered}$	$\begin{gathered} \mathrm{CH}_{4} \\ \text { (lb/GWh) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N}_{2} \mathrm{O} \\ (\mathrm{lb} / \mathrm{GWh}) \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{CO}_{2} \\ \text { (lb/MWh) } \end{gathered}$	$\underset{\text { (lb/GWh) }}{\mathrm{CH}_{4}}$	$\begin{gathered} \mathrm{N}_{2} \mathrm{O} \\ (\mathrm{lb} / \mathrm{GWh}) \end{gathered}$
AKGD	ASCC Alaska Grid	1,268.73	26.34	7.59	1,413.52	1,377.77	28.66	3.38
AKMS	ASCC Miscellaneous	481.17	18.65	3.55	1,400.38	1,404.49	55.64	10.70
AZNM	WECC Southwest	1,152.89	18.65	15.11	1,613.86	1,236.02	21.56	10.52
CAMX	WECC California	650.31	31.12	5.67	986.41	1,018.87	37.61	6.04
ERCT	ERCOT All	1,143.04	16.70	12.33	1,418.13	1,280.59	21.53	10.71
FRCC	FRCC All	1,125.35	40.05	11.85	1,216.71	1,333.93	38.81	13.79
HIMS	HICC Miscellaneous	1,200.10	68.08	12.68	1,656.12	1,331.47	96.82	17.15
HIOA	HICC Oahu	1,576.38	90.41	21.55	1,582.88	1,402.27	118.01	19.43
MROE	MRO East	1,522.57	24.30	25.55	2,077.12	1,739.00	30.17	26.26
MROW	MRO West	1,425.15	27.60	24.26	2,152.46	1,965.21	52.60	32.72
NEWE	NPCC New England	637.90	72.84	10.71	980.27	1,079.73	67.70	12.90
NWPP	WECC Northwest	665.75	12.60	10.38	1,858.75	1,579.07	38.30	22.84
NYCW	NPCC NYC/Westchester	696.70	25.51	2.93	1,175.61	1,081.11	22.50	2.32
NYLI	NPCC Long Island	1,201.20	78.20	9.87	1,129.27	1,303.42	31.40	3.56
NYUP	NPCC Upstate NY	408.80	15.59	3.83	1,085.63	1,228.56	39.00	13.04
RFCE	RFC East	858.56	26.44	11.49	1,469.42	1,492.01	32.74	18.69
RFCM	RFC Michigan	1,569.23	30.36	24.12	1,853.55	1,856.21	33.91	28.72
RFCW	RFC West	1,379.48	17.11	21.67	1,942.40	1,791.71	21.76	27.85
RMPA	WECC Rockies	1,822.65	21.66	28.13	2,094.71	1,669.58	22.89	20.66
SPNO	SPP North	1,721.65	20.22	27.14	2,149.67	2,112.08	26.11	30.63
SPSO	SPP South	1,538.63	23.75	19.98	1,729.36	1,590.13	27.60	16.19
SRMV	SERC Mississippi Valley	1,052.92	20.95	10.61	1,384.45	1,301.65	27.43	9.75
SRMW	SERC Midwest	1,710.75	19.58	27.50	2,069.72	1,917.96	23.29	28.84
SRSO	SERC South	1,149.05	22.66	15.49	1,518.99	1,696.79	28.17	24.83
SRTV	SERC Tennessee Valley	1,337.15	17.39	20.78	1,912.59	1,743.96	22.84	26.11
SRVC	SERC Virginia/Carolina	932.87	23.95	14.60	1,665.71	1,790.57	53.10	29.94
U.S.		1,136.53	23.78	15.88	1,640.13	1,549.36	30.99	19.86

4. eGRID2012 Subregion Output Emission Rates - Criteria Pollutants ${ }^{\text {Stmmers/5 }}$

		Total	tput emissi	rates	Fossil fu	output emis	n rates	Non-basel	d output em	ion rates
eGRID subregion acronym	eGRID subregion name	NO_{x} (lb/MWh)	Ozone season NO_{x} (lb/MWh)	SO_{2} (lb/MWh)	NO_{x} (lb/MWh)	Ozone season NO_{x} (Ib/MWh)	SO_{2} (lb/MWh)	$\begin{gathered} \mathrm{NO}_{\mathrm{x}} \\ (\mathrm{Ib} / \mathrm{MWh}) \\ \hline \end{gathered}$	Ozone season NO_{x} (Ib/MWh)	SO_{2} (lb/MWh)
AKGD	ASCC Alaska Grid	2.5944	2.8050	0.7911	2.8905	3.1031	0.8814	2.5108	2.2915	0.3088
AKMS	ASCC Miscellaneous	6.0272	6.9876	0.3450	17.5415	17.8896	1.0041	18.6055	18.7183	1.0812
AZNM	WECC Southwest	1.2954	1.2331	0.4392	1.8060	1.6804	0.6052	1.0309	1.1602	0.3253
CAMX	WECC California	0.3351	0.3307	0.2000	0.4621	0.4732	0.1901	0.3514	0.4355	0.2790
ERCT	ERCOT All	0.6085	0.5994	1.9233	0.7540	0.7226	2.3855	0.7249	0.8523	2.0299
FRCC	FRCC All	0.6226	0.6497	1.2758	0.5979	0.6319	0.8298	0.9167	1.1777	1.6026
HIMS	HICC Miscellaneous	5.0894	4.8250	3.9088	6.9669	6.9676	5.3730	3.1897	3.0464	4.7750
HIOA	HICC Oahu	2.0885	2.0767	5.1886	2.0408	2.0182	5.3114	2.3760	2.4102	3.7587
MROE	MRO East	1.2294	1.2619	4.1748	1.5928	1.5747	5.5208	1.6954	1.8106	4.7298
MROW	MRO West	1.6090	1.5795	2.9373	2.3633	2.3016	4.4187	2.5376	2.3880	4.9129
NEWE	NPCC New England	0.4082	0.3221	1.0045	0.2805	0.2506	0.4033	0.6140	0.6182	1.3580
NWPP	WECC Northwest	0.7240	0.6687	0.7587	1.9805	2.0195	1.9581	1.5959	1.5030	1.6177
NYCW	NPCC NYC/Westchester	0.3333	0.3396	0.0641	0.4625	0.4622	0.0174	0.6319	0.8141	0.0270
NYLI	NPCC Long Island	0.7221	0.7690	0.9817	0.6069	0.6826	0.1798	0.8688	1.2600	0.3689
NYUP	NPCC Upstate NY	0.2760	0.2818	0.6498	0.6121	0.5658	1.2271	1.0062	1.3064	2.3801
RFCE	RFC East	0.7980	0.8539	1.4107	1.3537	1.3676	1.9385	1.4677	1.8031	2.5083
RFCM	RFC Michigan	1.5142	1.4687	4.5190	1.7460	1.6503	5.2944	1.8566	1.9122	5.6384
RFCW	RFC West	1.2057	1.2266	3.3924	1.6892	1.6721	4.7439	1.6493	1.7673	5.7097
RMPA	WECC Rockies	1.9785	2.0068	1.6109	2.2733	2.2827	1.8509	2.2328	2.5370	1.5147
SPNO	SPP North	1.3821	1.3908	1.7279	1.7148	1.7058	2.1437	2.0950	2.4636	3.0002
SPSO	SPP South	1.6394	1.6322	2.5446	1.8243	1.7605	2.8168	1.8101	2.2179	1.8000
SRMV	SERC Mississippi Valley	0.9798	1.0275	1.4777	1.2474	1.2715	1.7843	1.3977	1.7023	1.2369
SRMW	SERC Midwest	1.2924	1.3795	3.1951	1.5634	1.6381	3.8652	1.2956	1.3816	3.3130
SRSO	SERC South	0.7585	0.7621	2.1567	0.9410	0.9139	2.7071	1.4589	1.8026	4.6878
SRTV	SERC Tennessee Valley	0.9676	0.9966	2.2616	1.3733	1.3649	3.1953	1.2932	1.5146	2.9791
SRVC	SERC Virginia/Carolina	0.6658	0.6916	1.0759	1.1051	1.1170	1.7143	1.6038	1.8497	3.3203
U.S.		0.9461	0.9460	1.8872	1.3268	1.2959	2.5741	1.3555	1.5557	2.9317

[^4]| eGRID subregion acronym | eGRID subregion name | Nameplate capacity (MW) | Net generation (MWh) | Generation Resource Mix (percent) | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Coal | Oil | Gas | Other fossil | Nuclear | Hydro | Biomass | Wind | Solar | Geothermal | Other unknown/ purchased fuel |
| AKGD | ASCC Alaska Grid | 2,007.8 | 5,331,368.0 | 12.8477 | 11.5119 | 65.3975 | 0.0000 | 0.0000 | 10.2429 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| AKMS | ASCC Miscellaneous | 754.2 | 1,596,926.5 | 0.0000 | 26.5523 | 7.6469 | 0.0000 | 0.0000 | 64.4336 | 0.1606 | 1.2066 | 0.0000 | 0.0000 | 0.0000 |
| AZNM | WECC Southwest | 63,160.5 | 177,873,710.9 | 37.3633 | 0.0501 | 33.9397 | 0.0042 | 17.9531 | 6.3295 | 0.3291 | 0.9724 | 0.6563 | 2.3956 | 0.0067 |
| CAMX | WECC California | 95,000.9 | 206,633,044.0 | 5.3301 | 0.8232 | 58.5863 | 0.0875 | 8.9567 | 12.7375 | 2.8533 | 5.0012 | 0.8732 | 4.4331 | 0.3180 |
| ERCT | ERCOT All | 115,223.9 | 360,221,517.3 | 30.5073 | 0.9452 | 49.0477 | 0.1204 | 10.6715 | 0.1091 | 0.1977 | 8.2871 | 0.0328 | 0.0000 | 0.0812 |
| FRCC | FRCC All | 78,701.1 | 211,244,527.5 | 19.4235 | 0.6443 | 68.0575 | 0.6566 | 8.4594 | 0.0712 | 1.7642 | 0.0000 | 0.0917 | 0.0000 | 0.8317 |
| HIMS | HICC Miscellaneous | 974.2 | 2,933,143.4 | 1.3576 | 64.2117 | 0.0000 | 7.3575 | 0.0000 | 3.9064 | 3.6304 | 10.4875 | 0.1507 | 8.8982 | 0.0000 |
| HIOA | HICC Oahu | 2,107.4 | 7,536,125.3 | 19.8712 | 74.9241 | 0.0000 | 1.8820 | 0.0000 | 0.0000 | 2.3830 | 0.9371 | 0.0025 | 0.0000 | 0.0000 |
| MROE | MRO East | 10,323.2 | 28,629,056.0 | 64.3153 | 0.9998 | 7.8554 | 0.1644 | 15.7738 | 2.9180 | 3.7800 | 4.0806 | 0.0000 | 0.0000 | 0.1126 |
| MROW | MRO West | 61,555.1 | 203,915,893.0 | 60.8336 | 0.1281 | 5.0019 | 0.1446 | 10.8341 | 6.2900 | 1.2954 | 15.2138 | 0.0000 | 0.0000 | 0.2584 |
| NEWE | NPCC New England | 40,761.9 | 120,324,524.1 | 2.9468 | 0.3392 | 51.9358 | 1.6642 | 30.0154 | 5.8701 | 6.0580 | 1.0680 | 0.0275 | 0.0000 | 0.0748 |
| NWPP | WECC Northwest | 80,235.0 | 287,596,498.3 | 24.5037 | 0.3463 | 10.6587 | 0.1333 | 3.2454 | 52.2177 | 1.0982 | 7.0260 | 0.0040 | 0.6476 | 0.1192 |
| NYCW | NPCC NYC/Westchester | 14,988.5 | 45,503,844.6 | 0.0000 | 0.1812 | 61.6948 | 0.4255 | 37.2211 | 0.0032 | 0.4741 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| NYLI | NPCC Long Island | 6,031.2 | 12,121,635.9 | 0.0000 | 2.8882 | 89.2010 | 3.5290 | 0.0000 | 0.0000 | 3.9470 | 0.0000 | 0.4349 | 0.0000 | 0.0000 |
| NYUP | NPCC Upstate NY | 28,527.0 | 82,550,860.0 | 5.5130 | 0.1820 | 30.3999 | 0.3818 | 28.8761 | 29.2443 | 1.7995 | 3.6034 | 0.0000 | 0.0000 | 0.0000 |
| RFCE | RFC East | 81,434.8 | 262,972,203.0 | 23.8506 | 0.4047 | 30.7631 | 0.6749 | 40.9183 | 1.1175 | 1.3829 | 0.7618 | 0.1262 | 0.0000 | 0.0000 |
| RFCM | RFC Michigan | 30,753.9 | 86,819,386.1 | 58.5744 | 0.3601 | 24.9262 | 0.7525 | 11.8643 | -0.3321 | 2.0364 | 1.8182 | 0.0000 | 0.0000 | 0.0000 |
| RFCW | RFC West | 165,405.0 | 567,064,674.2 | 58.7362 | 0.5280 | 11.0509 | 0.6630 | 25.7250 | 0.6682 | 0.5006 | 2.0570 | 0.0136 | 0.0000 | 0.0575 |
| RMPA | WECC Rockies | 19,921.2 | 63,636,839.6 | 70.3646 | 0.0411 | 16.6244 | 0.0000 | 0.0000 | 3.1724 | 0.0911 | 9.3627 | 0.2567 | 0.0000 | 0.0870 |
| SPNO | SPP North | 23,788.5 | 69,447,958.9 | 70.6814 | 0.0918 | 9.8012 | 0.0285 | 11.9297 | 0.0981 | 0.0873 | 7.2821 | 0.0000 | 0.0000 | 0.0000 |
| SPSO | SPP South | 50,658.9 | 152,734,002.2 | 48.4033 | 0.7668 | 39.4001 | 0.1997 | 0.0000 | 2.0027 | 1.4982 | 7.6329 | 0.0770 | 0.0000 | 0.0193 |
| SRMV | SERC Mississippi Valley | 52,017.2 | 182,134,134.3 | 20.5889 | 1.2729 | 53.5965 | 0.7162 | 21.1099 | 0.8429 | 1.7362 | 0.0000 | 0.0000 | 0.0000 | 0.1366 |
| SRMW | SERC Midwest | 38,922.6 | 132,935,700.9 | 75.4034 | 0.0680 | 6.8652 | 0.1280 | 15.1141 | 0.2213 | 0.0972 | 1.9076 | 0.0000 | 0.0000 | 0.1952 |
| SRSO | SERC South | 78,562.6 | 254,954,509.9 | 33.8126 | 0.1918 | 41.9257 | 0.0903 | 19.1033 | 1.7819 | 3.0938 | 0.0000 | 0.0006 | 0.0000 | 0.0000 |
| SRTV | SERC Tennessee Valley | 67,967.3 | 229,094,795.2 | 53.6644 | 0.7361 | 15.5289 | 0.0097 | 22.3402 | 6.9009 | 0.7985 | 0.0207 | 0.0006 | 0.0000 | 0.0000 |
| SRVC | SERC Virginia/Carolina | 88,528.9 | 289,711,035.7 | 34.7513 | 0.2012 | 20.2079 | 0.2173 | 41.1632 | 0.8794 | 2.4344 | 0.0000 | 0.0380 | 0.0000 | 0.1074 |
| U.S. | | 1,309,394.6 | 4,045,517,914.7 | 37.4156 | 0.7034 | 30.2949 | 0.3683 | 19.0169 | 6.7030 | 1.4404 | 3.4476 | 0.1035 | 0.3842 | 0.1221 |

			Nitrogen o	es (NO_{x})		Sulfur diox	(SO_{2})	Carbon diox	(CO_{2})	Methan	$\left(\mathrm{CH}_{4}\right)$	Nitrous 0	($\mathrm{N}_{2} \mathrm{O}$)
NERC region acronym	NERC region name	$\begin{gathered} \text { Emissions } \\ \text { (tons) } \end{gathered}$	Total output emission rate (lb/MWh)	Ozone season emissions (tons)		$\begin{gathered} \text { Emissions } \\ \text { (tons) } \end{gathered}$	Total output emission rate ($\mathrm{lb} / \mathrm{MWh}$)	$\underset{\text { Emissions }}{\text { (tons) }}$	Total output emission rate (lb/MWh)	$\begin{gathered} \text { Emissions } \\ (\mathrm{lbs}) \end{gathered}$		$\begin{gathered} \substack{\text { Emissions } \\ \text { (lbs) }} \\ \hline \end{gathered}$	Total output emission rate (lb/GWh)
ASCC	Alaska Systems Coordinating Council	11,728.39	3.3856	4,818.86	3.7399	2,384.25	0.6883	3,766,232.7	1,087.20	170,189.7	24.56	46,156.7	6.66
FRCC	Florida Reliability Coordinating Council	65,764.23	0.6226	32,261.83	0.6497	134,754.30	1.2758	118,861,947.3	1,125.35	8,459,346.4	40.05	2,503,826.1	11.85
HICC	Hawaiian Islands Coordinating Council	15,333.42	2.9292	6,256.60	2.8382	25,283.44	4.8300	7,699,913.5	1,470.96	880,985.7	84.15	199,607.3	19.07
MRO	Midwest Reliability Organization	181,649.04	1.5623	77,506.18	1.5371	359,245.06	3.0897	167,100,245.0	1,437.14	6,323,045.5	27.19	5,678,822.6	24.42
NPCC	Northeast Power Coordinating Council	47,912.82	0.3679	19,885.29	0.3376	94,663.28	0.7268	78,382,301.3	601.78	12,160,203.7	46.68	1,857,360.1	7.13
RFC	Reliability First Corporation	512,516.67	1.1180	232,375.76	1.1414	1,343,504.72	2.9307	572,134,780.0	1,248.04	19,291,761.7	21.04	17,400,836.4	18.98
SERC	SERC Reliability Corporation	479,098.31	0.8800	227,044.88	0.9084	1,036,783.74	1.9044	644,372,442.0	1,183.61	23,117,927.2	21.23	18,527,352.9	17.02
SPP	Southwest Power Pool	173,192.80	1.5590	82,491.37	1.5555	254,322.20	2.2893	177,282,926.7	1,595.84	5,031,475.1	22.65	4,935,959.0	22.22
TRE	Texas Regional Entity	109,604.19	0.6085	52,291.10	0.5994	346,399.70	1.9233	205,873,315.5	1,143.04	6,015,952.8	16.70	4,443,235.0	12.33
WECC	Western Electricity Coordinating Council	316,886.98	0.8614	136,813.23	0.8279	220,081.60	0.5983	323,450,379.3	879.25	14,748,681.0	20.05	8,633,312.1	11.73
U.S.		1,913,686.86	0.9461	871,745.09	0.9460	3,817,422.30	1.8872	2,298,924,483.4	1,136.53	96,199,568.7	23.78	64,226,468.3	15.88

This is a representational map; many of the boundaries shown on this map are approximate because they are based on companies, not on strictly geographical boundaries.

$\underset{\substack{\text { Negion } \\ \text { recronym }}}{\text { ren }}$	NERC region name	Total output emissions rates						Fossil fuel output emission rates				Non-baseload output emission rates					
		$\begin{gathered} \mathrm{NO}_{\mathrm{x}} \\ (\mathrm{lb} / \mathrm{MWh}) \\ \hline \end{gathered}$	Ozone season NO_{x} ($\mathrm{lb} / \mathrm{MWh}$)	$\begin{gathered} \mathrm{SO}_{2} \\ \text { (lb/MWh) } \end{gathered}$	$\begin{gathered} \mathrm{CO}_{2} \\ (\mathrm{lb} / \mathrm{MWh}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{CH}_{4} \\ (\mathrm{Ib} / \mathrm{GWh}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N}_{2} \mathrm{O} \\ (\mathrm{lb} / \mathrm{GWh}) \end{gathered}$	$\begin{gathered} \mathrm{NO}_{\mathrm{x}} \\ (\mathrm{lb} / \mathrm{MWh}) \\ \hline \end{gathered}$	Ozone season NO_{x} (lb/MWh)	$\begin{gathered} \mathrm{SO}_{2} \\ (\mathrm{lb} / \mathrm{MWh}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{CO}_{2} \\ (\mathrm{lb} / \mathrm{MWh}) \\ \hline \end{gathered}$	$\underset{\text { (Ib/MWh) }}{\mathrm{NO}_{\mathrm{x}}}$	Ozone season NO_{x} (lb/MWh)	$\begin{gathered} \mathrm{SO}_{2} \\ \text { (lb/MWh) } \end{gathered}$	$\begin{gathered} \mathrm{CO}_{2} \\ (\mathrm{lb} / \mathrm{MWh}) \end{gathered}$	$\begin{gathered} \mathrm{CH}_{4} \\ (\mathrm{Ib} / \mathrm{GWh}) \end{gathered}$	$\begin{gathered} \mathrm{N}_{2} \mathrm{O} \\ (\mathrm{lb} / \mathrm{GWh}) \end{gathered}$
ASCC	Alaska Systems Coordinating Council	3.3856	3.7399	0.6883	1,087.20	24.56	6.66	4.3976	4.7388	0.8940	1,412.17	8.4473	7.0044	0.59	1,387.62	38.61	6.08
FRCC	Florida Reliability Coordinating Council	0.6226	0.6497	1.2758	1,125.35	40.05	11.85	0.5979	0.6319	0.8298	1,216.71	0.9167	1.1777	1.60	1,333.93	38.81	13.79
HICC	Hawaiian Islands Coordinating Council	2.9292	2.8382	4.8300	1,470.96	84.15	19.07	3.1582	3.0832	5.3254	1,599.49	2.5679	2.5622	4.00	1,385.57	113.01	18.89
MRO	Midwest Reliability Organization	1.5623	1.5371	3.0897	1,437.14	27.19	24.42	2.2599	2.1934	4.5666	2,142.35	2.3966	2.2883	4.88	1,927.33	48.85	31.64
NPCC	Northeast Power Coordinating Council	0.3679	0.3376	0.7268	601.78	46.68	7.13	0.4175	0.4036	0.4849	1,056.01	0.7448	0.8939	1.28	1,141.31	48.32	10.05
RFC	Reliability First Corporation	1.1180	1.1414	2.9307	1,248.04	21.04	18.98	1.6174	1.5947	4.1529	1,821.32	1.6287	1.7932	4.91	1,724.93	25.92	25.68
SERC	SERC Reliability Corporation	0.8800	0.9084	1.9044	1,183.61	21.23	17.02	1.2125	1.2141	2.6013	1,688.12	1.4155	1.6727	3.16	1,670.65	30.92	23.50
SPP	Southwest Power Pool	1.5590	1.5555	2.2893	1,595.84	22.65	22.22	1.7923	1.7445	2.6202	1,852.14	1.8751	2.2775	2.07	1,709.23	27.26	19.48
TRE	Texas Regional Entity	0.6085	0.5994	1.9233	1,143.04	16.70	12.33	0.7540	0.7226	2.3855	1,418.13	0.7249	0.8523	2.03	1,280.59	21.53	10.71
WECC	Western Electricity Coordinating Council	0.8614	0.8279	0.5983	879.25	20.05	11.73	1.4806	1.4442	0.9681	1,536.66	1.0338	1.1242	0.71	1,278.28	31.09	12.69
U.S.		0.9461	0.9460	1.8872	1,136.53	23.78	15.88	1.3268	1.2959	2.5741	1,640.13	1.3555	1.5557	2.9317	1,549.36	30.99	19.86

This is a representational map; many of the boundaries shown on this map are approximate because they are based on companies, not on strictly geographical boundaries.

NERC region acronym	NERC region name	Nameplate capacity (MW)	Net Generation (MWh)	Generation Resource Mix (percent)										
				Coal	Oil	Gas	Other fossil	Nuclear	Hydro	Biomass	Wind	Solar	Geothermal	Other unknown/ purchased fuel
ASCC	Alaska Systems Coordinating Council	2,762.0	6,928,294.5	9.8864	14.9786	52.0863	0.0000	0.0000	22.7335	0.0370	0.2781	0.0000	0.0000	0.0000
FRCC	Florida Reliability Coordinating Council	80,756.1	211,244,527.5	19.4235	0.6443	68.0575	0.6566	8.4594	0.0712	1.7642	0.0000	0.0917	0.0000	0.8317
HICC	Hawaiian Islands Coordinating Council	3,081.6	10,469,268.7	14.6843	71.9229	0.0000	3.4161	0.0000	1.0945	2.7325	3.6128	0.0440	2.4930	0.0000
MRO	Midwest Reliability Organization	72,028.2	232,544,949.0	61.2622	0.2354	5.3532	0.1470	11.4422	5.8749	1.6013	13.8432	0.0000	0.0000	0.2405
NPCC	Northeast Power Coordinating Council	90,299.4	260,500,864.6	3.1082	0.3804	48.5499	1.1282	29.5164	11.9793	3.6349	1.6352	0.0330	0.0000	0.0346
RFC	Reliability First Corporation	279,506.7	916,856,263.3	48.7150	0.4767	18.0186	0.6749	28.7703	0.7023	0.8991	1.6629	0.0446	0.0000	0.0356
SERC	SERC Reliability Corporation	333,238.6	1,088,830,176.0	41.1051	0.4746	28.2648	0.2164	25.5026	2.2712	1.8424	0.2373	0.0104	0.0000	0.0752
SPP	Southwest Power Pool	74,092.2	222,181,961.2	55.3668	0.5558	30.1483	0.1462	3.7289	1.4073	1.0572	7.5232	0.0529	0.0000	0.0133
TRE	Texas Regional Entity	115,787.6	360,221,517.3	30.5073	0.9452	49.0477	0.1204	10.6715	0.1091	0.1977	8.2871	0.0328	0.0000	0.0812
WECC	Western Electricity Coordinating Council	257,842.2	735,740,092.8	26.1944	0.3822	30.2637	0.0777	8.1245	25.7935	1.3181	5.1959	0.4277	2.0773	0.1451
U.S.		1,309,394.6	4,045,517,914.7	37.4156	0.7034	30.2949	0.3683	19.0169	6.7030	1.4404	3.4476	0.1035	0.3842	0.1221

This is a representational map; many of the boundaries shown on this map are approximate because they are based on companies, not on strictly geographical boundaries.
USEPA eGRID2012
9. Year 2012 eGRID Grid Gross Loss (\%)

Region	Grid Gross Loss (\%)
Eastern	
Western	9.17
ERCOT	5.76
Alaska	7.03
Hawaii	8.66
U.S.	7.69

10. eGRID2012 State Emissions and Input Emission Rates

	Nitrogen oxides (NO_{x})				Sulfur dioxide ($\mathbf{S O}_{2}$)		Carbon dioxide (CO_{2})		$\begin{gathered} \text { Methane } \\ \left(\mathrm{CH}_{4}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Nitrous oxide } \\ & \left(\mathrm{N}_{2} \mathrm{O}\right) \end{aligned}$	Carbon dioxide equivalent $\left(\mathrm{CO}_{2} \mathrm{e}\right)$
State	$\underset{\text { (tons) }}{\text { Emissions }}$		$\begin{gathered} \text { Ozone } \\ \text { season } \\ \text { emissions } \\ \text { (tons) } \end{gathered}$	Ozone season input emission rate ($\mathrm{Ib} / \mathrm{MMBtu}$)	Emissions (tons)	$\begin{gathered} \text { Input } \\ \text { emission } \\ \text { rate } \\ \text { (Ib/MMBtu) } \end{gathered}$	Emissions (tons)	Input emission rate (lb/MMBtu)	Emissions (lbs)	Emissions (Ibs)	Emissions (tons)
AK	11728.39	0.4248	4818.86	0.4385	2384.25	0.0864	3,766,232.7	136.43	170,189.7	46,156.7	3,775,174.0
AL	49346.43	0.1050	24871.13	0.1087	137191.46	0.2918	76,372,600.9	162.46	2,944,703.1	2,041,775.6	76,719,995.5
AR	37359.33	0.1618	17430.69	0.1577	82001.39	0.3552	40,020,363.7	173.36	1,562,067.5	1,244,521.8	40,229,666.2
AZ	49017.27	0.1462	21695.77	0.1345	21055.10	0.0628	58,602,854.8	174.84	1,724,213.4	1,588,514.7	58,867,178.8
CA	18268.77	0.0357	8645.91	0.0376	17622.66	0.0345	57,165,609.7	111.84	6,596,594.8	894,245.8	57,373,339.8
CO	51081.16	0.2232	23006.63	0.2237	41588.09	0.1817	43,843,974.1	191.56	1,063,915.8	1,320,662.8	44,059,835.2
CT	4385.74	0.0600	2208.79	0.0664	19617.59	0.2685	9,332,621.5	127.72	2,009,867.9	264,162.7	9,394,670.3
DC	45.36	0.1309	26.97	0.1447	23.10	0.0667	44,221.2	127.66	2,367.3	350.4	44,300.4
DE	2412.33	0.0599	1264.42	0.0625	3279.30	0.0814	5,424,329.7	134.63	184,373.8	78,240.4	5,438,386.9
FL	72573.66	0.0840	35418.09	0.0857	142273.76	0.1646	125,651,562.0	145.39	8,748,624.0	2,690,783.8	126,160,137.9
GA	38558.19	0.0978	16537.20	0.0815	115772.35	0.2938	65,893,467.8	167.20	2,403,508.2	1,804,357.7	66,198,380.1
HI	15333.42	0.3349	6256.60	0.3291	25283.44	0.5523	7,699,913.5	168.19	880,985.7	199,607.3	7,740,103.0
IA	36946.08	0.1895	16579.87	0.1869	96060.26	0.4926	39,703,157.9	203.60	914,611.3	1,301,654.2	39,914,140.8
ID	649.87	0.0695	229.16	0.0535	776.63	0.0831	885,058.9	94.68	143,366.7	26,625.3	890,691.2
IL	58676.99	0.1186	23716.72	0.1051	167044.47	0.3378	98,493,066.0	199.15	2,284,823.0	3,096,563.1	98,997,023.9
IN	106788.30	0.1917	45383.55	0.1826	280009.33	0.5027	109,335,741.6	196.29	2,645,075.2	3,476,021.9	109,902,298.3
KS	34307.96	0.1944	16700.91	0.1924	32927.81	0.1866	35,312,851.8	200.14	820,114.2	1,113,954.1	35,494,125.9
KY	80461.03	0.1743	36021.19	0.1735	186531.72	0.4041	93,278,019.4	202.09	2,171,107.4	3,115,383.1	93,783,700.4
LA	57596.35	0.1412	27903.34	0.1430	94601.58	0.2319	59,664,031.3	146.23	2,404,235.3	1,163,119.6	59,869,559.3
MA	11083.45	0.0891	3206.11	0.0514	27474.68	0.2209	16,287,831.5	130.98	2,872,403.6	450,408.3	16,387,805.1
MD	17762.97	0.1464	8431.79	0.1314	33960.21	0.2799	22,269,423.2	183.52	1,276,615.9	719,514.9	22,394,352.5
ME	4536.44	0.1007	1581.94	0.0814	9937.79	0.2205	4,056,809.3	90.03	1,951,507.9	277,885.7	4,120,372.4
MI	71122.96	0.1817	31489.24	0.1699	204752.48	0.5230	71,154,710.4	181.74	3,027,319.3	2,247,953.6	71,534,912.4
MN	30490.58	0.1823	12141.84	0.1644	29425.86	0.1760	30,282,137.1	181.10	2,382,107.5	1,112,529.7	30,479,565.6
MO	72777.44	0.1862	35742.01	0.1937	148577.63	0.3801	79,170,368.7	202.56	1,817,465.0	2,562,970.0	79,586,487.8
MS	20935.08	0.1067	11216.50	0.1140	39046.53	0.1989	26,741,087.0	136.23	1,190,006.1	445,222.4	26,822,591.5
MT	18086.67	0.2100	6045.49	0.2077	25992.63	0.3017	17,863,470.4	207.36	400,813.4	583,315.9	17,958,092.9
NC	48807.76	0.1408	23611.01	0.1395	60973.29	0.1760	61,760,659.6	178.23	2,669,867.9	1,970,798.0	62,094,166.9
ND	48794.93	0.3168	20763.77	0.3224	86794.80	0.5636	33,454,500.2	217.22	719,669.8	1,074,306.0	33,628,574.2
NE	28440.45	0.2100	11834.00	0.2027	63840.56	0.4713	28,008,190.7	206.76	628,880.0	918,519.8	28,157,164.6
NH	3598.88	0.0828	1248.76	0.0671	3324.05	0.0765	4,920,946.3	113.24	1,441,319.2	235,472.1	4,972,578.3
NJ	6494.48	0.0500	3744.45	0.0534	12195.68	0.0940	16,860,463.9	129.91	1,436,774.7	287,520.8	16,920,115.8
NM	60305.34	0.3502	27327.22	0.3390	16564.06	0.0962	32,310,828.2	187.64	800,732.6	952,779.6	32,466,916.7
NV	9756.65	0.0822	5038.84	0.0855	4876.18	0.0411	16,119,342.4	135.79	551,201.7	201,328.5	16,156,336.0
NY	23118.18	0.0738	11030.94	0.0705	34220.30	0.1092	38,169,117.1	121.83	3,324,160.7	561,770.0	38,289,788.0
OH	87353.25	0.1584	40997.48	0.1611	348748.84	0.6324	104,821,036.4	190.08	2,645,130.3	3,182,766.7	105,342,121.2
OK	68415.01	0.2087	33251.21	0.1961	78711.17	0.2401	53,328,418.3	162.65	1,589,071.8	1,225,751.6	53,535,095.1
OR	4522.92	0.0726	1369.86	0.0718	14399.06	0.2312	7,896,254.3	126.79	665,314.4	186,427.9	7,932,136.4
PA	133396.37	0.1992	63111.56	0.2074	279451.59	0.4174	118,496,909.6	176.99	5,293,017.5	3,486,416.1	119,092,738.2
RI	762.17	0.0236	380.09	0.0238	35.62	0.0011	3,768,286.1	116.71	148,274.5	14,973.0	3,772,163.8
SC	21243.79	0.0974	9568.15	0.0946	54472.96	0.2497	37,176,847.9	170.41	1,684,240.0	1,197,347.9	37,380,121.3
SD	10849.69	0.6564	4559.75	0.6153	12403.15	0.7504	3,358,271.8	203.17	77,327.0	107,308.6	3,375,716.5
TN	23869.57	0.1084	11456.37	0.1038	69210.21	0.3143	42,463,377.1	192.82	1,126,716.7	1,342,973.9	42,683,368.6
TX	150149.67	0.0946	70889.70	0.0906	410195.38	0.2585	258,352,875.5	162.84	7,671,865.4	5,623,891.9	259,305,005.5
UT	51961.45	0.2804	22287.72	0.2713	23116.61	0.1248	35,475,233.4	191.45	871,733.2	1,103,711.6	35,655,461.9
VA	24925.47	0.1296	12319.67	0.1262	41121.56	0.2139	28,892,649.6	150.28	2,438,306.3	811,218.6	29,043,990.7
VT	196.71	0.0742	101.11	0.0934	60.10	0.0227	13,780.1	5.20	341,084.3	45,542.0	24,420.5
WA	6848.53	0.1335	2434.22	0.1296	6357.58	0.1239	7,342,211.5	143.10	892,265.5	280,845.7	7,394,968.1
WI	27372.34	0.1165	12922.98	0.1146	71901.90	0.3061	43,242,292.9	184.08	1,807,488.0	1,401,191.1	43,478,456.1
WV	50578.41	0.1450	23312.06	0.1482	88849.23	0.2546	72,352,646.6	207.36	1,622,530.6	2,427,499.4	72,745,945.5
WY	49592.64	0.1984	19613.45	0.1939	50386.32	0.2015	52,023,827.5	208.08	1,159,613.9	1,719,605.7	52,302,542.3
U.S.	1,913,686.86	0.1427	871,745.09	0.1379	3,817,422.30	0.2847	2,298,924,483.4	171.43	96,199,568.7	64,226,468.3	2,309,886,780.4

11. eGRID2012 State Resource Mix

State	Nameplate capacity (MW)	Net generation (MWh)	Generation Resource Mix (percent)										
			Coal	Oil	Gas	Other Fossil	Nuclear	Hydro	Biomass	Wind	Solar	Geothermal	Other unknown/ purchased fuel
AK	2,762.0	6,928,294.5	9.8864	14.9786	52.0863	0.0000	0.0000	22.7335	0.0370	0.2781	0.0000	0.0000	0.0000
AL	36,284.1	153,105,217.0	29.7880	0.0716	36.3835	0.1160	26.6753	4.8563	2.1094	0.0000	0.0000	0.0000	0.0000
AR	18,689.2	65,005,677.9	43.7361	0.0501	26.3322	0.0468	23.8335	3.4472	2.5542	0.0000	0.0000	0.0000	0.0000
AZ	35,774.8	110,614,113.4	36.2663	0.0379	27.3880	0.0000	28.8697	6.1442	0.2125	0.2255	0.8559	0.0000	0.0000
CA	97,737.5	199,189,655.8	0.6317	0.8499	60.0661	0.0908	9.2913	13.7605	3.1494	4.8624	0.6829	6.2850	0.3299
CO	16,952.1	52,547,910.6	65.6944	0.0210	20.0283	0.0000	0.0000	2.3840	0.1104	11.3458	0.3108	0.0000	0.1054
CT	10,902.7	35,557,337.4	0.2696	0.3024	46.5113	2.0675	48.0292	0.8855	1.9346	0.0000	0.0000	0.0000	0.0000
DC	860.8	71,786.8	0.0000	13.0929	86.9071	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
DE	3,999.4	8,633,823.3	16.4782	3.0733	78.9306	0.0000	0.0000	0.0000	1.2145	0.0421	0.2613	0.0000	0.0000
FL	83,533.4	221,099,929.6	20.0300	0.6223	67.7068	0.6277	8.0823	0.0681	1.9807	0.0000	0.0876	0.0000	0.7946
GA	48,472.3	122,014,744.3	33.3690	0.3118	34.6502	0.0423	27.8176	1.1461	2.6617	0.0000	0.0013	0.0000	0.0000
HI	3,081.6	10,469,268.7	14.6843	71.9229	0.0000	3.4161	0.0000	1.0945	2.7325	3.6128	0.0440	2.4930	0.0000
IA	18,509.8	56,602,145.7	62.4205	0.1883	3.4290	0.0226	7.6799	1.3536	0.2441	24.6620	0.0000	0.0000	0.0000
ID	5,388.7	15,499,089.3	0.4951	0.0001	12.2470	0.0000	0.0000	70.5874	3.5439	12.1979	0.0000	0.4818	0.4469
IL	59,211.6	197,522,001.0	40.9204	0.1015	5.6647	0.1035	48.8054	0.0563	0.3115	3.8899	0.0155	0.0000	0.1314
IN	37,915.2	114,878,967.3	80.6452	1.1142	12.5967	1.8951	0.0000	0.3774	0.2932	2.7943	0.0000	0.0000	0.2840
KS	15,927.4	44,286,624.6	63.1851	0.0776	6.4575	0.0000	18.7075	0.0235	0.1295	11.4193	0.0000	0.0000	0.0000
KY	28,259.8	89,957,452.2	91.9999	1.7081	3.2875	0.0090	0.0000	2.6254	0.3700	0.0000	0.0000	0.0000	0.0000
LA	30,604.9	103,347,602.4	20.7280	2.9317	56.6231	1.2867	15.1519	0.6579	2.3513	0.0000	0.0000	0.0000	0.2693
MA	16,284.9	36,198,121.5	5.9034	0.4821	68.1593	2.4200	16.1874	1.6712	4.8471	0.2477	0.0818	0.0000	0.0000
MD	14,595.8	37,808,347.2	42.8074	0.3632	13.0788	1.0541	35.9161	4.3814	1.4925	0.8508	0.0557	0.0000	0.0000
ME	5,527.8	14,420,135.4	0.3139	0.5809	41.9115	2.2748	0.0000	25.8847	22.3179	6.0919	0.0000	0.0000	0.6245
MI	34,036.7	108,166,077.4	49.1249	0.3006	20.1064	0.6499	25.9043	0.4082	2.4593	1.0463	0.0000	0.0000	0.0000
MN	18,009.4	52,193,624.2	43.5355	0.0567	13.5806	0.5017	22.8836	1.0749	3.5404	14.5907	0.0000	0.0000	0.2358
MO	24,141.3	91,804,321.4	79.2719	0.0732	6.7293	0.0215	11.6752	0.8145	0.0586	1.3559	0.0000	0.0000	0.0000
MS	19,469.2	54,584,295.2	13.2125	0.0313	70.6245	0.0000	13.3667	0.0000	2.7649	0.0000	0.0000	0.0000	0.0000
MT	6,693.6	27,795,017.1	50.3234	1.6801	1.6694	0.0000	0.0000	40.5953	0.0000	4.5044	0.0000	0.0000	1.2275
NC	39,312.0	116,971,226.6	43.5425	0.1524	16.5015	0.1204	33.6712	3.4585	2.1924	0.0000	0.0953	0.0000	0.2659
ND	7,390.6	36,125,158.9	78.1017	0.1884	0.0601	0.0029	0.0000	6.8574	0.0153	14.6007	0.0000	0.0000	0.1736
NE	9,084.1	34,200,814.9	73.1539	0.0660	2.2517	0.0000	16.9633	3.6755	0.1846	3.7050	0.0000	0.0000	0.0000
NH	4,720.9	19,264,434.9	6.5806	0.1124	36.5944	0.3283	42.5093	6.6931	6.0986	1.0833	0.0000	0.0000	0.0000
NJ	23,680.2	65,232,564.1	2.9088	0.4911	43.3601	0.7771	50.7572	-0.2383	1.5070	0.0177	0.4192	0.0000	0.0000
NM	9,965.1	36,635,909.3	68.2228	0.1260	24.0175	0.0000	0.0000	0.6082	0.0389	6.0754	0.9111	0.0000	0.0000
NV	17,929.0	35,142,774.0	11.6082	0.0537	72.9785	0.0208	0.0000	6.9443	0.0540	0.3665	1.2842	6.6560	0.0339
NY	48,055.8	135,662,526.5	3.3547	0.4277	43.8310	0.6904	30.0559	17.8021	1.6067	2.1927	0.0389	0.0000	0.0000
OH	39,660.3	129,741,418.3	65.9686	0.9881	17.4690	0.7483	13.1700	0.3192	0.5523	0.7596	0.0249	0.0000	0.0000
OK	25,816.9	77,757,667.7	37.6834	0.0138	50.1852	0.0125	0.0000	1.3231	0.4675	10.3146	0.0000	0.0000	0.0000
OR	18,972.1	60,612,559.4	4.3462	0.0098	19.1787	0.0671	0.0000	65.0148	1.3881	9.9579	0.0106	0.0268	0.0000
PA	54,685.0	223,416,431.4	39.0071	0.1614	23.7508	0.6207	33.6477	0.8050	1.0417	0.9528	0.0129	0.0000	0.0000
RI	2,052.2	8,309,035.9	0.0000	0.2151	98.5072	0.0000	0.0000	0.0513	1.2097	0.0166	0.0000	0.0000	0.0000
SC	26,596.0	96,755,682.3	29.3483	0.1120	14.8124	0.1098	52.8603	0.5418	2.2153	0.0000	0.0000	0.0000	0.0000
SD	4,432.9	12,017,722.0	24.2871	0.0476	1.7815	0.0000	0.0000	49.6307	0.0000	24.2531	0.0000	0.0000	0.0000
TN	25,710.6	77,385,936.5	45.7697	0.1867	10.4349	0.0181	32.4375	10.0878	1.0038	0.0614	0.0000	0.0000	0.0000
TX	135,365.8	429,697,350.7	32.1604	0.8878	49.7795	0.1567	8.9461	0.1360	0.3920	7.4459	0.0275	0.0000	0.0681
UT	8,826.7	39,400,420.8	78.1695	0.1110	16.6929	0.0113	0.0000	1.8979	0.1516	1.7866	0.0041	0.8493	0.3259
VA	29,875.0	70,739,234.7	20.0466	0.5145	35.3944	0.5406	40.6046	-0.4549	3.3541	0.0000	0.0000	0.0000	0.0000
VT	1,276.0	6,568,121.0	0.0000	0.0521	0.0387	0.0000	75.9629	16.8877	5.3776	1.6275	0.0535	0.0000	0.0000
WA	32,149.1	116,834,423.7	3.2208	0.3698	4.6541	0.0568	7.9888	76.6109	1.3833	5.6479	0.0007	0.0000	0.0669
WI	21,870.5	63,742,909.9	51.3915	0.4982	18.1071	0.0702	22.4332	2.3881	2.6176	2.4435	0.0000	0.0000	0.0506
WV	18,416.3	73,413,404.2	95.7147	0.1954	0.3309	0.0431	0.0000	1.9498	0.0144	1.7518	0.0000	0.0000	0.0000
WY	9,925.5	49,588,606.1	87.5438	0.1263	1.0343	0.5479	0.0000	1.8018	0.0000	8.8107	0.0000	0.0000	0.1351
U.S.	1,309,394.6	4,045,517,914.7	37.4156	0.7034	30.2949	0.3683	19.0169	6.7030	1.4404	3.4476	0.1035	0.3842	0.1221

BEFORE THE
 PUBLIC UTILITY COMMISSION OF OREGON

NW Natural

Exhibit 502 of Barbara Summers

UM 1744
Carbon Emission Reduction Program Combined Heat \& Power (CHP)

Investment Analysis and Portfolio Management, Chapter 13 - "Computing Bond Yields"

Executive Editor: Mike Reynolds

Associate Editor: Shana Lum
Production Manager: Carlyn Hauser
Executive Product Manager: Craig Johnson
Art Director: Sue Hart
Art \& Literary Rights Editor: Adele Krause
Cover Illustration: Ken Reid/FPG Internationa
Project Management: Elm Street Publishing Services, Inc.
Compositor: Shepard Poorman Communications Corporation Text Type: $10 / 12$ Times Roman

Copyright © 1997 by The Dryden Press

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher
Requests for permission to make copies of any part of the work should be mailed to: Permissions Department, Harcourt Brace \& Company, 6277 Sea Harbor Drive, Orlando, Florida 32887-6777.

Some material in this work previously appeared in INVESTMENT ANAEXYSIS AND PORTFOLIO MANAGEMENT, Fourth Edition, copyright © 1994, 1989, 1985, 1979 by The Dryden Press. All rights reserved.

The Dryden Press, 301 Commerce Street, Suite 3700, Fort Worth, TX 76102
Address for Orders
The Drden Press 6277 Sea Harbor Drive, Orlando, FL 32887 1-800-782-4479, or 1-800-433-0001 (in Florida)

ISBN: 0-03-018683-8
Library of Congress Catalog Card Number: 96-83161
CFA Examinations used throughout the text are reprinted with permission from The Institute of Chartered Financial Analysts, Charlottesville, Virginia.

Printed in the United States of America
78901234503298765432

The Dryden Press
Harcourt Brace College Publishers
5. Complete the information requested for each of the following $\$ 1,000$ face value bonds, assuming semiannual compounding.

Bond	Maturity (Years)	Yield (Percent)	Price (8)
A	20	12	$?$
B	$?$	8	601
C	9	$?$	350

References
Altman, Edward I., ed. The High Yield Debt Market. Homewood, IL: Dow Jones-Irw , Edard I. and Scott A. Nammacher. Investing in Junk Bonds. New York: John wive Sons, 1987.
Beidleman, Carl, ed. The Handbook of International Investing. Chicago: Probus Publ Douglas, Livingston G. The Fixed Income Almanac. Chicago: Probus Publish 3 C Iton Edwin I. and Martin I. Gruber, eds. Japare Capital Mat New 1990.

European Bond Commission. European Bond Markets. Chicago: Probus Publishing, Fabozzi, Frank J., ed. Advances and Innovations in the Bond and Mortgage Marke Probus Publishing, 1989
Fabozzi, Frank J., ed. The Japanese Bond Market, Chicago: Probus Publishing, 1990 Fabozzi, Frank J., ed. The New High Yield Debt Market. New York: Harper Business, Fridson, Martin S. High Yield Bonds. Chicago: Probus Publishing, 1989. Grabbe, J. Orlin. International Financial Markets. New York: Elsevier, 1986. Howe, Jane Tripp. Junk Bonds: Analysis and Portfolio Strategies. Chicago: Probus Publishing. 108. Norton, Joseph and Paul Spellman, eds. Asset Securitization. Cambrịdge, MA: Basil Blackwell I 1991.

Van Horne, James C. Financial Market Rates and Flows. 3d ed. Englewood Cliffs, NJ: Prenitice-H 1988.

Viner, Aron. Inside Japanese Financial Markets. Homewood, IL: Dow Jones-Irwin, 1988 Wilson, Richard S. Corporate Senior Securities. Chicago: Probus Publishing, 1987 Wilson, Richard S. and Frank J. Fabozzi. The New Corporate Bond Market. Chicago. Pr lishing, 1990.
Yago, Glenn. Junk Bonds. New York: Oxford University Press, 1991

flauter

The Analysis and Valuation of Bonds

This chapter answers the following questions
How do you determine the value of a bond based on the present value formula
What are the alternative bond yields that are important to investors?
How do you compute the following major yields on bonds: current yield, yield to maturity, yield to call, and compound realized (horizon) yield?

- What are spot rates and forward rates and how do you calculate these rates from a yield to maturity curve?
What is the spot rate yield curve and forward rate curve?
-How and why do you use the spot rate curve to determine the value of a bond?
What are the alternative theories that attempt to explain the shape of the term structure of interest rates?
What factors affect the level of bond yields at a point in time?
- What economic forces cause changes in bond yields over time? - When yields change, what characteristics of a bond cause differential price changes for
individual bonds?
affect it? affect it?
tion and its volatility?
What is the convexity for a bond, how do you compute it, and what factors affect it?
- Under what conditions is it necessary to consider both modified duration and convexity when estimating a bond's price volatility?
What happens to the duration and convexity of bonds that have embedded call options?
In this chapter, we apply the valuation principles that were introduced in Chapter 13 to the valuation of bonds. This chapter is concerned with how one goes about finding the value of ands using the trads chapter is concerned witity rowe asing multiple spot rates. We will also to understand why these bond values and yields change over time. To do this, we begin with a review of value estimation for bonds using the present value model introduced in With a 13 . This background on valuation allows us to understand and compute the exChapter 13. No bers which are their yields. We need to understand how to pected relternative yields on bonds because they are very important to bond investors. After mastering the measurement of bond yields, we consider what factors influence the evel of bond yields and what economic forces cause changes in yields over time. This is followed by a consideration of the alternative shapes of the yield curve and the alternative theories that explain changes in its shape. We discuss the effects of various characteristics and indenture provisions that affect the required returns and, therefore, the value of specific

bond issues. This includes factors such as time to maturity, coupon, callability and yint funds.
We return to the consideration of bond value and examine the characteristics hats. different changes in a bond's price. When yields change, all bond pres for herss the same way. An understanding of the factors that affect the price the price volnitus become more important during the past severe the yields on bonds were fairly los se both yields and prices were stable. In this environment, bonds were considered a rey of investment and most investors in bonds intended to hold them to maturity. Dila ser the several decades, however, the level of interest rates has increased substannals wase inflation, and interest rates have also become more volatile becaus return on bondshise of inflation and monetary policy. As a
been much more volatile and the rates of return on bond investments have intreseit Although this increase in interest rate volatility has affected all bonds, the impacluinery significant on bonds with embedded options such as call features.

THE The value of bonds can be described in terms of dollar values or the rates of relurind FUNDAMENTALS promise under some set of assumptions. In this section, we describe both the present VALUATION VALUATION

The Present Value Model

In our introduction to valuation theory in Chapter 13, we saw that the value of a bond we: any asset) equals the present value of its expected cash flows. The cash flows from utant are the periodic interest payments to the bondholder and the repayment of principaliph maturity of the bond. Therefore, the value of a bond is the present value of the seminnuy interest payments plus the present value of the principal payment. Notably, the slandery technique is to use a single interest rate discount factor, which is the required rate of revr: on the bond. We can express this in the following present value formula that assune semiannual compounding: ${ }^{1}$

$$
P_{m}=\sum_{t=1}^{2 n} \frac{C_{i} / 2}{(1+i / 2)^{1}}+\frac{P_{p}}{(1+i / 2)^{2 n}}
$$

where
$P_{m}=$ the current market price of the bond
$\begin{aligned} n & =\text { the number of years to maturity } \\ C_{i} & =\text { the annual }\end{aligned}$
$\begin{aligned} C_{i} & =\text { the annual coupon payment for bond } i\end{aligned}$
$P_{p}=$ the par value of the bond

The value computed indicates what an investor would be willing to pay for this bondil realize a rate of return that takes into account expectations regarding the RFR, the expecter rate of inflation, and the risk of the bond. The standard valuation technique assumes:
'Almost all U.S. bonds pay interest semiannually so it is appropriate to use semiannual compounding whepst you cut the anmual coupon rate in half and double the number of periods. To be consistent, you should alsolt semiamual compounding for the principal payment of a coupon bond or even a zero coupon bond. Allour phent value calculations assume semiannual compounding.
holding the bond to the maturity of the obligation. In this case, the number of periods would be the number of years to the maturity of the bond (referred to as its term to maturity). In such a case, the cash flows would include all the periodic interest payments and the payment of the bond's par value at the maturity of the bond.

We can demonstrate this formula using an 8 percent coupon bond that matures in 20 years with a par value of $\$ 1,000$. This calculation implies that an investor who holds this bond to maturity will receive $\$ 40$ every six months (one half of the $\$ 80$ coupon) for 20 years (40 periods) and $\$ 1,000$ at the maturity of the bond in 20 years. If we assume a prevailing yield to maturity for this bond of 10 percent (the market's required rate-of-return on the bond), the value for the bond using the above equation would be:

$$
P_{m}=\sum_{t=1}^{40} \frac{80 / 2}{(1+.10 / 2)^{\prime}}+\frac{\$ 1,000}{(1+.10 / 2)^{40}}
$$

We know that the first term is the present value of an annuity of $\$ 40$ every six months for 40 periods at 5 percent, while the second term is the present value of $\$ 1,000$ to be received in 40 periods at 5 percent. This can be summarized as follows:

Present value of interest payments: $\$ 40 \times 17.1591$
Pesent value of principal payment $\$ 1,000 \times .1420$
Total value of bond at 10%

As expected, the bond will be priced at a discount to its par value because the market's required rate of return of 10 percent is greater than the bond's coupon rate, i.e., $\$ 828.36$ or 82.836 percent of par.

Alternatively, if the market's required rate was 6 percent, the value would be computed the same way except we would compute the present value of the annuity at 3 percent for 40 periods and the present value of the principal at 3 percent for 40 periods as follows:

| Present value of interest payments: |
| :--- | :--- | ---: |
| $\$ 40 \times 23.1148$ |
| Present value of principal payment |
| $\$ 1,000 \times .3066$ |$\quad=$| $\$ 924.59$ |
| ---: |
| Total value of bond at 6% |

Because the bond's discount rate is lower than its coupon, the bond would sell at a premium above par value-i.e., $\$ 1,231.19$ or 123.119 of par.

THE PRICE-YIELD CURVE When you know the basic characteristics of a bond in terms of its coupon, maturity, and par value, the only factor that determines its value (price) is the market discount rate-its required rate of return. As shown above, as we increase the required rate, the price declines. It is possible to demonstrate the specific relationship between the price of a bond and its yield by computing the bond's price at a range of yields as shown in Table 16.1.

Required Yield	Price of Bond
2	$\$ 1,985.09$
4	$1,547.12$
6	$1,231.19$
8	$1,000.00$
10	828.36
12	699.05
14	600.07
16	522.98

THE PRICE-YIELD CURVE FOR A 20-YEAR, 8 PERCENT COUPON BOND

A graph of this relationship between the required return (yield) on the bond and its price referred to as the price-yield curve as shown in Figure 16.1. Besides demonstrating th price moves inverse to yield, it shows three other important points:

1. When the yield is below the coupon rate, the bond will be priced at a premium toisprif value.
2. When the yield is above the coupon rate, the bond will be priced at a discount toispir value.
3. The price-yield relationship is not a straight line; rather, it is convex. As yields declio the price increases at an increasing rate, and as the yield increases, the price declinesal declining rate. This concept of a convex price-yield curve is referred to as converitin will be discussed further in a later section.

ThE YIELD MODEL Instead of determining the value of a bond in dollar terms, investors often price bondsi terms of yields-the promised rates of return on bonds under certain assumptions. Th far, we have used cash flows and our required rate of return to compute an estimated val or the bond. To compute an expected yield, we use the current market price $\left(P_{w}\right)$ and $\|^{\text {P }}$ expected cash flows to compute the expected yield on the bond We can express tin approach using the same present value model. The difference is that in the equation o page 526 , it was assumed that we knew the appropriate discount rate (the required rate
return), and we computed the estimated value (price) of the bond. In this case, it is assumed that we know the price of the bond and we compute the discount rate (yield) that will give us the current market price $\left(P_{m}\right)$.

$$
P_{m}=\sum_{t=1}^{2 n} \frac{C_{i} / 2}{(1+i / 2)^{1}}+\frac{P_{p}}{(1+i / 2)^{2 n}}
$$

where the variables are the same as previously, except
$i=$ the discount rate that will discount the expected cash flows to equal the current market price of the bond

This i value gives the expected ("promised") yield of the bond under various assumptions to be noted, assuming you pay the price P_{m}. We will discuss several types of bond yields that arise from the assumptions of the valuation model in the next section.

Approaching the investment decision stating the bond's value as a yield figure rather than a dollar amount, you consider the relationship of the computed bond yield to your required rate of return on this bond. If the computed bond yield is equal to or greater than your required rate of return, you should buy the bond; if the computed yield is less than your required rate of return, you should not buy the bond.

These approaches to pricing bonds and making investment decisions are similar to the two alternative approaches by which firms make investment decisions. We referred to one approach, the net present value (NPV) method, in Chapter 13. With the NPV approach, you compute the present value of the net cash flows from the proposed investment at your cost of capital and subtract the present value cost of the investment to get he net ptort if it is (NPV) of the project. If this NPV is positive, you consider accepting the investment; if it is negative, you reject it. This is basically the way we compared the value of an investment to its market price.

The second approach is to compute the internal rate of return (IRR) on a proposed investment project. The IRR is the discount rate that equates the present value of cash outflows for an investment with the present value of its cash inflows. You compare this
discount rate or RR (which is also the expected rate of return on the project), to your cost discount rate, or IRR (which is also the expected rate of return on the project), to your cost of on we the same thing when we price bonds on the basis of yield. If the cost of capital. We do the same nield to maturity, yield to call, or horizon yield) is equal to or exceeds your required rate of return on the bond, you should invest in it; if the expected yield is less than your required rate of return on the bond, you should not invest in it.

COMPUTING BOND YIELDS

Bond investors traditionally have used five yield measures for the following purposes
Yield Measure Purpos

Nominal yield
Promised yield to maturity Promised yield to call

Measures the coupon rate.
Measures the current income rate.
Measures the expected rate of return for bond held to maturity. Measures the expected rate of retum for bond held to first call date. Measures the expected rate of return for a bond likely to be sold prior to maturity. It considers specific reinvestment assumptions and prior to maturity. It considers speciic reinvestment assumptions and an estimated sales price. In ast period of time.

Nominal and current yields are mainly descriptive and contribute little to inverte: decision making. The last three yields are all derived from the present value nisk described in the equation on page 529.

When we present the last three yields based on the present value model, we consid 1 calculation techniques. First, we consider a fairly simple calculation for the appornis values for each of these yields to provide reasonable estimates. Seco because an exarenn value model to get accurate values. We provel calculations. In some cases, the approinit.
withe velue model requires several yield value is adequate.

To measure an expected realized yield (also referred to as the horizon yied) aith investor must estimate a bond's future selling price. Following our presentation of hat yields, we present the procedure for finding these prices. We conclude the secilents examining the yields on tax-free bonds.

NOMINAL YIELD Nominal yield is the coupon rate of a particular issue. A bond with an 8 percent coupori an 8 percent nominal yield. This provides a convenient way of describing the callys characteristics of an issue.

Current Yield Current yield is to bonds what dividend yield is to stocks. It is computed as

$$
C Y=C_{i} / P_{m}
$$

where
$C Y=$ the current yield on a bond
$\begin{aligned} C_{i} & =\text { the annual coupon payment of bond } i \\ P_{m} & =\text { the current market price of the bond }\end{aligned}$
Because this yield measures the current income from the bond as a percentage of is price it is important to income-oriented investors who want current cash flow from theit: investment portfolios. An example of such an investor would be a retired person who (1ee on this investment income. Current yield has little use for most other investors whone
interested in total retum because it excludes the important capital gain or loss component

Promised Yield to Promised yield to maturity is the most widely used bond yield figure because it indieate: Maturity the fully compounded rate of return promised to an investor who buys the bond at previl: ing prices, if two assumptions hold true. Specifically, the promised yield to maturity will b: equal to the investor's realized yield if these assumptions are met. The first assumption til that the investor holds the bond to maturity. This assumption gives this value its shorened name, yield to maturity (YTM). The second assumption is implicit in the present vilue. method of computation. Referring back to the equation on page 529 , recall that it relatit the current market price of the bond to the present value of all cash flows as follows:

$$
P_{m}=\sum_{t=1}^{2 n} \frac{C_{i} / 2}{(1+i / 2)^{2}}+\frac{P_{p}}{(1+i / 2)^{2 n}}
$$

To compute the YTM for a bond, we solve for the rate i that will equate the current price $\left(P_{m}\right)$ to all cash flows from the bond to maturity. As noted, this resembles the computaini of the internal rate of return (IRR) on an investment project. Because it is a present valle
based computation, it implies a reinvestment rate assumption because it discounts the cash flows. That is, the equation assumes that all interim cash flows (interest payments) are reinyested at the computed YTM. That is why this is referred to as a promised YTM because the bond will provide this computed YTM only if you meet its conditions:

1. You hold the bond to maturity.
2. You reinvest all the interim cash flows at the computed YTM rate.

If a bond promises an 8 percent YTM, you must reinvest coupon income at 8 percent to realize that promised return. If you spend (do not reinvest) the coupon payments or if you cannot find opportunities to reinvest these coupon payments at rates as high as its promised YTM, then the actual realized yield you earn will be less than the promised yield to maturity. As will be demonstrated in the section on realized return, if you can reinvest at rates above the YTM, your realized (horizon) return will be greater than the promised YTM. The income earned on this reinvestment of the interim interest payments is referred to as interest-on-interest. ${ }^{2}$

The impact of the reinvestment assumption (i.e., the interest-on-interest earnings) on the actual return from a bond varies directly with the bond's coupon and maturity. A higher coupon and/or a longer term to maturity will increase the loss in value from failure to reinvest at the YTM. Therefore, a higher coupon or a longer maturity makes the reinvestment assumption more important.

Figure 16.2 illustrates the impact of interest-on-interest for an 8 percent, 25 -year bond bought at par to yield 8 percent. If you invested $\$ 1,000$ today at 8 percent for 25 years and reinvested all the coupon payments at 8 percent, you would have approximately $\$ 7,100$ at the end of 25 years. We will refer to this money that you have at the end of your investment horizon as your ending-wealth value. To prove that you would have an ending-wealth value of $\$ 7,100$ look up the compound interest factor for 8 percent for 25 years (6.8493) or 4 percent for 50 periods (which assumes semiannual compounding and is 7.1073). In the case of U.S. bonds, the semiannual compounding is the appropriate procedure because almost all bonds pay interest every six months.

Figure 16.2 shows that this $\$ 7,100$ is made up of $\$ 1,000$ principal return, $\$ 2,000$ of coupon payments over the 25 years ($\$ 80$ a year for 25 years), and $\$ 4,100$ in interest earned on the semiannual coupon payments reinvested at 4 percent semiannually. If you had never reinvested any of the coupon payments, you would have an ending-wealth value of only $\$ 3,000$. This ending-wealth value of $\$ 3,000$ derived from the beginning investment of $\$ 1,000$ gives you an actual (realized) yield to maturity of only 4.5 percent. That is, the rate that will discount $\$ 3,000$ back to $\$ 1,000$ in 25 years is 4.5 percent. Reinvesting the coupon payments at some rate between 0 and 8 percent would cause your ending-wealth position to be above $\$ 3,000$ and below $\$ 7,100$; therefore, your actual rate of return would be somewhere between 4.5 percent and 8 percent. Alternatively, if you managed to reinvest the coupon payments at rates consistently above 8 percent, your ending-wealth position would be above $\$ 7,100$, and your realized (horizon) rate of return would be above 8 percent.

Interestingly, during periods of very high interest rates, you often hear investors talk about "locking in" high yields. Many of these people are subject to yield illusion because they do not realize that attaining the high promised yield requires that they reinvest all the coupon payments at the very high promised yields. For example, if you buy a 20 -year bond with a promised yield to maturity of 15 percent, you will actually realize the promised
${ }^{2}$ This concept is developed in Sidney Homer and Martin L. Leibowitz, Inside the Yield Book (Englewood Cliffs, NJ: Prentice-Hall, 1972), Chapter 1.

THE EFFECT OF INTEREST-ON-INTEREST ON TOTAL REALIZED RETURN

Promised yield at time of purchase: 8.00%

Realized yield over the 25 -year investment horizon with no coupon reinvestment $(A): 4.50 \%$
Realized yield over the 25 -year horizon with coupons reinvested at $8 \%(B): 8.00 \%$
15 percent yield only if you are able to reinvest all the coupon payments at 15 percen! neref
the next 20 years. the next 20 years.
COMPUTING THE PROMISED YIELD TO MATURITY The promised yield to maturit be computed in two ways: finding an approximate annual yield, or using the present model with semiannual compounding. The present value model gives an investor a nire accurate result, and is the technique used by investment professionals.

The approximate promised yield (APY) measure is easy to calculate:

$$
\mathrm{APY}=\frac{C_{i}+\frac{P_{p}-P_{m}}{n}}{\frac{P_{p}+P_{m}}{2}}
$$

$=\frac{\text { Coupon }+ \text { Annual Straight-Line Amortization of Capital Gain or Loss }}{\text { Average Investment }}$
where variables are as defined earlier. This approximate value for the promised maturity assumes interest is compounded annually, and it does not require the multi maturity and a current price of $\$ 900$ has An 8 percent bond with 20 years rem

$$
\begin{aligned}
\text { APY } & =\frac{80+\frac{1000-900}{20}}{\frac{1000+900}{2}}=\frac{80+5}{950} \\
& =8.95 \% .
\end{aligned}
$$

The present value model provides a more accurate yield to maturity value. Again, the equation on page 529 shows the promised yield valuation model:

$$
P_{m}=\sum_{t=1}^{2 n} \frac{C_{i} / 2}{(1+i / 2)^{2}}+\frac{P_{p}}{(1+i / 2)^{2 n}}
$$

All variables are as described previously. This model is more accurate than the approximate promised yield model, but also is more complex because the solution requires iteration. The present value equation is a variation of the internal rate of return (13y calculation of coupon receipts (C_{i}) and principal value (P_{p}) with the current market price of the stream of coupon
the bond $\left(P_{m}\right)$. Using the prior example of an 8 percent, 20 -year bond, priced at $\$ 900$, the equation gives us a semiannual promised yield to maturity of 4.545 percent, which implies an annual promised YTM of 9.09 percent. ${ }^{3}$

$$
\begin{aligned}
900 & =40 \sum_{t=1}^{40}\left(\frac{1}{(1.04545)^{2}}\right)+1000\left(\frac{1}{(1.04545)^{40}}\right) \\
& =40(18.2574)+1000(.1702) \\
& =900 .
\end{aligned}
$$

The values for $1 /(1+i)$ were taken from the present value interest factor tables in the The vix at the back of the book using interpolation

Comparing the results of this equation with those of the approximate promised yield computation, you find a variation of 14 basis points (8.95 percent vs. 9.09 percent). As a rule, the approximate promised yield tends to understate the present value promised yield for issues selling below par value (i.e., trading at a discount) and to overstate the promise yield for a bond selling at a premium. The size of the differenalue differs, the rankings of ength of the holding period. Al formula will generally be identical to those determined by yields estimated using the

UTMFOR AERO COUPON BOND In several instances we have discussed the existence
 of zero coupon bonds that only have the one cashially easier as shown by the following xample:
Assume a zero coupon bond, maturing in 10 years with a maturity value of $\$ 1,000$ Assume a zero coupon bond, maturing in with a zero coupon bond, there is only the one
selling for $\$ 311.80$. Because you are dealing with cash flow from the principal payment at maturity. Therefore, you simply need to determine what is the discount rate that will discount $\$ 1,000$ to equal the current market price of $\$ 311.80$ in 20 periods (10 years of semiannual payments). The equation is as follows:

$$
\$ 311.80=\frac{\$ 1000}{(1+i)^{20}}
$$

${ }^{3}$ You will recall from your corporate finance course that you start with one rate (e.g., 9 percent or 4.5 percent semiannual) and compute the value of the stream. In this example, the value would exced $\$ 00$, so you wour select a higher rate untily you had a present value for the stream of cash flows of less than $\$ \$ 90$. . Given the aiscount
rates above and below the true rate, you would do further calculations or interpolate between the wo rates to rates above and below the true rate, you would do further calculations
arrive at the correct discount rate that would give you a value of $\$ 900$.

You will see that $i=6$ percent, which implies an annual rate of 12 perceni Fin fret reference, this yield also is referred to as the 10 -year spot rate, which is the discolnt ret f: a single cash flow to be received in 10 years.

PROMISED YIELD Although investors use promised YTM to value most bonds, they must estimate the cetw
To CALL TO CALL on certain callable bonds with a different measure--the promised yield to call गrif Whenever a bond with a call feature is selling for a price above par (i.e, at a prenist equal to or greater than its par value plus one year's interest, a bon is because the maide consider valuing the bond in terms of YTC rather than YTM. This a bond. When bond place uses the lowest, most conservative yield measure in pricing a bond. Which the bond trit price plus a small premium that increases with time to call, the yield to call will provice tr: lowest yield measure. ${ }^{4}$ The crossover price is important because at this price the YTH. the YTC are equal-this is the crossover yield. When the bond rises to this price abovere the computed YTM becomes low enough that it would be profitable for met isuer neat the bond and finance the call by selling a new bond at this prevailing mas will receivefors Therefore, the YTC measures the promised rate of return the investor wir
holding this bond until it is retired at the first available call date, that is, at the end of $1:$ deferred call period. Note that if an issue has multiple call dates at different prices (theert price will decline for later call dates), it will be necessary to compute which of the: scenarios provides the lowest yield-this is referred to as yield to worst. Investor man: consider computing the YTC for their bonds after a period when numerous high-yildrat high-coupon bonds have been issued. Following such a period, interest rates will dectin: bond prices will rise, and the high coupon bonds will subsequently have a high probability of being called.

COMPUTING PROMISED YIELD TO CALL Again, there are two methods for compinity the promised yield to call: the approximate method and the present value method Bis methods assume that you hold the bond until the first call date. The present value melhet also assumes that you reinvest all coupon payments at the YTC rate.

Yield to call is calculated using variations of the equations on pages 532 and 533. The approximate yield to call (AYC) is computed as follows:

$$
\mathrm{AYC}=\frac{C_{t}+\frac{P_{c}-P_{m}}{n c}}{\frac{P_{c}+P_{m}}{2}}
$$

where
AYC = the approximate yield to call (Y'TC)
$P_{c}=$ the call price of the bond (generally equal to par value plus one year's interest)
$P_{m}=$ the market price of the
$\begin{aligned} P_{m} & =\text { the market price of the bond } \\ C_{i} & =\text { the annual coupon }\end{aligned}$
$n c=$ the number of years to first call date
${ }^{4}$ For a discussion of the crossover point, see Homer and Leibowitz, Inside the Yield Book, Chapter 4 ${ }^{5}$ Extensive literature exists on the refunding of bond issues, including W. M. Boyce and A. J. Kalotay, "Opimind
Bond Calling and Refunding," Interfaces (November 1979): $36-49 \cdot$ R S. Harris "The Refunding of Discounted Bond Calling and Refunding," Interfaces (November 1979): 36-49; R. S. Harris, "The Refunding of Discouited
Debt: An Adjusted Present Value Analysis," Financial Management 9, Debt: An Adjusted Present Value Analysis," Financial Management 9, no. 4 (Winter 1980): 7-12; A. J. Kabola)
"On the Structure and Valuation of Debt Refundings," Financial Management 11 , no. 1 (Spring 1982), 4)- 1 . and John D. Finnerty, "Evaluating the Economics of Refunding High-Coupon Sinking-Fund Debt," Finandi". Management 12, no. 1 (Spring 1983): 5-10.

This equation is comparable to APY, except that P_{c} has replaced P_{p} in the equation and $n c$ has replaced n.

To find the AYC of a 12 percent, 20-year bond that is trading at $115(\$ 1,150)$ with 5 years remaining to first call and a call price of $112(\$ 1,120)$, we substitute these values into the above equation.

$$
\mathrm{AYC}=\frac{120+\frac{1120-1150}{5}}{\frac{1120+1150}{2}}=10.04 \%
$$

This bond's approximate YTC is 10.04 percent, assuming that the issue will be called after 5 years at the call price of 112 . To confirm that yield to call is the more conservative and more accurate value for a bond callable in 5 years, you can compute the approximate promised YTM. Using the equation on page 533 indicates a promised YTM of 10.47 percent.

To compute the YTC by the present value method, we would adjust the semiannual present value equation to give

$$
P_{m}=\sum_{t=1}^{2 n c} \cdot \frac{C_{i} / 2}{(1+i / 2)^{i}}+\frac{P_{c}}{(1+i / 2)^{2 n c}}
$$

where
$P_{n t}=$ the current market price of the bond
$C_{i}=$ the annual coupon payment of bond i
$n c=$ the number of years to
$P_{c}=$ the call price of the bond
Following the present value method, we solve for i, which typically requires several computations or extrapolation to get the exact yield.

The final measure of bond yield, realized yield or horizon yield, measures the expected rate of return of a bond that you expect to sell prior to its maturity. In terms of the equation, the investor has a holding period ($h p$) or investment horizon that is less than n. Realized (horizon) yield can be used to estimate rates of return attainable from various trading strategies. Although it is a very useful measure, it requires several additional estimates not required by the other yield measures. Specifically, the investor must estimate the expected future selling price of the bond at the end of the holding period. Also, this measure requires a specific estimate of the reinvestment rate for the coupon flows prior to the liquidation of the bond. This technique also can be used by investors to measure their actual yields after selling bonds.
COMPUTING REALIZED (HORIZON) YIELD The realized yields are variations on the promised yield equations. The approximate realized yield (ARY) is calculated as follows:

$$
\mathrm{ARY}=\frac{C_{i}+\frac{P_{f}-P_{m}}{h p}}{\frac{P_{f}+P_{m}}{2}}
$$

where
ARY $=$ the approximate realized (horizon) yield
$C_{l}=$ the annual coupon payment of the bond i
$P_{f}=$ the future selling price of the bond
$h p=$ the holding period of the bond (in years)
Again, the same two variables change: the holding period ($h p$) replaces n, and P fret P_{p}. Keep in mind that P_{f} is not a contractual value but is calculated by defining the ${ }^{2}$ six remaining to maturity as $n-h p$ and by estimating a future market interest meve. 1 describe the computation of the future selling price $\left(P_{f}\right)$ in the next section.

Once we determine $h p$ and P_{f}, we can calculate the approximate realized yield Armis you acquired an 8 percent, 20 -year bond for $\$ 750$. Over the next two years, you :whe interest rates to decline. As you know, when interest rates decline, bond prices metere Suppose you anticipate that, when interest rates decline, the bond price will rise In $\$ 4$ The approximate realized yield in this case for the two years would be:

$$
\operatorname{ARY}=\frac{80+\frac{900-750}{2}}{\frac{900+750}{2}}=18.79 \% .
$$

The estimated high realized (horizon) yield reffects your expectation of substantiol ceptid gains in a fairly short period of time. Similarly, the substitution of P_{f} and $h p$ into the preetr value model provides the following realized yield model:

$$
P_{m}=\sum_{t=1}^{2 h p} \frac{C_{t} / 2}{(1+i / 2)^{i}}+\frac{P_{f}}{(1+i / 2)^{2 n p}}
$$

Again, this present value model requires you to solve for the i that equates the expectat cash flows from coupon payments and the estimated selling price to the curent mured price. Because of the small number of periods in $h p$, the added accuracy of this measure somewhat marginal. It has been suggested that because realized yield measures are brisof on an uncertain future selling price, the approximate realized (horizon) yield methot appropriate under many circumstances. In contrast, if you are going to use this techniquer measure historical performance, you should use the more accurate present value morat

You will note from the present value realized yield formula in (horizon) yield le the coupon flows are implicitly discounted at the computed realized (hore rates mightit: very different from the computed realized (horizon) yield. Therefore, to derive a realidit: estimate of the expected realized yield, you also should estimate your expected reinvest: ment rate during the investment horizon.
Therefore, to complete your understanding of computing expected realized yield fo alternative investment strategies, the next section considers the calculation of future bond prices. This is followed by a section on calculating a realized (horizon) return with differ ent reinvestment rates.

CALCULATING Dollar bond prices need to be calculated in two instances: (1) when computing realizer
FUTURE BOND PRICES
(horizon) yield, you must determine the future selling price (P_{f}) of a bond if it is to be sold (horizon) yield, you must determine the future selling price $\left(P_{f}\right)$ of a bond if it is to be
before maturity or first call, and (2) when issues are quoted on a promised yield basis,
with municipals. You can easily convert a yield-based quote to a dollar price by using the equation on page 535, which does not require iteration. (You need only solve for $P_{m .}$.) The coupon $\left(C_{i}\right)$ is given, as is par value $\left(P_{p}\right)$, and the promised YTM, which is used as the discount rate.

Consider a 10 percent, 25 -year bond with a promised YTM of 12 percent. You would compute the price of this issue as

$$
\begin{aligned}
P_{m} & =100 / 2 \sum_{t=1}^{50} \frac{1}{\left(1+\frac{.120}{2}\right)^{2}}+1000 \frac{1}{\left(1+\frac{.120}{2}\right)^{s 0}} \\
& =50(15.7619)+1000(.0543) \\
& =\$ 842.40 .
\end{aligned}
$$

In this instance, we are determining the prevailing market price of the bond based on the current market YTM. These market figures indicate the consensus of all investors regarding the value of this bond. An investor with a required rate of return on this bond that differs from the market YTM would estimate a different value for the bond.

In contrast to the current market price, you will need to compute a future price $\left(P_{f}\right)$ when estimating the expected realized (horizon) yield performance of alternative bonds. Investors or portfolio managers who consistently trade bonds for capital gains need to compute expected realized yield rather than promised yield. They would compute P_{f} through the following variation of the realized yield equation:

$$
P_{f}=\sum_{t=1}^{2 n-2 h p} \frac{C_{i} / 2}{(1+i / 2)^{\prime}}+\frac{P_{p}}{(1+i / 2)^{2 n-2 h i p}}
$$

where
$P_{f}=$ the future selling price of the bond
$P_{p}=$ the par value of the bond
$n=$ the number of years to maturity
$\begin{aligned} h p & =\text { the holding period of the bond (in years) } \\ C_{i} & =\text { the annual coupon }\end{aligned}$
$\begin{aligned} t_{i} & =\text { the annual coupon payment of bond } i \\ i & =\text { the expected market YTM at the end of the holding period }\end{aligned}$
This equation is a version of the present value model that calculates the expected price of the bond at the end of the holding period ($h p$). The term $2 n-2 h p$ equals the bond's remaining term to maturity at the end of the investor's holding period, that is, the number of 6-month periods remaining after the bond is sold. Therefore, the determination of P_{f} is based on four variables: two that are known and two that must be estimated by the investor.

Specifically, the coupon $\left(C_{i}\right)$ and the par value $\left(P_{p}\right)$ are given. The investor must forecast the length of the holding period, and therefore the number of years remaining to maturity at the time the bond is sold $(n-h p)$. The investor also must forecast the expected market YTM at the time of sale (i). With this information, you can calculate the future price of the bond. The real difficulty (and the potential source of error) in estimating P_{f} lies in predicting $h p$ and i.

Assume you bought the 10 percent, 25 -year bond just discussed at $\$ 842$, giving it a promised YTM of 12 percent. Based on an analysis of the economy and the capital market, you expect this bond's market YTM to decline to 8 percent in 5 years. Therefore, you want to compute its future price $\left(P_{f}\right)$ at the end of year 5 to estimate your expected rate of return, assuming you are correct in your assessment of the decline in overall market interest rates.

As noted, you estimate the holding period (5 years), which implies a remainn
20 years, and the market YTM of 8 percent. A semiannual model gives

$$
\begin{aligned}
P_{f} & =50 \sum_{t=1}^{40} \frac{1}{(1.04)^{+}}+1000 \frac{1}{(1.04)^{40}} \\
& =50(19.7928)+1000(.2083) \\
& =989.64+208.30 \\
& =\$ 1,197.94 .
\end{aligned}
$$

Based on this estimate of the selling price, you would estimate the approxim (horizon) yield on this investment on an annual basis as

$$
\begin{aligned}
\text { APY } & =\frac{100+\frac{1198-842}{5}}{\frac{1198+842}{2}} \\
& =\frac{100+71.20}{1020} \\
& =1678 \\
& =16.78 \%
\end{aligned}
$$

The realized yield equation on page 537 is the standard present value formula rate assumption that all cash flows are reinvested, at the includes the implicit reinn rate assumption that all cash flows are reinvested at the computed i rate. There mpye
instances where such an implicit assumption is not appropriate future interest rates. Assume that current market interest rate, given your expectation in a long-term bond (e.g., a 20 -year, 14 percent coupon) to are very high and yo decline in rates from 14 percent to 10 percent over a 2 -year period. Computing the fin price (equal to $\$ 1,330.95$) and using the realized yield (horizon) yield, we will get the following fairly high realized to foter

$$
\begin{aligned}
P_{m} & =\$ 1,000 \\
h p & =2 \text { years } \\
P_{f} & =\sum_{t=1}^{36} 70 /(1+.05)^{t}+\$ 1,000 /(1.05)^{36} \\
& =\$ 1,158.30+\$ 172.65 \\
& =\$ 1,330.95 \\
\$ 1,000 & =\sum_{t=1}^{4} \frac{70}{(1+i / 2)^{i}}+\frac{1330.95}{(1+i / 2)^{4}} \\
i & =27.5 \% .
\end{aligned}
$$

As noted, this calculation assumes that all cash flows are reinvested at the computed 10 percent). However, it is unlikely that during a period when market rates are going from appropriate and realistic to explicitly estimate the reinvestment 27.5 percent. It realized yields based on your ending-wealth position. This procedure is cals realistic, and it is easier because it does not require iteration The basic technique calculates the value of all cash flows period, which is the investor's ending-wealth value. We compare this val to our be
ning-wealth value to determine the compound rate of return that equalizes these two values. Adding to our prior example, assume we have the following cash flows:

$$
\begin{aligned}
& P_{m}=\$ 1,000 \\
& i=\text { interest payments of } \$ 70 \text { in } 6,12,18 \text {, and } 24 \text { month: } \\
& P_{f}=\$ 1,330.95 \text { (the ending market value of the bond). }
\end{aligned}
$$

The ending value of the four interest payments is determined by our assumptions regarding specific reinvestment rates. Assume each payment is reinvested at a different declining rate that holds for its time period (i.e., the first three interest payments are reinvested at progressively lower rates and the fourth interest payment is received at the end of the holding period).

$$
\begin{aligned}
i_{1} \text { at } 13 \% \text { for } 18 \text { months } & =\$ 70 \times(1+.065)^{3}
\end{aligned}=\$ 84.55
$$

Therefore, our total ending-wealth value is

$\$ 1,330.95+\$ 307.05=\$ 1,638.00$.

The compound realized (horizon) rate of return is calculated by comparing our ending wealth value ($\$ 1,638$) to our beginning-wealth value $(\$ 1,000)$ and determining what intervealth value ($\$ 1,638$) our begio values over a 2 -year holding period. To find this, compute the ratio of ending wealth to beginning wealth (1.638). Find this ratio in a compound value table for 4 periods (assuming semiannual compounding). Table A. 3 at the end of the book indicates that the realized rate is somewhere between 12 percent (1.5735) and 14 percent (1.6890). Interpolation gives an estimated semiannual rate of 13.16 percent, which indicates an annual rate of 26.32 percent. Using a calculator or computer it is equal to (1.638) -1 . This compares to an estimate of 27.5 percent when we assume an implicit reinvestment rate of 27.5 percent.
This realized (horizon) yield computation specifically states the expected reinvestment rates as contrasted to assuming the reinvestment rate is equal to the computed realize yield. The actual assumption regarding the reinvestment rate can be very important.
A summary of the steps to calculate an expected realized (horizon) yield is as follows estimated rates.
2. Calculate the expected sales price of the bond at your expected horizon date based on your estimate of the required yield to maturity at that time.
Sum the values in (1) and (2) to arrive at the total ending-wealth value.
4. Calculate the ratio of the ending wealth value to the beginning value (the purchase price of the bond). Given this ratio and the time horizon, compute the compound rate of interest that will grow to this ratio over this time horizon.
$\left(\frac{\text { Ending-wealth value }}{\text { Beginning value }}\right)^{1 / 2 n}-1$
5. If all calculations assume semiannual compounding, double the interest rate derived from (4).

PRICE and Yield DETERMINATION ON NonINTEREST DATES

So far, we have assumed that the investor buys (or sells) a bond precisely on theit.
interest is due, so the measures are accurate only when the if interest is due, so the measures are accurate only when the issues are traded payment dates. If the approximate yield method is used, sufficient accuracy obtained by extrapolating for transactions on noninterest payment dates. You noment
dealing with an approximation and dealing with an approximation, and a bit more is probably acceptable.
However, when the semiannual model is used, and when more accuracy i
another version of the price and yield model must be used for tran another version of the price and yield model must be used for transactions on payment dates. Fortunately, the basic models need be extended only one more sep teecry: he value of an issue that trades X years, Y months, and so many days from nalump ${ }^{\text {f }}$. fter the day of transaction. Thus, the valuation process ine month before and the mio ther than years or semianueal periods 6 ther than years or semiannual periods. ${ }^{6}$
Having computed a value for the bond at a noninterest payment date, itis al to consider the notion of accrued interest. Because the interest payment on a bo paid every six months, is a contractual promise by the issuer, the bond investor hasi
to receive a portion of the semiannual interest payment if he/she held the bond to receive a portion of the semiannual interest payment if he/she held the bond fors
part of the six-month period. For example, assume an 8 percent, $\$ 1,000$ par value boun pays $\$ 40$ every six months. If you sold the bond two months after the prior pays $\$ 40$ every six months. If you sold the bond two months after the prior inhef
payment, you have held it for one-third of the six-month period and would have the rioh one-third of the $\$ 40(\$ 13.33)$. This is referred to as the accrued interest ont Therefore, when you sell the bond, there will be a calculation of the bond's remainim wi until maturity, i.e., its price. What you receive is this price plus the accrued (\$13.33).

IELD ADJUSTMENTS

for Tax-Exempt
Municipal bonds, Treasury issues, and many agency obligations possess one c BONDS characteristic: Their interest income is partially or fully tax-exempt. This tax-exempt affects the valuation of taxable versus nontaxable bonds. Although you could adjus present value equation for the tax effects, it is not necessary for our purposes. W envision the approximate impact of such an adjustment, however, by computing t taxable equivalent yield, which is one of the most often cited measures of performane municipal bonds.
The fully taxable equivalent yield (FTEY) adjusts the promised yield computation al the bond's tax-exempt status. To compute the FTEY, we determine the promised yiedd on-tax-exempt bond using one of the yield formulas and then adjust the computed yie reflect the rate of return that must be earned on a fully taxable issue. It is measured

$$
\text { FTEY }=\frac{i}{1-T}
$$

where
$i=$ the promised yield on the tax-exempt bond
$T=$ the amount and dype of tax exemption

For example, if the promised yield on the tax-exempt bond is 6 percent and the invesio marginal tax rate is 30 percent, the taxable equivalent yield would be:
'For a detailed discussion of these calculations, see Chapter 4 in Frank J. Fabozzi and T. Dessa Fabozzi,
Handbook of Fixed-Income Securities, 4th ed. (Burr Ridge, LL: Irwin Professional Publishing, 1995)
$\begin{aligned} \text { FTEY }=\frac{.06}{1-.30}=\frac{.06}{.70} & =.0857 \\ & =8.57 \%\end{aligned}$
The FTEY equation has some limitations. It is applicable only to par bonds or current coupon obligations such as new issues because the measure considers only interest income, ignoring capital gains, which are not tax-exempt. Therefore, we cannot use it for issues trading at a significant variation from par value (premium or discount).

Bond value tables, commonly known as bond books or yield books, can eliminate most of the calculations for bond valuation. A bond yield table is like a present value interest factor thable in that it provides a matrix of bond prices for a stated coupon rate, various terms to maturity (on the horizontal axis), and promised yields (on the vertical axis). Such a table maturity (on the horizontal axis), and promised yield or the price of a bond.

As might be expected, access to sophisticated calculators or computers has substantially As might beexper and use of yield books. In addition, to truly understand the meaning of alternative yield measures, you must master the present value model and its variations that generate values for promised YTM, promised YTC, realized (horizon) yield, and bond prices.

Thus far, we have used the valuation model, which assumes that we discount all cash flows by one common yield, reflecting the overall required rate of return for the bond. Similarly, RATES we compute the yield on the bond (YTM, YTC, horizon yield) as the single interest rate hat would discoun all the calculations that this was a "promised" yield that depended on two was noted in the YTM calculations hat this was a penvesting all cash flows at the computed YTM (the IRR assumption). Notably, this second assumption often is very unrealistic because it requires a flat, constant yield curs. Wo kop priod time. The yield or the yield curve to be flat, much less remain const thich we discuss in a later section. curve typically is upward sloping for several reasons, wor for different times. nvestors at any point in time require a differentre For example, if investors are buying alemaive different rates of return if they are cash flow at maturity), they will almost always require different rate offered a bond that matures in two years,
As mentioned earlier, he restes the desire for different rates by examining the rates on ates. It is possible to demonstrate the desire for different rates by examining the rates 1996 as government discount These rates indicate that investors require 5.72 percent for a two-year show 608 percen for the cash flow in ten yow, Although these differences in required rates for alternative maturities are noticeable hey are not nearly as large as they were during 1993-1994. The difference in yiel between the one-year bond (5.41 percent) and the 30 -year bond (6.50 percent) (referred to as the maturity spread) was 109 basis points in early 1996; however, it was over 250 basis points in mid-1993.
Because of these differences in spot rates across maturities, bond analysts and bond portfolio managers recognize that it is inappropriate to discount all the flows for a bond at one single rate where the rate used is often based on the yield to maturity for a governmen bond with that maturity. For example, when asked about the value of a particular 20 -yea

DEMONSTRATION OF DIFFERENT VALUATION OF ALTERNATIVE FIVE-YEAR MATURITY

Malurity	Yield
1 Year	5.41
2 Years	5.72
3 Years	5.86
4 Years	6.01
5 Years	6.08
6 Years	6.16
7 Years	6.32
8 Years	6.40
9 Years	6.50
10 Years	6.60
12 Years	6.74
14 Years	6.87
16 Years	6.95
18 Years	7.02
20 Years	7.06
25 Years	7.06
30 Years	6.50
Source: The Wall Street Journal,	

March 15, 1996.
discount rate based on the five-year maturity of all three bonds. If we assume yield to maturity of 6 percent and 6.5 percent for five-year bonds, the values for the three bonds are:
bond rated AA, a bond trader typically will respond that the bond should trade a coriar number of basis points higher than comparable maturity Treasury bonds (e.g, "plus? basis points"). This means that if 20 -year Treasury bonds are currently yielding 714: percent, this bond should trade at about a 7.76 percent yield. Notably, this rate worll determine the price for the bond with no consideration given to the specific cash floust: this security (i.e., high or low coupon). Therefore, there is a growing awareness thal h: valuation formula should be specified such that all cash flows should be discountedin she rates consistent with the timing of the flows as follows:

$$
P_{m}=\sum_{t=1}^{2 n} \frac{C_{t}}{\left(1+i_{i} / 2\right)^{t}}
$$

where

$$
\begin{aligned}
P_{n} & =\text { the market price for the bond } \\
C_{t} & =\text { the cash flow at time } t \\
n & =\text { the number of years } \\
i_{t} & =\text { the spot rate for Treasury securities at time } t .
\end{aligned}
$$

Note that this valuation model requires a different discount rate for each flow so it is mit possible to use the annuity concept. Also, the principal payment at the end of the year ns: no different from the interest coupon flow.
To demonstrate the effect of this procedure, consider the following hypothetical spof: rate curve for the next five years (in Table 16.3) and three' example bonds with equi maturities of five years, but with very different cash flows.

Beyond the differences in value because of the differences in cash flows and the rising: spot-rate curve, a significant comparison is the value that would be derived using a singe

WHAT DETERMINES IMIEREST RATES?

Bond A	6\%			6.5\%			
	$\begin{aligned} & \$ 1,000 \times 8.53441 \\ & \$ 1 \end{aligned}$		$\begin{array}{r} \$ 511.81 \\ \quad 744.10 \\ \hline \end{array}$	$\begin{aligned} & \$ \quad 60 \times 8.6350 \\ & \$ 1,000 \times 727.00 \end{aligned}$	$=$	\$	$\begin{aligned} & 518.10 \\ & 727.00 \end{aligned}$
	Total Value	$=$	\$1,255.91		=		,245.10
Bond B	\$ 30×8.5302	$=$	\$ 255.90	\$ 30×8.6350	$=$	\$	259.05
	\$1,000 $\times .7441$	$=$	744.10	\$1,000 $\times .7270$	$=$		727.00
	Total Value	$=$	\$1,000.00		$=$	\$	986.05
Bond C	\$1,000 $\times .7441$	$=$	\$ 744.10	\$1,000 $\times .7270$	$=$	\$	727.00
	Total Value	$=$	\$ 744.10		=	\$	727.00

Because there is a rising spot-yield curve, we know the YTM would be somewhere between these two values. The point is, valuing the bonds with either of these single rates generates a value that is greater than that derived from the spot-rate curve. This implies that the single-rate valuation technique would overvalue these bonds relative to the more appropriate technique that considers each flow as a single bond discounted by its own spot rate.

Now that we have learned to calculate various yields on bonds and to determine the value of bonds using yields and spot rates, the question arises as to what causes differences and changes in yields over time. Market interest rates cause these effects because the interest rates reported in the media are simply the prevailing YTMs for the bonds being discussed. For example, when you hear that the interest rate on long-term government bonds declined from 8.40 percent to 8.32 percent, this means that the price of this particular bond increased such that the computed YTM at the former price was 8.40 percent, but the computed YTM
at the new, higher price is 8.32 percent. Yields and interest rates are the same. lity different terms for the same concept.

We have discussed the inverse relationship between bond prices and infenty When interest rates decline, the prices of bonds increase; when interest rates nse: thestins or bond interest rates? It is a soural to ask whichange, and you canvision eilher flatis causing it. Most practitioners probably envision the changes in anerest rates and because they constantly use interest rates to describe change a a dend depends noy on the interest rate, but also on its specific characteristics including its coupon rity. The point is, as demonstrated in Table 16.1 and Figure 16.1, when interest rate (yield) on a bond, you simultaneously change relationship for individual bonds and demonstrate that this price-yield relationship difite among bonds based on their particular coupon and maturity.

Understanding interest rates and what makes them change is necessary for an inverit who hopes to maximize returns from investing in bonds. Therefore, in this seclion fe review our prior discussion of the following topics: what causes overall marke incte: rates to rise and fall, why alternative bonds have different interest rates, and whyt difference in rates (i.e., the yield spread) between alternative bonds changes over inges: accomplish this, we begin with a general discussion of what influences interest rales six then consider the term structure of interest rates (shown by yield curves), which rhife the interest rates on a set of comparable bonds to their terms to maturity. The term singere: is important because it implies a set of spot rates that can be used in the valuation ormpers and it reflects what investors expect to happen to interest rates in the future, 1 aso
their current risk attitude. In this section, we specifically consider the calculation of spr: rates and forward rates from the reported yield curve. Finally, we turn to the concepne yield spreads, which measure the differences in yields between alternative bonds. Wh: describe various yield spreads and explore changes in them over time.

Forecasting Interest Rates

As discussed, the ability to forecast interest rates and changes in these rates is crition a successful bond investing. Later, we consider the major determinants of interest rates berl: for now you should keep in mind that interest rates are the price for loanable fumds. Lle any price, they are determined by the supply and demand for these funds. On the one size investors are willing to provide funds (the supply) at prices based on their required raterc: return for a particular borrower. On the other side, borrowers need funds (the demand) support budget deficits (government), to invest in capital projects (corporations), or at acquire durable goods (cars, appliances) or homes (individuals).

Although lenders and borrowers have some fundamental factors that determine supply and demand curves, the prices for these funds (interest rates) also are affected for shor: time periods by events that shift the curves. Examples include major government bond issues that affect demand, or significant changes in Federal Reserve monetary policy thit affect the supply of money.
Our treatment of interest rate forecasting recognizes that you must be aware of the basit determinants of interest rates and monitor these factors. We also recognize that deaild forecasting of interest rates is a very complex task that is best left to professional econo. mists. Therefore, our goal as bond investors and bond portfolio managers is to moniles current and expected interest rate behavior. We should attempt to continuously assess the major factors that affect interest rate behavior but also rely on others--such as econonit

ChAPTER 16 The Analysis and Valuation of Bonds
where
$\begin{aligned} \mathrm{RFR} & =\text { the real risk-free rate of interest } \\ I & =\text { the expected rate of inflation }\end{aligned}$
$\begin{aligned} I & =\text { the expected rate of inflation } \\ \mathrm{RP} & =\text { the risk premium. }\end{aligned}$
The relationship shown in this equation should be familiar from our presenflions Chapters 1 and 13. It is a simple but complete statement of interest rate behaviot, Die n.t? difficult task is estimating the future behavior of such variables as real growin erpert: inflation, and economic uncertainty. In this regard, interest rates, lively, we cansmindit extremely difficult to forecast with any degree of accuracy. ${ }^{8}$ Alternaliv conditions ind the source of cristics that determine the rate of return on a bond:

$$
\begin{aligned}
i & =f(\text { Economic Forces }+ \text { Issue Characteristics }) \\
& =(\mathrm{RFR}+I)+\mathrm{RP} .
\end{aligned}
$$

This rearranged version of the previous equation helps isolate the determinants of 10 rates. ${ }^{9}$

EFFECT OF ECONOMIC FACTORS The real risk-free rate of interest (RFR) is ht nomic cost of money, that is, the opportunity cost necessary to compensate indivituat forgoing consumption. As discussed previously, it is determined by the real growihrew the economy with short-run effects due to ease or tightness in the capital manke

The expected rate of inflation is the other economic influence on interest rates. Wi the expected level of inflation (I) to the real risk-free rate (RFR) to specify the nowith RFR, which is a market rate like the current rate on government T-bills. Given the staht of the real RFR , it is clear that the wide swings in nominal risk-free interest rates duringle years covered by Figure 16.3 occurred because of expected inflation. ${ }^{10}$ Besides the unlipe: country and exchange rate risk that we discuss in the section on risk premiums, differnert in the rates of inflation between countries have a major impact on their level of intere: rates.

To sum up, one way to estimate the nominal RFR is to begin with the real grownthert the economy, adjust for short-run ease or tightness in the capital market, and then atjen this real rate of interest for the expected rate of inflation.

Another approach to estimating the nominal rate or changes in the rate is the marrotes: nomic view, where the supply and demand for loanable funds are the fundamentilet nomic determinants of i. As the supply of loanable funds increases, the level of inert rates declines, other things being equal. Several factors influence the supply of tind Government monetary policies imposed by the Federal Reserve have a significant impat on the supply of money. The savings patterns of U.S. and non-U.S. investors also affectle
${ }^{8}$ For an overview of interest rate forecasting, see Frank J. Jones and Benjamin Wolkowitz, "The Determinants Interest Rates," and W. David Woolford, "Forecasting Interest Rates," in The Handbook of Fived dhet Securities, 4th ed., edited by Frank J. Fabozzi and T. Dessa Fabozzi (Burr Ridge, IL: Irwin Professional Publis ing, 1995).
${ }^{9}$ For an extensive exploration of interest rates and interest rate behavior, see James C. Van Horne, Findind Market Rates and Flows, 4th ed. (Englewood Cliffs, NJ: Prentice-Hall, 1993).
${ }^{10}$ In this regard, see R. W. Hafer, "Inflation: Assessing Its Recent Behavior and Future Prospects;" Fidet. Reserve Bank of St. Louis Review 65, no. 7 (August-September 1983): 36-41; and C. Alan Garner, "Hov Lrs' Arc Leading Indicators of Inflation?" Federal Reserve Bank of Kansas City Economic Review 80, no. 2 (Sered Quarter 1995): 5-18.
supply of funds. Non-U.S. investors have become a stronger influence on the U.S. supply of loanable funds during recent years, as shown by the significant purchases of U.S. securities by non-U.S. investors, most notably the Japanese prior to a pullback in 1992. It is widely acknowledged that this foreign addition to the supply of funds has been very beneficial to the United States since it has helped reduce interest rates and cost of capital.

Interest rates increase when the demand for loanable funds increases. The demand for loanable funds is affected by the capital and operating needs of the U.S. government, federal agencies, state and local governments, corporations, institutions, and individuals. Federal budget deficits increase the Treasury's demand for loanable funds. Likewise, the level of consumer demand for funds to buy houses, autos, and appliances affects rates, as does corporate demand for funds to pursue investment opportunities. The total of all groups determines the aggregate demand and supply of loanable funds and the level of the nominal RFR. ${ }^{11}$
THE IMPACT OF BOND CHARACTERISTICS The interest rate of a specific bond issue is influenced not only by all the factors that affect the nominal RFR, but also by its unique issue characteristics. These issue characteristics influence the bond's risk premium (RP). The economic forces that determine the nominal RFR affect all securities, whereas issue characteristics are unique to individual securities, market sectors, or countries. Thus, the differences in the yields of corporate and Treasury bonds are not caused by economic forces, but rather by different issue characteristics that cause differences in the risk premiums.

Bond investors separate the risk premium into four components:

1. The quality of the issue as determined by its risk of default relative to other bonds
2. The term to maturity of the issue, which can affect yield and price volatility
3. Indenture provisions, including collateral, call features, and sinking-fund provisions
4. Foreign bond risk, including exchange rate risk and country risk

Of the four factors, quality and maturity have the greatest impact on the risk premium for domestic bonds, while exchange rate risk and country risk are important components of risk for non-U.S. bonds.

The credit quality of a bond reflects the ability of the issuer to service outstanding debt obligations. This information is largely captured in the ratings issued by the bond rating firms. As a result, bonds with different ratings have different yields. For example, AAArated obligations possess lower risk of default than BBB obligations, so they can provide lower yield.

Notably, the risk premium differences between bonds of different quality levels have changed dramatically over time, depending on prevailing economic conditions. When the economy experiences a recession or a period of economic uncertainty, the desire for quality increases, and investors bid up prices of higher-rated bonds, which reduces their yields. This difference in yield is referred to as the quality spread. It also has been suggested by Dialynas and Edington that this yield spread is influenced by the volatility of interest rates. ${ }^{12}$ This variability in the risk premium over time was demonstrated and discussed in Chapters 1 and 13.
${ }^{11}$ For an example of an estimate of the supply and demand for funds in the economy, see Prospects for Financial "For an example of an estimate of the supply and . This is an annual publication of Salomon Brothers that gives Markets in 1996 (New York: Salomon Bros., 1995). This is an and ind ind effect on various currencies and interest rates, an estimate of the flow of funds in the economy and discusses its effect on various
making recommendations for portfolio strategy on the basis of these expectations. ${ }^{12}$ Chris P. Dialynas and David H. Edington, "Bond Yield Spreads: A Postmodern View," Journal of Portfolio Management 19, no. 1 (Fall 1992): 68-75.

Term to maturity also influences the risk premium because it affe of uncertainty as well as the price volatility of the bond. In the section on the term tine maturity of a bond issue and its interest rate. As of a bond issue and its interest rate.
bond, its callability, and its sinking-fund provisions. Collateral gives pal pledged kat investor if the issuer defaults on the bond because the investor has gives protection lot assets in case of liquidation.
Call features indicate when an issuer can buy back the bond prior to it is called by an issuer when interest rates have declined so typically it is not to the of the investor who must reinvest the proceeds at a lower interest rate. O investor will charge the issuer for including the call option, and the cost o (which is a higher yield) will increase with the level of interest rates. There protection against having the bond called reduces the risk premium. The signi call protection increases during periods of high interest rates. When you buy a bo high coupon, you want protection from having it called away when rates declin
A sinking fund reduces the investor's risk and causes a lower yield for severa First, a sinking fund reduces default risk because it requires the issuer to re outstanding issue systematically. Second, purchases of the bond by the issuer sinking-fund requirements provide price support for the bond because of the mand. These purchases by the issuer also contribute to a more liquid secondary he bond because of the increased trading. Finally, sinking-fund provisions requir issuer retire a bond before its stated maturity, which causes a reduction in the average maturity. The decline in average maturity tends to reduce the risk premiu Whach as a shorter maturity would reduce yield. ${ }^{14}$
We know that foreign currency exchange rates change over time and that this in tries arise because the trade balances and rates of inflation differ ame res amon volatile trade balances and inflation rates in a country make its exchig volatile, which will add to the uncertainty of future exchange rates. These factor the exchange rate risk premium.
In addition to the ongoing changes in exchange rates, investors always are with the political and economic stability of a country. If investors are unsure abo political environment or the economic system in a country, they will increase th premium they require to reflect this country risk. ${ }^{15}$

Term Structure or nterest Rate

The term structure of interest rates (or the yield curve, as it is more popularly known) tatic function that relates the term to maturity to the yield to maturity for a sample:

William Marshall and Jess B. Yawitz, "Optimal Terms of the Call Provision on a Corporate Bond
 Risk of Corporate Debt Instruments," Journal of Financial Research 1, no. 1 (Winter 1978): 1-13
${ }^{14}$ For a further discussion of sinking funds so ${ }^{14}$ For a further discussion of sinking funds, see Edward A. Dyl and Michael D. Joehnk, "Sinking Funds
Cost of Corporate Debt," Journal of Finance 34, no. 4 (September 1979): 887-893; A. J. Kalotay," Management of Sinking Funds," Financial Management 10, no. 2 (Summer 1981): 34-40; and A. I.
"Sinking Funds and the Realized Cost of Debt," Financial Management 11, no. 1 (Spring 1982): "15n this regard, see Martin Fridson, "Soovereign Risk from a Corporate Bond Analyst Perspective", and Bny
Murphy, David Won, and Deepak Gulrajani, "valuation and Risk Analysis of Intemational Bonds." Bolluriti

TREASURY YIELD CURVE

Source: Curves by authors using data from Federal Reserve Bulletin (Washington, D.C., various issues.)
nds at a given point in time. ${ }^{16}$ 'Thus, it represents a cross section of yields for a category of bonds that are comparable in all respects but maturity. Specifically, the quality of the bonds that are comparable in all respects but maturity. Specificaly, he quans and call issues should be constant, and ideally you sho con construct different yield curves for reate muncipals, AAA utilities, and so on. The and accuracy of the yeld carve 164 shows yield curves for a sample of U.S. Treasury obligaAs an example, issues from publication such as the Federal Reserve Bulletin or The Wall Street Journal. Thsus promised yields were plotted on the graph, and a yield curve was drawn that repre tene phe soints in time to demonstrate the changes in yield levels and in the shape of the yield curve over time.
All yield curves, of course, do not have the same shape as those in Figure 16.4. Al Aough individual yield curves are static, their behavior over time is quite fluid. As shown, the level of the curve decreased from October, 1995 to January, 1996 and then the slop increased to April 1, 1996. Also, the shape of the yield curve can undergo dramatic alterations, following one of the four patterns shown in Figure 16.5. The rising yield curv is the most common and tends to prevail when interest rates are at low or modest level

```
\mp@subsup{}{}{16}\mathrm{ For a discussion of the theory and empirical evidence, see Richard W. McEnally and James V. Jordan, "The }
Term Strucure of Interest Rates," in The Handbook of Fixed-Income Securities, 41 Term Structure of Interest Rates," in The Handbook of Fixed-Income Securities, 41 .
```


The declining yield curve tends to occur when rates are relatively high. The flat yieldarie rarely exists for any period of time. The humped yield curve prevails when extremelytits rates are expected to decline to more normal levels. Note that the slope of the curve endry level off after 15 years.

Why does the term structure assume different shapes? Three major theories atempt explain this: the expectations hypothesis, the liquidity preference hypothesis, and theres mented market hypothesis.

Before we discuss these three alternative hypotheses, we must first discuss two pr. viously noted rates that not only are an integral part of the term structure, but importanie? the valuation of bonds. The next two subsections will deal with the specification ar computation of spot rates and forward rates. Earlier, we discussed and used spot rales?: value bonds with the idea that any coupon bond can be viewed as a collection of 7 mp coupon securities.

CREATING THE THEORETICAL SPOT-RATE CURVE ${ }^{17}$ Earlier in the chapter, we discussed the notion that the yield on a zero coupon bond for a given maturity is the spot rate for the maturity. Specifically, the spot rate is defined as the discount rate for a cash flow at a specific maturity. At that time, we used the rates on a series of zero coupon government bonds created by stripping coupon government bonds.

In this case, we will construct a theoretical spot-rate curve from the observable yield curve that is based on the existing yields of Treasury bills and the most recent Treasury coupon securities (referred to as on-the-run Treasury issues). One might expect the theoretical spotrate curve and the spot-rate curve derived from the stripped zero-coupon bonds used earlier to be the same. The fact is, while they are close, they will not be exactly the same because the stripped zero-coupon bonds will not be as liquid as the on-the-run issues. In addition, there are instances where institutions will have a strong desire for a particular spot maturity and this preference will distort the term structure relationship. Therefore, while it is possible to use the stripped zero-coupon curve for a general indication, if you are going to use the spot rates for significant valuation, you would want to use the theoretical spot-rate curve.

The process of creating a theoretical spot-rate curve from coupon securities is called bootstrapping wherein it is assumed that the value of the Treasury coupon security should be equal to the value of the package of zero-coupon securities that duplicates the coupon bond's cash flow. Table 16.4 lists the maturity and YTM for six hypothetical Treasury bonds that will be used to calculate the initial spot rates.

Consider the six-month Treasury bill in Table 16.4. As discussed earlier, a Treasury bill is a zero-coupon instrument so its annualized yield of 8 percent is equal to the spot rate. Similarly, for the one-year Treasury, the cited yield of 8.3 percent is equal to the one-year spot rate. Given these two spot rates, we can compute the spot rate for a theoretical 1.5 -year zero-coupon Treasury. The price should equal the present value of three cash flows from an actual 1.5-year coupon Treasury, where the yield used for discounting is the spot rate corresponding to the cash flow.

Using $\$ 100$ as par, the cash flow for the 1.5 -year coupon Treasury is as follows:

0.5 years	$.085 \times \$ 100 \times .5$	$=\$ 4.25$
1.0 years	$.085 \times \$ 100 \times .5$	$=\$ 4.25$
1.5 years	$.085 \times \$ 100 \times .5+\$ 100$	$=\$ 104.25$

${ }^{17}$ This discussion of the theoretical spot-rate cuve and the subsequent presentation on calculating forward rates draws heavily from Frank J. Fabozzi, "The Structure of Interest Rates," in The Handbook of Fixed Income Securities 4th ed., edited by Frank J. Fabozzi and T. Dessa Fabozzi (Burr Ridge, IL: Irwin Professional Publishing, 1995).

The present value of the cash flows discounted as the appropriate spol rates tithen

$$
\frac{4.25}{\left(1+z_{1}\right)^{1}}+\frac{4.25}{\left(1+z_{2}\right)^{2}}+\frac{104.25}{\left(1+z_{3}\right)^{3}}
$$

where
$z_{1}=$ One-half the annualized six-month theoretical spot rate
$z_{2}=$ One-half the one-year theoretical spot rate
$z_{3}=$ One-half the 1.5 -year theoretical spot rate
Because the six-month spot rate and one-year spot rate are 8.0 percent and 8.3 respectively, we know that

$$
z_{1}=.04 \text { and } z_{2}=.0415 \text {. }
$$

We can compute the present value of the 1.5 -year coupon Treasury security as

$$
\frac{4.25}{(1.0400)^{1}}+\frac{4.25}{(1.0415)^{2}}+\frac{104.25}{\left(1+z_{3}\right)^{3}}
$$

Because the price of the 1.5 -year coupon Treasury security (from Table 16.4) is 999 sht following relationship must hold:

$$
99.45=\frac{4.25}{(1.0400)^{1}}+\frac{4.25}{(1.0415)^{2}}+\frac{104.25}{\left(1+z_{3}\right)^{3}}
$$

We can solve for the theoretical 1.5 year spot rate as follows:

$$
\begin{aligned}
99.45 & =4.08654+3.91805+\frac{104.25}{\left(1+z_{3}\right)^{3}} \\
91.44541 & =\frac{104.25}{\left(1+z_{3}\right)^{3}} \\
\frac{104.25}{91.44541} & =\left(1+z_{3}\right)^{3} \\
\left(1+z_{3}\right)^{3} & =1.140024 \\
z_{3} & =.04465
\end{aligned}
$$

Doubling this yield, we obtain the bond-equivalent yield of .0893 or 8.93 percent, whi is the theoretical 1.5 -year spot rate. That rate is the rate that the market would appl 1.5 -year zero-coupon Treasury, if such a security existed

Given the theoretical 1.5 -year spot rate, we can obtain the theoretical two-year sum The cash flow for the two-year coupon Treasury in Table 16.4 is

| | | |
| :--- | :--- | :--- | :--- |
| 0.5 years | $.090 \times \$ 100 \times .5$ | $=\$ 4.50$ |
| 1.0 years | $.090 \times 100 \times 5$ | $=\$ 4.50$ |
| 1.5 years | $.090 \times \$ 100 \times .5$ | $=\$ 4.50$ |
| 2.0 years | $.090 \times \$ 100 \times .5+100$ | $=\$ 104.50$ |

The present value of the cash flow is then

$$
\frac{4.50}{\left(1+z_{1}\right)^{1}}+\frac{4.50}{\left(1+z_{2}\right)^{2}}+\frac{4.50}{\left(1+z_{3}\right)^{3}}+\frac{104.50}{\left(1+z_{4}\right)^{4}}
$$

where
$z_{4}=$ One-half the two-year theoretical spot rate
Because the six-month spot rate, one-year spot rate, and 1.5 -year spot rate are 8 percent, 8.3 percent, and 8.93 percent respectively, then

$$
z_{1}=.04 \quad z_{2}=.0415 \text { and } z_{3}=.04465
$$

Therefore, the present value of the two-year coupon Treasury security is

$$
\frac{4.50}{(1.0400)^{1}}+\frac{4.50}{(1.0415)^{2}}+\frac{4.50}{(1.04465)^{3}}+\frac{104.50}{\left(1+z_{4}\right)^{4}}
$$

Because the price of the two-year coupon Treasury security is $\$ 99.64$, the following relaionship must hold:

$$
99.64=\frac{4.50}{(1.0400)^{1}}+\frac{4.50}{(1.0415)^{2}}+\frac{4.50}{(1.04465)^{3}}+\frac{104.50}{\left(1+z_{4}\right)^{4}}
$$

We can solve for the theoretical two-year spot rate as follows:

$$
\begin{aligned}
99.64 & =4.32692+4.14853+3.94730+\frac{104.50}{\left(1+z_{4}\right)^{2}} \\
87.21725 & =\frac{104.50}{\left(1+z_{4}\right)^{4}} \\
\left(1+z_{4}\right)^{4} & =1.198158 \\
z_{4} & =.046235
\end{aligned}
$$

Doubling this yield, we obtain the theoretical two-year spot rate bond-equivalent yield of 9.247 percent.

One can follow this approach sequentially to derive the theoretical 2.5 -year spot rate from the calculated vales of $z_{1}, z_{2}, z_{3}, z_{4}$ (the six-month, one-year, 1.5 -year, and two-year rates), and the price and the coupon of the bond with a maturity of 2.5 years. Further, on could derive the theoretical spot rate for three years. The spot rates thus obtained are shown in Table 16.5. They represent the term structure of interest rates for maturities up to three years, based upon the prevailing bond price quotations.
As shown, with a rising YTM curve, the theoretical spot rate will increase at a faster rate As shown, with a rising YTM curve, the theoretical spot rate will incere spot-rate curve will be above a positively sloped YTM curve)

CALCULATING Now that we have derived the theoretical spot-rate curve, it is possible to determine FORWARD RATES this curve implies regarding the market's expectation of future short-term rates, whiclat: FROM THE SPOTRATE CURVE referred to as forward rates. The following illustrates the process of extrapolimple: information about expected future interest rates.

Consider an investor who has a one-year investment horizon and is faced vilh fe: following two alternatives:

Alternative 1: Buy a one-year Treasury bill.
Alternative 2: Buy a six-month Treasury bill and when it matures in six monlbx another six-month Treasury bill.
The investor will be indifferent between the two alternatives if they produce the sirit? return on the one-year investment horizon. The investor knows the spot rate on the yir month Treasury bill and the one-year Treasury bill. However, she does not know whild will be available on a six-month Treasury bill six months from now. The yield on st: month Treasury bill six months from now is called a forward rate. Given the spot rate the six-month Treasury bill and the one-year bill, we can determine the forward ratery six-month Treasury bill that will make the investor indifferent between the two atermane

At this point, however, we need to digress briefly and recall several present values investment relationships. First, if you invested in a one-year Treasury bill, you the receive $\$ 100$ at the end of one year. The price of the one-year Treasury bill would te:

$$
\frac{100}{\left(1+z_{2}\right)^{2}}
$$

where
z_{2} is one-half the bond-equivalent yield of the theoretical one-year spot rate
Second, suppose you purchased a six-month Treasury bill for $\$ \mathrm{X}$. At the end of six monitit the value of this investment would be

$$
X\left(1+z_{1}\right)
$$

where
z_{1} is one-half the bond-equivalent yield of the theoretical six-month spot rate
Let ${ }_{1+5}$. 5 .s represent one-half the forward rate (expressed as a bond-equivalent yield) on six-month Treasury bill (.5) available six months from now $(t+.5)$. If the investor were"
renew her investment by purchasing that bill at that time, then the future dollars available at the end of the year from the $\$ \mathrm{X}$ investment would be

$$
X\left(1+z_{1}\right)\left(1+t+. s r_{.5}\right)=100
$$

Third, it is easy to use that formula to find out how many dollars the investor must invest in order to get $\$ 100$ one year from now. This can be found as follows:

$$
\left(1+z_{1}\right)\left(1+{ }_{1+5} \cdot 5 \cdot .5\right)=100
$$

which gives us

$$
\mathrm{X}=\frac{100}{\left(1+z_{1}\right)\left(1+1+r^{5} .5\right)}
$$

We are now prepared to return to the investor's choices and analyze what that situation says about forward rates. The investor will be indifferent between the two alternatives confronting her if she makes the same dollar investment and receives $\$ 100$ from both alternatives at the end of one year. That is, the investor will be indifferent if

$$
\frac{100}{\left(1+z_{2}\right)^{2}}=\frac{100}{\left(1+z_{1}\right)\left(1+{ }_{1+5}, 5 r_{5}\right)}
$$

Solving for ${ }_{t+5}, r_{5}$ we get

$$
{ }_{t+5 r^{\prime} . S}=\frac{\left(1+z_{2}\right)^{2}}{\left(1+z_{1}\right)}-1
$$

Doubling r gives the bond-equivalent yield for the six-month forward rate six months from now.

We can illustrate the use of this formula with the theoretical spot rates shown in Table 16.5 . From that table, we know that

$$
\begin{array}{rll}
\text { Six-month bill spot rate }=.080 & \text { so } & z_{1}=.0400 \\
\text { One-year bill spot rate }=.083 & \text { so } & z_{2}=.0415
\end{array}
$$

Substituting into the formula, we have

$$
\begin{aligned}
1+5 r_{.5} & =\frac{(1.0415)^{2}}{1.0400}-1 \\
& =.043
\end{aligned}
$$

Therefore, the forward rate six months from now $(t+.5)$ on a six-month Treasury security, quoted annually, is 8.6 percent $(.043 \times 2)$. Let us confirm our results. The price of a oneyear Treasury bill with $\$ 100$ maturity is

$$
\frac{100}{(1.0415)^{2}}=92.19
$$

If $\$ 92.19$ is invested for six months at the six-month spot rate of 8 percent, the annegys
the end of six months would be

$$
92.19(1.0400)=95.8776
$$

If $\$ 95.8776$ is reinvested for another six months in a six-month Treasury bill o percent for six months (8.6 percent annually), the amount at the end of one year wing t

$95.8876(1.043)=100$

Both alternatives will have the same $\$ 100$ payoff if the six-month Treasury b months from now is 4.3 percent (8.6 percent on a bond-equivalent basis). This mentey if an investor is guaranteed a We used the theoretical spont
rate is called the implied forward rate. ate is called the implied forward rate.
It is possible to use the yield curve to calculate the implied forward rate for any fine the future for any investment horizon. This would include six-month or one-year fors: rates for each year in the future. The one-year forward rates would be follows:
$41 r_{1}=$ the one-year forward rate, one year from now $(t+1)$
$t+2 r_{1}$ the one-year forward rate, two years from now $(t+2)$
$t, 4 r_{1}$ the one-year forward rate, three years from nowy $(t+3)$

Given the calculations, it is clear that with a rising spot-rate curve, the forward-rate euri would be above the spot-rate curve. From Table 16.5, we have the following one year st rates, which imply the following one-year forward rates:

Maturity (Years)	Spot Rates	One-Year Forward Rates
1.0	.08300	
2.0	.09247	.1020
3.0	.09787	.1087

Therefore:

$$
\begin{aligned}
& { }^{+1+1} r_{1}=\frac{(1.09247)^{2}}{(1.03800)}-1=\frac{1.19349}{1.08300}-1=.1020 \\
& { }_{+2} r_{1}=\frac{(1.09787)^{3}}{(1.09247)^{2}}-1=\frac{1.32328}{1.19349}-1=.1087
\end{aligned}
$$

TERM-

STRUCTURE
THEORIES
EXPECTATIONS HYPOTHESIS According to the expectations hypothesis, the shape the yield curve results from the interest rate expectations of market participants. Mo specifically, it holds that any long-term interest rate simply represents the geometric ment of current and future 1 -year interest rates expected to prevail over the maturity of the issut In essence, the term structure involves a series of intermediate and long-term interest rides each of which is a reflection of the geometric average of current and expected 1 -yew interest rates. Under such conditions, the equilibrium long-term rate is the rate the long
erm bond investor would expect to earn through successive investments in short-term bonds over the term to maturity of the long-term bond
Generally, this relationship can be formalized as follows:

$$
\left(1+R_{n}\right)=\left[(1 + R _ { 1 }) \left(1+{ }_{\left.\left.\left.+1+1 r_{1} r_{1}\right) \ldots\left(1+{ }_{t+n-1} r_{1} r_{1}\right)\right]^{1 / N}\right) .}\right.\right.
$$

where

$R_{n}=$ the actual long-term rate
$R_{n}=$ the actual
$N=$
N the terg-term to maturity (in years) of long issu
$N=$ the
$R=$ the current 1 -year rate
, $r_{1}=$ the expected 1 -year yield during some futare period, $t+i$ (these future 1 -year rates are referred to as forward rates).

Given the relationship set forth in this equation, the formula for computing the one-perio forward rate beginning at time $t+n$ and implied in the term structure at time t is

$$
\begin{aligned}
& =\frac{\left(1+R_{n+1}\right)^{n+1}}{\left(1+, R_{n}\right)^{n}} \\
& { }_{k+n} r_{14}=\frac{\left(1+, R_{n}+1\right)^{n+1}}{\left(1+, R_{n}\right)^{n}}-1
\end{aligned}
$$

where ${ }_{t+n} r^{\prime}$, is the 1 -year forward rate prevailing at $t+n$, using the term structure at time t. Assume that the 5 -year spot rate is 10 percent $\left(R_{s}=10\right)$ and the 4 -year spot rate is Asent ($R_{1}=09$) The forward is 9 percent $\left(R_{4}=.09\right)$. The fors:

$$
\begin{aligned}
1+4 r_{11} & =\frac{\left(1+R_{5}\right)^{5}}{\left(1+R_{4}\right)^{4}}-1 \\
& =\frac{(1+.10)^{5}}{(1+.09)^{4}}-1 \\
& =\frac{1.6105}{1.4116}-1 \\
& =1.1409-1=.1409=14.09 \%
\end{aligned}
$$

The term structure at time t implies that the 1 -year spot rate 4 years from now (during Year 5) will be 14.09 percent. This concept and formula can be used to derive future rates for multiple years. Thus, the 2 -year spot rate that will prevail 3 years from now could be calculated using the 3 -year spot rate and the 5 -year spot rate. The general formula for computing the j-period forward rate beginning at time $t+n$ as of time t is

$$
\sqrt{1+n} l_{j i}=\sqrt[3]{\frac{\left(1+R_{n}+\right)^{n+j}}{\left(1+i R_{n}\right)^{n}}}-1
$$

As a practical approximation of the equation at the top of this page, it is possible to use the arithmetic average of 1 -year rates to generate long-term yields.

The expectations theory can explain any shape of yield curve. Expectations for rising short-term rates in the future cause a rising yield curve; expectations for falling short-term
rates in the future will cause long-term rates to lie below current short-term ri yield curve will decline. Similar explanations account for flat and humped y Consider the following explanation by the expectations hypothesis of the

$R_{2}=51 \% \%$,
 $\begin{aligned} & 11_{1}=51 / 2 \% \\ & t+1 r_{1}=6 \%\end{aligned}$ the 1 -year rate of interest prevailing now (period t) the 1 -year rate of interest expected to prevail next

 -

Using these values, and the known rate on a 1 -year bond, we compute rates on 2 year bonds (designated R_{2}, R_{3}, and R_{4}) as follows:

$1 \begin{aligned} & R_{1}=51 / 2 \\ & R_{2}=0.0 .055+0.0 .0\end{aligned}$
 $R_{2}=(0.055+0.06) / 2=5.75$ percent $R_{3}=(0.055+0.06+0.075) / 3=6.31$
 $1 R_{3}=(0.055+0.06+0.075) / 3=6.33$ percent $1 R_{4}=(0.055+0.06+0.075+0.085) / 4=6.88$ percent

In this illustration (which uses the arithmetic average as an approximation of the mean), the yield curve is upward-sloping because, at present, investors expect ful
term rates to be above current short-term rates. This is not the formal mether ing the yield curve Rather, it is constructed on the is not the formal method forco ing the yield curve. Rather, it is constu The expectations hypothesis atter
The expectations hypothesis attempts to explain why the yield curve is upward
downward-sloping, humped, or flat by explaining the expectations implicit in downward-sloping, humped, or flat by explaining the expectations implicit in yie
with different shapes. The evidence is fairly substantial and convincing that the tions hypothesis is a workable explanation of the term structure. Because of the su evidence, its relative simplicity, and the intuitive appeal of the theory, the expec hypothesis of the term structure of interest rates is rather widely accepted.
Besides the theory and empirical support, it is also possible to presen wherein investor actions will cause the yield curve postulated by the theory. The exp tions hypothesis predicts a declining yield curve when interest rates are expected to the future rather than rise. In such a case, long-term bonds would be considered attra investments because investors would want to lock in prevailing higher yields (whic not expected to be as high in the future) or they would want to capture the increase in prices (as capital gains) that will accompany a decline in rates. By the same r investors will avoid short-term bonds or sell them and reinvest the funds in bonds. The point is, investor expectations will reinforce the declining shape of th curve as they bid up the prices of long-maturity bonds (forcing yields to decline) a term bond issues are avoided or sold (so prices decline and yields rise). At the same there is confirming action by suppliers of bonds. Specifically, government or cor issuers will avoid selling long bonds at the current high rates, waiting until ti. ecline. In the meantime, they will issue short-term bonds, if needed, while wall解crine in therefore, in the long-term market you will have an increase in demand lecline in the sply and

LIQUDITY PREFERENCE HYPOTHESIS The theory of liquidity preference h long-term securities should provide higher returns than short-term obligations be vestors are willing to sacrifice some yields to invest in short-maturity obligations to he higher price volatility of long-maturity bonds. Another way to interpet the lia
preference hypothesis is to say that lenders prefer short-term loans, and, to induce them to lend long term, it is necessary to offer higher yields.

The liquidity preference theory contends that uncertainty causes investors to favor short-term issues over bonds with longer maturities because short-term bonds can easily be converted into predictable amounts of cash should unforeseen events occur. This theory argues that the yield curve should slope upward and that any other shape should be viewed
as a temporary aberration.
This theory can be considered an extension of the expectations hypothesis because the formal liquidity preference position contends that the liquidity premium inherent in yields for longer maturity bonds should be added to the expectedsates the investor in long-long-term yields. Specied ye les stable prices. Because the liquidity erm bonds form in the ingestor, it is simply a variation of premium (L) is provided 5 conper follows:

$$
\left(1+, R_{N}\right)=\left[\left(1+R_{1}\right)\left(1+{ }_{+1} r_{1}+L_{2}\right) \ldots\left(1+{ }_{\text {NN- }}-r_{1}+L_{n}\right]^{1 / N}\right.
$$

this specification, the $L s$ are not the same, but would be expected to increase with time The liquidity preference theory has been found to possess some strong empirical support. ${ }^{18}$ To see how the liquidity preference theory predicts future yields and how it compares with the pure expectations hypothesis, let us predict future long-term rates from a single set of 1 -year rates: 6 percent, 7.5 percent, and 8.5 percent. The liquidity preference theory suggests that investors add increasing liquidity premiums to successive rates to derive actual market rates. As an example, they might arrive at rates of 6.3 percent, 7.9 percen and 9.0 percent.
As a matter of historical fact, the yield curve shows a definite upward bias, which implies that some combination of the expectations theory and the liquidity preference theory will more accurately explain the shape of the yield curve than either of them alone. Specifically, actual long-term rates consistently tend to be he price expectations hypothesis, which implies the exis
SEGMENTED MARKET HYPOTHESIS Despite meager empirical support, a third theory for the shape of the yield curve is the segmented market hypothesis, which enjoys wide acceptance among market practitioners. Also known as the preferred habitat, the institutional theory, or the hedging pressure theory, it asserts that different institutional investors have different maturity needs that lead them to confine their security selections to specific maturity segments. That is, investors supposedly focus on short-, intermediate-, or long term securities. This theory contends that the shape of the yield curve ultimately is function of these investment policies of major financial institutions.
Financial institutions tend to structure their investment policies in line with factors such as their tax liabilities, the types and maturity structure of their liabilities, and the level of earnings demanded by depositors. For example, because commercial banks are subject normal corporate tax rates and their liabilities are generally short- to intermedae-teri time and demand deposits, they consistently invest in short- to intermediate-term munic pal bonds.
${ }^{18}$ See Reuben A. Kessel, "The Cyclical Belavior of the Term Structure of Interest Rates," Occasional Paper 91, National Bureau of Economic Research, 1965; Phillip Cagan, Essays on Interest Rates (New York: Columbia University Press for the National Bureau of Economic Research, 1969); and J. Huston McCuiloch, "An
of the Liquidity Premium," Journal of Political Economy 83, no. 1 (January-February 1975): 95-119.

The segmented market theory contends that the business environment, alone wity and regulatory limitations, tends to direct each type of financial institurn form, the segmented market theory holds that the maturity preferences of inverims borrowers are so strong that investors never purchase securities outside their prich maturity range to take advantage of yield differentials. As a result, the shor- ond tris maturity portions of the bond market are effectively segmented, and yields for a sem: depend on the supply and demand within that maturity segment.

TRADING IMPLICATIONS OF THE TERM STRUCTURE Information on maturite help you formulate yield expectations by simply observing the shape of the yienternet: the yield curve is declining sharply, historical evidence suggests that interest rilly probably decline. Expectations theorists would suggest that you need to examine onf:" prevailing yield curve to predict the direction of interest rates in the future.

Based on these theories, bond investors use the prevailing yield curve to predtax: shapes of future yield curves. Using this prediction and knowledge of currentinerestrut investors can determine expected yield volatility by maturity sector. In turn, the malise segments that experience the greatest yield changes give the investor the largest patint: price appreciation. ${ }^{19}$

YIELD SPREADS Another technique that helps make good bond investments or profitable trades tisf analysis of yield spreads-the differences in promised yields between bond iswet 5 segments of the market at any point in time. Such differences are specific to the pariefer issues or segments of the bond market. Thus they add to the rates determined by the hes economic forces (RFR $+I$).
There are four major yield spreads:

1. Different segments of the bond market may have different yields. For example.pre: government bonds will have lower yields than government agency bonds, and goverif: ment bonds have much lower yields than corporate bonds.
2. Bonds in different sectors of the same market segment may have different yields te: example, prime-grade municipal bonds will have lower yields than good-grade munies pal bonds; you will find spreads between AA utilities and BBB utilities, or bellica: AAA industrial bonds and AAA public utility bonds.
3. Different coupons or seasoning within a given market segment or sector may cals yield spreads. Examples include current coupon government bonds versus dert: discount governments or recently issued AA industrials versus seasoned AA industiel
4. Different maturities within a given market segment or sector also cause differencesirín yields. You will see yield spreads between short-term agency issues and longetert agency issues, or between 3 -year prime municipals and 25 -year prime municipals:
The differences among these bonds cause yield spreads that may be either positive e negative. More important, the magnitude or the direction of a spread can change over ims: These changes in size or direction of yield spreads offer profit opportunities. We say the the spread narrows whenever the differences in yield become smaller; it widens as in: differences increase. Table 16.6 contains data on a variety of past yield spreads.

Comparisons	1984	1985	1986	1987	1988	1989	1990	1991	1992
1. Short GovernmentsLong Governments ${ }^{\text {a }}$	+10	+111	+108	+96	+72	+3	+48	+127	+210
2. Long GovernmentsLong Aaa Corporates ${ }^{\text {b }}$	$+72$	± 62	+88	$+74$	$+73$	+68	+58	+61	$+62$
3. Long MunicipalsLong Aaa Corporates ${ }^{\text {c }}$	$+272$	+226	+170	+175	+203	+203	+220	+199	+185
4. Long Aaa MunicipalsLong Baa Municipals ${ }^{d}$	$+77$	+98	+81	+103	+47	+40	+104	+103	+84
5. AA Utilities-BBB Utilities ${ }^{\text {e }}$	+88	$+90$	$+70$	+76	+74	+42	+41	+46	+31
6. AA Utilities-AA Industrials ${ }^{\text {e }}$	-51	-11	+33	+19	-65	-20	-20	-9	-18

${ }^{2}$ Median yield to maturity of a varying number of bonds with 2 to 5 years' maturity and more than 10 years, respectively.
respectively.
bLong Aaa corporates based on yields to maturity on selected long-term bonds.
cLong-term municipal issues based on Bond Buyer Series, a representative list of high-quality municipal bonds with a 20 -year period to maturity being maintained.
${ }^{\mathrm{d}}$ General obligation municipal bonds only.
${ }^{\text {cBased }}$ on a changing list of representative issues.
Source: Federal Reserve Bulletin, Moody's Bond Guide.

As a bond investor, you should evaluate yield spread changes because these changes influence bond price behavior and comparative return performance. You should attempt to identify (1) any normal yield spread that is expected to become abnormally wide or narrow in response to an anticipated swing in market interest rates, or (2) an abnormally wide or narrow yield spread that is expected to become normal.

Economic and market analysis help develop these expectations of potential for yield spreads to change. Taking advantage of these changes requires a knowledge of historical spreads and an ability to predict not only future total market changes, but also why and when specific spreads will change. ${ }^{20}$

WHAT In this chapter, we have learned about alternative bond yields, how to calculate them, what DETERMINES THE PRICE VOLATLLITY FOR BONDS? determines bond yields (interest rates), and what causes them to change. Now that we understand why yields change, we can logically ask what is the effect of these yield changes on the prices and rates of return for different bonds? We have discussed the inverse relationship between changes in yields and the price of bonds, so we can now discuss the specific factors that affect the amount of price change for a yield change in different bonds, This can also be referred to as the interest rate sensitivity of a bond. This section lists the specific factors that affect bond price changes for a given change in interest rates (i.e., the interest rate sensitivity of a bond) and demonstrates the effect for different bonds.

A given change in interest rates can cause vastly different percentage price changes for alternative bonds, which implies different interest rate sensitivity. This section will help
${ }^{20}$ An article that identifies four determinants of relative market spreads and suggests scenarios when they will change is Chris P. Dialynas and David H. Edington, "Bond Yield Spreads: A Postmodern View," Jounal of Portfolio Management 19, no. 1 (Fall 1992): 68-75.
you understand what causes these differences in interest rate sensitivity, To know which foom your knowledge of a decline in interest rates, for example, , will hen nake this bond selection decision

Thoughout this sect wo talk
Throughouly A bond price change about bond price changes or bond price u the bond, computed as follows:

$\frac{\mathrm{EPB}}{\mathrm{BPB}}-1$

where

$\mathrm{EPB}=$ the ending price of the bond $\mathrm{BPB}=$ the beginning price of the bond

Bond price volatility also is measured in terms of percentage changes in bond prict: bond with high price volatility or high interest rate sensitivity is one that experience percentage price changes for a given change in yields.
Bond price volatility is influenced by more than yield behavior alone. Malkie bond valuation model to demonstrate that the market price of a bond is a functio factors: (1) its par value, (2) its coupon, (3) the number of years to its maturity, and (A) prevailing market interest rate. ${ }^{21}$ Malkiel's mathematical proofs showed the fo relationships between yield (interest rate) changes and bond price behavior:

1. Bond prices move inversely to bond yields (interest rates).
2. For a given change in yields (interest rates), longer-maturity bonds post l changes; thus, bond price volatility is directly related to term to maturity
3. Price volatility (percentage of price change) increases at a diminishing tate maturity increases.
4. Price movements resulting from equal absolute increases or decreases in yield symmetrical. A decrease in yield raises bond prices by more than an increase in yien the same amount lowers prices.
5. Higher coupon issues show smaller percentage price fluctuation for a given change yield; thus, bond price volatility is inversely related to coupon.
Homer and Leibowitz showed that the absolute level of market yields also affects price volatility. ${ }^{22}$ As the level of prevailing yields rises, the price volatility of bonds creases, assuming a constant percentage change in market yields. It is important to mo that if you assume a constant percentage change in yield, the basis-point change wil are at 4 phen rates are high. For example, a 25 percent change in interest rates when percent will be a 200 be 100 basis points; the same 25 percen in that this difference in basis point change is important.
Tables 16.7, 16.8 , and 16.9 demonstrate these relationships assuming semiannual co pounding. Table 16.7 demonstrates the effect of maturity on price volatility. In all maturity classes, we assume a bond with an 8 percent coupon and assume that the disco

21 Burton G. Malkiel, "Expectations, Bond Prices, and the Term Structure of Interest Rates,", Quarterty Joorma
Economics 76, no. 2 (May 1962): 197-218. ${ }^{22}$ Sidney Homer and Martin L. Leibowitz, Inside the Yield Book (Englewood Cliffs, NJ: Prentice-Hall, 1D

	Present Value of an 8 percent Bond ($\$ 1,000$ par value)							
	1 Year		10 Years		20 Years		30 Years	
	7\%	10\%	7\%	10\%	7\%	10\%	7\%	10\%
(ramat ((TM)	\$ 75	\$ 73	\$ 569	\$498	\$ 858	\$686	\$1,005	$\$ 757$ 54
2itareo of inlerest	934	907	505	377	257	142	132	$\frac{54}{\$ 811}$
	\$1,009	\$980	\$1,074	\$875	-25.7		\$1,137	\$811
Werie of bine in total value	-2.9		-18.5				-28.7	

LABIT 6 .

Present Value of a $20-$ Year, 4 Percent Bond ($\$ 1,000$
(2)
(3)

	Low Yields		Intermediate Yields		High Yields	
Discount rate (YTM)	3\%	4\%	6\%	8\%		
Present value of interest	\$ 602	\$ $547{ }^{\text {\% }}$	\$462	\$396	\$370	\$ ${ }^{12 \%}$
Present value of principal	562	453	307	208	175	\$391
Total value of bond	\$1,164	\$1,000	\$769	\$604	\$545	\$398
Percentage change in total value	-14.1		-21.5		${ }_{-27.0}$	

Table 16.9 demonstrates the yield level effect. In these examples, all the bon same 20 -year maturity and the same 4 percent coupon. In the first three cases changed by a constant 33.3 percent (i.e., from 3 percent to 4 percent, from 6 8 percent, and from 9 percent to 12 percent). Note that the first change is 100 bas the second is 200 basis points, and the third is 300 basis points. The results in the fin
columns confirm the statement that when columns confirm the statement that when higher rates change by a constant percenta change in the bond price is larger when the rates are at a higher level.
The fourth column shows that
The fourth column shows that if you assume a constant basis-point change in
you get the opposite results. Specifcally, a 100 basis point change in yields from 3 from 9 percent to 10 percent results in a price ent, while the same 100 basis po yield level effect can differ, depending on whether the of only 11 percent. Therefors? age change or a constant basis-point change. age change or a constant basis-point change.
Thus, the price volatility of a bond for
Thus, the price volatility of a bond for a given change in yield (i.e., its interest sensitivity) is affected by the bond's coupon, its term to maturity, the level of
(depending on what kind of change in yield) and the direction ever, although both the level and direction of change in yields affect price volatili cannot be used for trading strategies. When yields change, the two viables that hew dramatic effect on a bond's interest rate sensitivity are coupon and maturity.
$T_{\text {RADING }} S_{\text {TRATEGES }}$ Knowing that coupon and maturity are the major variables that influence a bond's in ate sensitivity, we can develop some strategies for maximizing rates of return interest rates change. Specifically, if you expect a major decline in interest rate know that bond prices will increase, so you want a portfolio of bonds with the ma interest rate sensitivity so that you will enjoy maximum price changes (capital gain the change in interest rates. In this situation, the previous discussion regarding the of maturity and coupon indicates that you should attempt to build a portfolio of maturity bonds with low coupons (ideally a long-term zero coupon bond). A portfol such bonds should experience the maximum price appreciation for a given decline market interest rates.
In contrast, if you expect an increase in market interest rates, you know that bond prie will decline, and you want a portfolio with minimum interest rate sensitivity to mini the capital losses caused by the increase in rates. Therefore, you would want to change portfolio to short-maturity bonds with high coupons. This combination should pro
minimal price volatility for a change in market interest minimal price volatility for a change in market interest rates.

SURES Because the price volatility (interest rate sensitivity) of a bond varies inversely with its coupon and directly with its term to maturity, it is necessary to determine the best combinaion of these two variables to achieve your objective. This effort would benefit from a torosite measure that considered both coupon and maturity
A measure of the interest-rate sensitivity of a bond is referred to as duration. This concept and its development as a tool in bond analysis and portfolio management has existed for over 50 years. Notably, several specifications of duration have been derived. First, Macaulay duration, developed almost 60 years ago by Frederick Macaula, is measure of the time flow of cash from a bond. ${ }^{23} \mathrm{~A}$ modified version of Macain response to interest rate changes. Second, modified duration is derived by making a small adjustment (modification) to the Macaulay duration value. As noted above, under certain restrictive conditions (most important, there are no embedded options) modified duration can provide an approximation to the interest-rate sensitivity of a bond (or any financial asset). Finally, effective duration is a direct measure of the interest rate sensitivity of a bond (or any financial instrument). Because of the development of many new financial instruments, which have very unique cash flows that change with interest rates, effective duration has become widely used because of its flexibility and ability to provide a useful measure of interest rate sensitivity-the primary goal of duration. Therefore, in this section we discuss and demonstrate these three duration measures, including their limitations.
MACAULAY DURATION Macaulay showed that the duration of a bond was a more appropriate measure of time characteristics than the term to maturity of the bond because duration considers both the repayment of capital at maturity and the size and timing of coupon payments prior to final maturity. Using annual compounding, duration (D) is

$$
D=\frac{\sum_{t=1}^{n} \frac{C_{1}(t)}{(1+i)^{t}}}{\sum_{t=1}^{n} \frac{C_{i}}{(1+i)^{t}}}
$$

where
$t=$ the time period in which the coupon or principal payment occurs $t=$ the interesiod in which the coupon or principal payme
$i=$ the yield to maturity on the bond
The denominator in this equation is the price of a bond as determined by the present value model. The numerator is the present value of all cash flows weighted according to the time to cash receipt. The following example, which demonstrates the specific computations for two bonds, shows the procedure and highlights some of the properties of duration. Con sider the following two sample bonds:

		Bond A
	Bond B	
Face Value	$\$ 1,000$	$\$ 1,000$
Matuarity	10 years	10 years
Coupon	4%	8%

${ }^{23}$ Frederick R. Macaulay, Some Theoretical Problems Suggested by the Movements of Interest Rates, Bond Yields) and Stock Prices in the United States Since 1856 (New York: National Bureau of Economic Research, 1938)

Assuming annual interest payments and an 8 percent yield to maturity on the bonds duration is computed as shown in Table 16.10. If duration is computed by discouniline flows using the yield to maturity of the bond, it is called Macaulay duration.

Characteristics of Macaulay duration This example illustrates several characterisitis of Macaulay duration. First, the Macaulay duration of a bond with coupon paymentis always will be less than its term to maturity because duration gives weight to these inerim payments.

Second, there is an inverse relationship between coupon and duration. A bond with: larger coupon will have a shorter duration because more of the total cash flows come eafler. in the form of interest payments. As shown in Table 16.10, the 8 percent coupon bond lhast: shorter duration than the 4 percent coupon bond.

A zero coupon bond or a pure discount bond such as a Treasury bill will have diliadion equal to its term to maturity. In Table 16.10, if you assume a single payment at matuily: duration will equal term to maturity because the only cash flow comes in the final (matl: rity) year.

Third, there is generally a positive relationship between term to maturity and Macailly: duration, but duration increases at a decreasing rate with maturity. Therefore, a bond vith longer term to maturity almost always will have a higher duration. The relationship is nop direct because as maturity increases the present value of the principal declines in value

There is generally a positive relationship between term to maturity and d hat duration increases at a decreasing rate with maturity. Also, the duration of ine discount bond will decline at very long maturities (over 20 years).

- There is an inverse relationship between yield to maturity and duration Sinking funds and call provisions can cause a dramatic change in the dur The effect of the call feature is discussed in a subsequent section.
Modified Duration and Bond Price Volathity

An adjusted measure of duration called modified duration can be used to approxilinatif: interest rate sensitivity of a noncallable bond. Modified duration equals Macaulay dimat
(computed in Table 16.10) divided by 1 plus the current yield to maturity divilet
(computed in Table 16.10) divided by 1 plus the current yield to maturity dividerlys
number of payments in a year. As an example, a bond with a Macaulay dirnin number of payments in a year. As an example, a bond with a Macaulay diralim
10 years, a yield to maturity (i) of 8 percent, and semiannual payments wolld 10 years, a yield to
modified duration of

$$
\begin{aligned}
D_{\text {mod }} & =10 /\left(1+\frac{.08}{2}\right) \\
& =10 /(1.04)=9.62
\end{aligned}
$$

It has been shown, both theoretically and empirically, that price movements of opion bonds will vary proportionally with modified duration for small changes in yields: ically, as shown in the equation below, an estimate of the percentage change in bond p equals the change in yield times modified duration:

$$
\frac{\Delta P}{P} \times 100=-D_{\text {mod }} \times \Delta i
$$

where
$\Delta P=$ the change in price for the bond
$P=$ the change in price for the bond
$D_{\text {mod }}=$ the modining price for the bond
$D_{\text {mod }}$ the modified duration of the bond
$\Delta i=$ the yield change in basis points divided by 100 . For example, if interest rates go from 8 ont $=$ the yield change in basis points divi
to 8.50 percent, $\Delta i=50 / 100=0.50$.
Consider a bond with Macaulay $D=8$ years and $i=0.10$. Assume that you expect tes bond's YTM to decline by 75 basis points (e.g., from 10 percent to 9.25 percent). The fils step is to compute the bond's modified duration as follows:

$$
\begin{aligned}
D_{\text {mod }} & =8 /\left(1+\frac{.10}{2}\right) \\
& =8 /(1.05)=7.62
\end{aligned}
$$

The estimated percentage change in the price of the bond is as follows

$$
\begin{aligned}
\% \Delta P & =-(7.62) \times \frac{-75}{100} \\
& =(-7.62) \times(-.75) \\
& =5.72
\end{aligned}
$$

${ }^{25}$ A generalized proof of this is contained in Michael H. Hopewell and George Kaufman, "Bond Price and Terrm to Maturity: A Generalized Respecification," American Economic Review 63 , no. 4 (Septembe $749-753$. The importance of the specification, "for small changes in yields," will become clear when we convexily in the next section. B .

BOND DURATION IN YEARS FOR BOND YIELDING 6 PERCENT UNDER DIFFERENT TERMS

	COUPON RATES			
Years to Maturity	0.02	0.04	0.06	0.08
1	0.995	0.990	0.985	0.981
5	4.556	4.558	4.393	4.254
10	8.891	8.169	7.662	7.286
20	149.91	12.980	11.904	11.232
50	19.452	17.129	16293	15.829
100	17.57	17.232	17.120	17.064
∞	17.167	17.167	17.167	17.167

Source: L. Fisher and R. L. Weil, "Coping with the Risk of Interest Rate Fluctuations: Returns to Bondholders from Naive and Optimal Strategies," Jourval of Business 44 , no. 4 (October 1971): 418.
Copyright © 1971 by The University of Chicago Press. Reprinted by permission of The University of Copyright ©
Chicago Press.

This indicates that the bond price should increase by approximately 5.72 percent in reThe sponse to the 75 basis point decline in YTM. If the price of the bond belore the decimately interest rates was $\$ 90$, the
The modified duration is always a negative value for a noncallable bond because of the The motionship between yield changes and bond price changes. Also, remember that anverse relation provides an estimate or approximation of the percent change in the price f the bond. The following section on convexity shows that this formula that uses modified of the bond. The followingest estimate of the percentage price change only for very small hanges in yields of option-free securities.
ading strategies using modified duration we know that the longest duraTRADING STRATEGIES USING MODIFIED DURATION We know that the longest duration security provides the maximum price variation. Table 16.11 demonstrates that numerous ways exist to achieve a given level of duration. The following discussity to structure a an active bond investor can use this measure of inters.
portfolio to take advantage in interest rates, you should increase the average modified If you expect a decline in interest rates, you should price volatility. If you expect an duration of your pous should reduce the average modified duration of your port increase in inerst duration of your portfolio is fin the malue weighted average of the modified durations of the individual bonds in the the marke

Bond Converity Mod duration allows us to estimate bond price changes for a change in interest rates Mon alce (on page 568) is accurate only for vory small changes in market yields. We will see that the accuracy of the estimate of the price change deteriorates with larger changes in yields because the modified duration calculation is a linear approximation of a bond price change that follows a curvilinear (convex) function. To understand the effect of this convexity, we must consider the priceyield relationship for alternative bonds. ${ }^{26}$
${ }^{25}$ For a further discussion of this topic, see Mark L. Dunetz and James M. Mahoney, "Using Duration and
Convexity in the Analysis of Callable Bonds," Financial Analysts Journal 44, no. 3 (May--June 1988): $53-73$.

THE PRICE-YIELD RELATIONSHIP FOR BONDS Because the price of a bond ifit present value of its cash flows at a particular discount rate, if you are given the conts: maturity, and a yield for a bond, you can calculate its price at a point in time. The prowe yield curve provides a set of prices for a specific maturity-coupon bond at a point intine using a range of yields to maturity (discount rates). As an example, Table 16. 12 lisish computed prices for a 12 percent, 20 -year bond assuming yields from 1 percenl in IT percent. The table shows that if you discount the flows from this bond at a yildong percent, you would get a price of $\$ 2,989.47$; discounting these same flows at 10 perchit gives a price of $\$ 1,171.59$. The graph of these prices relative to the yields that prodidid them in Figure 16.7 indicates that the price-yield relationship for this bond is not a stralent line but a curvilinear relationship. That is, it is convex.

Two points are important about the price-yield relationship:

1. This relationship can be applied to a single bond, a portfolio of bonds, or any strean if future cash flows.
2. The convex price-yield relationship will differ among bonds or other streams, depent ing on the nature of the cash flow stream, that is, its coupon and maturity. For example: the price-yield relationship for a high-coupon, short-term security will be almost if straight line because the price does not change as much for a change in yields (e.g. the: 12 percent, 3 -year bond in Table 16.12). In contrast, the price-yield relationship fort low-coupon, long-term bond will curve radically (i.e., be very convex), as shown by tif: zero coupon, 30 -year bond in Table 16.12. These differences in convexity are shom graphically in Figure 16.8. The curved nature of the price-yield relationship is referm to as the bond's convexity.

As shown by the graph in Figure 16.8, because of the convexity of the relationship 3 : yield increases, the rate at which the price of the bond declines becomes slower. Similaily when yields decline, the rate at which the price of the bond increases becomes faster Therefore, convexity is considered a desirable trait.

HGURE 16.7
PRICE-YIELD RELATIONSHIP AND MODIFIED DURATION AT 4 PERCENT YIELD

FIGURE 168
PRICE-YIELD CURVES FOR ALTERNATIVE BONDS

PRICE APPROXIMATION USING MODIFIED DURATION

Source: Frank J. Fabozzi, Mark Pitts, and Ravi E. Dattatreya, "Price Volatility Characteristics of Fixede= Income Securities," in The Handbook of Fixed-Income Securities, 4th ed. (Richard D. Irwin, Inc, © 100) p. 99.

Given this price-yield curve, modified duration is the percentage change in price fort nominal change in yield as follows: ${ }^{27}$

$$
D_{m o d}=\frac{\frac{d P}{d \dot{l}}}{P}
$$

Notice that the $d P / d i$ line is tangent to the price-yield curve at a given yield as shown? Figure 16.9. For small changes in yields (i.e., from y^{*} to either y_{1} or y_{2}), this tangen. straight line gives a good estimate of the actual price changes. In contrast, for lared changes in yields (i.e., from y^{*} to either y_{3} or y_{4}), the straight line will estimate the ners price of the bond at less than the actual price shown by the price-yield curve This misestimate arises because the modified-duration line is a linear estimate of a curvilinet relationship. Specifically, the estimate using only modified duration will underestind: the actual price increase caused by a yield decline and overestimate the actual price decline caused by an increase in yields. This graph, which demonstrates the converiy effect, also shows that price changes are not symmetric when yields increase or decreas: As shown, when rates decline, there is a larger price error than when rates increar:
\qquad
${ }^{27}$ In mathematical terms, modified duration is the first differential of this price-yield relationship with resperte yield.
because when yields decline prices rise at an increasing rate, while prices decline at a decreasing rate when yields rise.
DETERMINANTS OF CONVEXITY Convexity is a measure of the curvature of the priceyield relationship. In turn, because modified duration is the slope of the curve at a given yield, convexity indicates changes in duration. Mathematically, convexity is the second derivative of price with respect to yield ($d^{2} P / d i^{2}$) divided by price. Specifically, convexity is the percentage change in $d P / d i$ for a given change in yield:

$$
\text { Convexity }=\frac{\frac{d^{2} P}{d i^{2}}}{P}
$$

Convexity is a measure of how much a bond's price-yield curve deviates from the linear approximation of that curve. As indicated by Figures 16.7 and 16.9 for noncallable bonds, convexity always is a positive number, implying that the price-yield curve lies above the modified duration (tangent) line. Figure 16.8 illustrates the price-yield relationship for two bonds with very different coupons and maturities. (The yields and prices are contained in Table 16.9.)

These graphs demonstrate the following relationship between these factors and the convexity of a bond.

- There is an inverse relationship between coupon and convexity (yield and maturity constant).
- There is a direct relationship between maturity and convexity (yield and coupon constant).
- There is an inverse relationship between yield and convexity (coupon and maturity constant). This means that the price-yield curve is more convex at its lower-yield (upper left) segment.
Therefore, a short-term, high-coupon bond, such as the 12 percent coupon, 3-year bond in Figure 16.8, has very low convexity-it is almost a straight line. In contrast, the zero coupon, 30 -year bond has high convexity.
THE MODIFIED DURATION-CONVEXITY EFFECTS In summary, the change in a bond's price resulting from a change in yield can be attributed to two sources: the bond's modified duration and its convexity. The relative effect of these two factors on the price change will depend on the characteristics of the bond (i.e., its convexity) and the size of the yield change. For example, if you are estimating the price change for a 300 basis point change in yield for a zero coupon, 30-year bond, the convexity effect would be fairly large because this bond would have high convexity, and a 300 basis point change in yield is relatively large. In contrast, if you are dealing with only a 10 basis point change in yields, the convexity effect would be minimal because it is a small change in yield. Similarly, the convexity effect would be small for a larger yield change if you are concerned with a bond with small convexity (i.e., a high coupon, short maturity bond) because its price-yield curve is almost a straight line.

In conclusion, modified duration can help you derive an approximate percentage bond price change for a given change in interest rates, but you must remember that it only is a good estimate when you are considering small yield changes. You must also consider the convexity effect on price change when you are dealing with large yield changes or when the securities or cash flows have high convexity.

COMPUTATION OF CONVEXITY Again, the formula for computing the convek stream of cash flows looks fairly complex, but it can be broken down into mades steps. You will recall from our convexity equation above that

$$
\text { Convexity }=\frac{\frac{d^{2} P}{d i^{2}}}{P}
$$

In turn,

$$
\frac{d^{2} P}{d l^{2}}=\frac{1}{(1+i)^{2}}\left[\sum_{t=1}^{n} \frac{C F_{t}}{(1+i)^{\prime}}\left(t^{2}+t\right)\right]
$$

Table 16.13 contains the computations related to this calculation for a 3 -year bond ${ }^{2}+$ 12 percent coupon and 9 percent YTM assuming annual flows.

The convexity for this bond is very low because it has a short maturity, high couponix high yield. Note that the convexity of a security will vary along the price-yield cimp W will get a different convexity at a 3 percent yield than at a 12 percent yield. In terms oflif computation, the maturity and coupon will be the same, but you will use a dilet discount rate that reflects where you are on the curve. This is similar to the earlierobsenf tion that you will get a different modified duration at different points on the priee -5 curve because the slope varies along the curve. You also can see this mathematicily because, depending on where you are on the curve, you will be using a different natice yield, and the Macaulay and modified durations are inverse to the discount rate:

1aB1 16 16
COMPUTATION OF CONVEXITY

$$
\begin{aligned}
\text { Convexity } & =\frac{d^{2} P / d i^{2}}{P V \text { of Cash Flows }}=\frac{d^{2} P / d i^{2}}{\text { Price }} \\
\frac{d^{2} P}{d i^{2}} & =\frac{1}{(1+i)^{2}}\left[\sum_{t=1}^{n}\left(t^{2}+t\right) \frac{C F_{1}}{(1+i)^{2}}\right] \\
\text { Convexity } & =\frac{d^{2} P / d i^{2}}{\text { Price }}
\end{aligned}
$$

Example: 3 -Year Bond, 12% Coupon, 9% YTM

$\underset{\text { Yepr }}{11}$	$\stackrel{(2)}{C F_{1}}$	$\stackrel{(3)}{(3)}{ }^{@} 9 \%$	$\stackrel{(4)}{P V C F}$	$\begin{gathered} (5) \\ f^{2}+1 \end{gathered}$	(4) \times (89
1	120	. 9174	\$ 110.09	2	\$ 22018
2	120	. 8417	101.00	6	6064
3	120	. 7722	92.66	12	1,11\%
3	1000	. 7722	772.20	12	9,266*4)
			\$1,075.95		\$11,20429

$$
\begin{aligned}
\frac{1}{(1+i)^{2}}=\frac{1}{(1.09)^{2}}=\frac{1}{1.19} & =.84 \\
\$ 11,204.50 \times .84 & =\$ 9,411.78 \\
\frac{9411.78}{1075.95} & =8.75
\end{aligned}
$$

DURATION AND
CONVEXITY FOR The discussion and presentation thus far regarding Macaulay and moditary Callable bonds cause it provides the issuer with an option to call the bond under certain conditionsand
it off with funds from a new issue sold at a lower yield. Observers will refer tombly bond with an embedded option. We noted earlier that the duration of a pond em? seriously affected by an embedded call option if interest rates decline subsin will bond's coupon rate In such a case, the issuer will likely call the bond, which wilnt bond's coupon rate. Insity change the maturity and thation of the bond. For example, assume a firm shis: 30 -year bond with a 9 percent coupon with a deferred call provision whereby the bardes: be called in 6 years at 109 percent of par. If the bond is issued at par, its original durment: maturity will be about 11 years. A year later, if rates decline to about 7 percent, is dinyt to maturity will still be over 10 years because duration is inversely related to pred yields have declined. Notably, at a yield of 7 percent, this bond will probabl
to call because at a 7 percent yield the firm will likely exercise its option and call the pew in 5 years. Notably, the bond's duration to first call would be about 4 years. Clearty thate is a significant difference between duration to maturity and duration to first call
To understand the impact of the call feature on the duration and convexity of a bondt important to consider what determines the price of a callable bond. A callable bonifl? combination of a noncallable bond plus a call option that was sold to the issue), whit allows the issuer to call the bond under the conditions discussed earlier. Because fle sty: option is owned by the issuer, it has negative value for the investor in the bond, Thuste bondholder's position is:

Long a Callable Bond = Long a Noncallable Bond + A Short Position in a Call Oplond
Therefore, the value (price) of a callable bond is equal to:
Callable Bond Price $=$ Noncallable Bond Price - Call Option Price
Given this valuation, anything that increases the value of the call option will redure 15 value of the callable bond. ${ }^{28}$

OPTION-ADJUSTED DURATION ${ }^{29}$ Given these two extreme values of duration to mill rity and duration to first call, the investment community derives a duration estimate thatil referred to as an option-adjusted or call-adjusted duration based on the probability llat lie: issuing firm will exercise its call option for the bond when the bond becomes fred: callable. This option-adjusted duration will be somewhere between these two extrene values. Specifically, when interest rates are substantially above the coupon rate, the probs bility of the bond being called is very small (i.e., the call option has very little value) will the option-adjusted duration will approach the duration to maturity. In contrast, if interes
${ }^{28}$ For a further discussion of the effect of these embedded options, see Frank J. Fabozzi, Mark Pitts, and Ravi? Dattatreya, "Price Volatility Characteristics of Fixed Income Securities," and Frank J. Fabozzi, Andrell Kalotay, and George O. Williams, "Valuation of Bonds with Embedded Options." Both are in Frank J. Fitaya and T. Dessa Fabozzi, eds., The Handbook of Fixed-Income Securities, 4th ed. (Burr Ridge, L: Irwin Professind. Publishing, 1995). Also see Kurt Winkelmann, "Uses and Abuses of Duration and Convexity," Financial if lysts Journal 45, no. 5 (September-October 1989): 72-75, and Chapter 14 in Frank J. Fabozzi, Bond Morkt: Analysis and Strategies, 3rd ed. (Upper Saddle River, NJ: Prentice Hall, 1996).
${ }^{29}$ The discussion in this subsection will consider the option-adjusted duration on a conceptual and intuitive bativ: For a detailed mathematical treatment, see Dunetz and Mahoney, "Using Duration and Convexity in the Anillsi" of Callable Bonds."
rates decline to levels substantially below the coupon rate, the probability of the bond being called at the first opportunity is very high (i.e., the call option is very valuable and will probably be exercised) and the option-adjusted duration will approach the duration to first call. The bond's option-adjusted duration will be somewhere between these two extremes with the exact option-adjusted duration depending on the level of interest rates relative to the bond's coupon rate.
CONVEXITY OF CALLABLE BONDS Figure 16.10 shows what happens to the price of a callable bond versus the value of a noncallable bond when interest rates increase or decline. Starting from yield y^{*} (which is close to the par value yield), if interest rates increase, the value of the call option declines because at market interest rates that are substantially above the coupon rate, it is unlikely the issuer will want to call the issue. Therefore, the call option has very little value and the price of the callable bond will be similar to the price of a noncallable bond. In contrast, when interest rates decline below y^{*}, there is an increase in the probability that the issuer will want to use the call option-i.e., the value of the call option increases. As a result, the value of the callable bond will deviate from the value of the noncallable bond-i.e., the price of the callable bond will initially not increase as fast as the noncallable bond price and eventually will not increase at all. This is what is shown in curves $\mathrm{a}-\mathrm{b}$.

In the case of the noncallable bond, we indicated that it had positive convexity because as yields declined, the price of the bond increased at a faster rate. With the callable bond, when rates declined, the price increased at a slower rate and eventually does not change at all. This pattern of price-yield change for a callable bond is referred to as negative convexity.

Needless to say, this price pattern (negative convexity) is one of the risks of a callable bond versus a noncallable bond, especially if there is a chance of declining interest rates.

Source: Frank J. Fabozzi, Mark Pitts, and Ravi E. Dattatreya, "Price Volatility Characteristics of Fixed Income Securities," in The Handbook of Fixed-Income Sectrities, 4 th ed., edited by Frank J. Fabozzi and T. Dessa Fabozzi (Burr Ridge, IL: Irwin Professional Publishing, 1995). Reprinted by permission of the publisher.

LIMITATIONS OF It is important to understand Macaulay and modified duration because of the prysicis:
MACAULAY AND Modified Duration
they provide regarding factors that affect the volatility and interest rate sensitivily ofter. However, it also is important for bond analysts and portfolio managers to recognis: is: serious limitations of these measures in the real world. The major limitations ant: follows:

First, as noted in the discussion of convexity, the percent change estimates usink ind fied duration only are good for small-yield changes. This was demonstrated in Figure tr: As a result, two bonds with equal duration may experience different price chanksul? large-yield changes-depending on differences in the convexity of the bonds.

Second, it is difficult to determine the interest-rate sensitivity of a porfolio of fres when there is a change in interest rates and the yield curve experiences a nonparalle $\begin{aligned} & \text { b }\end{aligned}$ It was noted earlier that the duration of a portfolio is the weighted average of the soramat of the bonds in the portfolio. Everything works well as long as all yields change thyt
same amount-i.e., there is a parallel shift of the yield curve. The problem is, when sed change, the yield curve seldom experiences a parallel shift. Assuming a nomparalles shit which yield do you use to describe the change - the short-, intermediate-, or longenimert yield? Two portfolios that begin the period with the same duration can have diftere ending durations and perform very differently, depending on how the yield curve chans: (i.e., did it steepen or flatten?) and the composition of the portfolio (1.e, relativeto duration, was it a bullet or a barbell?). Consi
portfolios that have a duration of 4.50 years:

Bond	Coupon	Maturity (Years)	Yield	Modified Durotion	Wes
Portfolio A					
A	7.00	4	7.00	2.70	
B	9.00	20	9.00	6.75	
Portfolio B					
C	8.00	10	8.00	4.50	

As shown, the modified durations are equal at the initiation of the portfolio. Assunle: nonparallel change in yields where the yield curve steepens. Specifically, 4 year yidet decline to 6 percent, 10 -year yields do not change, and 20 -year yields rise to 10 percerf: Portfolio B would experience a very small change in value because of stability in yieldif: 10 -year bonds. In contrast, the price for 4 -year bonds will experience a small inerest (because of small duration) and the value of 20 -year bonds will experience a large dedirit Overall, the value of portfolio A will decline because of the weight of bond B in tif: portfolio and its large decline in value due to its large modified duration. Obviously the yield curve had flattened or inverted, the barbell portfolio would have benefited frit: the change. This differential performance because of the change in the shape of the wer curve (i.e., it did not experience a parallel shift) is referred to as yield curve risk, whir: cannot be captured by the traditional duration-convexity presentation.

The third limitation of Macaulay and modified durations involves our initial calculain: We assumed that cash flows from the bond were not affected by yield changes-ie, 1 assumed option-free bonds. Later, we saw the effect on the computed duration and conver: ity when we considered the effect of an embedded call option in Figure 16.10. Specificilly we saw that the option-adjusted duration would be some value between the duration 11 maturity and duration to first call and the specific value would depend on the currert
market yield relative to the bond's coupon. Further, we saw that when interest rates declined with an embedded option, the convexity of the bond went from some positive value to negative convexity because the price of the callable bond increased at a slower rate or it did not change when the yields declined (i.e., there is price compression).

Because of these limitations, practitioners have developed a way to approximate the duration of a bond or any security that will be impacted by a change in interest rates. This is referred to as effective duration, which is discussed in the following section.

EFFECTIVE DURATION As noted previously, the purpose of duration is to indicate the price change of an asset to a change in yield-i.e., it is a measure of the interest-rate sensitivity of an asset. Because modified duration is based on Macaulay duration, it can provide a reasonable approximation of the interest-rate sensitivity of a bond that experiences a small-yield change and one that is option free-i.e., if yield changes do not change the cash flows for the bond. Unfortunately, the Macaulay and modified duration measures cannot be used for large-yield changes, for assets with embedded options, or for other assets that are affected by variables other than interest rates such as common stocks or real estate.

To overcome these limitations, practitioners use effective duration, a direct measure of the interest-rate sensitivity of a bond or any asset where it is possible to observe the market prices surrounding a change in interest rates. As we will demonstrate, using this measure we can derive negative durations (which is not mathematically possible with Macaulay), or durations that are longer than the maturity of the asset (not possible with Macaulay). The concept is best described by recalling the formula to determine the percentage price change for a bond using modified duration as follows:

$$
\% \Delta \text { Price }=-D^{*} \times(\Delta R)
$$

where
$D^{*}=$ the modified Macaulay duration
$\Delta R=$ the change in interest rates in basis points divided by 100 .
The typical assumption is that we know D^{*} and ΔR and can solve for the approximate percent price change. Given this relationship, we can solve for D^{*} as follows:

$$
-D^{*}=\frac{\% \Delta \text { Price }}{\Delta R}
$$

When we solve for it this way, it is no longer D^{*} (modified duration), but D_{E} effective duration. Given this formulation, if you observe a change in interest rates (ΔR) and the change in the price of an asset during the same time period, you can solve for the effective duration of the asset. Consider the following simple example.

- Interest rates decline by 200 b.p.
- The price of a bond increases by 10 percent

$$
\begin{aligned}
D_{E}-\frac{10}{-200 / 100} & =-\frac{10}{-2} \\
& =5
\end{aligned}
$$

Therefore, the change in price coincident with a change in interest rates indiculer lint tes bond has an effective duration $\left(D_{\mathrm{E}}\right)$ of 5 . This is a direct measure of the bond sensitivity. Notably, thinking of duration in this way, it is not appropriate to desmayitat: measure of time (i.e., in years). As noted, it is a measure of interest rate sensinyty wast should think of it as the approximate percentage change in price for a change in interest rates.

EFFECTIVE DURATION GREATER THAN MATURITY Because effective durithonit it: ply interest-rate sensitivity, it is possible to have an asset that is highly levered suchtitay interest-rate sensitivity exceeds its maturity. For example, there are 5 -year, conlareante mortgage obligations (CMOs) that are highly levered and their prices will changet 15 percent to 20 percent when interest rates change by 100 basis points. . discussed, this would imply an effective duration of 15 or 20 for a 5 -year matury

NEGATIVE EFFECTIVE DURATION We know from the formula for Macaulay dirried that it is not possible to compute a negative duration. Further, in the calculation for sh: volatility where we use modified duration, we use $-D^{*}$ to reflect the negative relifinisf between price changes and interest rate changes for option-free bonds. At the samperm: we know that when we leave the world of option-free bonds and consider bonts embedded options, it is possible to envision cases where bond prices move in the site direction as yields, which implies negative duration. A prime example would be moticit: backed securities where a significant decline in interest rates will cause a substanis increase in refinancing prepayments by homeowners, which will reduce the value of Ilex bonds to holders. Therefore, you would see a decline in interest rates and a decline init price of these mortgage-backed bonds, which implies negative duration.

EFFECTIVE DURATION FOR COMMON STOCK If one considers the Macaulay durstiv: of common stock, it is possible to envision a fairly high number because you are deaiff with a perpetuity, and some growth stocks pay low dividends for many years. The viles derived by Reilly and Sidhu, using various assumptions of price and growth, ranged free 10 years to 20 years. ${ }^{30}$ In contrast, using effective duration one gets very differentrent:

Because we are dealing with the interest-rate sensitivity of an asset, it is possible: compute an effective duration for common stock that is much lower than implied Macaulay duration and it is more variable. Observing a change in interest rates and he accompanying change in stock prices would indicate the interest-rate sensitivity of siou Leibowitz conducted such an analysis and derived a rolling, one-year effective durafioliz the S\&P 500 that ranged from about zero to almost $7 .{ }^{31}$ Because we are measuring ineres? rate sensitivity over time, you would expect changes in the interest-rate sensitivily common stocks over time because the correlation between stocks and bonds varies addition you might anticipate significant differences in the effective duration for alem: tive stocks. For example, you would expect a large difference in the interest-rate sensilivis (effective duration) of a banking or utility stock (which is very interest rate sensilit compared to the effective duration of a technology growth stock where its value is brat: more on changes in its growth expectations than interest rates.
${ }^{30}$ Frank K. Reilly and Rupinder Sidhu, "The Many Uses of Bond Duration," Financial Analysts Joumal 36.in*: (July-August 1980): 58-72.
${ }^{31}$ Martin L. Leibowitz, New Perspective on Asset Allocation (Charlotesville, VA: The Research Foundilien the Institute of Chartered Financial Analysts, 1987).

- The value of a bond equals the present value of all future cash flows accruing to the investor. Cash flows for the conservative bond investor include periodic interest payments and principal return; cash flows for the aggressive investor include periodic interest payments and the capital gain or loss when the bond is sold prior to its maturity. Bond investors can maximize their yields by accurately estimating the level of interest rates, and more importantly, by estimating changes in interest rates and yield spreads. Similarly, they must compare coupon rates, maturities, and call features of alternative bonds.
- There are five bond yield measures: nominal yield, current yield, promised yield to maturity, promised yield to call, and realized (horizon) yield. The promised YTM and promised YTC equations include the interest-on-interest (or coupon reinvestment) assumption. For the realized (horizon) yield computation, the investor estimates the reinvestment rate and may need to estimate the future selling price for the bond. The fundamental determinants of interest rates are a real riskfree rate, the expected rate of inflation, and a risk premium.
- The yield curve (or the term structure of interest rates) shows the relationship between the yields on a set of comparable bonds and the term to maturity. Based upon this yield curve it is possible to derive a theoretical spot rate curve. In turn, these spot rates can beiused to value bonds using an individual spot rate for each cash flow. In addition, these spot rates imply investor expectations about future rates referred to as forward rates. Yield curves exhibit four basic patterns. Three theories attempt to explain the shape of the yield curve: the expectations hypothesis, the liquidity preference hypothesis, and the segmented market hypothesis.
- It is important to understand what causes changes in interest rates and how these changes in rates affect the prices of bonds. Differences in bond price volatility are mainly a function of differences in yield, coupon, and term to maturity. There are three duration measures that have been used as measures of bond price volatility or interest-rate sensitivity. The Macaulay duration measure incorporates coupon, maturity, and yield in one measure and an adaptation of it (modified duration) provides an estimate of the response of bond prices to changes in interest rates under certain assumptions. Because modified duration provides a straight-line estimate of the curvilinear priceyield function, you must consider modified duration together with the convexity of a bond for large changes in yields and/or when dealing with securities that have high convexity. It is shown that the call feature on a bond can have a significant impact on its modified duration (the call feature can shorten it dramatically) and on its convexity (the call feature can change the convexity from a positive value to a negative value). Following a discussion of some of the limitations of Macaulay and modified durations as measures of interest-rate sensitivity, we present the concept of effective duration, which is a direct measure of interest-rate sensitivity-i.e., it is the approximate percentage change in price for a 100 -basis-point change in interest rates. Notably, effective duration allows for durations longer than maturity, negative duration, and duration estimates for common stock.

Given the background in bond valuation and the factors that influence bond value and bond return volatility, we are ready to consider how to build a bond portfolio that is consistent with our goals and objectives. Bond portfolio analysis is the topic for Chapter 17.

1. Why does the present value equation appear to be more useful for the bond investor than for the common stock investor?
2. What are the important assumptions made when you calculate the promised yield to maturity? What are the assumptions when calculating promised YTC?
3. a. Define the variables included in the following model:

$$
i=(\mathrm{RFR}, I, \mathrm{RP})
$$

b. Assume that the firm whose bonds you are considering is not expected to break even this year. Discuss which factor will be affected by this information.
4. We discussed three altemative hypotheses to explain the term structure of interest rates. Briefly discuss the three hypotheses and indicate which one you think best explains the alternative shapes of a yield curve.
5. CFA Examination I (June 1982)
a. Explain what is meant by structure of interest rates. Explain the theoreileal taris
upward-sloping yield curve. [8 minutes]
upward-sloping yield curve. [8 minutes]
b. Explain the economic circumstances under which you would expect to see the inverem
curve prevail. $[7$ minutes $]$ curve prevail. [7 minutes]
c. Discuss the characteristicsst. [2 minutes]
d. Discuss the characteristics of the market for U.S. Treasury securities. Compare nhes:
market for AAA corporate bonds. Discuss the opportunities that may exist in bond tre
. Over the past several years, fairly wide yie
have occasionally prevailed. Discuss the posideds between AAA corporates andT
6. CFA Examination III (June 1982)

As the porffolio manager for a large pension fund, you are offered the following bon

	Coupon	Mafturity	Price	Call Price
Edgar Corp. (new issue)	14.00%	2002	$\$ 101.3 / 4$	$\$ 114$
Edgar Corp. (new issue)	6.00	2002	$48.1 / 18$	103
Eggar Corp. (1972 issue)	6.00	2002	48.778	103

Assuming that you expect a decline in interest rates over the next 3 years, identify a which of these bonds you would select. [10 minutes]
7. You expect interest rates to decline over the next six months.
a. Given your interest rate outlook, state what kinds of bonds you want in your portiolio of duration and explain your reasoning for this choice.
b. You must make a choice between the following three sets of noncallable bonds. In in select the bond that would be best for your portfolio given your interest rate outlook consequent strategy set forth in Part a. In each case briefly discuss why you selected the

	Maturity	Coupon	Yield to Maluviry
Case 1: Bond A	15 years	10%	10%
Bond B	15 years	6%	8%
Case 2: Bond C	15 years	6%	10%
Bond D	10 years	8%	10%
Case 3: Bond E	12 years	12%	12%
Bond F	15 years	12%	8%

8. At the present time, you expect a decline in interest rates and must choose between two porif of bonds with the following characteristics:

	Porffolio A	Porffolio B
Average maturity	10.5 years	10.0 years
Average YTM	7%	10%
Modified duration	5.7 years	4.9 years
Modified convexity	125.18	
Call features	Noncallable	40.30
		Deferred call features that range
from 1 to 3 years		

Select one of the portfolios and discuss three factors that would justify your selection
9. The Chartered Finance Corporation has issued a bond with the following characteristics:

$$
\begin{aligned}
& \text { Maturity-25 years } \\
& \text { Coupon-9\% } \\
& \text { Yield to maturity- }-9 \% \\
& \text { Callable-after } 3 \text { years @ } \\
& \text { Duration to maturity } \\
& \text { Duration to first call- } 8.2 \text { years } \\
& \text { pears }
\end{aligned}
$$

a. Discuss the concept of call-adjusted duration and indicate the approximate value (range) for it a. at the present time.
b. Assuming interest rates increase substantially (i.e., to 13 percent), discuss what will happen to b. Assuming interest rates increase substantialy (i.e.,
the call-adjusted duration and the reason for the change
c. Assuming interest rates decline substantially (i.e., they decline to 4 percent), discuss what will happen to the bond's call-adjusted duration and the reason for the chang
d. Discuss the concent of negative convexity as it relates to this bond.
10. CFA Examination I (1990)

Duration may be calculated by two widely used methods. Ide
discuss the primary differences between them. [5 minutes]
11. CFA Examination II (1995) Option-adjusted duration and effective duration are alternative measures used by analysts to Option-adjusted duration and effective duration are altern
evaluate fixed-income securities with embedded options.
Briefly describe each measure and how to apply each to the evaluation of fixed-income securities with embedded options. [8 minutes] 12. CFA Exities with embedded of

As a portfolio manager, during a discussion with a client, you explain that historical return and As a premia of the type presented in the following Table are frequently used in forming estimates
rist of future returns for various types of financial assets. While such historical data are helpful in forecasting returns, most users know that history is an imperfect guide to the future. Thus, hey recognize that there are reasons why these data should be adjusted if the forecasting process.
U.S. HISTORICAL RETURN AND RISK PREMIA (1926-94)

Per Year

Real interest rate on Treasury bills

Maturity premium of long Treasury bonds over Treasury bills
andt pemium of long corporate bonds over long Treasury bonds Risk premium on stock over long Treasury bonds
Return on Treasury bills
eturn on long corporate bonds
Return on Treasury bills
Return on large-capitalization stocks 9.9\%
a. As shown in the Table the historical real interest rate for Treasury bills was 0.5% per year and the maturity premium on Treasury bonds over Treasury bills was 0.8%. Briefly describe and justify one adjustment to each of these two data items that should be made before they can be used to form expectations about future real interest rates and Treasury bond maturity premia.
[6 minutes]
b. You recognize that even adjusted historical economic and capital markets data may be of limited use when estimating future retams. Mescribe t hree key circumstances that should be considered when forming expectations about future returns. [8 minutes]
13. CFA Examination I (1992)

A portfolio manager at Superior Trust Company is structuring a fixed-income porifolition the objectives of a client. This client plans on retiring in 15 years and wants a subsianith:
sum at that time. The client has specified the use of AAA-rated securities.

The portfolio manager compares coupon U.S. Treasuries with zero
Treasuries and observes a significant yield advantage for the stripped bonds. stryeal.

Maturity	Coupon U.S. Treasuries	Zero Coupon Sttipped U.S. Treasuries
3 year	5.50%	5.80%
5 year	6.00%	6.60%
7 year	6.75%	7.25%
10 year	7.25%	7.60%
15 year	7.40%	8.80%
30 year	7.75%	7.75%

Briefly discuss two reasons why zero coupon stripped U.S. Treasuries could yiela murs es coupon U.S. Treasuries with the same final maturity. [5 minutes]
14. CFA Examination II (1993)
a. In terms of option theory, explain the impact on the offering yield of adding a call raturest proposed bond issue. [5 minutes]
b. Explain the impact on both bond duration and convexity of adding a call feature ton properis bond issue. [10 minutes]
Assume that a portfolio of corporate bonds is managed to maintain targets for modified duratirs and convexity.
c. Explain how the portfolio could include both callable and non-callable bonds while miints ing the targets. [5 minutes]
d. Describe one advantage and one disadvantage of including callable bonds in this porrite [5 minutes]

Problems

1. Four years ago, your firm issued $\$ 1,000$ par, 25 -year bonds, with a 7 percent coupon rate and 1 l percent call premium.
a. If these bonds are now called, what is the approximate yield to call for the invesior wat originally purchased them?
b. If these bonds are now called, what is the actual yield to call for the investors who ongitial purchased them at par?
c. If the current interest rate is 5 percent and the bonds were not callable, at what pricernest each bond sell?
2. Assume that you purchased an 8 percent, 20 -year, $\$ 1,000$ par, semiannual payment bond pritit at $\$ 1,012.50$ when it has 12 years remaining until maturity. Compute:
a. Its approximate yield to maturity
b. Its actual yield to maturity
c. Its yield to call if the bond is callable in 3 years with an 8 percent premium
3. Calculate the duration of an 8 percent, $\$ 1,000$ par bond that matures in 3 years if the bonds $\$ T$
is 10 percent and interest is paid semiannually.
a. Calculate this bond's modified duration.
b. Assuming the bond's YTM goes from 10 percent to 9.5 percent, calculate an estimate ofili: price change.
4. Two years ago, you acquired a 10 -year zero coupon, $\$ 1,000$ par value bond at a 12 percent YII Recently you sold this bond at an 8 percent YTM. Using semiannual compounding, compurete annualized horizon return for this investment.
5. A bond for the Webster Corporation has the following characteristics:

$$
\begin{aligned}
& \text { Maturity-12 years } \\
& \text { Coupon-10\% } \\
& \text { Yield to maturity-9.50\% } \\
& \text { Macaulay duration- } 5.7 \text { years } \\
& \text { Convexity-48 } \\
& \text { Noncailable }
\end{aligned}
$$

a. Calculate the approximate price change for this bond using only its duration assuming its yield to maturity increased by 150 basis points. Discuss the impact of the calculation, includmig the convexity effect.
b. Calculate the approximate price change for this bond (using only its duration) if its yield to maturity declined by 300 basis points. Discuss (without calculations) what would happen to your estimate of the price change if this was a callable bond.
6. CFA Examination I (1992)

The table below shows selected data on a German government bond (payable in Deutschemarks) and a U.S. government bond. Identify the components of return and calculate the total return in U.S. dollars for both of these bonds for the year 1991. Show the calculations for each component (Ignore interest on interest in view of the short time period.) [8 minutes]

	Coupon	Market Yield		Modified Duration	Exchange Rate (DM/\$U.S.)	
		1/1/91	1/1/92		1/1/91	1/1/92
German Government Bond	8.50\%	8.50\%	8.00\%	7.0	1.55	1.50
U.S. Government Bond	8.00\%	8.00\%	6.75\%	6.5	-	-

7. CFA Examination I (1993)

Philip Morris has issued bonds that pay semi-annually with the following characteristics:

Coupon	Yield-to-Maturity	Maturity	Macculay Duration
8%	8%	15 years	10 years

a. Calculate modified duration using the information above. [5 minutes]
b. Explain why modified duration is a better measure than maturity when calculating the bond's sensitivity to changes in interest rates. [5 minutes]
c. Identify the direction of change in modified duration if:
(i) the coupon of the bond were 4%, not 8%
(ii) the maturity of the bond were 7 years, not 15 years [5 minutes]
d. Define convexity and explain how modified duration and convexity are used to approximate the bond's percentage change in price, given a change in interest rates. [5 minutes]
8. CFA Examination I (1993)

You are a U.S. investor considering purchase of one of the following securities. Assume that the currency risk of the German government bond will be hedged, and the six-month discount on Deutschemark forward contracts is -0.75% versus the U.S. dollar.

Bond	Maturity	Coupon	Price
U.S. government	June 1,2003	6.50%	100.00
German government	June 1, 2003	7.50%	100.00

in the two bonds having equal total returns in U.S. dollars over a six-month horizon
. CFA Examination II (1990)
The following are the average yields on U.S. Treasury bonds at two different po

	Yied-ro-Maturitr	
Term to Maturily	January 15, 19XX	May 15, 19XX
1 y year	7.25%	8.05%
2 years	7.50%	7.90%
5 years	7.90%	7.70%
10 years	8.00%	7.45%
15 years	8.45%	7.30%
20 years	8.55%	7.20%
25 years	8.60%	7.10%

a. Assuming a pure expectations hypothesis, define a forward rate. Describe to calculate the forward rate for a three-year U.S. Treasury bond two years from May is. using the actual term structure above. [3 minutes]
b. Discuss how each of the three major term structure hypotheses could explain te lider 19XX term structures shown above. [6 minutes]
. Discuss what happened to the term structure over the time period and the effect of iniset
d. Assume that you invest solely on the basis of yiss. [5 minutes]
the expectation that the yield spread between 1 -year and 25 -year $U S$. Treasie 19 xx ared to a more typical spread of 170 basis points. Explain what you would have done on 15, 19XX, and describe the result of this action based upon what happened between IIII 15, 19XX and May 15, 19XX. [7 minutes]
10. CFA Examination (1992)
a. Using the information in the table below calculate the projected price ch
b. Describe the shortcoming for this falls by 75 basis points. [7 minutes]
approach to remedy this shortcoming [6 minutes]

MONTICELLO CORPORATION BOND INFORMATION

	Bond A (Callable)	Bond B (Non-Cailable)
Maturity	2002	2002
Coupon	11.50%	7.25%
Current price	125.75	100.00
Yield-to-maturity	7.70%	7.25%
Modififed duration to maturity	6.20	6.80
Convexity to maturity	190	.60
Call late	1996	-
Call price	105	-
Yield to call	5.10%	-
Modified duration to call	3.10	-
Convexity to call	.10	-

U.S. Treasuries represent a significait holding in Monticello's pension portfolio. You dec analyze the yield curve for U.S. Treasury Notes.
a. Using the data in the table below, calculate the five-year spot and forward rates assuming annual compounding. Show calculations. [8 minutes]

U.S. TREASURY NOTE YIELD CURVE DATA				
Years to	Par Coupon Yield-to-Maturity	Calculated Spot Rates	Calculated Forward Rates	
1	5.00	5.00	5.00	
2	5.20	5.21	5.42	
3	6.00	6.05	7.75	
4	7.00	7.16	10.56	
5	7.00	\square	\square	

b. Define and describe each of the following three concepts

- Yield-to-maturity
- Spot rate

Forward rate
Explain how these three concepts are related. [9 minutes]
You are considering the purchase of a zero-coupon U.S. Treasury Note with four years to maturity.
Based on the above yield curve analysis, calculate both the expected yield-to-maturity and the price for the security. Show calculations. [8 minutes]
Emily Maguire, manager of the actively managed non-government bond portion of PTC's pension portfolio, has received a fact sheet containing data on a new security offering. It will be a ond issued by a US. corporation but denominated in Australian dollars (A\$), with. both principal and interest payable in that currency.
The terms of the offering made in June, 1992 are as follows
Issuer-Student Loan Marketing Association (SLMA-a U.S. Government Sponsored Corporation)

- Rating-AAA

Coupon Rate- 8.5% payable quarterly
Price--Par
Maturity-June 30, 1997 (non-callable)
Principal and interest payable in Australian dollars (A\$)
As an alternative, Maguire finds that five-year U.S. $\$$-pay notes issued by SLMA yield 6.75%. She prepares an analysis directed at several specific questions, beginning with the following table of economic data for Australia and the United States.

Major Economic Indicators	United States			Australa		
	1990	1991	1992(E)	1990	1991	1992(E)
Real GNP (annual change)	1.1\%	-0.5\%	2.2\%	1.6\%	-0.5%	3.0%
Consumer expenditures (annual change)	0.9\%	0.0\%	1.0\%	1.1\%	-0.2\%	2.0\%
Inflation (annual change)	5.4\%	4.2\%	3.4\%	7.3\%	3.2\%	3.9\%
Long-bond yield (end-of-year)	8.1\%	7.2\%	7.0\%	9.8\%	10.0\%	10.2\%
Trade balance (U.S. \$ billions)	-100	-83	-80	-30	-20	-25

Assuming that interest rates fall 100 basis points in both the U.S. and Australian markets over the next year, identify which of these two bonds will increase the most in value, and justify your answer. [7 minutes]
13. CFA Examination II (1993)

The following table shows yields to maturity on U.S. Treasury securities as of Jinuary

Term fo Maturity	Yield to Maturity
1 year	3.50%
2 years	4.50%
3 years	5.00%
4 years	5.50%
5 years	6.00%
10 years	6.60%

a. Based on the data in the table, calculate the implied forward one-year rate of miners January 1, 1996. [5 minutes]
b. Describe the conditions under which the calculated forward rate would be mate of the one-year spot rate of interest at January 1, 1996. [5 minutes] Assume that one year earlier, at January 1,1992 , the prevailing term structure for U
securities was such that the implied forward one-year rate of interest at January significantly higher than the corresponding rate implied by the term structure at lanuary tie: c. On the basis of the pure expectations theory of the term structure, briefly discuss livo that could account for such a decline in the implied forward rate. [8 minutes] Multiple scenario forecasting frequently makes use of information from the term interest rates.
d. Briefly describe how the information conveyed by this observed decrease in th forward rate for 1996 could be used in making a multiple scenario forecast, [5
TMP is working with the officer responsible for the defined-benefit pension pla company. She has come to the firm for advice on what she calls "the key elements of dollar fixed-income investing.'
The following information, based on TMP's assessment of the Italian markel, developed to illustrate the process by which market and currency expectations are in

ITALIAN GOVERNMENT SECURITIES DATA

Security	Modified Duration	Current Price	Current Yield to Maturity	Expected Yield to Maturiy in 3 Monhth
Bill	0.25	100.00	12.50%	12.50% Note
6.00	100.00	10.00%	9.00%	

LIRA/\$(US) EXCHANGE RATE
Current Rate $\quad \begin{gathered}\text { Expected Rate } \\ \text { in } 3 \text { Months }\end{gathered}$
L1500/\$1.00 (US) L1526/\$1.00 (US)
Based on the information provided above, calculate the expected return (in U.S. dollars) onk security over the three-month period. [9 minutes]
15. CFA Examination I (1994)

Bonds of Zello Corporation $\$ 960$, mature in five years, and have a 7% annual coupon rate paid semiannually.
a. Calculate the:
(i) current yield; (the nearest whole percent, i.e., $3 \%, 4 \%, 5 \%$, etc.); and
(ii) yield-to-maturity (to called total return) for an investor with a three year holding period
(iii) horizon a reinvestment rate of 6% over the period. At the end of three years the 7% coupon bonds with two years remaining will sell to yield 7%.
how your work. [9 minutes]
Show your work. [9 minutes]
Cite one major shortcoming for each of the following fixed-income yield measures (i) current yield;
(ii) yield to maturity; and
(iii) horizon yield (also called total return). [6 minutes $]$
6. CFA Examination I (1994)

During 1990 , Disney issued $\$ 2.3$ billion face value of zero-coupon subordinated notes which resulted in gross proceeds of $\$ 965$ million. The notes:

- mature in 2005;
- can be exchanged for cash by the note holder at any time for the U.S. dollar equivalent of the current mark
- are callable at any time at their issuance price plus accrued interest.

On March 11, 1993.Disney called the notes at a price of $\$ 483.50$ which is equivalent to a yield to maturity of 6%. On the call date, Euro Disney common stock traded at a price of 86.80 French francs per share and the currency exchange rate for U.S. dollars (\$US) to French francs (Ffr) was:

	\$US/Ffr	$\mathrm{Ffr} / \mathrm{SUS}$
Exchange rate:	.1761	5.6786

Calculate, as of the call date:
(i) the price of a share of Euro Disney expressed in U.S. dollars; and (ii) the exchange

On July 21,1993 , Disney issued, at par, $\$ 300$ million of 100 -year bonds with a coupon rate of On July 21,1993 , Disney issued a 30 years at 103.02 . From Disney's point of view, state three 7.55%. The bonds are callable in 30 years disadvantages of calling the zero-coupon notes and effectively replacing part of that debt capital with the issue of 100 -year bonds. [8 minutes]
17. CFA Examination II (1994)

Table 1 below shows the characteristics of two annual pay bonds from the same iew
same priority in the event of defaut same priority in the event of default, and Table 2 below displays spot interess rister es es
bond's price is consistent with the spot rates.
Using the information in Tables 1 and 2 recommend
Justify your choice. [10 minutes]
TABLE 1 BOND CHARACTERISTICS

	Bond A	Bond B
Coupons	Annual	Annual
Maturity	3 years	3 years
Coupon Rate	10%	6%
YYeld-to-maturity	10.65%	10.75%
Price	98.40	88.34

TABLE 2 SPOT INTEREST RATES

Term	Spot Rates (Zero Coupon)
1 year	5%
2 year	8%
3 year	11%

References
Fabozzi, Frank J. Fixed Income Mathematics. Chicago: Probus Publishing, 1988 Fabozzi, Frank J. Bond Markets, Analysis and Strategies. 3d ed. Upper Saddle Rive, Hall, 1996.
Fama, Eugene F. "Forward Rates as Predictors of Future Spot Rates." Journal of Financi ics 3, no. 4 (October 1976).
Tuckman, Bruce. Fixed Income Securities. New York: John Wiley \& Sons, 1995. Van Horne, James C. Financial Market Rates and Flows. 4th ed. Englewood Cliffs, Nı: Hall, 1993.

Bond Portfolio Management Strategies

This chapter answers the following questions:

- What are the four major alternative bond portfolio management strategies available?
- What are the two specific strategies available within the passive portfolio management category?
- What are the five alternative strategies available within the active bond portfolio management category?
- What is meant by matched-funding techniques and what are the four specific strategies available in this category?
- What are the major contingent procedure strategies that are also referred to as structured active management strategies?
- What are the implications of capital market theory for those involved in bond portfolio
management?
- What is the evidence on the efficient market hypothesis as it relates to bond markets? - What are the implications of efficient market studies for those involved in bond portfolio management?
In this chapter, we shift attention from bond valuation and analysis to the equally inportant bond porffolio management strategies. In the first section, we discuss the alternaimportant bond porffolio management strategies. In the first section, we disation of the four tive portfolio management strategies. This includes a detailed chatched funding techniques, and structured active management. Next, we consider the implications of capital market theory and bond market efficiency on bond portfolio management.

Bond portfolio management strategies can be divided into four groups: ${ }^{1}$

1. Passive portfolio strategies
a. Buy and hold
b. Indexing
2. Active management strategies
a. Interest rate anticipation
b. Valuation analysis
credit analysis
d. Yield spread analysis
e. Bond swaps

This breakdown benefitted from the discussion in Martin L. Leibowitz, "The Dedicated Bond Portfolio in . PartI : Motivations and Basics." Financiail Analyssts. Fournal 42, no. 1 (January-February 1986): ${ }_{61-75}$ Pension

BEFORE THE
 PUBLIC UTILITY COMMISSION OF OREGON

NW Natural
Exhibit 503 of Barbara Summers
UM 1744
Carbon Emission Reduction Program Combined Heat \& Power (CHP)

Pew Center on Global Climate Change and ICF International's Survey of Corporate Energy Efficiency Strategies

A Survey of Corporate Energy Efficiency Strategies

William Prindle, ICF International
Andre de Fontaine, Pew Center on Global Climate Change

Abstract

This paper summarizes the results of a 2009 survey of corporate energy efficiency strategies, conducted by the Pew Center on Global Climate Change. Forty-eight companies, ranging in size from $\$ 8$ billion to $\$ 99$ billion in revenues, completed the survey. Key results included an average energy savings target of 20%, or 2.2% on an annualized basis. The three leading motivations for companies' energy efficiency strategies were reducing carbon footprint, responding to rising energy prices, and demonstrating commitment to corporate social responsibility. 60% of respondents had full-time energy managers, 87% built energy performance into the compensation review systems for facility/plant management, and 38% reported energy performance criteria at the senior management level. Almost all respondents used specific financial criteria for energy efficiency investments, simple payback and internal rate of return (IRR) being the most common. Simple payback criteria were mostly three years or less, though two were as high as 5 years. IRR criteria were mostly in the $10-15 \%$ range, though one reported a 35% IRR threshold. Respondents also reported a variety of qualitative factors affecting their internal operations, supply chains, and product and services, and summarized the lessons learned and ongoing needs for their energy efficiency strategies.

Background

The survey's principal objective was to gather quantitative data, and identify management practices as well as trends in corporate energy efficiency strategies. It is a key element of a broader Pew Center study on best practices in corporate energy efficiency strategies, whose goal is to highlight the most effective methods used by companies today to reduce their energy consumption and lower their related greenhouse gas emissions. It encompasses management approaches to improving energy efficiency, including issues such as organizational structures, financial mechanisms, and employee compensation systems that corporations put in place to drive superior energy performance. The survey results will be combined with a set of case studies in a larger report to be published in late 2009 or early 2010. The report, and related communications activities, is being funded by a three-year, $\$ 1.4$ million grant from Toyota.

With concerns growing over climate change and future energy price increases, most, if not all, companies stand to benefit from a renewed focus on energy efficiency. By cataloging and describing best practices in corporate energy efficiency, the Pew Center report is intended to serve as a resource to other companies seeking to develop new, or improve upon existing, energy efficiency programs. The report builds upon existing Pew Center research that provides practical guidance to companies seeking to manage the risks and maximize the opportunities associated with the global transition to a low-carbon economy. Past Pew Center reports and white papers
have examined corporate climate change strategies, the development of corporate greenhouse gas emissions inventories and reduction targets, adaptation planning for businesses, and the use of carbon offsets. ${ }^{1}$

Sample Design and Response Rate

To get at best practices among industry leaders, the survey sample was drawn from major companies with a demonstrated commitment to climate and energy issues. We deliberately sought larger companies with strong energy/climate commitments, because the goal is to elicit best practices, not average practices. In this sense, the sample is intentionally not representative of the U.S. corporate population. With that objective, we drew the sample mainly from members of business-NGO and/or government-NGO partnership programs on climate change/sustainability. Included in the sample were all 43 of the companies in the Pew Center's Business Environmental Leadership Council (BELC), the largest U.S.-based association of companies dedicated to business and policy solutions to climate change. An additional 51 companies were pulled from such organizations as the U.S. Climate Action Partnership, Climate Group, World Wildlife Funds's Climate Savers, U.S. Environmental Protection Agency's Climate Leaders, and the World Business Council on Sustainable Development. Most of these companies are U.S.-based, though many operate globally; the survey covers respondents' full global operations.

ICF International's Survey Research Center programmed the questionnaire into an online instrument, and the Pew Center distributed it via e-mail to the 95 companies in January 2009. Prospective participants received a link to the on-line survey instrument, unique user names and passwords, and a pdf copy of the questionnaire. In all, a total of 48 companies completed the survey, a response rate of approximately 53 percent.

Survey Instrument

The instrument contained a little over 60 questions split into the following sections: general company information; overall strategy; risk management and finance; specific initiatives (internal operations, supply chain considerations, and products and services); and lessons learned. Key questions centered on organizational issues, such as internal champions in establishing efficiency programs; financial issues, such as the financing of efficiency projects and their role in competing with other priorities; and broader "lessons learned," such as major challenges in developing efficiency programs, and the methods by which those challenges were overcome.

Respondent Characteristics

Respondents ranged from semiconductor manufacturers to electric utilities, medical suppliers, chemical manufacturers, beverage companies, apparel makers, airlines, insurance companies, and heavy machinery manufacturers. This sample thus represents a representative range of companies across many different sectors of the economy. Key statistics included:

[^5]- \quad Revenues-Ranged from under $\$ 8$ billion to $\$ 99$ billion, with an average of just under $\$ 29$ billion
- Energy costs-Based on the 21 respondents who reported this data, total company energy costs ranged from $\$ 25$ million to $\$ 27$ billion, with an average of just under $\$ 2$ billion

Views on Climate Policy and Energy Prices

Almost all participants (98%) believe that comprehensive legislation mandating reductions in greenhouse gas emissions will be enacted in the U.S. More than half of those (57\%) believe legislation will be enacted within two years, the remainder within four years.

Respondents were also asked where they expect energy prices to be by 2014, using world oil prices as a general proxy. About 5% think prices will stay below $\$ 75 /$ barrel for the next five years; 44% believe prices will rise to the $\$ 75-99$ range, and over half believe oil will exceed $\$ 100 /$ barrel by 2014. The U.S. Department of Energy's 2009 Annual Energy Outlook projects a 2014 price of about $\$ 104 /$ barrel for crude oil imported by U.S. refiners. ${ }^{2}$ Respondents' estimates thus come fairly close to the U.S. official forecast. It is also relevant to point out that prior to the 2006 Annual Energy Outlook, oil price forecasts for 2014 did not exceed $\$ 27 /$ barrel. Price expectations have thus risen rapidly in just four years.

Energy Efficiency Goals

One of the survey's main objectives was to obtain companies' quantitative goals for reducing energy usage or costs, using specific metrics. Twenty-one companies in the sample supplied quantitative goal information. The mean energy savings goal was 20%; however, the responses ranged from 3.5% to 50%. It is also important to understand the context for these percentages, in terms of timeframe and metrics; we therefore asked companies to supply the target year for the savings goal, the base year against which it was measured, and the metric in which the goal was expressed. The mean base year was 2003, and the mean target year was 2013. For those who reported a percentage savings target as well as a base year and a target year, the annualized savings percentage was 2.2%; in other words, the average company's target called for just over 2% energy savings per year, over about a 10 -year period. A chart showing the range of reported savings targets is shown in Figure 1.

[^6]Figure 1. Range of Reported Energy Savings Goals

However, respondents varied considerably in the metrics they reported using for their energy savings targets. A simple percentage-of-energy savings target was the most commonly reported (21 respondents), where the goal was set in terms of reducing energy use by $\mathrm{X} \%$ from Year A to Year B . Other respondents normalized their energy savings targets to a variety of metrics, including energy used per square foot of floor space, energy used per unit of product, or energy used per dollar of revenue. Some respondents set absolute savings targets, in energy units or in dollars.

Leading Motivations for Energy Efficiency Strategies

Respondents were asked to select the leading motivators for their energy efficiency strategies. Their answers are graphed in Figure 2. It is interesting to note that although the highest frequency of responses was that efficiency strategies are part of a corporate commitment to reduce the company's carbon footprint, the least-selected factor was anticipation of mandatory carbon emission regulations. This may reflect the sample's bias toward companies with an active voluntary commitment on climate issues. It may also reflect an understanding that most companies' facilities, except for larger power generation and industrial facilities, will not be directly regulated by carbon regulations, and that energy efficiency strategies have a sound business case with or without regulations, while also showing concrete action on reducing the company's carbon footprint.

Figure 2. Leading Motivations for Company Energy Efficiency Strategies

Scope, Staffing and Resourcing in Energy Management Strategies

Companies were asked whether their energy efficiency strategies are corporation-wide, or operate at the individual plant or division level. Almost all (94\%) reported that the strategy operates corporation-wide; 3 respondents, or 6%, said that their efficiency strategies operate at a division level. However, in a follow-up question, 64% of respondents added that in addition to operating a corporation-wide strategy, they also quantify energy performance at the business unit or division level, and 81% quantify performance at the plant/facility level. Note that these percentages add up to more than 100 percent because respondents were able to select more than one business level at which they quantify their energy performance or energy savings.

Most respondents (60\%) reported that they employ a full-time energy manager. Others reassigned existing staff or use other ways to support their efforts. Respondents also rated the relative level of effort, and the relative cost impact, of five basic elements of their efficiency strategy effort. Those rankings are summarized in Table 1. It is interesting to note that employee engagement ranks low in terms of management effort and dollar cost; later in the survey, many respondents noted how well their employees embraced their efficiency initiatives. This suggests that employee engagement strategies may become a larger part of companies' energy and climate strategies, especially in difficult economic times.

Table 1. Rankings of Key Program Elements by Level of Effort and Cost (5=greatest level of effort or cost)

Program Element	Labor	Money
Program management (data collection,	5	Spent
reporting, project development, etc.)		

Leadership and Performance Accountability

Companies were asked which people or departments they considered to the most important champions for their efficiency strategies. CEOs and the senior management team were the most frequently selected choice, followed by plant/facility managers and operations staff. Environment/Health/Safety staff also were identified by many respondents. These results are illustrated in Table 2.

Table 2. Key Champions for Energy Efficiency Strategies

Champions	Number Selected
Board of Directors	3
CEO and Senior Management Team	37
Plant or Facility Managers	33
Accounting and Finance	4
Environmental Health and Safety	21
Operations	29
Strategic Planning	3
Other	12

Companies were also asked how energy performance is used as an element of job performance and career advancement. 49% said they explicitly include energy efficiency performance in annual review and compensation processes. We also asked which levels of management energy efficiency performance affected in this way; those results are shown in Table 3.

Table 3. Levels of Management Accountable for Energy Performance

	Number Mentions	of
Percent*		
Senior management ("C-level")	17	38%
Officer level (Vice Presidents/other officers)	24	53%
Corporate Energy Manager	26	58%
Middle management (Division/dept. managers)	27	60%
Facility level (Plant managers, facility mangers)	39	87%

* Percentages add up to more than 100 percent because respondents were able to select more than one business
level at which energy performance is measured and accounted for.

Employee Engagement

Companies were asked whether employee engagement, beyond the core energy management leadership team, is a formal element of the corporate energy management strategy. 89% of respondents said yes, though a wide variety of employee engagement methods were reported. Those responses are summarized in Table 4.

Table 4. Methods Used for Employee Education and Engagement

Categories	Mentions	$\begin{array}{\|cr\|} \hline \text { Percent } & \text { of } \\ \text { Respondents } \\ \hline \end{array}$
Newsletters or Reports / E-mails / Bulk Communication	16	33\%
Education and/or Trainings	11	23\%
Developed a Green Program for Employees	9	19\%
Green or Energy Teams / Committees	8	17\%
Intranet or Website	8	17\%
Employee Suggestion Box	7	15\%
Energy Efficiency Campaigns or Initiatives	6	12\%
Posting Signs or Posters	5	10\%
Rewards / Incentive system	5	10\%
Energy Themed Forums, Brownbag Lunches, Meetings and/or Conferences	5	10\%
Surveys	2	4\%

* Percentages add up to more than 100 percent because respondents were able to select more than one business level at which energy performance is measured and accounted for.

Finance and Risk Management Aspects of Energy Efficiency Investments

Respondents were asked whether they use a standard financial criterion to assess energy efficiency projects. 91% answered yes to this question; the distribution of responses showed that simple payback and internal rate of return were the most common criteria, though some respondents also used net operating income, lifecycle cost, and net present value methods.

15 companies reported the payback periods they use. All applied payback periods no longer than 5 years- 3 years or less was the most commonly selected period. Payback periods responses are summarized in Table 5.

Table 5. Range of Reported Investment Payback Periods

Payback period	Number Selected
One Year	2
Two Years	4
Three Years	6
Four Years	1
Five years	2

Ten companies reported an IRR figure, as shown in Table 6. Half of these respondents used IRR criteria of 15% or less, and the highest reported was 35%.

Table 6. Range of Reported Investment Internal Rate of Return

IRR Threshold	Number Selected
$10-15 \%$	2
15%	3
18%	1
20%	1
22%	1
25%	1
35%	1

Beyond basic criteria like simple payback and IRR, we also asked companies if they employ any additional considerations or special processes for energy efficiency projects to ensure that efficiency projects get funded that would otherwise fail corporate financial criteria. 63% answered yes to this question. Within that group of 29 , the following additional initiatives were mentioned:

- Established a special pool of capital available only for energy efficiency projects. 13 companies reported this approach, with capital pools ranging from $\$ 3$ million-- $\$ 240$ million, available over a period of 1-7 years. The average capital pool was $\$ 51.3$ million; on an annualized basis, the average pool was $\$ 12.8$ million.
- Build in assumptions about future energy price increases or supply shocks into the proposal to enhance financial or risk management benefits of efficiency projects. 12 companies reported this practice, though no price information was provided.
- Build in assumptions about future carbon prices to enhance benefits of efficiency projects. Six reported their carbon price expectations. While these results are not statistically meaningful, these respondents expect carbon prices to exceed $\$ 30 /$ ton by 2020.
- Take into account the relative lack of risk involved in energy efficiency projects. Ten companies reported this approach, though no specific metrics were provided.
- Take into account co-benefits of improved energy efficiency. All 29 selected at least one cobenefit of efficiency investments. Enhanced corporation reputation was the mostly frequently selected choice, followed by improved competitive positioning. Employee morale and productivity were also selected by many respondents.
- Bundling multiple energy efficiency projects into one larger budget item. 11 companies reported bundling efficiency projects into aggregated investments, partly to overcome the difficulty of gaining corporate level attention for relatively small expenditures.

Challenges in Mounting Internal Initiatives

Companies were asked to identify the biggest challenges in developing and sustaining efficiency initiatives for internal operations. Lack of funding was the most widely selected factor, followed by lack of staff time for project development, and organizational barriers.

Supply Chain Initiatives

Eight respondents (17% of total sample) reported having estimated suppliers' "energy footprint" or total usage. For those who had made such estimates, we asked whether the suppliers' footprint was smaller than, equal to, or larger than the company's internal operations energy footprint. One respondent said their suppliers' footprint was smaller, one equal, and five larger than their internal energy usage. This appears to be typical-most companies that estimate suppliers' footprint tend to find that their suppliers' energy usage (and often their carbon footprint) outweighs their own.

Respondents were also asked, independently of the footprint-measurement question, what energy efficiency measures they have undertaken with suppliers. The most common response was providing information on third-party efficiency programs or resources, followed by setting up energy/carbon reporting systems, providing technical assistance, and in a few cases, changing suppliers based on energy/carbon performance. Table 7 summarizes these responses.

Table 7. Energy Efficiency Measures Taken with Suppliers

Supplier Energy Efficiency Measure	Frequency	Percent*
Set up a measuring/reporting system for their energy/carbon performance	10	21%
Set specific energy or GHG reduction targets	0	0%
Provided information on energy efficiency programs and other resources available from21 third-party sources	44%	
Provided technical services (at your cost) to improve their energy/carbon performance	8	17%
Changed suppliers based on identification suppliers with superior energy/carbon effici performance	6	12%
Other initiatives	10	21%

* Percentages add up to more than 100 percent because respondents were able to select more than one energy efficiency strategy that they have undertaken with their suppliers.

Companies were also asked what the biggest challenges were in developing and sustaining efficiency initiatives in the supply chain. Getting suppliers' data was the most frequently selected factor, followed by cost issues and supplier resistance.

Products and Services

Companies reported having taken various initiatives with their products and services, at a rather high rate. 55% (26) had calculated the energy footprint from their products and services. On a comparative basis, 7 reported their product/service footprint to be smaller than their internal operations, 2 reported they were equal, and 17 reported product/service footprints larger than internal operations.

Somewhat surprisingly, 81% (38) reported that they had modified their products and services to enhance or offer new levels of energy efficiency performance. When asked to identify their motives for doing this, companies reported a range of motives: of these, the most frequently selected were, "Take advantage of new market trends brought on by consumer concerns about energy prices", "Take advantage of new market trends brought on by consumer concerns about environmental issues", and "Respond to competitive pressures".

Respondents were asked to identify the biggest challenges they faced in developing, rolling out, or sustaining sales of energy efficiency products or services. The most frequent responses were cost barriers, customer unwillingness to pay, and engineering barriers.

Lessons Learned, Remaining Challenges, and Future Needs

The last section of the survey asked companies to sum up the successes, setbacks, lessons, and future needs they see for their energy efficiency strategies. The biggest successes observed in companies energy efficiency strategies included the following (top five most frequent responses shown):

- Meeting / Exceeding Goals 48% of respondents
- Implementing Corporate Wide Plan 23\%
- Increasing Employee Involvement 21%
- Formalizing a Policy / Strategy 15\%
- Implementing at Local Level 15\%

Almost half of respondents reported meeting their goals. Many setbacks were also reported, including:

- Limited Capital for EE 19%
- Limited Leadership Buy-In 10%
- Improving EE is Harder than Expected 10\%
- Competing Priorities / Resources 6\%
- Lagging Momentum / Employee Interest 6\%

Companies reported the most successful corrective actions they took in response to these setbacks, summarized as follows:

- Doing Audits for EE improvements 12%
- Revising a Strategy / Goals 10%
- Building Teams to Support the Effort 10\%
- Increasing Employee Involvement 8\%
- Developing Feedback Mechanisms 8\%

We also asked companies to report any surprises or unexpected results that they experienced. Several companies reported on this, with the following summary of responses:

- Employee Interest/Involvement 15%
- Immediacy of Meeting Goals/Success 15%
- Difficulty in Implementing Strategies 6\%
- Wealth of Ideas / Opportunities 6\%
- Difficulty in Finding Resources 4\%

Respondents were asked to report the most important lessons learned since implementing their energy efficiency strategy. Responses are summarized in Table 8. The most frequently reported lesson was the need for better communication and coordination among units of the company, followed by the need to gain support from leadership, the need to actively engage employees, and the need for measurement and feedback in sustaining success.

Table 8. Key Lessons Learned in Implementing Efficiency Strategies

Categories	Frequency	Percent
Better Communication/Coordination Between Units	10	20.8%
Support from Management / Leadership Buy-In	7	14.6%
Employee Interest/Involvement in Energy Policy	6	12.5%
Developing a Feedback Mechanism / Measuring Results	6	12.5%
Need for Funding / Lack of Capital	4	8.3%
Setting Clear, Realistic Goals	3	6.3%
Continuous focus/awareness	2	4.2%
Other	22	45.8%

Companies reported the largest ongoing challenges keeping them from realizing the company's energy management goals. Need for capital to pay for projects was the greatest single ongoing challenge, outnumbering any other single item by a four-to-one ratio.

The final questions respondents were asked probed their most pressing needs to sustain and improve their energy management efforts, both for specific efficiency improvements and in terms of corporate-wide resources. As was shown in earlier responses on challenges, financial resources head the list of respondents' needs for specific efficiency improvements, followed by better management tools and technical information and assistance.

Looking more broadly at corporation-wide needs, respondents still saw capital needs as paramount. However, at the corporate level, culture change/education/training was tied with personnel needs for second place, followed by increased operating budget support, reducing organizational barriers, and better compensation and motivation systems to encourage efficiency. Figure 3 summarize these responses.

Figure 3. Ongoing Needs to Support Corporation-Wide Efficiency Strategies

Summary of Findings

The Pew Center survey brings to light several interesting facts and trends in corporate energy management, and helps identify key attributes on energy efficiency shared by leading large companies. Key findings include:

- Almost half of respondents reported setting quantified energy savings goals: the average was 20% of base year energy usage over nine years, or an annualized savings target of 2.2%
- 60% had full-time energy managers, 87% made facility/plant managers accountable for energy performance; 38% set energy performance goals for senior management.
- Over 90% of respondents reported standardized financial criteria: simple payback and IRR were the most frequent. Most simple payback thresholds were three years or less; most IRR thresholds were 15% or more.
- Most companies used other ways to support efficiency investment, including dedicated pools of capital, accounting for future energy and carbon prices, and estimating co-benefits.
- Less than half of respondents had taken specific actions to encourage energy efficiency in their supply chains; some had estimated their suppliers' energy/carbon footprint, and others established metrics and reporting systems to measure supplier performance.
- A surprisingly high 81% of respondents had modified their products and services to increase their energy efficiency; 55% had measured the energy footprint of their products and services.
- Among the surprises companies reported, the most common was the enthusiastic response they got from engaging employees.
- The greatest ongoing needs reported were greater capital and operating budgets, change in company culture/employee engagement, more personnel resources, and reduction of internal barriers to energy efficiency investment.

Conclusions

This survey sheds new light on emerging trends in energy management at some of the largest and most progressive companies. While the survey was deliberately aimed at companies known to be active in the energy efficiency and climate policy field, it produced responses that help articulate the key elements of success in corporate energy management. These include:

1. Efficiency as an integral part of corporate strategic planning and risk assessment
2. Real and sustainable senior management leadership and organizational support
3. Specific, aggressive, measurable, and accountable energy efficiency goals
4. A robust tracking and performance measurement system
5. Commitment of organizational resources in a substantial and sustained way
6. Documentation of results with quantitative, company-wide data
7. Communication of results both internally and externally

The survey produced some surprising findings, including the importance of employee engagement and enthusiasm. While efficiency has often been a behind-the-scenes engineering function driven by technology investment, today's most successful efforts draw as much on human capital and culture change to drive results as they do engineering expertise and technology investment.

Next steps in the research process include development of the case studies, which are expected to provide additional depth and detail to some of the key findings identified through the survey. For example, the case studies will seek to describe exactly how selected companies set efficiency targets and measure progress toward their goals. The case studies will also explore company experiences with various financing mechanisms for efficiency projects, including the use of dedicated pools of capital, and budgeting techniques such as bundling multiple small projects together into one larger fiscal item. Ultimately, the aim of the report is to integrate survey and case study findings to provide a comprehensive set of tools and resources for companies seeking to enhance their energy efficiency efforts.

The Pew Center also intends to develop a separate section of its Web site devoted to the topic of corporate energy efficiency. It plans to develop more case studies and additional resources that capture the advancing state of the art on this fast moving issue.

BEFORE THE

PUBLIC UTILITY COMMISSION OF OREGON

NW Natural

Exhibit 504 of Barbara Summers

UM 1744
Carbon Emission Reduction Program Combined Heat \& Power (CHP)

WSU Model with 2012 eGrid Non-baseload Emissions

October 16, 2015

	2010 eGrid										
Scenario	NWN CO2e Reduction Incentive (\$/tonne/y r)	Carbon Emission Reduction	ETO Grant Rate (\$/kWh)		ETO Grant Amount	$\begin{gathered} \text { CapEx, \$ } \\ \text { per kW } \end{gathered}$	BeforeTax Simple Payback		sent Value	Project IRR	After-Tax Discounted Payback
Hospital 800,000 sf with Two 800 kW Recip Engines, eGRID nonbaseload baseline	\$0	3,249	\$	0.08	317,834		8.9	\$	$(388,404)$	4.9\%	Exceeds Project Life
	\$30	3,249	\$	0.08	317,834		5.3	\$	270,344	13.6\%	9.0
	\$40	3,249	\$	0.08	317,834		4.7	\$	489,927	16.6\%	7.1
	\$50	3,249	\$	0.08	317,834		4.2	\$	709,510	19.5\%	5.9
	\$60	3,249	\$	0.08	317,834		3.8	\$	929,093	22.5\%	5.2
	\$70	3,249	\$	0.08	317,834		3.5	\$	1,148,676	25.6\%	4.7
	\$80	3,249	\$	0.08	317,834		3.2	\$	1,368,259	28.6\%	4.4
	\$30	2,144	\$	0.08	317,834		6.2	\$	46,370	10.6\%	13.6
	\$40	2,144	\$	0.08	317,834		5.6	\$	191,295	12.6\%	9.9
	\$50	2,144	\$	0.08	317,834		5.1	\$	336,219	14.5\%	8.3
	\$60	2,144	\$	0.08	317,834		4.7	\$	481,144	16.5\%	7.2
	\$70	2,144	\$	0.08	317,834		4.4	\$	626,069	18.4\%	6.3
	\$80	2,144	\$	0.08	317,834		4.1	\$	770,994	20.4\%	5.7
	\$30	1,072	\$	0.08	317,834		7.3	\$	$(171,017)$	7.7\%	Exceeds Project Life
	\$40	1,072	\$	0.08	317,834		6.9	\$	$(98,555)$	8.7\%	Exceeds Project Life
	\$50	1,072	\$	0.08	317,834		6.5	\$	$(26,093)$	9.7\%	Exceeds Project Life
	\$60	1,072	\$	0.08	317,834		6.2	\$	46,370	10.6\%	13.6
	\$70	1,072	\$	0.08	317,834		5.9	\$	118,832	11.6\%	11.5
	\$80	1,072	\$	0.08	317,834		5.6	\$	191,295	12.6\%	9.9
	\$0	3,249	\$	0.25	500,000		7.6	\$	$(229,608)$	6.8\%	Exceeds Project Life
	\$30	3,249	\$	0.25	500,000		4.6	\$	429,141	16.0\%	7.3
	\$40	3,249	\$	0.25	500,000		4.0	\$	648,724	19.1\%	5.9
	\$50	3,249	\$	0.25	500,000		3.6	\$	868,306	22.2\%	5.1
	\$60	3,249	\$	0.25	500,000		3.3	\$	1,087,889	25.3\%	4.6
	\$70	3,249	\$	0.25	500,000		3.0	\$	1,307,472	28.5\%	4.3
	\$80	3,249	\$	0.25	500,000		2.7	\$	1,527,055	31.7\%	4.0
	\$30	2,144	\$	0.25	500,000		5.3	\$	205,166	12.9\%	9.7
	\$40	2,144	\$	0.25	500,000		4.8	\$	350,091	14.9\%	8.0
	\$50	2,144	\$	0.25	500,000		4.4	\$	495,015	16.9\%	6.8
	\$60	2,144	\$	0.25	500,000		4.1	\$	639,940	19.0\%	5.9
	\$70	2,144	\$	0.25	500,000		3.8	\$	784,865	21.0\%	5.4
	\$80	2,144	\$	0.25	500,000		3.5	\$	929,790	23.1\%	4.9
	\$30	1,072	\$	0.25	500,000		6.3	\$	$(12,221)$	9.8\%	Exceeds Project Life
	\$40	1,072	\$	0.25	500,000		5.9	\$	60,241	10.8\%	13.1
	\$50	1,072	\$	0.25	500,000		5.6	\$	132,704	11.9\%	11.2
	\$60	1,072	\$	0.25	500,000		5.3	\$	205,166	12.9\%	9.7
	\$70	1,072	\$	0.25	500,000		5.0	\$	277,628	13.9\%	8.7
	\$80	1,072	\$	0.25	500,000		4.8	\$	350,091	14.9\%	8.0
	\$0	1,297	\$	0.08	110,183		8.7	\$	$(119,706)$	5.2\%	Exceeds Project Life
	\$30	1,297	\$	0.08	110,183		4.8	\$	143,298	15.9\%	7.5
	\$40	1,297	\$	0.08	110,183		4.2	\$	230,965	19.5\%	5.9
	\$50	1,297	\$	0.08	110,183		3.7	\$	318,633	23.1\%	5.0
	\$60	1,297	\$	0.08	110,183		3.3	\$	406,301	26.8\%	4.6
	\$70	1,297	\$	0.08	110,183		3.0	\$	493,969	30.6\%	4.2
	\$80	1,297	\$	0.08	110,183		2.8	\$	581,637	34.4\%	3.9
	\$30	856	\$	0.08	110,183		5.7	\$	53,876	12.2\%	10.5
	\$40	856	\$	0.08	110,183		5.1	\$	111,737	14.6\%	8.3
	\$50	856	\$	0.08	110,183		4.6	\$	169,598	16.9\%	6.9
	\$60	856	\$	0.08	110,183		4.2	\$	227,459	19.3\%	6.0
	\$70	856	\$	0.08	110,183		3.9	\$	285,320	21.7\%	5.3
	\$80	856	\$	0.08	110,183		3.6	\$	343,180	24.2\%	4.9
	\$30	428	\$	0.08	110,183		6.9	\$	$(32,915)$	8.7\%	Exceeds Project Life
	\$40	428	\$	0.08	110,183		6.4	\$	$(3,984)$	9.8\%	Exceeds Project Life

NWN/504 Summers/2

Reciprocating Engine - 500 kW , eGRID nonbaseload baseline	\$50	428	\$	0.08	110,183	6.0	\$	24,946	11.0\%	12.7
	\$60	428	\$	0.08	110,183	5.7	\$	53,876	12.2\%	10.5
	\$70	428	\$	0.08	110,183	5.4	\$	82,807	13.4\%	9.2
	\$80	428	\$	0.08	110,183	5.1	\$	111,737	14.6\%	8.3
	\$0	1,297	\$	0.25	344,323	3.9	\$	84,397	14.2\%	8.4
	\$30	1,297	\$	0.25	344,323	2.1	\$	347,400	27.0\%	4.0
	\$40	1,297	\$	0.25	344,323	1.9	\$	435,068	31.3\%	3.8
	\$50	1,297	\$	0.25	344,323	1.6	\$	522,736	35.7\%	3.5
	\$60	1,297	\$	0.25	344,323	1.5	\$	610,404	40.1\%	3.3
	\$70	1,297	\$	0.25	344,323	1.3	\$	698,071	44.6\%	3.1
	\$80	1,297	\$	0.25	344,323	1.2	\$	785,739	49.1\%	3.0
	\$30	856	\$	0.25	344,323	2.5	\$	257,979	22.7\%	4.6
	\$40	856	\$	0.25	344,323	2.2	\$	315,840	25.5\%	4.2
	\$50	856	\$	0.25	344,323	2.0	\$	373,700	28.3\%	3.9
	\$60	856	\$	0.25	344,323	1.9	\$	431,561	31.2\%	3.8
	\$70	856	\$	0.25	344,323	1.7	\$	489,422	34.0\%	3.6
	\$80	856	\$	0.25	344,323	1.6	\$	547,283	36.9\%	3.5
	\$30	428	\$	0.25	344,323	3.0	\$	171,188	18.4\%	5.4
	\$40	428	\$	0.25	344,323	2.8	\$	200,118	19.8\%	5.0
	\$50	428	\$	0.25	344,323	2.7	\$	229,048	21.3\%	4.7
	\$60	428	\$	0.25	344,323	2.5	\$	257,979	22.7\%	4.6
	\$70	428	\$	0.25	344,323	2.4	\$	286,909	24.1\%	4.4
	\$80	428	\$	0.25	344,323	2.2	\$	315,840	25.5\%	4.2
Reciprocating Engine - 4.3 MW, eGRID nonbaseload baseline	\$0	15,051	\$	0.08	500,000	3.9	\$	1,881,269	18.7\%	7.1
	\$30	15,051	\$	0.08	500,000	2.6	\$	4,933,154	34.6\%	3.9
	\$40	15,051	\$	0.08	500,000	2.3	\$	5,950,449	40.5\%	3.6
	\$50	15,051	\$	0.08	500,000	2.1	\$	6,967,744	46.6\%	3.2
	\$60	15,051	\$	0.08	500,000	1.9	\$	7,985,039	53.1\%	3.0
	\$70	15,051	\$	0.08	500,000	1.8	\$	9,002,335	60.0\%	2.7
	\$80	15,051	\$	0.08	500,000	1.6	\$	10,019,630	67.4\%	2.6
	\$30	9,934	\$	0.08	500,000	2.9	\$	3,895,513	28.9\%	4.5
	\$40	9,934	\$	0.08	500,000	2.7	\$	4,566,928	32.6\%	4.1
	\$50	9,934	\$	0.08	500,000	2.5	\$	5,238,343	36.3\%	3.8
	\$60	9,934	\$	0.08	500,000	2.3	\$	5,909,758	40.2\%	3.6
	\$70	9,934	\$	0.08	500,000	2.2	\$	6,581,172	44.2\%	3.4
	\$80	9,934	\$	0.08	500,000	2.1	\$	7,252,587	48.4\%	3.2
	\$30	4,967	\$	0.08	500,000	3.4	\$	2,888,391	23.7\%	5.3
	\$40	4,967	\$	0.08	500,000	3.2	\$	3,224,099	25.4\%	4.9
	\$50	4,967	\$	0.08	500,000	3.1	\$	3,559,806	27.1\%	4.7
	\$60	4,967	\$	0.08	500,000	2.9	\$	3,895,513	28.9\%	4.5
	\$70	4,967	\$	0.08	500,000	2.8	\$	4,231,221	30.7\%	4.3
	\$80	4,967	\$	0.08	500,000	2.7	\$	4,566,928	32.6\%	4.1
	\$0	15,051	\$	0.25	500,000	3.9	\$	1,881,269	18.7\%	7.1
	\$30	15,051	\$	0.25	500,000	2.6	\$	4,933,154	34.6\%	3.9
	\$40	15,051	\$	0.25	500,000	2.3	\$	5,950,449	40.5\%	3.6
	\$50	15,051	\$	0.25	500,000	2.1	\$	6,967,744	46.6\%	3.2
	\$60	15,051	\$	0.25	500,000	1.9	\$	7,985,039	53.1\%	3.0
	\$70	15,051	\$	0.25	500,000	1.8	\$	9,002,335	60.0\%	2.7
	\$80	15,051	\$	0.25	500,000	1.6	\$	10,019,630	67.4\%	2.6
	\$30	9,934	\$	0.25	500,000	2.9	\$	3,895,513	28.9\%	4.5
	\$40	9,934	\$	0.25	500,000	2.7	\$	4,566,928	32.6\%	4.1
	\$50	9,934	\$	0.25	500,000	2.5	\$	5,238,343	36.3\%	3.8
	\$60	9,934	\$	0.25	500,000	2.3	\$	5,909,758	40.2\%	3.6
	\$70	9,934	\$	0.25	500,000	2.2	\$	6,581,172	44.2\%	3.4
	\$80	9,934	\$	0.25	500,000	2.1	\$	7,252,587	48.4\%	3.2
	\$30	4,967	\$	0.25	500,000	3.4	\$	2,888,391	23.7\%	5.3
	\$40	4,967	\$	0.25	500,000	3.2	\$	3,224,099	25.4\%	4.9
	\$50	4,967	\$	0.25	500,000	3.1	\$	3,559,806	27.1\%	4.7
	\$60	4,967	\$	0.25	500,000	2.9	\$	3,895,513	28.9\%	4.5
	\$70	4,967	\$	0.25	500,000	2.8	\$	4,231,221	30.7\%	4.3
	\$80	4,967	\$	0.25	500,000	2.7	\$	4,566,928	32.6\%	4.1
	\$0	62,652	\$	0.08	500,000	5.4	\$	3,935,982	13.7\%	10.9
	\$30	62,652	\$	0.08	500,000	3.7	\$	16,639,978	27.2\%	5.2
	\$40	62,652	\$	0.08	500,000	3.3	\$	20,874,644	32.2\%	4.5
	\$50	62,652	\$	0.08	500,000	3.0	\$	25,109,309	37.5\%	3.9

NWN/504 Summers/3

	\$60	62,652	\$	0.08	500,000	2.8	\$	29,343,975	43.2\%	3.5
	\$70	62,652	\$	0.08	500,000	2.6	\$	33,578,640	49.2\%	3.2
	\$80	62,652	\$	0.08	500,000	2.4	\$	37,813,305	55.7\%	2.9
	\$30	41,350	\$	0.08	500,000	4.1	\$	12,320,620	22.3\%	6.3
	\$40	41,350	\$	0.08	500,000	3.8	\$	15,115,499	25.4\%	5.5
	\$50	41,350	\$	0.08	500,000	3.6	\$	17,910,378	28.6\%	4.9
	\$60	41,350	\$	0.08	500,000	3.3	\$	20,705,257	32.0\%	4.5
	\$70	41,350	\$	0.08	500,000	3.2	\$	23,500,136	35.5\%	4.1
	\$80	41,350	\$	0.08	500,000	3.0	\$	26,295,016	39.1\%	3.8
	\$30	20,675	\$	0.08	500,000	4.7	\$	8,128,301	17.8\%	8.0
	\$40	20,675	\$	0.08	500,000	4.5	\$	9,525,741	19.3\%	7.3
	\$50	20,675	\$	0.08	500,000	4.3	\$	10,923,180	20.8\%	6.7
Gas Turbine -	\$60	20,675	\$	0.08	500,000	4.1	\$	12,320,620	22.3\%	6.3
21.7 MW, eGRID	\$70	20,675	\$	0.08	500,000	4.0	\$	13,718,059	23.8\%	5.8
non-baseload	\$80	20,675	\$	0.08	500,000	3.8	\$	15,115,499	25.4\%	5.5
baseline, Without	\$0	62,652	\$	0.25	500,000	5.4	\$	3,935,982	13.7\%	10.9
Gas	\$30	62,652	\$	0.25	500,000	3.7	\$	16,639,978	27.2\%	5.2
Compression	\$40	62,652	\$	0.25	500,000	3.3	\$	20,874,644	32.2\%	4.5
	\$50	62,652	\$	0.25	500,000	3.0	\$	25,109,309	37.5\%	3.9
	\$60	62,652	\$	0.25	500,000	2.8	\$	29,343,975	43.2\%	3.5
	\$70	62,652	\$	0.25	500,000	2.6	\$	33,578,640	49.2\%	3.2
	\$80	62,652	\$	0.25	500,000	2.4	\$	37,813,305	55.7\%	2.9
	\$30	41,350	\$	0.25	500,000	4.1	\$	12,320,620	22.3\%	6.3
	\$40	41,350	\$	0.25	500,000	3.8	\$	15,115,499	25.4\%	5.5
	\$50	41,350	\$	0.25	500,000	3.6	\$	17,910,378	28.6\%	4.9
	\$60	41,350	\$	0.25	500,000	3.3	\$	20,705,257	32.0\%	4.5
	\$70	41,350	\$	0.25	500,000	3.2	\$	23,500,136	35.5\%	4.1
	\$80	41,350	\$	0.25	500,000	3.0	\$	26,295,016	39.1\%	3.8
	\$30	20,675	\$	0.25	500,000	4.7	\$	8,128,301	17.8\%	8.0
	\$40	20,675	\$	0.25	500,000	4.5	\$	9,525,741	19.3\%	7.3
	\$50	20,675	\$	0.25	500,000	4.3	\$	10,923,180	20.8\%	6.7
	\$60	20,675	\$	0.25	500,000	4.1	\$	12,320,620	22.3\%	6.3
	\$70	20,675	\$	0.25	500,000	4.0	\$	13,718,059	23.8\%	5.8
	\$80	20,675	\$	0.25	500,000	3.8	\$	15,115,499	25.4\%	5.5
Gas Turbine - 45 MW, eGRID non- baseload baseline -Without Gas Compression	\$0	132,175	\$	0.08	500,000	5.8	\$	4,464,116	11.9\%	12.6
	\$30	132,175	\$	0.08	500,000	3.9	\$	31,265,330	24.9\%	5.7
	\$40	132,175	\$	0.08	500,000	3.6	\$	40,199,068	29.8\%	4.9
	\$50	132,175	\$	0.08	500,000	3.3	\$	49,132,807	35.1\%	4.3
	\$60	132,175	\$	0.08	500,000	3.0	\$	58,066,545	40.6\%	3.8
	\$70	132,175	\$	0.08	500,000	2.8	\$	67,000,283	46.5\%	3.4
	\$80	132,175	\$	0.08	500,000	2.6	\$	75,934,021	52.9\%	3.1
	\$30	87,235	\$	0.08	500,000	4.4	\$	22,152,917	20.2\%	7.0
	\$40	87,235	\$	0.08	500,000	4.1	\$	28,049,184	23.2\%	6.1
	\$50	87,235	\$	0.08	500,000	3.8	\$	33,945,452	26.4\%	5.4
	\$60	87,235	\$	0.08	500,000	3.6	\$	39,841,719	29.6\%	4.9
	\$70	87,235	\$	0.08	500,000	3.4	\$	45,737,986	33.0\%	4.5
	\$80	87,235	\$	0.08	500,000	3.2	\$	51,634,253	36.6\%	4.1
	\$30	43,618	\$	0.08	500,000	5.0	\$	13,308,516	15.9\%	9.0
	\$40	43,618	\$	0.08	500,000	4.8	\$	16,256,650	17.3\%	8.2
	\$50	43,618	\$	0.08	500,000	4.6	\$	19,204,784	18.8\%	7.6
	\$60	43,618	\$	0.08	500,000	4.4	\$	22,152,917	20.2\%	7.0
	\$70	43,618	\$	0.08	500,000	4.3	\$	25,101,051	21.7\%	6.5
	\$80	43,618	\$	0.08	500,000	4.1	\$	28,049,184	23.2\%	6.1
	\$0	132,175	\$	0.25	500,000	5.8	\$	4,464,116	11.9\%	12.6
	\$30	132,175	\$	0.25	500,000	3.9	\$	31,265,330	24.9\%	5.7
	\$40	132,175	\$	0.25	500,000	3.6	\$	40,199,068	29.8\%	4.9
	\$50	132,175	\$	0.25	500,000	3.3	\$	49,132,807	35.1\%	4.3
	\$60	132,175	\$	0.25	500,000	3.0	\$	58,066,545	40.6\%	3.8
	\$70	132,175	\$	0.25	500,000	2.8	\$	67,000,283	46.5\%	3.4
	\$80	132,175	\$	0.25	500,000	2.6	\$	75,934,021	52.9\%	3.1
	\$30	87,235	\$	0.25	500,000	4.4	\$	22,152,917	20.2\%	7.0
	\$40	87,235	\$	0.25	500,000	4.1	\$	28,049,184	23.2\%	6.1
	\$50	87,235	\$	0.25	500,000	3.8	\$	33,945,452	26.4\%	5.4
	\$60	87,235	\$	0.25	500,000	3.6	\$	39,841,719	29.6\%	4.9
	\$70	87,235	\$	0.25	500,000	3.4	\$	45,737,986	33.0\%	4.5

NWN/504 Summers/4

	\$80	87,235	\$	0.25	500,000		3.2	\$	51,634,253	36.6\%	4.1
	\$30	43,618	\$	0.25	500,000		5.0	\$	13,308,516	15.9\%	9.0
	\$40	43,618	\$	0.25	500,000		4.8	\$	16,256,650	17.3\%	8.2
	\$50	43,618	\$	0.25	500,000		4.6	\$	19,204,784	18.8\%	7.6
	\$60	43,618	\$	0.25	500,000		4.4	\$	22,152,917	20.2\%	7.0
	\$70	43,618	\$	0.25	500,000		4.3	\$	25,101,051	21.7\%	6.5
	\$80	43,618	\$	0.25	500,000		4.1	\$	28,049,184	23.2\%	6.1
Gas Turbine - 45 MW, eGRID (2010) nonbaseload baseline, 70\% CapEx -- With Gas Compression	\$0	132,175	\$	0.08	\$500,000	\$905	4.0	\$	17,735,773	20.6\%	7.3
	\$15	132,175	\$	0.08	\$500,000	\$905	3.2	\$	31,136,381	30.3\%	4.9
	\$30	132,175	\$	0.08	\$500,000	\$905	2.7	\$	44,536,988	41.6\%	3.8
	\$45	132,175	\$	0.08	\$500,000	\$905	2.3	\$	57,937,595	54.7\%	3.0
	\$60	132,175	\$	0.08	\$500,000	\$905	2.0	\$	71,338,202	70.2\%	2.6
	\$75	132,175	\$	0.08	\$500,000	\$905	1.8	\$	84,738,810	88.7\%	2.2
	\$90	132,175	\$	0.08	\$500,000	\$905	1.6	\$	98,139,417	111.4\%	2.0
	\$105	132,175	\$	0.08	\$500,000	\$905	1.5	\$	111,540,024	140.1\%	1.8
	\$120	132,175	\$	0.08	\$500,000	\$905	1.4	\$	124,940,631	177.4\%	1.6
	\$135	132,175	\$	0.08	\$500,000	\$905	1.3	\$	138,341,239	228.1\%	1.5
	\$150	132,175	\$	0.08	\$500,000	\$905	1.2	\$	151,741,846	301.1\%	1.4
	\$0	87,235	\$	0.08	\$500,000	\$905	4.0	\$	17,735,773	20.6\%	7.3
	\$15	87,235	\$	0.08	\$500,000	\$905	3.4	\$	26,580,174	26.9\%	5.5
	\$30	87,235	\$	0.08	\$500,000	\$905	3.0	\$	35,424,575	33.8\%	4.4
	\$45	87,235	\$	0.08	\$500,000	\$905	2.7	\$	44,268,976	41.4\%	3.8
	\$60	87,235	\$	0.08	\$500,000	\$905	2.4	\$	53,113,377	49.8\%	3.3
	\$75	87,235	\$	0.08	\$500,000	\$905	2.2	\$	61,957,777	59.1\%	2.9
	\$90	87,235	\$	0.08	\$500,000	\$905	2.0	\$	70,802,178	69.5\%	2.6
	\$105	87,235	\$	0.08	\$500,000	\$905	1.9	\$	79,646,579	81.2\%	2.3
	\$120	87,235	\$	0.08	\$500,000	\$905	1.8	\$	88,490,980	94.6\%	2.1
	\$135	87,235	\$	0.08	\$500,000	\$905	1.6	\$	97,335,380	109.9\%	2.0
	\$150	87,235	\$	0.08	\$500,000	\$905	1.5	\$	106,179,781	127.8\%	1.8
	\$0	43,618	\$	0.08	\$500,000	\$905	4.0	\$	17,735,773	20.6\%	7.3
	\$15	43,618	\$	0.08	\$500,000	\$905	3.7	\$	22,157,974	23.7\%	6.2
	\$30	43,618	\$	0.08	\$500,000	\$905	3.4	\$	26,580,174	26.9\%	5.5
	\$45	43,618	\$	0.08	\$500,000	\$905	3.2	\$	31,002,375	30.2\%	4.9
	\$60	43,618	\$	0.08	\$500,000	\$905	3.0	\$	35,424,575	33.8\%	4.4
	\$75	43,618	\$	0.08	\$500,000	\$905	2.9	\$	39,846,775	37.5\%	4.1
	\$90	43,618	\$	0.08	\$500,000	\$905	2.7	\$	44,268,976	41.4\%	3.8
	\$105	43,618	\$	0.08	\$500,000	\$905	2.6	\$	48,691,176	45.5\%	3.5
	\$120	43,618	\$	0.08	\$500,000	\$905	2.4	\$	53,113,377	49.8\%	3.3
	\$135	43,618	\$	0.08	\$500,000	\$905	2.3	\$	57,535,577	54.3\%	3.1
	\$150	43,618	\$	0.08	\$500,000	\$905	2.2	\$	61,957,777	59.1\%	2.9
	\$0	132,175	\$	0.25	\$500,000	\$905	4.0	\$	17,735,773	20.6\%	7.3
	\$15	132,175	\$	0.25	\$500,000	\$905	3.2	\$	31,136,381	30.3\%	4.9
	\$30	132,175	\$	0.25	\$500,000	\$905	2.7	\$	44,536,988	41.6\%	3.8
	\$45	132,175	\$	0.25	\$500,000	\$905	2.3	\$	57,937,595	54.7\%	3.0
	\$60	132,175	\$	0.25	\$500,000	\$905	2.0	\$	71,338,202	70.2\%	2.6
	\$75	132,175	\$	0.25	\$500,000	\$905	1.8	\$	84,738,810	88.7\%	2.2
	\$90	132,175	\$	0.25	\$500,000	\$905	1.6	\$	98,139,417	111.4\%	2.0
	\$105	132,175	\$	0.25	\$500,000	\$905	1.5	\$	111,540,024	140.1\%	1.8
	\$120	132,175	\$	0.25	\$500,000	\$905	1.4	\$	124,940,631	177.4\%	1.6
	\$135	132,175	\$	0.25	\$500,000	\$905	1.3	\$	138,341,239	228.1\%	1.5
	\$150	132,175	\$	0.25	\$500,000	\$905	1.2	\$	151,741,846	301.1\%	1.4
	\$0	87,235	\$	0.25	\$500,000	\$905	4.0	\$	17,735,773	20.6\%	7.3
	\$15	87,235	\$	0.25	\$500,000	\$905	3.4	\$	26,580,174	26.9\%	5.5
	\$30	87,235	\$	0.25	\$500,000	\$905	3.0	\$	35,424,575	33.8\%	4.4
	\$45	87,235	\$	0.25	\$500,000	\$905	2.7	\$	44,268,976	41.4\%	3.8
	\$60	87,235	\$	0.25	\$500,000	\$905	2.4	\$	53,113,377	49.8\%	3.3
	\$75	87,235	\$	0.25	\$500,000	\$905	2.2	\$	61,957,777	59.1\%	2.9
	\$90	87,235	\$	0.25	\$500,000	\$905	2.0	\$	70,802,178	69.5\%	2.6
	\$105	87,235	\$	0.25	\$500,000	\$905	1.9	\$	79,646,579	81.2\%	2.3
	\$120	87,235	\$	0.25	\$500,000	\$905	1.8	\$	88,490,980	94.6\%	2.1
	\$135	87,235	\$	0.25	\$500,000	\$905	1.6	\$	97,335,380	109.9\%	2.0
	\$150	87,235	\$	0.25	\$500,000	\$905	1.5	\$	106,179,781	127.8\%	1.8
	\$0	43,618	\$	0.25	\$500,000	\$905	4.0	\$	17,735,773	20.6\%	7.3
	\$15	43,618	\$	0.25	\$500,000	\$905	3.7	\$	22,157,974	23.7\%	6.2
	\$30	43,618	\$	0.25	\$500,000	\$905	3.4	\$	26,580,174	26.9\%	5.5

NWN/504 Summers/5

	\$45	43,618	\$	0.25	\$500,000	\$905	3.2	\$	31,002,375	30.2\%	4.9
	\$60	43,618	\$	0.25	\$500,000	\$905	3.0	\$	35,424,575	33.8\%	4.4
	\$75	43,618	\$	0.25	\$500,000	\$905	2.9	\$	39,846,775	37.5\%	4.1
	\$90	43,618	\$	0.25	\$500,000	\$905	2.7	\$	44,268,976	41.4\%	3.8
	\$105	43,618	\$	0.25	\$500,000	\$905	2.6	\$	48,691,176	45.5\%	3.5
	\$120	43,618	\$	0.25	\$500,000	\$905	2.4	\$	53,113,377	49.8\%	3.3
	\$135	43,618	\$	0.25	\$500,000	\$905	2.3	\$	57,535,577	54.3\%	3.1
	\$150	43,618	\$	0.25	\$500,000	\$905	2.2	\$	61,957,777	59.1\%	2.9
Gas Turbine 21.7 MW, eGRID (2010) nonbaseload baseline -- With Gas Compression	\$0	62,652	\$	0.08	\$500,000	\$1,413	5.7	\$	2,997,518	12.7\%	11.8
	\$15	62,652	\$	0.08	\$500,000	\$1,413	4.6	\$	9,349,517	18.8\%	7.5
	\$30	62,652	\$	0.08	\$500,000	\$1,413	3.9	\$	15,701,515	25.5\%	5.5
	\$45	62,652	\$	0.08	\$500,000	\$1,413	3.3	\$	22,053,513	32.7\%	4.4
	\$60	62,652	\$	0.08	\$500,000	\$1,413	2.9	\$	28,405,511	40.5\%	3.7
	\$75	62,652	\$	0.08	\$500,000	\$1,413	2.6	\$	34,757,509	49.1\%	3.2
	\$90	62,652	\$	0.08	\$500,000	\$1,413	2.4	\$	41,109,507	58.5\%	2.8
	\$105	62,652	\$	0.08	\$500,000	\$1,413	2.2	\$	47,461,505	68.9\%	2.5
	\$120	62,652	\$	0.08	\$500,000	\$1,413	2.0	\$	53,813,503	80.5\%	2.3
	\$135	62,652	\$	0.08	\$500,000	\$1,413	1.8	\$	60,165,501	93.6\%	2.1
	\$150	62,652	\$	0.08	\$500,000	\$1,413	1.7	\$	66,517,499	108.5\%	1.9
	\$0	41,350	\$	0.08	\$500,000	\$1,413	5.7	\$	2,997,518	12.7\%	11.8
	\$15	41,350	\$	0.08	\$500,000	\$1,413	4.9	\$	7,189,837	16.7\%	8.6
	\$30	41,350	\$	0.08	\$500,000	\$1,413	4.3	\$	11,382,156	20.9\%	6.7
	\$45	41,350	\$	0.08	\$500,000	\$1,413	3.9	\$	15,574,475	25.3\%	5.5
	\$60	41,350	\$	0.08	\$500,000	\$1,413	3.5	\$	19,766,793	30.0\%	4.7
	\$75	41,350	\$	0.08	\$500,000	\$1,413	3.2	\$	23,959,112	35.0\%	4.2
	\$90	41,350	\$	0.08	\$500,000	\$1,413	3.0	\$	28,151,431	40.2\%	3.8
	\$105	41,350	\$	0.08	\$500,000	\$1,413	2.7	\$	32,343,750	45.8\%	3.4
	\$120	41,350	\$	0.08	\$500,000	\$1,413	2.6	\$	36,536,068	51.6\%	3.1
	\$135	41,350	\$	0.08	\$500,000	\$1,413	2.4	\$	40,728,387	57.9\%	2.9
	\$150	41,350	\$	0.08	\$500,000	\$1,413	2.2	\$	44,920,706	64.6\%	2.7
	\$0	20,675	\$	0.08	\$500,000	\$1,413	5.7	\$	2,997,518	12.7\%	11.8
	\$15	20,675	\$	0.08	\$500,000	\$1,413	5.3	\$	5,093,678	14.6\%	9.9
	\$30	20,675	\$	0.08	\$500,000	\$1,413	4.9	\$	7,189,837	16.7\%	8.6
	\$45	20,675	\$	0.08	\$500,000	\$1,413	4.6	\$	9,285,997	18.7\%	7.5
	\$60	20,675	\$	0.08	\$500,000	\$1,413	4.3	\$	11,382,156	20.9\%	6.7
	\$75	20,675	\$	0.08	\$500,000	\$1,413	4.1	\$	13,478,315	23.1\%	6.0
	\$90	20,675	\$	0.08	\$500,000	\$1,413	3.9	\$	15,574,475	25.3\%	5.5
	\$105	20,675	\$	0.08	\$500,000	\$1,413	3.7	\$	17,670,634	27.6\%	5.1
	\$120	20,675	\$	0.08	\$500,000	\$1,413	3.5	\$	19,766,793	30.0\%	4.7
	\$135	20,675	\$	0.08	\$500,000	\$1,413	3.4	\$	21,862,953	32.5\%	4.5
	\$150	20,675	\$	0.08	\$500,000	\$1,413	3.2	\$	23,959,112	35.0\%	4.2
	\$0	62,652	\$	0.25	\$500,000	\$1,413	5.7	\$	2,997,518	12.7\%	11.8
	\$15	62,652	\$	0.25	\$500,000	\$1,413	4.6	\$	9,349,517	18.8\%	7.5
	\$30	62,652	\$	0.25	\$500,000	\$1,413	3.9	\$	15,701,515	25.5\%	5.5
	\$45	62,652	\$	0.25	\$500,000	\$1,413	3.3	\$	22,053,513	32.7\%	4.4
	\$60	62,652	\$	0.25	\$500,000	\$1,413	2.9	\$	28,405,511	40.5\%	3.7
	\$75	62,652	\$	0.25	\$500,000	\$1,413	2.6	\$	34,757,509	49.1\%	3.2
	\$90	62,652	\$	0.25	\$500,000	\$1,413	2.4	\$	41,109,507	58.5\%	2.8
	\$105	62,652	\$	0.25	\$500,000	\$1,413	2.2	\$	47,461,505	68.9\%	2.5
	\$120	62,652	\$	0.25	\$500,000	\$1,413	2.0	\$	53,813,503	80.5\%	2.3
	\$135	62,652	\$	0.25	\$500,000	\$1,413	1.8	\$	60,165,501	93.6\%	2.1
	\$150	62,652	\$	0.25	\$500,000	\$1,413	1.7	\$	66,517,499	108.5\%	1.9
	\$0	41,350	\$	0.25	\$500,000	\$1,413	5.7	\$	2,997,518	12.7\%	11.8
	\$15	41,350	\$	0.25	\$500,000	\$1,413	4.9	\$	7,189,837	16.7\%	8.6
	\$30	41,350	\$	0.25	\$500,000	\$1,413	4.3	\$	11,382,156	20.9\%	6.7
	\$45	41,350	\$	0.25	\$500,000	\$1,413	3.9	\$	15,574,475	25.3\%	5.5
	\$60	41,350	\$	0.25	\$500,000	\$1,413	3.5	\$	19,766,793	30.0\%	4.7
	\$75	41,350	\$	0.25	\$500,000	\$1,413	3.2	\$	23,959,112	35.0\%	4.2
	\$90	41,350	\$	0.25	\$500,000	\$1,413	3.0	\$	28,151,431	40.2\%	3.8
	\$105	41,350	\$	0.25	\$500,000	\$1,413	2.7	\$	32,343,750	45.8\%	3.4
	\$120	41,350	\$	0.25	\$500,000	\$1,413	2.6	\$	36,536,068	51.6\%	3.1
	\$135	41,350	\$	0.25	\$500,000	\$1,413	2.4	\$	40,728,387	57.9\%	2.9
	\$150	41,350	\$	0.25	\$500,000	\$1,413	2.2	\$	44,920,706	64.6\%	2.7
	\$0	20,675	\$	0.25	\$500,000	\$1,413	5.7	\$	2,997,518	12.7\%	11.8
	\$15	20,675	\$	0.25	\$500,000	\$1,413	5.3	\$	5,093,678	14.6\%	9.9

NWN/504 Summers/6

	\$30	20,675	\$	0.25	\$500,000	\$1,413	4.9	\$	7,189,837	16.7\%	8.6
	\$45	20,675	\$	0.25	\$500,000	\$1,413	4.6	\$	9,285,997	18.7\%	7.5
	\$60	20,675	\$	0.25	\$500,000	\$1,413	4.3	\$	11,382,156	20.9\%	6.7
	\$75	20,675	\$	0.25	\$500,000	\$1,413	4.1	\$	13,478,315	23.1\%	6.0
	\$90	20,675	\$	0.25	\$500,000	\$1,413	3.9	\$	15,574,475	25.3\%	5.5
	\$105	20,675	\$	0.25	\$500,000	\$1,413	3.7	\$	17,670,634	27.6\%	5.1
	\$120	20,675	\$	0.25	\$500,000	\$1,413	3.5	\$	19,766,793	30.0\%	4.7
	\$135	20,675	\$	0.25	\$500,000	\$1,413	3.4	\$	21,862,953	32.5\%	4.5
	\$150	20,675	\$	0.25	\$500,000	\$1,413	3.2	\$	23,959,112	35.0\%	4.2
Gas Turbine - 45 MW, eGRID (2010) nonbaseload baseline -- With Gas Compression	\$0	144,784	\$	0.08	\$500,000	\$1,292	6.0	\$	2,810,245	11.2\%	13.5
	\$15	144,784	\$	0.08	\$500,000	\$1,292	4.8	\$	17,489,193	17.7\%	8.0
	\$30	144,784	\$	0.08	\$500,000	\$1,292	4.0	\$	32,168,141	24.9\%	5.7
	\$45	144,784	\$	0.08	\$500,000	\$1,292	3.4	\$	46,847,089	32.9\%	4.5
	\$60	144,784	\$	0.08	\$500,000	\$1,292	3.0	\$	61,526,037	41.6\%	3.7
	\$75	144,784	\$	0.08	\$500,000	\$1,292	2.6	\$	76,204,985	51.3\%	3.2
	\$90	144,784	\$	0.08	\$500,000	\$1,292	2.4	\$	90,883,933	62.1\%	2.8
	\$105	144,784	\$	0.08	\$500,000	\$1,292	2.1	\$	105,562,881	74.4\%	2.5
	\$120	144,784	\$	0.08	\$500,000	\$1,292	2.0	\$	120,241,829	88.6\%	2.2
	\$135	144,784	\$	0.08	\$500,000	\$1,292	1.8	\$	134,920,777	105.0\%	2.0
	\$150	144,784	\$	0.08	\$500,000	\$1,292	1.7	\$	149,599,725	124.4\%	1.9
	\$0	95,557	\$	0.08	\$500,000	\$1,292	6.0	\$	2,810,245	11.2\%	13.5
	\$15	95,557	\$	0.08	\$500,000	\$1,292	5.2	\$	12,498,351	15.4\%	9.3
	\$30	95,557	\$	0.08	\$500,000	\$1,292	4.5	\$	22,186,457	19.9\%	7.1
	\$45	95,557	\$	0.08	\$500,000	\$1,292	4.0	\$	31,874,562	24.8\%	5.7
	\$60	95,557	\$	0.08	\$500,000	\$1,292	3.6	\$	41,562,668	29.9\%	4.8
	\$75	95,557	\$	0.08	\$500,000	\$1,292	3.3	\$	51,250,774	35.4\%	4.2
	\$90	95,557	\$	0.08	\$500,000	\$1,292	3.0	\$	60,938,879	41.2\%	3.8
	\$105	95,557	\$	0.08	\$500,000	\$1,292	2.8	\$	70,626,985	47.5\%	3.4
	\$120	95,557	\$	0.08	\$500,000	\$1,292	2.6	\$	80,315,090	54.2\%	3.1
	\$135	95,557	\$	0.08	\$500,000	\$1,292	2.4	\$	90,003,196	61.4\%	2.8
	\$150	95,557	\$	0.08	\$500,000	\$1,292	2.2	\$	99,691,302	69.3\%	2.6
	\$0	47,779	\$	0.08	\$500,000	\$1,292	6.0	\$	2,810,245	11.2\%	13.5
	\$15	47,779	\$	0.08	\$500,000	\$1,292	5.6	\$	7,654,298	13.2\%	11.1
	\$30	47,779	\$	0.08	\$500,000	\$1,292	5.2	\$	12,498,351	15.4\%	9.3
	\$45	47,779	\$	0.08	\$500,000	\$1,292	4.8	\$	17,342,404	17.6\%	8.0
	\$60	47,779	\$	0.08	\$500,000	\$1,292	4.5	\$	22,186,457	19.9\%	7.1
	\$75	47,779	\$	0.08	\$500,000	\$1,292	4.2	\$	27,030,509	22.3\%	6.3
	\$90	47,779	\$	0.08	\$500,000	\$1,292	4.0	\$	31,874,562	24.8\%	5.7
	\$105	47,779	\$	0.08	\$500,000	\$1,292	3.8	\$	36,718,615	27.3\%	5.2
	\$120	47,779	\$	0.08	\$500,000	\$1,292	3.6	\$	41,562,668	29.9\%	4.8
	\$135	47,779	\$	0.08	\$500,000	\$1,292	3.4	\$	46,406,721	32.6\%	4.5
	\$150	47,779	\$	0.08	\$500,000	\$1,292	3.3	\$	51,250,774	35.4\%	4.2
	\$0	144,784	\$	0.25	\$500,000	\$1,292	6.0	\$	2,810,245	11.2\%	13.5
	\$15	144,784	\$	0.25	\$500,000	\$1,292	4.8	\$	17,489,193	17.7\%	8.0
	\$30	144,784	\$	0.25	\$500,000	\$1,292	4.0	\$	32,168,141	24.9\%	5.7
	\$45	144,784	\$	0.25	\$500,000	\$1,292	3.4	\$	46,847,089	32.9\%	4.5
	\$60	144,784	\$	0.25	\$500,000	\$1,292	3.0	\$	61,526,037	41.6\%	3.7
	\$75	144,784	\$	0.25	\$500,000	\$1,292	2.6	\$	76,204,985	51.3\%	3.2
	\$90	144,784	\$	0.25	\$500,000	\$1,292	2.4	\$	90,883,933	62.1\%	2.8
	\$105	144,784	\$	0.25	\$500,000	\$1,292	2.1	\$	105,562,881	74.4\%	2.5
	\$120	144,784	\$	0.25	\$500,000	\$1,292	2.0	\$	120,241,829	88.6\%	2.2
	\$135	144,784	\$	0.25	\$500,000	\$1,292	1.8	\$	134,920,777	105.0\%	2.0
	\$150	144,784	\$	0.25	\$500,000	\$1,292	1.7	\$	149,599,725	124.4\%	1.9
	\$0	95,557	\$	0.25	\$500,000	\$1,292	6.0	\$	2,810,245	11.2\%	13.5
	\$15	95,557	\$	0.25	\$500,000	\$1,292	5.2	\$	12,498,351	15.4\%	9.3
	\$30	95,557	\$	0.25	\$500,000	\$1,292	4.5	\$	22,186,457	19.9\%	7.1
	\$45	95,557	\$	0.25	\$500,000	\$1,292	4.0	\$	31,874,562	24.8\%	5.7
	\$60	95,557	\$	0.25	\$500,000	\$1,292	3.6	\$	41,562,668	29.9\%	4.8
	\$75	95,557	\$	0.25	\$500,000	\$1,292	3.3	\$	51,250,774	35.4\%	4.2
	\$90	95,557	\$	0.25	\$500,000	\$1,292	3.0	\$	60,938,879	41.2\%	3.8
	\$105	95,557	\$	0.25	\$500,000	\$1,292	2.8	\$	70,626,985	47.5\%	3.4
	\$120	95,557	\$	0.25	\$500,000	\$1,292	2.6	\$	80,315,090	54.2\%	3.1
	\$135	95,557	\$	0.25	\$500,000	\$1,292	2.4	\$	90,003,196	61.4\%	2.8
	\$150	95,557	\$	0.25	\$500,000	\$1,292	2.2	\$	99,691,302	69.3\%	2.6
	\$0	47,779	\$	0.25	\$500,000	\$1,292	6.0	\$	2,810,245	11.2\%	13.5

$\$ 15$	47,779	$\$$	0.25	$\$ 500,000$	$\$ 1,292$	5.6	$\$$	$7,654,298$	13.2%	11.1
$\$ 30$	47,779	$\$$	0.25	$\$ 500,000$	$\$ 1,292$	5.2	$\$$	$12,498,351$	15.4%	9.3
$\$ 45$	47,779	$\$$	0.25	$\$ 500,000$	$\$ 1,292$	4.8	$\$$	$17,342,404$	17.6%	8.0
$\$ 60$	47,779	$\$$	0.25	$\$ 500,000$	$\$ 1,292$	4.5	$\$$	$22,186,457$	19.9%	7.1
$\$ 75$	47,779	$\$$	0.25	$\$ 500,000$	$\$ 1,292$	4.2	$\$$	$27,030,509$	22.3%	6.3
$\$ 90$	47,779	$\$$	0.25	$\$ 500,000$	$\$ 1,292$	4.0	$\$$	$31,874,562$	24.8%	5.7
$\$ 105$	47,779	$\$$	0.25	$\$ 500,000$	$\$ 1,292$	3.8	$\$$	$36,718,615$	27.3%	5.2
$\$ 120$	47,779	$\$$	0.25	$\$ 500,000$	$\$ 1,292$	3.6	$\$$	$41,562,668$	29.9%	4.8
$\$ 135$	47,779	$\$$	0.25	$\$ 500,000$	$\$ 1,292$	3.4	$\$$	$46,406,721$	32.6%	4.5
$\$ 150$	47,779	$\$$	0.25	$\$ 500,000$	$\$ 1,292$	3.3	$\$$	$51,250,774$	35.4%	4.2

	2012 eGrid										
Scenario	NWN CO2e Reduction Incentive $(\$ /$ tonne/y $r)$	Carbon Emission Reduction		ETO Grant Rate (\$/kWh)	ETO Grant Amount	Capital Expenditu res (\$/kW)	BeforeTax Simple Payback		ent Value	Project IRR	After-Tax Discounted Payback
Hospital 800,000 sf with Two 800 kW Recip Engines, eGRID (2012) non-baseload	\$0	4,387	\$	0.08	\$317,834	\$1,833	8.9	\$	$(388,404)$	4.9\%	Exceeds Project Life
	\$5	4,387	\$	0.08	\$317,834	\$1,833	7.7	\$	$(240,130)$	6.8\%	Exceeds Project Life
	\$10	4,387	\$	0.08	\$317,834	\$1,833	6.8	\$	$(91,856)$	8.8\%	Exceeds Project Life
	\$15	4,387	\$	0.08	\$317,834	\$1,833	6.1	\$	56,418	10.8\%	13.3
	\$20	4,387	\$	0.08	\$317,834	\$1,833	5.5	\$	204,692	12.7\%	9.7
	\$25	4,387	\$	0.08	\$317,834	\$1,833	5.1	\$	352,966	14.7\%	8.2
	\$30	4,387	\$	0.08	\$317,834	\$1,833	4.7	\$	501,241	16.7\%	7.1
	\$35	4,387	\$	0.08	\$317,834	\$1,833	4.3	\$	649,515	18.7\%	6.2
	\$40	4,387	\$	0.08	\$317,834	\$1,833	4.0	\$	797,789	20.7\%	5.6
	\$45	4,387	\$	0.08	\$317,834	\$1,833	3.8	\$	946,063	22.8\%	5.1
	\$50	4,387	\$	0.08	\$317,834	\$1,833	3.5	\$	1,094,337	24.8\%	4.8
	\$0	2,896	\$	0.08	\$317,834	\$1,833	8.9	\$	$(388,404)$	4.9\%	Exceeds Project Life
	\$5	2,896	\$	0.08	\$317,834	\$1,833	8.1	\$	$(290,544)$	6.1\%	Exceeds Project Life
	\$10	2,896	\$	0.08	\$317,834	\$1,833	7.4	\$	$(192,683)$	7.4\%	Exceeds Project Life
	\$15	2,896	\$	0.08	\$317,834	\$1,833	6.8	\$	$(94,822)$	8.7\%	Exceeds Project Life
	\$20	2,896	\$	0.08	\$317,834	\$1,833	6.4	\$	3,039	10.0\%	14.9
	\$25	2,896	\$	0.08	\$317,834	\$1,833	5.9	\$	100,900	11.3\%	12.0
	\$30	2,896	\$	0.08	\$317,834	\$1,833	5.6	\$	198,761	12.7\%	9.8
	\$35	2,896	\$	0.08	\$317,834	\$1,833	5.2	\$	296,622	14.0\%	8.7
	\$40	2,896	\$	0.08	\$317,834	\$1,833	4.9	\$	394,483	15.3\%	7.8
	\$45	2,896	\$	0.08	\$317,834	\$1,833	4.7	\$	492,344	16.6\%	7.1
	\$50	2,896	\$	0.08	\$317,834	\$1,833	4.5	\$	590,205	17.9\%	6.5
	\$0	1,448	\$	0.08	\$317,834	\$1,833	8.9	\$	$(388,404)$	4.9\%	Exceeds Project Life
	\$5	1,448	\$	0.08	\$317,834	\$1,833	8.5	\$	$(339,474)$	5.5\%	Exceeds Project Life
	\$10	1,448	\$	0.08	\$317,834	\$1,833	8.1	\$	$(290,544)$	6.1\%	Exceeds Project Life
	\$15	1,448	\$	0.08	\$317,834	\$1,833	7.7	\$	$(241,613)$	6.8\%	Exceeds Project Life
	\$20	1,448	\$	0.08	\$317,834	\$1,833	7.4	\$	$(192,683)$	7.4\%	Exceeds Project Life
	\$25	1,448	\$	0.08	\$317,834	\$1,833	7.1	\$	$(143,752)$	8.1\%	Exceeds Project Life
	\$30	1,448	\$	0.08	\$317,834	\$1,833	6.8	\$	$(94,822)$	8.7\%	Exceeds Project Life
	\$35	1,448	\$	0.08	\$317,834	\$1,833	6.6	\$	$(45,891)$	9.4\%	Exceeds Project Life
	\$40	1,448	\$	0.08	\$317,834	\$1,833	6.4	\$	3,039	10.0\%	14.9
	\$45	1,448	\$	0.08	\$317,834	\$1,833	6.1	\$	51,970	10.7\%	13.4
	\$50	1,448	\$	0.08	\$317,834	\$1,833	5.9	\$	100,900	11.3\%	12.0
	\$0	4,387	\$	0.25	\$500,000	\$1,833	7.6	\$	$(229,608)$	6.8\%	Exceeds Project Life
	\$5	4,387	\$	0.25	\$317,834	\$1,833	7.7	\$	$(240,130)$	6.8\%	Exceeds Project Life
	\$10	4,387	\$	0.25	\$317,834	\$1,833	6.8	\$	$(91,856)$	8.8\%	Exceeds Project Life
	\$15	4,387	\$	0.25	\$317,834	\$1,833	6.1	\$	56,418	10.8\%	13.3
	\$20	4,387	\$	0.25	\$317,834	\$1,833	5.5	\$	204,692	12.7\%	9.7
	\$25	4,387	\$	0.25	\$317,834	\$1,833	5.1	\$	352,966	14.7\%	8.2
	\$30	4,387	\$	0.25	\$317,834	\$1,833	4.7	\$	501,241	16.7\%	7.1
	\$35	4,387	\$	0.25	\$317,834	\$1,833	4.3	\$	649,515	18.7\%	6.2
	\$40	4,387	\$	0.25	\$317,834	\$1,833	4.0	\$	797,789	20.7\%	5.6
	\$45	4,387	\$	0.25	\$317,834	\$1,833	3.8	\$	946,063	22.8\%	5.1
	\$50	4,387	\$	0.25	\$317,834	\$1,833	3.5	\$	1,094,337	24.8\%	4.8
	\$0	2,896	\$	0.25	\$317,834	\$1,833	8.9	\$	$(388,404)$	4.9\%	Exceeds Project Life
	\$5	2,896	\$	0.25	\$317,834	\$1,833	8.1	\$	$(290,544)$	6.1\%	Exceeds Project Life

NWN/504 Summers/8

	\$10	2,896	\$	0.25	\$317,834	\$1,833	7.4	\$	$(192,683)$	7.4\%	Exceeds Project Life
	\$15	2,896	\$	0.25	\$317,834	\$1,833	6.8	\$	$(94,822)$	8.7\%	Exceeds Project Life
	\$20	2,896	\$	0.25	\$317,834	\$1,833	6.4	\$	3,039	10.0\%	14.9
	\$25	2,896	\$	0.25	\$317,834	\$1,833	5.9	\$	100,900	11.3\%	12.0
	\$30	2,896	\$	0.25	\$317,834	\$1,833	5.6	\$	198,761	12.7\%	9.8
	\$35	2,896	\$	0.25	\$317,834	\$1,833	5.2	\$	296,622	14.0\%	8.7
	\$40	2,896	\$	0.25	\$317,834	\$1,833	4.9	\$	394,483	15.3\%	7.8
	\$45	2,896	\$	0.25	\$317,834	\$1,833	4.7	\$	492,344	16.6\%	7.1
	\$50	2,896	\$	0.25	\$317,834	\$1,833	4.5	\$	590,205	17.9\%	6.5
	\$0	1,448	\$	0.25	\$317,834	\$1,833	8.9	\$	$(388,404)$	4.9\%	Exceeds Project Life
	\$5	1,448	\$	0.25	\$317,834	\$1,833	8.5	\$	$(339,474)$	5.5\%	Exceeds Project Life
	\$10	1,448	\$	0.25	\$317,834	\$1,833	8.1	\$	$(290,544)$	6.1\%	Exceeds Project Life
	\$15	1,448	\$	0.25	\$317,834	\$1,833	7.7	\$	$(241,613)$	6.8\%	Exceeds Project Life
	\$20	1,448	\$	0.25	\$317,834	\$1,833	7.4	\$	$(192,683)$	7.4\%	Exceeds Project Life
	\$25	1,448	\$	0.25	\$317,834	\$1,833	7.1	\$	$(143,752)$	8.1\%	Exceeds Project Life
	\$30	1,448	\$	0.25	\$317,834	\$1,833	6.8	\$	$(94,822)$	8.7\%	Exceeds Project Life
	\$35	1,448	\$	0.25	\$317,834	\$1,833	6.6	\$	$(45,891)$	9.4\%	Exceeds Project Life
	\$40	1,448	\$	0.25	\$317,834	\$1,833	6.4	\$	3,039	10.0\%	14.9
	\$45	1,448	\$	0.25	\$317,834	\$1,833	6.1	\$	51,970	10.7\%	13.4
	\$50	1,448	\$	0.25	\$317,834	\$1,833	5.9	\$	100,900	11.3\%	12.0
Reciprocating Engine - 500 kW , eGRID (2012) non-baseload baseline	\$0	1,782	\$	0.08	\$110,183	\$1,925	8.7	\$	$(119,706)$	5.2\%	Exceeds Project Life
	\$5	1,782	\$	0.08	\$110,183	\$1,925	7.4	\$	$(59,472)$	7.6\%	Exceeds Project Life
	\$10	1,782	\$	0.08	\$110,183	\$1,925	6.4	\$	761	10.0\%	14.9
	\$15	1,782	\$	0.08	\$110,183	\$1,925	5.6	\$	60,995	12.5\%	10.0
	\$20	1,782	\$	0.08	\$110,183	\$1,925	5.0	\$	121,228	15.0\%	8.0
	\$25	1,782	\$	0.08	\$110,183	\$1,925	4.5	\$	181,462	17.4\%	6.7
	\$30	1,782	\$	0.08	\$110,183	\$1,925	4.1	\$	241,695	19.9\%	5.8
	\$35	1,782	\$	0.08	\$110,183	\$1,925	3.8	\$	301,929	22.4\%	5.2
	\$40	1,782	\$	0.08	\$110,183	\$1,925	3.5	\$	362,162	25.0\%	4.8
	\$45	1,782	\$	0.08	\$110,183	\$1,925	3.3	\$	422,396	27.5\%	4.5
	\$50	1,782	\$	0.08	\$110,183	\$1,925	3.1	\$	482,629	30.1\%	4.2
	\$0	1,176	\$	0.08	\$110,183	\$1,925	8.7	\$	$(119,706)$	5.2\%	Exceeds Project Life
	\$5	1,176	\$	0.08	\$110,183	\$1,925	7.8	\$	$(79,952)$	6.8\%	Exceeds Project Life
	\$10	1,176	\$	0.08	\$110,183	\$1,925	7.0	\$	$(40,198)$	8.4\%	Exceeds Project Life
	\$15	1,176	\$	0.08	\$110,183	\$1,925	6.4	\$	(444)	10.0\%	Exceeds Project Life
	\$20	1,176	\$	0.08	\$110,183	\$1,925	5.9	\$	39,311	11.6\%	11.6
	\$25	1,176	\$	0.08	\$110,183	\$1,925	5.4	\$	79,065	13.2\%	9.3
	\$30	1,176	\$	0.08	\$110,183	\$1,925	5.0	\$	118,819	14.9\%	8.1
	\$35	1,176	\$	0.08	\$110,183	\$1,925	4.7	\$	158,573	16.5\%	7.2
	\$40	1,176	\$	0.08	\$110,183	\$1,925	4.4	\$	198,327	18.1\%	6.4
	\$45	1,176	\$	0.08	\$110,183	\$1,925	4.2	\$	238,081	19.8\%	5.9
	\$50	1,176	\$	0.08	\$110,183	\$1,925	3.9	\$	277,835	21.4\%	5.4
	\$0	588	\$	0.08	\$110,183	\$1,925	8.7	\$	$(119,706)$	5.2\%	Exceeds Project Life
	\$5	588	\$	0.08	\$110,183	\$1,925	8.2	\$	$(99,829)$	6.0\%	Exceeds Project Life
	\$10	588	\$	0.08	\$110,183	\$1,925	7.8	\$	$(79,952)$	6.8\%	Exceeds Project Life
	\$15	588	\$	0.08	\$110,183	\$1,925	7.4	\$	$(60,075)$	7.6\%	Exceeds Project Life
	\$20	588	\$	0.08	\$110,183	\$1,925	7.0	\$	$(40,198)$	8.4\%	Exceeds Project Life
	\$25	588	\$	0.08	\$110,183	\$1,925	6.7	\$	$(20,321)$	9.2\%	Exceeds Project Life
	\$30	588	\$	0.08	\$110,183	\$1,925	6.4	\$	(444)	10.0\%	Exceeds Project Life
	\$35	588	\$	0.08	\$110,183	\$1,925	6.1	\$	19,434	10.8\%	13.2
	\$40	588	\$	0.08	\$110,183	\$1,925	5.9	\$	39,311	11.6\%	11.6
	\$45	588	\$	0.08	\$110,183	\$1,925	5.6	\$	59,188	12.4\%	10.1
	\$50	588	\$	0.08	\$110,183	\$1,925	5.4	\$	79,065	13.2\%	9.3
	\$0	1,782	\$	0.25	\$344,323	\$1,925	3.9	\$	84,397	14.2\%	8.4
	\$5	1,782	\$	0.25	\$110,183	\$1,925	7.4	\$	$(59,472)$	7.6\%	Exceeds Project Life
	\$10	1,782	\$	0.25	\$110,183	\$1,925	6.4	\$	761	10.0\%	14.9
	\$15	1,782	\$	0.25	\$110,183	\$1,925	5.6	\$	60,995	12.5\%	10.0
	\$20	1,782	\$	0.25	\$110,183	\$1,925	5.0	\$	121,228	15.0\%	8.0
	\$25	1,782	\$	0.25	\$110,183	\$1,925	4.5	\$	181,462	17.4\%	6.7
	\$30	1,782	\$	0.25	\$110,183	\$1,925	4.1	\$	241,695	19.9\%	5.8
	\$35	1,782	\$	0.25	\$110,183	\$1,925	3.8	\$	301,929	22.4\%	5.2
	\$40	1,782	\$	0.25	\$110,183	\$1,925	3.5	\$	362,162	25.0\%	4.8
	\$45	1,782	\$	0.25	\$110,183	\$1,925	3.3	\$	422,396	27.5\%	4.5
	\$50	1,782	\$	0.25	\$110,183	\$1,925	3.1	\$	482,629	30.1\%	4.2
	\$0	1,176	\$	0.25	\$110,183	\$1,925	8.7	\$	$(119,706)$	5.2\%	Exceeds Project Life

NWN/504 Summers/9

	\$5	1,176	\$	0.25	\$110,183	\$1,925	7.8	\$	$(79,952)$	6.8\%	Exceeds Project Life
	\$10	1,176	\$	0.25	\$110,183	\$1,925	7.0	\$	$(40,198)$	8.4\%	Exceeds Project Life
	\$15	1,176	\$	0.25	\$110,183	\$1,925	6.4	\$	(444)	10.0\%	Exceeds Project Life
	\$20	1,176	\$	0.25	\$110,183	\$1,925	5.9	\$	39,311	11.6\%	11.6
	\$25	1,176	\$	0.25	\$110,183	\$1,925	5.4	\$	79,065	13.2\%	9.3
	\$30	1,176	\$	0.25	\$110,183	\$1,925	5.0	\$	118,819	14.9\%	8.1
	\$35	1,176	\$	0.25	\$110,183	\$1,925	4.7	\$	158,573	16.5\%	7.2
	\$40	1,176	\$	0.25	\$110,183	\$1,925	4.4	\$	198,327	18.1\%	6.4
	\$45	1,176	\$	0.25	\$110,183	\$1,925	4.2	\$	238,081	19.8\%	5.9
	\$50	1,176	\$	0.25	\$110,183	\$1,925	3.9	\$	277,835	21.4\%	5.4
	\$0	588	\$	0.25	\$110,183	\$1,925	8.7	\$	$(119,706)$	5.2\%	Exceeds Project Life
	\$5	588	\$	0.25	\$110,183	\$1,925	8.2	\$	$(99,829)$	6.0\%	Exceeds Project Life
	\$10	588	\$	0.25	\$110,183	\$1,925	7.8	\$	$(79,952)$	6.8\%	Exceeds Project Life
	\$15	588	\$	0.25	\$110,183	\$1,925	7.4	\$	$(60,075)$	7.6\%	Exceeds Project Life
	\$20	588	\$	0.25	\$110,183	\$1,925	7.0	\$	$(40,198)$	8.4\%	Exceeds Project Life
	\$25	588	\$	0.25	\$110,183	\$1,925	6.7	\$	$(20,321)$	9.2\%	Exceeds Project Life
	\$30	588	\$	0.25	\$110,183	\$1,925	6.4	\$	(444)	10.0\%	Exceeds Project Life
	\$35	588	\$	0.25	\$110,183	\$1,925	6.1	\$	19,434	10.8\%	13.2
	\$40	588	\$	0.25	\$110,183	\$1,925	5.9	\$	39,311	11.6\%	11.6
	\$45	588	\$	0.25	\$110,183	\$1,925	5.6	\$	59,188	12.4\%	10.1
	\$50	588	\$	0.25	\$110,183	\$1,925	5.4	\$	79,065	13.2\%	9.3
Reciprocating Engine - 4.3 MW, eGRID (2012) non-baseload baseline	\$0	19,224	\$	0.08	\$500,000	\$1,656	3.9	\$	1,881,269	18.7\%	7.1
	\$5	19,224	\$	0.08	\$500,000	\$1,656	3.5	\$	2,530,953	21.9\%	5.7
	\$10	19,224	\$	0.08	\$500,000	\$1,656	3.2	\$	3,180,637	25.2\%	4.9
	\$15	19,224	\$	0.08	\$500,000	\$1,656	2.9	\$	3,830,321	28.6\%	4.5
	\$20	19,224	\$	0.08	\$500,000	\$1,656	2.7	\$	4,480,005	32.1\%	4.2
	\$25	19,224	\$	0.08	\$500,000	\$1,656	2.5	\$	5,129,689	35.7\%	3.9
	\$30	19,224	\$	0.08	\$500,000	\$1,656	2.4	\$	5,779,373	39.5\%	3.6
	\$35	19,224	\$	0.08	\$500,000	\$1,656	2.2	\$	6,429,057	43.3\%	3.4
	\$40	19,224	\$	0.08	\$500,000	\$1,656	2.1	\$	7,078,741	47.3\%	3.2
	\$45	19,224	\$	0.08	\$500,000	\$1,656	2.0	\$	7,728,425	51.4\%	3.0
	\$50	19,224	\$	0.08	\$500,000	\$1,656	1.9	\$	8,378,109	55.7\%	2.9
	\$0	12,688	\$	0.08	\$500,000	\$1,656	3.9	\$	1,881,269	18.7\%	7.1
	\$5	12,688	\$	0.08	\$500,000	\$1,656	3.7	\$	2,310,061	20.8\%	6.1
	\$10	12,688	\$	0.08	\$500,000	\$1,656	3.4	\$	2,738,852	22.9\%	5.4
	\$15	12,688	\$	0.08	\$500,000	\$1,656	3.2	\$	3,167,643	25.1\%	4.9
	\$20	12,688	\$	0.08	\$500,000	\$1,656	3.0	\$	3,596,435	27.3\%	4.7
	\$25	12,688	\$	0.08	\$500,000	\$1,656	2.9	\$	4,025,226	29.6\%	4.4
	\$30	12,688	\$	0.08	\$500,000	\$1,656	2.7	\$	4,454,018	32.0\%	4.2
	\$35	12,688	\$	0.08	\$500,000	\$1,656	2.6	\$	4,882,809	34.3\%	4.0
	\$40	12,688	\$	0.08	\$500,000	\$1,656	2.5	\$	5,311,600	36.8\%	3.8
	\$45	12,688	\$	0.08	\$500,000	\$1,656	2.4	\$	5,740,392	39.2\%	3.6
	\$50	12,688	\$	0.08	\$500,000	\$1,656	2.3	\$	6,169,183	41.8\%	3.5
	\$0	6,344	\$	0.08	\$500,000	\$1,656	3.9	\$	1,881,269	18.7\%	7.1
	\$5	6,344	\$	0.08	\$500,000	\$1,656	3.8	\$	2,095,665	19.7\%	6.6
	\$10	6,344	\$	0.08	\$500,000	\$1,656	3.7	\$	2,310,061	20.8\%	6.1
	\$15	6,344	\$	0.08	\$500,000	\$1,656	3.5	\$	2,524,456	21.8\%	5.8
	\$20	6,344	\$	0.08	\$500,000	\$1,656	3.4	\$	2,738,852	22.9\%	5.4
	\$25	6,344	\$	0.08	\$500,000	\$1,656	3.3	\$	2,953,248	24.0\%	5.2
	\$30	6,344	\$	0.08	\$500,000	\$1,656	3.2	\$	3,167,643	25.1\%	4.9
	\$35	6,344	\$	0.08	\$500,000	\$1,656	3.1	\$	3,382,039	26.2\%	4.8
	\$40	6,344	\$	0.08	\$500,000	\$1,656	3.0	\$	3,596,435	27.3\%	4.7
	\$45	6,344	\$	0.08	\$500,000	\$1,656	3.0	\$	3,810,831	28.5\%	4.5
	\$50	6,344	\$	0.08	\$500,000	\$1,656	2.9	\$	4,025,226	29.6\%	4.4
	\$0	19,224	\$	0.25	\$500,000	\$1,656	3.9	\$	1,881,269	18.7\%	7.1
	\$5	19,224	\$	0.25	\$500,000	\$1,656	3.5	\$	2,530,953	21.9\%	5.7
	\$10	19,224	\$	0.25	\$500,000	\$1,656	3.2	\$	3,180,637	25.2\%	4.9
	\$15	19,224	\$	0.25	\$500,000	\$1,656	2.9	\$	3,830,321	28.6\%	4.5
	\$20	19,224	\$	0.25	\$500,000	\$1,656	2.7	\$	4,480,005	32.1\%	4.2
	\$25	19,224	\$	0.25	\$500,000	\$1,656	2.5	\$	5,129,689	35.7\%	3.9
	\$30	19,224	\$	0.25	\$500,000	\$1,656	2.4	\$	5,779,373	39.5\%	3.6
	\$35	19,224	\$	0.25	\$500,000	\$1,656	2.2	\$	6,429,057	43.3\%	3.4
	\$40	19,224	\$	0.25	\$500,000	\$1,656	2.1	\$	7,078,741	47.3\%	3.2
	\$45	19,224	\$	0.25	\$500,000	\$1,656	2.0	\$	7,728,425	51.4\%	3.0
	\$50	19,224	\$	0.25	\$500,000	\$1,656	1.9	\$	8,378,109	55.7\%	2.9

NWN/504 Summers/10

	\$0	12,688	\$	0.25	\$500,000	\$1,656	3.9	\$	1,881,269	18.7\%	7.1
	\$5	12,688	\$	0.25	\$500,000	\$1,656	3.7	\$	2,310,061	20.8\%	6.1
	\$10	12,688	\$	0.25	\$500,000	\$1,656	3.4	\$	2,738,852	22.9\%	5.4
	\$15	12,688	\$	0.25	\$500,000	\$1,656	3.2	\$	3,167,643	25.1\%	4.9
	\$20	12,688	\$	0.25	\$500,000	\$1,656	3.0	\$	3,596,435	27.3\%	4.7
	\$25	12,688	\$	0.25	\$500,000	\$1,656	2.9	\$	4,025,226	29.6\%	4.4
	\$30	12,688	\$	0.25	\$500,000	\$1,656	2.7	\$	4,454,018	32.0\%	4.2
	\$35	12,688	\$	0.25	\$500,000	\$1,656	2.6	\$	4,882,809	34.3\%	4.0
	\$40	12,688	\$	0.25	\$500,000	\$1,656	2.5	\$	5,311,600	36.8\%	3.8
	\$45	12,688	\$	0.25	\$500,000	\$1,656	2.4	\$	5,740,392	39.2\%	3.6
	\$50	12,688	\$	0.25	\$500,000	\$1,656	2.3	\$	6,169,183	41.8\%	3.5
	\$0	6,344	\$	0.25	\$500,000	\$1,656	3.9	\$	1,881,269	18.7\%	7.1
	\$5	6,344	\$	0.25	\$500,000	\$1,656	3.8	\$	2,095,665	19.7\%	6.6
	\$10	6,344	\$	0.25	\$500,000	\$1,656	3.7	\$	2,310,061	20.8\%	6.1
	\$15	6,344	\$	0.25	\$500,000	\$1,656	3.5	\$	2,524,456	21.8\%	5.8
	\$20	6,344	\$	0.25	\$500,000	\$1,656	3.4	\$	2,738,852	22.9\%	5.4
	\$25	6,344	\$	0.25	\$500,000	\$1,656	3.3	\$	2,953,248	24.0\%	5.2
	\$30	6,344	\$	0.25	\$500,000	\$1,656	3.2	\$	3,167,643	25.1\%	4.9
	\$35	6,344	\$	0.25	\$500,000	\$1,656	3.1	\$	3,382,039	26.2\%	4.8
	\$40	6,344	\$	0.25	\$500,000	\$1,656	3.0	\$	3,596,435	27.3\%	4.7
	\$45	6,344	\$	0.25	\$500,000	\$1,656	3.0	\$	3,810,831	28.5\%	4.5
	\$50	6,344	\$	0.25	\$500,000	\$1,656	2.9	\$	4,025,226	29.6\%	4.4
Gas Turbine 21.7 MW, eGRID (2012) nonbaseload baseline	\$0	68,399	\$	0.08	\$500,000	\$1,413	5.7	\$	2,997,518	12.7\%	11.8
	\$5	68,399	\$	0.08	\$500,000	\$1,413	5.2	\$	5,309,069	14.8\%	9.8
	\$10	68,399	\$	0.08	\$500,000	\$1,413	4.9	\$	7,620,619	17.1\%	8.3
	\$15	68,399	\$	0.08	\$500,000	\$1,413	4.5	\$	9,932,169	19.4\%	7.2
	\$20	68,399	\$	0.08	\$500,000	\$1,413	4.2	\$	12,243,719	21.8\%	6.4
	\$25	68,399	\$	0.08	\$500,000	\$1,413	4.0	\$	14,555,269	24.2\%	5.7
	\$30	68,399	\$	0.08	\$500,000	\$1,413	3.8	\$	16,866,820	26.8\%	5.2
	\$35	68,399	\$	0.08	\$500,000	\$1,413	3.6	\$	19,178,370	29.4\%	4.8
	\$40	68,399	\$	0.08	\$500,000	\$1,413	3.4	\$	21,489,920	32.0\%	4.5
	\$45	68,399	\$	0.08	\$500,000	\$1,413	3.2	\$	23,801,470	34.8\%	4.2
	\$50	68,399	\$	0.08	\$500,000	\$1,413	3.1	\$	26,113,020	37.6\%	3.9
	\$0	45,143	\$	0.08	\$500,000	\$1,413	5.7	\$	2,997,518	12.7\%	11.8
	\$5	45,143	\$	0.08	\$500,000	\$1,413	5.4	\$	4,523,142	14.1\%	10.4
	\$10	45,143	\$	0.08	\$500,000	\$1,413	5.1	\$	6,048,765	15.6\%	9.3
	\$15	45,143	\$	0.08	\$500,000	\$1,413	4.9	\$	7,574,388	17.0\%	8.3
	\$20	45,143	\$	0.08	\$500,000	\$1,413	4.6	\$	9,100,011	18.5\%	7.6
	\$25	45,143	\$	0.08	\$500,000	\$1,413	4.4	\$	10,625,634	20.1\%	6.9
	\$30	45,143	\$	0.08	\$500,000	\$1,413	4.3	\$	12,151,257	21.7\%	6.4
	\$35	45,143	\$	0.08	\$500,000	\$1,413	4.1	\$	13,676,880	23.3\%	6.0
	\$40	45,143	\$	0.08	\$500,000	\$1,413	3.9	\$	15,202,503	24.9\%	5.6
	\$45	45,143	\$	0.08	\$500,000	\$1,413	3.8	\$	16,728,127	26.6\%	5.3
	\$50	45,143	\$	0.08	\$500,000	\$1,413	3.6	\$	18,253,750	28.3\%	5.0
	\$0	22,572	\$	0.08	\$500,000	\$1,413	5.7	\$	2,997,518	12.7\%	11.8
	\$5	22,572	\$	0.08	\$500,000	\$1,413	5.5	\$	3,760,330	13.4\%	11.1
	\$10	22,572	\$	0.08	\$500,000	\$1,413	5.4	\$	4,523,142	14.1\%	10.4
	\$15	22,572	\$	0.08	\$500,000	\$1,413	5.2	\$	5,285,953	14.8\%	9.8
	\$20	22,572	\$	0.08	\$500,000	\$1,413	5.1	\$	6,048,765	15.6\%	9.3
	\$25	22,572	\$	0.08	\$500,000	\$1,413	5.0	\$	6,811,576	16.3\%	8.8
	\$30	22,572	\$	0.08	\$500,000	\$1,413	4.9	\$	7,574,388	17.0\%	8.3
	\$35	22,572	\$	0.08	\$500,000	\$1,413	4.7	\$	8,337,199	17.8\%	7.9
	\$40	22,572	\$	0.08	\$500,000	\$1,413	4.6	\$	9,100,011	18.5\%	7.6
	\$45	22,572	\$	0.08	\$500,000	\$1,413	4.5	\$	9,862,823	19.3\%	7.3
	\$50	22,572	\$	0.08	\$500,000	\$1,413	4.4	\$	10,625,634	20.1\%	6.9
	\$0	68,399	\$	0.25	\$500,000	\$1,413	5.7	\$	2,997,518	12.7\%	11.8
	\$5	68,399	\$	0.25	\$500,000	\$1,413	5.2	\$	5,309,069	14.8\%	9.8
	\$10	68,399	\$	0.25	\$500,000	\$1,413	4.9	\$	7,620,619	17.1\%	8.3
	\$15	68,399	\$	0.25	\$500,000	\$1,413	4.5	\$	9,932,169	19.4\%	7.2
	\$20	68,399	\$	0.25	\$500,000	\$1,413	4.2	\$	12,243,719	21.8\%	6.4
	\$25	68,399	\$	0.25	\$500,000	\$1,413	4.0	\$	14,555,269	24.2\%	5.7
	\$30	68,399	\$	0.25	\$500,000	\$1,413	3.8	\$	16,866,820	26.8\%	5.2
	\$35	68,399	\$	0.25	\$500,000	\$1,413	3.6	\$	19,178,370	29.4\%	4.8
	\$40	68,399	\$	0.25	\$500,000	\$1,413	3.4	\$	21,489,920	32.0\%	4.5
	\$45	68,399	\$	0.25	\$500,000	\$1,413	3.2	\$	23,801,470	34.8\%	4.2

NWN/504 Summers/11

	\$50	68,399	\$	0.25	\$500,000	\$1,413	3.1	\$	26,113,020	37.6\%	3.9
	\$0	45,143	\$	0.25	\$500,000	\$1,413	5.7	\$	2,997,518	12.7\%	11.8
	\$5	45,143	\$	0.25	\$500,000	\$1,413	5.4	\$	4,523,142	14.1\%	10.4
	\$10	45,143	\$	0.25	\$500,000	\$1,413	5.1	\$	6,048,765	15.6\%	9.3
	\$15	45,143	\$	0.25	\$500,000	\$1,413	4.9	\$	7,574,388	17.0\%	8.3
	\$20	45,143	\$	0.25	\$500,000	\$1,413	4.6	\$	9,100,011	18.5\%	7.6
	\$25	45,143	\$	0.25	\$500,000	\$1,413	4.4	\$	10,625,634	20.1\%	6.9
	\$30	45,143	\$	0.25	\$500,000	\$1,413	4.3	\$	12,151,257	21.7\%	6.4
	\$35	45,143	\$	0.25	\$500,000	\$1,413	4.1	\$	13,676,880	23.3\%	6.0
	\$40	45,143	\$	0.25	\$500,000	\$1,413	3.9	\$	15,202,503	24.9\%	5.6
	\$45	45,143	\$	0.25	\$500,000	\$1,413	3.8	\$	16,728,127	26.6\%	5.3
	\$50	45,143	\$	0.25	\$500,000	\$1,413	3.6	\$	18,253,750	28.3\%	5.0
	\$0	22,572	\$	0.25	\$500,000	\$1,413	5.7	\$	2,997,518	12.7\%	11.8
	\$5	22,572	\$	0.25	\$500,000	\$1,413	5.5	\$	3,760,330	13.4\%	11.1
	\$10	22,572	\$	0.25	\$500,000	\$1,413	5.4	\$	4,523,142	14.1\%	10.4
	\$15	22,572	\$	0.25	\$500,000	\$1,413	5.2	\$	5,285,953	14.8\%	9.8
	\$20	22,572	\$	0.25	\$500,000	\$1,413	5.1	\$	6,048,765	15.6\%	9.3
	\$25	22,572	\$	0.25	\$500,000	\$1,413	5.0	\$	6,811,576	16.3\%	8.8
	\$30	22,572	\$	0.25	\$500,000	\$1,413	4.9	\$	7,574,388	17.0\%	8.3
	\$35	22,572	\$	0.25	\$500,000	\$1,413	4.7	\$	8,337,199	17.8\%	7.9
	\$40	22,572	\$	0.25	\$500,000	\$1,413	4.6	\$	9,100,011	18.5\%	7.6
	\$45	22,572	\$	0.25	\$500,000	\$1,413	4.5	\$	9,862,823	19.3\%	7.3
	\$50	22,572	\$	0.25	\$500,000	\$1,413	4.4	\$	10,625,634	20.1\%	6.9
Gas Turbine - 45 MW, eGRID (2012) nonbaseload baseline	\$0	144,784	\$	0.08	\$500,000	\$1,292	6.0	\$	2,810,245	11.2\%	13.5
	\$5	144,784	\$	0.08	\$500,000	\$1,292	5.6	\$	7,703,228	13.3\%	11.1
	\$10	144,784	\$	0.08	\$500,000	\$1,292	5.1	\$	12,596,211	15.4\%	9.3
	\$15	144,784	\$	0.08	\$500,000	\$1,292	4.8	\$	17,489,193	17.7\%	8.0
	\$20	144,784	\$	0.08	\$500,000	\$1,292	4.5	\$	22,382,176	20.0\%	7.0
	\$25	144,784	\$	0.08	\$500,000	\$1,292	4.2	\$	27,275,159	22.4\%	6.3
	\$30	144,784	\$	0.08	\$500,000	\$1,292	4.0	\$	32,168,141	24.9\%	5.7
	\$35	144,784	\$	0.08	\$500,000	\$1,292	3.8	\$	37,061,124	27.5\%	5.2
	\$40	144,784	\$	0.08	\$500,000	\$1,292	3.6	\$	41,954,106	30.1\%	4.8
	\$45	144,784	\$	0.08	\$500,000	\$1,292	3.4	\$	46,847,089	32.9\%	4.5
	\$50	144,784	\$	0.08	\$500,000	\$1,292	3.2	\$	51,740,072	35.7\%	4.2
	\$0	95,557	\$	0.08	\$500,000	\$1,292	6.0	\$	2,810,245	11.2\%	13.5
	\$5	95,557	\$	0.08	\$500,000	\$1,292	5.7	\$	6,039,614	12.5\%	11.9
	\$10	95,557	\$	0.08	\$500,000	\$1,292	5.4	\$	9,268,982	14.0\%	10.5
	\$15	95,557	\$	0.08	\$500,000	\$1,292	5.2	\$	12,498,351	15.4\%	9.3
	\$20	95,557	\$	0.08	\$500,000	\$1,292	4.9	\$	15,727,720	16.9\%	8.4
	\$25	95,557	\$	0.08	\$500,000	\$1,292	4.7	\$	18,957,088	18.4\%	7.7
	\$30	95,557	\$	0.08	\$500,000	\$1,292	4.5	\$	22,186,457	19.9\%	7.1
	\$35	95,557	\$	0.08	\$500,000	\$1,292	4.3	\$	25,415,825	21.5\%	6.5
	\$40	95,557	\$	0.08	\$500,000	\$1,292	4.1	\$	28,645,194	23.1\%	6.1
	\$45	95,557	\$	0.08	\$500,000	\$1,292	4.0	\$	31,874,562	24.8\%	5.7
	\$50	95,557	\$	0.08	\$500,000	\$1,292	3.8	\$	35,103,931	26.4\%	5.4
	\$0	47,779	\$	0.08	\$500,000	\$1,292	6.0	\$	2,810,245	11.2\%	13.5
	\$5	47,779	\$	0.08	\$500,000	\$1,292	5.9	\$	4,424,930	11.9\%	12.7
	\$10	47,779	\$	0.08	\$500,000	\$1,292	5.7	\$	6,039,614	12.5\%	11.9
	\$15	47,779	\$	0.08	\$500,000	\$1,292	5.6	\$	7,654,298	13.2\%	11.1
	\$20	47,779	\$	0.08	\$500,000	\$1,292	5.4	\$	9,268,982	14.0\%	10.5
	\$25	47,779	\$	0.08	\$500,000	\$1,292	5.3	\$	10,883,667	14.7\%	9.8
	\$30	47,779	\$	0.08	\$500,000	\$1,292	5.2	\$	12,498,351	15.4\%	9.3
	\$35	47,779	\$	0.08	\$500,000	\$1,292	5.0	\$	14,113,035	16.1\%	8.8
	\$40	47,779	\$	0.08	\$500,000	\$1,292	4.9	\$	15,727,720	16.9\%	8.4
	\$45	47,779	\$	0.08	\$500,000	\$1,292	4.8	\$	17,342,404	17.6\%	8.0
	\$50	47,779	\$	0.08	\$500,000	\$1,292	4.7	\$	18,957,088	18.4\%	7.7
	\$0	144,784	\$	0.25	\$500,000	\$1,292	6.0	\$	2,810,245	11.2\%	13.5
	\$5	144,784	\$	0.25	\$500,000	\$1,292	5.6	\$	7,703,228	13.3\%	11.1
	\$10	144,784	\$	0.25	\$500,000	\$1,292	5.1	\$	12,596,211	15.4\%	9.3
	\$15	144,784	\$	0.25	\$500,000	\$1,292	4.8	\$	17,489,193	17.7\%	8.0
	\$20	144,784	\$	0.25	\$500,000	\$1,292	4.5	\$	22,382,176	20.0\%	7.0
	\$25	144,784	\$	0.25	\$500,000	\$1,292	4.2	\$	27,275,159	22.4\%	6.3
	\$30	144,784	\$	0.25	\$500,000	\$1,292	4.0	\$	32,168,141	24.9\%	5.7
	\$35	144,784	\$	0.25	\$500,000	\$1,292	3.8	\$	37,061,124	27.5\%	5.2
	\$40	144,784	\$	0.25	\$500,000	\$1,292	3.6	\$	41,954,106	30.1\%	4.8

NWN/504 Summers/12

	\$45	144,784	\$	0.25	\$500,000	\$1,292	3.4	\$	46,847,089	32.9\%	4.5
	\$50	144,784	\$	0.25	\$500,000	\$1,292	3.2	\$	51,740,072	35.7\%	4.2
	\$0	95,557	\$	0.25	\$500,000	\$1,292	6.0	\$	2,810,245	11.2\%	13.5
	\$5	95,557	\$	0.25	\$500,000	\$1,292	5.7	\$	6,039,614	12.5\%	11.9
	\$10	95,557	\$	0.25	\$500,000	\$1,292	5.4	\$	9,268,982	14.0\%	10.5
	\$15	95,557	\$	0.25	\$500,000	\$1,292	5.2	\$	12,498,351	15.4\%	9.3
	\$20	95,557	\$	0.25	\$500,000	\$1,292	4.9	\$	15,727,720	16.9\%	8.4
	\$25	95,557	\$	0.25	\$500,000	\$1,292	4.7	\$	18,957,088	18.4\%	7.7
	\$30	95,557	\$	0.25	\$500,000	\$1,292	4.5	\$	22,186,457	19.9\%	7.1
	\$35	95,557	\$	0.25	\$500,000	\$1,292	4.3	\$	25,415,825	21.5\%	6.5
	\$40	95,557	\$	0.25	\$500,000	\$1,292	4.1	\$	28,645,194	23.1\%	6.1
	\$45	95,557	\$	0.25	\$500,000	\$1,292	4.0	\$	31,874,562	24.8\%	5.7
	\$50	95,557	\$	0.25	\$500,000	\$1,292	3.8	\$	35,103,931	26.4\%	5.4
	\$0	47,779	\$	0.25	\$500,000	\$1,292	6.0	\$	2,810,245	11.2\%	13.5
	\$5	47,779	\$	0.25	\$500,000	\$1,292	5.9	\$	4,424,930	11.9\%	12.7
	\$10	47,779	\$	0.25	\$500,000	\$1,292	5.7	\$	6,039,614	12.5\%	11.9
	\$15	47,779	\$	0.25	\$500,000	\$1,292	5.6	\$	7,654,298	13.2\%	11.1
	\$20	47,779	\$	0.25	\$500,000	\$1,292	5.4	\$	9,268,982	14.0\%	10.5
	\$25	47,779	\$	0.25	\$500,000	\$1,292	5.3	\$	10,883,667	14.7\%	9.8
	\$30	47,779	\$	0.25	\$500,000	\$1,292	5.2	\$	12,498,351	15.4\%	9.3
	\$35	47,779	\$	0.25	\$500,000	\$1,292	5.0	\$	14,113,035	16.1\%	8.8
	\$40	47,779	\$	0.25	\$500,000	\$1,292	4.9	\$	15,727,720	16.9\%	8.4
	\$45	47,779	\$	0.25	\$500,000	\$1,292	4.8	\$	17,342,404	17.6\%	8.0
	\$50	47,779	\$	0.25	\$500,000	\$1,292	4.7	\$	18,957,088	18.4\%	7.7
Gas Turbine - 45 MW, eGRID (2012) nonbaseload baseline, 70\% CapEx	\$0	144,784	\$	0.08	\$500,000	\$905	4.0	\$	17,735,773	20.6\%	7.3
	\$5	144,784	\$	0.08	\$500,000	\$905	3.6	\$	22,628,756	24.0\%	6.1
	\$10	144,784	\$	0.08	\$500,000	\$905	3.4	\$	27,521,739	27.6\%	5.3
	\$15	144,784	\$	0.08	\$500,000	\$905	3.1	\$	32,414,721	31.3\%	4.7
	\$20	144,784	\$	0.08	\$500,000	\$905	2.9	\$	37,307,704	35.3\%	4.3
	\$25	144,784	\$	0.08	\$500,000	\$905	2.8	\$	42,200,687	39.5\%	3.9
	\$30	144,784	\$	0.08	\$500,000	\$905	2.6	\$	47,093,669	44.0\%	3.6
	\$35	144,784	\$	0.08	\$500,000	\$905	2.5	\$	51,986,652	48.7\%	3.3
	\$40	144,784	\$	0.08	\$500,000	\$905	2.3	\$	56,879,635	53.6\%	3.1
	\$45	144,784	\$	0.08	\$500,000	\$905	2.2	\$	61,772,617	58.9\%	2.9
	\$50	144,784	\$	0.08	\$500,000	\$905	2.1	\$	66,665,600	64.5\%	2.7
	\$0	95,557	\$	0.08	\$500,000	\$905	4.0	\$	17,735,773	20.6\%	7.3
	\$5	95,557	\$	0.08	\$500,000	\$905	3.7	\$	20,965,142	22.8\%	6.5
	\$10	95,557	\$	0.08	\$500,000	\$905	3.6	\$	24,194,510	25.1\%	5.8
	\$15	95,557	\$	0.08	\$500,000	\$905	3.4	\$	27,423,879	27.5\%	5.3
	\$20	95,557	\$	0.08	\$500,000	\$905	3.2	\$	30,653,248	30.0\%	4.9
	\$25	95,557	\$	0.08	\$500,000	\$905	3.1	\$	33,882,616	32.5\%	4.6
	\$30	95,557	\$	0.08	\$500,000	\$905	3.0	\$	37,111,985	35.2\%	4.3
	\$35	95,557	\$	0.08	\$500,000	\$905	2.8	\$	40,341,353	37.9\%	4.0
	\$40	95,557	\$	0.08	\$500,000	\$905	2.7	\$	43,570,722	40.7\%	3.8
	\$45	95,557	\$	0.08	\$500,000	\$905	2.6	\$	46,800,090	43.7\%	3.6
	\$50	95,557	\$	0.08	\$500,000	\$905	2.5	\$	50,029,459	46.8\%	3.4
	\$0	47,779	\$	0.08	\$500,000	\$905	4.0	\$	17,735,773	20.6\%	7.3
	\$5	47,779	\$	0.08	\$500,000	\$905	3.9	\$	19,350,458	21.7\%	6.8
	\$10	47,779	\$	0.08	\$500,000	\$905	3.7	\$	20,965,142	22.8\%	6.5
	\$15	47,779	\$	0.08	\$500,000	\$905	3.6	\$	22,579,826	24.0\%	6.1
	\$20	47,779	\$	0.08	\$500,000	\$905	3.6	\$	24,194,510	25.1\%	5.8
	\$25	47,779	\$	0.08	\$500,000	\$905	3.5	\$	25,809,195	26.3\%	5.6
	\$30	47,779	\$	0.08	\$500,000	\$905	3.4	\$	27,423,879	27.5\%	5.3
	\$35	47,779	\$	0.08	\$500,000	\$905	3.3	\$	29,038,563	28.7\%	5.1
	\$40	47,779	\$	0.08	\$500,000	\$905	3.2	\$	30,653,248	30.0\%	4.9
	\$45	47,779	\$	0.08	\$500,000	\$905	3.2	\$	32,267,932	31.2\%	4.8
	\$50	47,779	\$	0.08	\$500,000	\$905	3.1	\$	33,882,616	32.5\%	4.6
	\$0	144,784	\$	0.25	\$500,000	\$905	4.0	\$	17,735,773	20.6\%	7.3
	\$5	144,784	\$	0.25	\$500,000	\$905	3.6	\$	22,628,756	24.0\%	6.1
	\$10	144,784	\$	0.25	\$500,000	\$905	3.4	\$	27,521,739	27.6\%	5.3
	\$15	144,784	\$	0.25	\$500,000	\$905	3.1	\$	32,414,721	31.3\%	4.7
	\$20	144,784	\$	0.25	\$500,000	\$905	2.9	\$	37,307,704	35.3\%	4.3
	\$25	144,784	\$	0.25	\$500,000	\$905	2.8	\$	42,200,687	39.5\%	3.9
	\$30	144,784	\$	0.25	\$500,000	\$905	2.6	\$	47,093,669	44.0\%	3.6
	\$35	144,784	\$	0.25	\$500,000	\$905	2.5	\$	51,986,652	48.7\%	3.3

	\$40	144,784	\$	0.25	\$500,000	\$905	2.3	\$	56,879,635	53.6\%	3.1
	\$45	144,784	\$	0.25	\$500,000	\$905	2.2	\$	61,772,617	58.9\%	2.9
	\$50	144,784	\$	0.25	\$500,000	\$905	2.1	\$	66,665,600	64.5\%	2.7
	\$0	95,557	\$	0.25	\$500,000	\$905	4.0	\$	17,735,773	20.6\%	7.3
	\$5	95,557	\$	0.25	\$500,000	\$905	3.7	\$	20,965,142	22.8\%	6.5
	\$10	95,557	\$	0.25	\$500,000	\$905	3.6	\$	24,194,510	25.1\%	5.8
	\$15	95,557	\$	0.25	\$500,000	\$905	3.4	\$	27,423,879	27.5\%	5.3
	\$20	95,557	\$	0.25	\$500,000	\$905	3.2	\$	30,653,248	30.0\%	4.9
	\$25	95,557	\$	0.25	\$500,000	\$905	3.1	\$	33,882,616	32.5\%	4.6
	\$30	95,557	\$	0.25	\$500,000	\$905	3.0	\$	37,111,985	35.2\%	4.3
	\$35	95,557	\$	0.25	\$500,000	\$905	2.8	\$	40,341,353	37.9\%	4.0
	\$40	95,557	\$	0.25	\$500,000	\$905	2.7	\$	43,570,722	40.7\%	3.8
	\$45	95,557	\$	0.25	\$500,000	\$905	2.6	\$	46,800,090	43.7\%	3.6
	\$50	95,557	\$	0.25	\$500,000	\$905	2.5	\$	50,029,459	46.8\%	3.4
	\$0	47,779	\$	0.25	\$500,000	\$905	4.0	\$	17,735,773	20.6\%	7.3
	\$5	47,779	\$	0.25	\$500,000	\$905	3.9	\$	19,350,458	21.7\%	6.8
	\$10	47,779	\$	0.25	\$500,000	\$905	3.7	\$	20,965,142	22.8\%	6.5
	\$15	47,779	\$	0.25	\$500,000	\$905	3.6	\$	22,579,826	24.0\%	6.1
	\$20	47,779	\$	0.25	\$500,000	\$905	3.6	\$	24,194,510	25.1\%	5.8
	\$25	47,779	\$	0.25	\$500,000	\$905	3.5	\$	25,809,195	26.3\%	5.6
	\$30	47,779	\$	0.25	\$500,000	\$905	3.4	\$	27,423,879	27.5\%	5.3
	\$35	47,779	\$	0.25	\$500,000	\$905	3.3	\$	29,038,563	28.7\%	5.1
	\$40	47,779	\$	0.25	\$500,000	\$905	3.2	\$	30,653,248	30.0\%	4.9
	\$45	47,779	\$	0.25	\$500,000	\$905	3.2	\$	32,267,932	31.2\%	4.8
	\$50	47,779	\$	0.25	\$500,000	\$905	3.1	\$	33,882,616	32.5\%	4.6

BEFORE THE

PUBLIC UTILITY COMMISSION OF OREGON

NW Natural
Exhibit 505 of Barbara Summers

UM 1744
Carbon Emission Reduction Program Combined Heat \& Power (CHP)

Memorandum regarding the Effective Use of Reverse Auctions, Anne Rung, Executive Director, Executive Office of the President, Office of Management and Budget

EXECUTIVE OFFICE OF THE PRESIDENT

OFFICE OF MANAGEMENT AND BUDGET WASHINGTON, D.C. 20503

June 1, 2015

MEMORANDUM FOR CHIEF ACQUISITION OFFICERS SENIOR PROCUREMENT EXECUTIVES

FROM:

SUBJECT: Effective Use of Reverse Auctions
This past December, the Office of Federal Procurement Policy (OFPP) issued guidance directing that agencies take a series of actions to foster innovation, increase savings, and improve performance in the acquisition process. ${ }^{1}$ For commonly purchased goods and services, these goals will be pursued through category management and a broad set of supporting strategies to achieve better results. Reverse auctions are one of the tools agencies have used in recent years to acquire certain common needs, such as commercial off-the-shelf information technology (IT) hardware and software. In a report published December 9, 2013, the Government Accountability Office (GAO) noted the increased use of reverse auctions at a number of agencies and recommended that OFPP issue guidance to help ensure agencies capture savings and other benefits of this tool. ${ }^{2}$ This memorandum reviews the benefits of reverse auctions, offers a set of reminders to help contracting offices maximize the value of this tool, and asks agencies to work with OFPP in identifying and collecting data that can be used to evaluate and improve results.

The value of reverse auctions

A reverse auction is a process for pricing contracts supported by an electronic tool where offerors bid down, as opposed to the traditional auction which requires buyers to submit sequentially higher bids, the main goal of which is to drive prices downward. Offerors are given the opportunity to continually revise their prices during the bidding process until the auction closes. Multiple benefits have been identified in connection with the use of reverse auctions, including the following:

Price reductions. When properly used in combination with other source selection principles, reverse auctions can yield noteworthy savings. GAO notes that the four agencies it studied (Army, Department of Homeland Security (DHS), Department of the Interior, and the

[^7]Department of Veterans Affairs (VA)) reported approximately 12% in savings from purchases totaling more than $\$ 800$ million during fiscal year (FY) 2012 for a range of commercial items, including IT, laboratory equipment, furniture, and detection and radiation equipment. The Department of Energy separately reported seeing an average savings of about 14% per contract awarded to provide core supplies and services for its National laboratories. These savings were generally calculated by comparing the agency's independent government cost estimate to the closing price of the reverse auction.

Savings have been reported both through open market purchases (e.g., often for purchase orders awarded under the simplified acquisition threshold (SAT)) and by leveraging existing multiple award contracts. The latter include the Federal Supply Schedules managed by the General Services Administration (GSA) and government-wide acquisition contracts (GWACs), such as the Department of Health and Human Services' Electronic Commodities Store GWAC and DHS's FirstSource contract for IT commodities, which is a total small business set-aside. GSA reports that agencies who conducted reverse auctions against Schedule contracts using its electronic platform, which launched in FY 2013, achieved savings of 19% and more than 23% in FY13 and FY14, respectively.

Enhanced competition. Reverse auctions offer the ability to conduct robust, real-time price competitions. They allow for multiple "rounds of bidding" for continued price reduction. This type of interactive bidding, when it occurs, strengthens competition.

Significant small business participation. GAO reported that 80% of the dollars awarded through the reverse auctions it reviewed from FY 2012 were made to small businesses. A number of agencies have reported continued success in driving dollars to small businesses. For example, agencies have awarded 85% of auctions to small businesses using GSA's reverse auction tool since it was launched in July 2013.

Getting the best results from reverse auctions

As with all procurement tools, effective use of reverse auctions requires careful planning and execution. Contracting officers should consider the following issues to help optimize the results achieved from reverse auctions:

Is the requirement suited for a reverse auction? Reverse auctions are not a one-size-fitsall tool. Reverse auctions are likely to be most effective in a highly competitive marketplace when requirements are steady and relatively simple and might otherwise be acquired using either a sealed bid or achieving best value through "low price technically acceptable" source selection criteria, and result in fixed price agreements. These circumstances would typically exist in acquisitions for commercial items and simple services that often fall under the SAT. As with any procurement, market research must be conducted to understand the marketplace and to determine if it is reasonable to assume that the potential benefits of a reverse auction can be achieved.

Is the agency capturing and reviewing data from prior reverse auctions? A number of reverse auction tools capture prices paid information, as well as offered prices made during the auction. This information has a number of important benefits. In particular, this information can help agencies formulate more accurate government cost estimates, which, in turn, helps to ensure fair and reasonable pricing. Outside of reverse auctions, this cost information (used in conjunction with relevant non-cost information) may help an agency as it looks for more competitive prices for similar items on existing contracts, and reduce overall contract duplication.

GSA's reverse auction tool, which can be used in conjunction with its Schedule contracts, VA's Schedule contracts, Federal Strategic Sourcing Blanket Purchase Agreements (BPAs), agency BPAs against GSA Schedules, and other agencies' contracts (e.g., DHS First Source II), captures detailed (level III) prices paid spending data from past reverse auctions. Agencies can access prices paid information through the Common Acquisition Platform, ${ }^{3}$ a tool that GSA has launched to help agencies identify best-in-class contracts issued by GSA and other agencies, best practices, and other information agencies need to reduce the proliferation of duplicative contract vehicles and deliver the best value possible to federal customers and the American people.

To ensure the competition benefits of reverse auctions are being appropriately leveraged, agencies should review any available data on offers received and consider questions such as the following: Is the agency getting more bidders? If the agency is getting a similar number of bidders as it did without using a reverse auction, is it getting interactive bidding? If not, is the transparency of the bids helping to generate lower prices than the government was getting previously? If the agency has previously used a reverse auction and gotten only one bid, has it taken steps that it believes will increase interest in the auction to justify any fees it may be paying to a third party provider?

Is the agency promoting small business participation to the maximum extent practicable? Agencies remain fully responsible for adhering to all applicable small business contracting policies when using reverse auctions. In general, agencies are required to automatically set-aside work for small businesses when the anticipated dollar value is below the SAT. If a determination is made that a small business set-aside is inappropriate, contracting officers must document the reason. For acquisitions above the SAT, contracting officers must set-aside for small businesses when there is a reasonable expectation that offers will be obtained from at least two responsible small business concerns and an award will be made at fair market prices. ${ }^{4}$

When a requirement is set-aside for small business, this information must be conveyed in the solicitation and notice for a reverse auction so that participation in the auction is appropriately limited. In both set-aside and non-set-aside solicitations, the contracting officer must take reasonable steps to ensure that the offerors have access to information regarding the process and any expectations when utilizing reverse auctions, including contact information of the contracting official who will answer questions about the solicitation. ${ }^{5}$

[^8]Has the agency sought feedback from the vendor? While use of reverse auctions in federal contracting has increased in recent years, agency experience with this tool is likely to be more limited than with many other more established practices. Vendor feedback may be particularly helpful as agencies build experience and work to generate robust competition. Accordingly, agencies are encouraged to elicit feedback from auction participants, including experiences with a third party contractor, if one was used to facilitate the competition. ${ }^{6}$

Have the appropriate internal controls been followed? An agency should ensure its contracting staff is carrying out its statutory and regulatory responsibilities, irrespective of whether a third party contractor is used to support the effort. This includes making sure that the contract file is documented ${ }^{7}$ with market research results, an independent government cost estimate, vendor quotes, brand name justifications (where applicable), a price reasonableness determination, and documentation that the vendor is a responsible source.

Has the workforce been provided tools, guidance, and/or training? Agencies must ensure that members of the acquisition workforce are trained and are familiar with any agency-specific policies and procedures that govern the use of reverse auctions. Online continuous learning modules, CLC 031 - Reverse Auctioning and FAC 052 - The GSA Reverse Auction Platform, are available from the Defense Acquisition University (DAU) and the Federal Acquisition Institute (FAI). ${ }^{8}$ These courses provides a basic introduction to the process of using reverse auctions.

Does the agency regularly review its reverse auction practices and policies? Like other acquisition tools, agencies should be evaluating their experiences with reverse auctions and the effectiveness of existing practices and policies as part of its procurement management reviews so that refinements can be made as necessary. To support these efforts, OFPP intends to convene a working group to review needs for standardized data collection and other matters (see next steps below).

Additional considerations when using a third party contractor

When agencies decide to contract with a vendor to conduct reverse auctions (hereinafter referred to as a "third party contractor,") agencies must consider the following additional issues:

Fees. Contracting officers should negotiate a fee structure with a private sector service provider that provides the best value to the government. There are multiple ways in which fees might be charged when a third party contractor is used. The cost to conduct a reverse auction may be a percentage of the transaction, a percentage of the savings, or a flat fee. Whatever the arrangement, agencies must make a determination before awarding a contract with a third party contractor that the fee structure represents a fair and reasonable cost for the reverse auction

[^9]service. In addition, fees should be considered in evaluating whether the price of the product or service (including any additional fees for use of another agency's existing contract) is fair and reasonable. Anticipated cost savings should be taken into account in determining the reasonableness of the fee.

In order to maximize competition and small business participation, agencies are encouraged to cover the costs of vendor participation and avoid fee arrangements where vendors must pay to participate in the agency's reverse auction.

Government contracting official responsibilities. Agencies must take additional steps to ensure that the selected third party contractor provides a "seller-neutral" marketplace. The agency remains ultimately responsible for ensuring that third party contractors do not perform inherently governmental functions and that processes are compliant with all procurement laws and regulations, including those associated with protecting the integrity of competition, reviewing past performance, providing appropriate notice of the reverse auction, establishing terms of participation and the basis for source selection, securing proprietary vendor information, and facilitating communications between the agency and vendors during the course of an auction. Agencies should ensure that no contractors are excluded from bidding in an auction by a third party contractor. Only an agency official may exclude a bidder from participating in an auction.

Contract data information. Any information used in a reverse auction conducted by a third party contractor is the property of the Federal Government and should be provided to the agency on a regular basis based on the agreement between the agency and the third party contractor. These data will be used in support of government-wide efforts to reduce duplication and create further savings.

Next steps

To maximize the value of reverse auctions and ensure practices are effective and meeting their intended purposes, OFPP seeks to work with agencies to identify the essential management data points (e.g., price paid for item, fees paid (if any), number of bidders, and level of interactive bidding) and mechanisms for collecting and aggregating information in a manner that leverages technology and avoids the need for manual collection. As explained above, electronic reverse auction tools typically allow agencies to maintain documentation of each auction online, creating a virtual library of prices paid data that is a key component of category management and can be useful in developing better price estimates and purchasing strategies for future requirements. Similarly, terms and conditions can be stored in an easily reusable format for recurring requirements, saving valuable time.

Accordingly, agencies that have used reverse auction tools (either directly or with the assistance of a third party contractor) are asked to provide points of contact to Susan Minson (email: sminson@omb.eop.gov or 202-395-6810) no later than July 10, 2015. As part of this process, OFPP will work with agencies to review methodologies for calculating savings.

Please remind your acquisition workforce of the points and best practices outlined in this memorandum and encourage them to take the online training accessible through FAI and DAU. For your awareness, as a further step, the Federal Acquisition Regulatory Council will open a case to develop coverage on the use of reverse auctions in the Federal Acquisition Regulation and will address the guidance in this memorandum, as appropriate.

Any questions should be directed to Ms. Minson. Thank you for your attention to this guidance.

[^0]: ${ }^{1}$ http://www.nwcouncil.org/media/6284/SixthPowerPlan.pdf, p. 7-2.
 ${ }^{2}$ http://www.oregon.gov/energy/pages/oregons_electric_power_mix.aspx

[^1]: ${ }^{3} 40$ CFR Part 60, Carbon Pollution Emissions Guidelines for Existing Stationary Sources: Electric Utility Generating Units, p. 396.

[^2]: ${ }^{4}$ I have provided the entire Chapter 13 as Exhibit NWN/502.
 ${ }^{5}$ I have provided the entire Pew Survey as Exhibit NWN/503.

[^3]: ${ }^{6}$ Available at
 http://www.psc.state.ut.us/utilities/misc/06docs/0699903/0699903TCdocs/Appendix\%20A\%20to\%20Distri buted\%20Energy\%20Report.pdf
 ${ }^{7}$ NWN/101, Summers 51, Appendix E.

[^4]: Subregion
 Subregion Subregion
 Because some locations have multiple electric service providers, these areas may fall within overlapping eGRID subregions. Visit Power Profiler
 (http://www2.epa.gov/energy/power-profiler) to definitively determine the eGRID
 subregion associated with your location and electric service provider.

[^5]: ${ }^{1}$ All Pew Center reports are available for download at www.pewclimate.org.

[^6]: ${ }^{2}$ U.S. Department of Energy. Energy Information Administration. 2009 Annual Energy Outlook. http://www.eia.doe.gov/oiaf/aeo/aeoref_tab.html

[^7]: ${ }^{1}$ See Transforming the Marketplace: Simplifying Federal Procurement to Improve Performance, Drive Innovation, and Increase Savings (December 4, 2014), available at
 http://www.whitehouse.gov/sites/default/files/omb/procurement/memo/simplifying-federal-procurement-to-improve-performance-drive-innovation-increase-savings.pdf.
 ${ }^{2}$ See REVERSE AUCTIONS: Guidance Is Needed to Maximize Competition and Achieve Cost Savings (GAO-14108), http://www.gao.gov/products/GAO-14-108.

[^8]: ${ }^{3}$ https://hallways.cap.gsa.gov
 ${ }^{4}$ See FAR 19.502-2 Total small business set-asides.
 ${ }^{5}$ See FAR 5.102(c)(2).

[^9]: ${ }^{6}$ For general guidance on the use of vendor feedback surveys to target opportunities for improved acquisition practices, agencies may wish to consider Acquisition 360-Improving the Acquisition Process through Timely Feedback from External and Internal Stakeholders (March 18, 2015) available at https://www.whitehouse.gov/sites/default/files/omb/procurement/memo/acquisition-360-improving-acquisition-process-timely-feedback-external-internal-stakeholders.pdf.
 ${ }^{7}$ See, FAR Subpart 4.8.
 ${ }^{8} \mathrm{http}$://icatalog.dau.mil/onlinecatalog/courses.aspx?crs_id=440

