February 23, 2015

Oregon Public Utility Commission Attn: Filing Center 3930 Fairview Industrial Dr. SE PO Box 1088 Salem, OR 97308

Docket # UM 1538 Subject: Request for waiver of 12 month solar PV installation requirement according to OAR 860-084-0210

To whom it may concern,

The purpose of this letter is to request an extension of the 12 month installation deadline for the project at 4010 NE Hancock St., Portland, OR 97212. In April 2014, the property owners received notification that Pacific Power had approved their application to participate in the Oregon Solar Incentive Program (see attached email). A capacity reservation of 10.00 kW and incentives were reserved with a start date of April 17, 2014 (tracking number 58967008). The homeowners completed the necessary paperwork within the 60 day deadline.

The project has been delayed for the following reasons:

a. This is a late 19th century building that will require engineering. It is anticipated that the permit will be taken in for a review period before being approved and issued.

b. This is an apartment building that is owned by multiple partners. Communication has been delayed due to the number of people involved in the decision making process. The main point of contact is out of state.

c. Gaining access to the entire building to measure for engineering has been delayed because of scheduling with multiple tenants.

d. Placement of the production meter requires installation behind a dryer which is being relocated.

A 6 month extension is requested. We have received a 50% deposit from the clients and the electrical portion of the system has been designed (see attached electrical schematic). Once engineering has been finalized, we will be able to solidify the design of the array itself and will purchase

DESIGN / BUILD REMODELING HANDYMAN SERVICES HOME PERFORMANCE SOLAR CUSTOM HOMES CABINETS

Headquarters

North Portland Design Center 804 N Alberta St Portland, OR 97217 Phone: 503.288.7461 Fax: 503.288.7464

Lake Oswego Design Center

15573 Bangy Rd, Suite 100 Lake Oswego, OR 97035 *Phone: 503.288.7461 Fax: 503.288.7464*

Eugene Design Center

2817 Oak St Eugene, OR 97405 Phone: 541.683.6085 Fax: 541.683.6097

Bend Design Center

190 NE Irving Ave Bend, OR 97701

Phone: 541.382.7580 Fax: 541.382.3975

Seattle Design Center

5959 Corson Ave S, Suite B Seattle, WA 98108 Phone: 206.343.2822 Fax: 206.405.1865

Salem: 503.370.4400 Vancouver: 360.696.2204 Toll Free 866.691.2719

neilkelly.com

OR CCB #001663 WA L&I #NEILKCI 18702

materials. The panels are manufactured at SolarWorld in Hillsboro, so shipping time will be minimal. The racking and other materials are stocked locally as well. The final 50% of the contract price is due upon completion of the project, and the clients are prepared financially.

Thank you for your consideration. If you have any questions, please do not hesitate to contact me directly.

Sincerely,

/s/ Erika Altenhofen

Administrative Assistant HOME PERFORMANCE | SOLAR

Neil Kelly design/build remodeling | custom homes | cabinets handyman services | home performance | solar

804 N Alberta St, Portland, OR 97217 neilkelly.com P: 503-335-9277 erika.altenhofen@neilkelly.com

oltage Drop Calculations								
								7
ormula used per NEC 2008 Handbook 215.	2(A)(3): V _D = 2*R*I*L/1000							
IRCUIT LOCATION	VOLTAGE	CURRENT	WIRE SIZE	RESISTANCE (OHMS PER KF	LENGTH (FT)	VOLTAGE DROP	VD %	1
NVERTER CABLES (SEE NOTE 9)	240V	SEE NOTE 9	SEE NOTE 9	SEE NOTE 9	SEE NOTE 9	0.21 V	0.4%	1
VERTERS TO AC COLLECTION-BRANC	240V	11.64A	10	1.29	20	0.60 V	0.3%	
VERTERS TO AC COLLECTION-BRANC	240V	11.64A	10	1.29	20	0.60 V	0.3%	1
NVERTERS TO AC COLLECTION-BRANC	240V	12.54A	10	1.29	20	0.65 V	0.3%	
C COLLECTION TO BREAKER PANEL	240V	36.00A	8	0.809	30	1.75 V	0.7%	1
					TOTAL	VOLTAGE DROP:	1.9%	-
3/4° CONDUIT 2 - #10 THWN-2 1 - #10 THWN-2 Gnd 1 - #6 THWN-2 Gnd W New NM THE NO ADDR 10 NO NO NO NO NO NO NO NO NO NO	3/4" CONDUIT 2 - #10 THWN-2 1 - #10 THWN-2 Gnd 1 - #6 THWN-2 Gnd	AC BISCONNECT AT JUNCTION EX		MCGO-INVERTERS ON MCGO-INVERTERS ON MCGO-INVERTERS MCGO-INVERTERS MCGO-INVERSE	END CAP INSTALLED ON AST INVERTER CREAT			
				TO BROADBAND ROUTER				
VEATHER DATA FROM WEATHER.COM VEATHER STATION: OWEST EXPECTED TEMPERATURE VERAGE HOTTEST TEMPERATURE VSTEM OVERVIEW RRAY RATED DC POWER OUTPUT @ S IUMBER OF MODULES IN ARRAY OF MODULE PER INVERTER OF MODULE SIN BRANCH CIRCUIT #1 OF MODULES IN BRANCH CIRCUIT #2 OF MODULES IN BRANCH CIRCUIT #3	PORTLAND INTL AIRPORT -6.0°C 36.0°C 10000W 40 1 13 13 14	OPERATING C OPERATING V MAXIMUM SYS SHORT CIRCL AC OUTPUT C NOMINAL AC Y LABEL ON AC AC OUTPUT C NOMINAL AC Y	URRENT OLTAGE STEM VOLTAGE IT CURRENT DISCONNEC URRENT VOLTAGE DISCONNEC URRENT VOLTAGE	C POWER SOURCE 8.05A 31.1V	LOAD CENTER MAIN BREAKER SIZ CIRCUIT BREAKER BUSBAR BACKFED CIRCUIT IS READILY ACCES	40 200 BREAKER	2) SYSTEM SHALL COM 3) ALL COMPONENTS S 4) ALL EQUIPMENT SHA 5) EACH INVERTER SHA WITH FACTORY SUPPLI 6) TYPE THHN/THWN-2 7) THE LINE-TO-LINE AN ENTRANCE CONDUCTO ISTALLATION. THE VOL L1 TO L2 - 211 TO 264 V. 8) INTERCONNECTION S 9) FROM TABLE IN TECI	SHALL BE USED WHERE IN CONDUIT ND LINE-TO-NEUTRAL VOLTAGE OF SERVICE DRS SHALL BE MEASURED PRIOR TO SYSTEM TAGES SHALL BE WITHIN THE FOLLOWING RA ac. L1 OR L2 TO NEUTRAL - 106 TO 132 Vac. SHALL COMPLY WITH NEC ARTICLE 690.64 HNICAL BRIEF "CALCULATING AC LINE VOLTAC
VEATHER STATION: OWEST EXPECTED TEMPERATURE VERAGE HOTTEST TEMPERATURE VSTEM OVERVIEW IRRAY RATED DC POWER OUTPUT @ S IUMBER OF MODULES IN ARRAY OF MODULE PER INVERTER OF MODULES IN BRANCH CIRCUIT #1 OF MODULES IN BRANCH CIRCUIT #2 OF MODULES IN BRANCH CIRCUIT #3 V MODULE RATINGS @ STC IODULE MANUFACTURER IODULE MODEL #:	PORTLAND INTL AIRPORT -6.0°C 36.0°C 10000W 40 1 13 13 13 14 SOLARWORLD SW 250 MONO	OPERATING C OPERATING V MAXIMUM SYS SHORT CIRCL LABEL ON AC AC OUTPUT C NOMINAL AC V LABEL ON AC AC OUTPUT C NOMINAL AC V INVERTER RA MANUFACTUR MODEL	URRENT OLTAGE STEM VOLTAG IT CURRENT OISCONNEC URRENT VOLTAGE OISCONNEC URRENT VOLTAGE OISCONNEC URRENT VOLTAGE TINGS ER	C POWER SOURCE 8.05A 31.1V 341.7V 10.4A T BRANCH CIRCUIT #1 11.6A 240V T BRANCH CIRCUIT #2 11.6A 240V T BRANCH CIRCUIT #3 11.6A 240V ENPHASE M215-60-240-2LL-S22/S23	LOAD CENTER MAIN BREAKER SIZ CIRCUIT BREAKER BUSBAR BACKFED CIRCUIT	40 200 BREAKER	1) SYSTEM SHALL COM 2) SYSTEM SHALL COM 2) SYSTEM SHALL COM 3) ALL COMPONENTS S 4) ALL EQUIPMENT SHA 5) EACH INVERTER SHA WITH FACTORY SUPPLI 6) TYPE THHN/THWN-2 6) TYPE THHN/THWN-2 7) THE LINE-TO-LINE AN ENTRANCE CONDUCTO ISTALLATION. THE VOL L1 TO L2 - 211 TO 264 V 8) INTERCONNECTION 9) FROM TABLE IN TECI	PLY WITH LOCAL, STATE, AND FEDERAL REQU HALL BE GROUNDED PER NEC REQUIREMENT ALL BE LISTED PER NEC ALL BE DIRECTLY CONNECTED TO EACH PV M IED MODULE LEADS. SHALL BE USED WHERE IN CONDUIT NO LINE-TO-NEUTRAL VOLTAGE OF SERVICE DRS SHALL BE MEASURED PRIOR TO SYSTEM TAGES SHALL BE WITHIN THE FOLLOWING RA ac. L1 OR L2 TO NEUTRAL - 106 TO 132 Vac. SHALL COMPLY WITH NEC ARTICLE 690.64 HNICAL BRIEF "CALCULATING AC LINE VOLTAC RTERS WITH ENGAGE CABLES" DATED 6/03/11
VEATHER STATION: OWEST EXPECTED TEMPERATURE VERAGE HOTTEST TEMPERATURE VSTEM OVERVIEW RRAY RATED DC POWER OUTPUT @ S IUMBER OF MODULES IN ARRAY OF MODULE PER INVERTER OF MODULES IN BRANCH CIRCUIT #1 OF MODULES IN BRANCH CIRCUIT #2 OF MODULES IN BRANCH CIRCUIT #3 V MODULE RATINGS @ STC IODULE MODEL #: ATED MAX POWER OUTPUT	SOLAR WORLD SOLAR WORLD SOLARWORLD SW 250 WONO 250W	OPERATING C OPERATING V MAXIMUM SYS SHORT CIRCL AC OUTPUT C NOMINAL AC V LABEL ON AC AC OUTPUT C NOMINAL AC V NOMINAL AC V NOMINAL AC V NOMINAL AC V NOMINAL AC V NOVERTER RA MANUFACTER	URRENT OLTAGE STEM VOLTAGE DISCONNEC URRENT VOLTAGE DISCONNEC URRENT VOLTAGE DISCONNEC URRENT VOLTAGE TINGS RER LTAGE	TO BRAREAD C POWER SOURCE 8.05A 31.1V 341.7V 10.4A T BRANCH CIRCUIT #1 11.6A 240V T BRANCH CIRCUIT #2 11.6A 240V T BRANCH CIRCUIT #3 11.6A 240V ENPHASE M215-60-240-2LL-S22/S23 240V	LOAD CENTER MAIN BREAKER SIZ CIRCUIT BREAKER BUSBAR BACKFED CIRCUIT	40 200 BREAKER	1) SYSTEM SHALL COM 2) SYSTEM SHALL COM 3) ALL COMPONENTS S 4) ALL EQUIPMENT SHA 5) EACH INVERTER SHA WITH FACTORY SUPPLI 6) TYPE THHN/THWN-2 7) THE LINE-TO-LINE AN ENTRANCE CONDUCTC 15 TALLATION. THE VOL L1 TO L2 - 211 TO 264 V 8) INTERCONNECTION S 9) FROM TABLE IN TECI FOR M215 MICROINVER	PLY WITH LOCAL, STATE, AND FEDERÀL REQU HALL BE GROUNDED PER NEC REQUIREMENT ALL BE LISTED PER NEC ALL BE DIRECTLY CONNECTED TO EACH PV M IED MODULE LEADS. SHALL BE USED WHERE IN CONDUIT ID LINE-TO-NEUTRAL VOLTAGE OF SERVICE DRS SHALL BE MEASURED PRIOR TO SYSTEM TAGES SHALL BE WITHIN THE FOLLOWING RA ac. L1 OR L2 TO NEUTRAL - 106 TO 132 Vac. SHALL COMPLY WITH NEC ARTICLE 690.64 HNICAL BRIEF "CALCULATING AC LINE VOLTAC RTERS WITH ENGAGE CABLES" DATED 6/03/11
VEATHER STATION: OWEST EXPECTED TEMPERATURE VERAGE HOTTEST TEMPERATURE INSTEM OVERVIEW RRAY RATED DC POWER OUTPUT @ S UMBER OF MODULES IN ARRAY OF MODULE SIN BRANCH CIRCUIT #1 OF MODULES IN BRANCH CIRCUIT #2 OF MODULES IN BRANCH CIRCUIT #3 V MODULE RATINGS @ STC IODULE MANUFACTURER IODULE MODEL #: ATED MAX POWER OUTPUT DPEN-CIRCUIT VOLTAGE (Voc)	SOLAR WORLD SOLAR WORLD SOLAR WORLD SOLARWORLD SOLARWORLD SV 250 MONO 250W 37.8V	OPERATING C OPERATING C OPERATING V MAXIMUM SYS SHORT CIRCL ACOUTPUT C NOMINAL AC V LABEL ON AC AC OUTPUT C NOMINAL AC V LABEL ON AC AC OUTPUT C NOMINAL AC V INVERTER RA MANUFACTUR MANUFACTUR MODEL RATED AC VO CEC WEIGHTE	URRENT OLTAGE STEM VOLTAG IT CURRENT OISCONNEC URRENT VOLTAGE DISCONNEC URRENT VOLTAGE DISCONNEC URRENT VOLTAGE TINGS RER LTAGE ED EFFICIENC	TO BRAREAD C POWER SOURCE 8.05A 31.1V 6 31.1V 6 1.17V 10.4A T BRANCH CIRCUIT #1 11.6A 240V T BRANCH CIRCUIT #2 11.6A 240V T BRANCH CIRCUIT #3 11.6A 240V ENPHASE M215-60-240-2LL-S22/S23 240V 96.0%	LOAD CENTER MAIN BREAKER SIZ CIRCUIT BREAKER BUSBAR BACKFED CIRCUIT IS READILY ACCES	40 200 BREAKER	1) SYSTEM SHALL COM 2) SYSTEM SHALL COM 3) ALL COMPONENTS S 4) ALL EQUIPMENT SHA 5) EACH INVERTER SHA WITH FACTORY SUPPLI 6) TYPE THHN/THWN-2 7) THE LINE-TO-LINE AN ENTRANCE CONDUCTC 15 TALLATION. THE VOL L1 TO L2 - 211 TO 264 V 8) INTERCONNECTION S 9) FROM TABLE IN TECI FOR M215 MICROINVER MR. SUN SOLAR	PLY WITH LOCAL, STATE, AND FEDERAL REQU HALL BE GROUNDED PER NEC REQUIREMENT ALL BE LISTED PER NEC ALL BE DIRECTLY CONNECTED TO EACH PV M IED MODULE LEADS. SHALL BE USED WHERE IN CONDUIT NO LINE-TO-NEUTRAL VOLTAGE OF SERVICE DRS SHALL BE MEASURED PRIOR TO SYSTEM TAGES SHALL BE WITHIN THE FOLLOWING RA ac. L1 OR L2 TO NEUTRAL - 106 TO 132 Vac. SHALL COMPLY WITH NEC ARTICLE 690.64 HNICAL BRIEF "CALCULATING AC LINE VOLTAC RTERS WITH ENGAGE CABLES" DATED 6/03/11
VEATHER STATION: OWEST EXPECTED TEMPERATURE VERAGE HOTTEST TEMPERATURE VSTEM OVERVIEW RRAY RATED DC POWER OUTPUT @ S IMBER OF MODULES IN ARRAY OF MODULES IN BRANCH CIRCUIT #1 OF MODULES IN BRANCH CIRCUIT #2 OF MODULES IN BRANCH CIRCUIT #3 V MODULE RATINGS @ STC IODULE MANUFACTURER IODULE MODEL #: ATED MAX POWER OUTPUT VPEN-CIRCUIT VOLTAGE (Voc) IPERATING VOLTAGE (Vmp)	SOLAR WORLD SOLAR WORLD SOLAR WORLD SOLAR WORLD SOLAR WORLD SW 250 MONO 250W 37.8V 31.1V	OPERATING C OPERATING V MAXIMUM SYS SHORT CIRCL LABEL ON AC AC OUTPUT C NOMINAL AC V LABEL ON AC AC OUTPUT C NOMINAL AC V INVERTER RA MANUFACTUF MODEL RATED AC VO CEC WEIGHTE MAX AC POWI	URRENT OLTAGE STEM VOLTAGE DISCONNEC URRENT VOLTAGE DISCONNEC URRENT VOLTAGE DISCONNEC URRENT VOLTAGE EDISCONNEC URRENT VOLTAGE ED EFFICIENC ED EFFICIENC ED CEFICIENC EN CUTPUT	TO BRAREAD NOVICE 8.05A 31.1V 641.7V 10.4A T BRANCH CIRCUIT #1 11.6A 240V T BRANCH CIRCUIT #2 11.6A 240V T BRANCH CIRCUIT #2 11.6A 240V T BRANCH CIRCUIT #3 11.6A 240V ENPHASE M215-60-240-2LL-S22/S23 240V 96.0% 215W	LOAD CENTER MAIN BREAKER SIZ CIRCUIT BREAKER BUSBAR BACKFED CIRCUIT IS READILY ACCES	BREAKER SIBLE	1) SYSTEM SHALL COM 2) SYSTEM SHALL COM 3) ALL COMPONENTS S 4) ALL EQUIPMENT SHA 5) EACH INVERTER SHA WITH FACTORY SUPPLI 6) TYPE THHN/THWN-2 7) THE LINE-TO-LINE AN ENTRANCE CONDUCTO ISTALLATION. THE VOL ISTALLATION. THE VOL 11 TO L2 - 211 TO 264 V 8) INTERCONNECTION 3 9) FROM TABLE IN TECH FOR M215 MICROINVER	PLY WITH LOCAL, STATE, AND FEDERÀL REQU HALL BE GROUNDED PER NEC REQUIREMENT ALL BE LISTED PER NEC ALL BE DIRECTLY CONNECTED TO EACH PV M IED MODULE LEADS. SHALL BE USED WHERE IN CONDUIT ID LINE-TO-NEUTRAL VOLTAGE OF SERVICE IRS SHALL BE MEASURED PRIOR TO SYSTEM TAGES SHALL BE WITHIN THE FOLLOWING RA C. L1 OR L2 TO NEUTRAL - 106 TO 132 Vac. SHALL COMPLY WITH NEC ARTICLE 690.64 HNICAL BRIEF "CALCULATING AC LINE VOLTAC TERS WITH ENGAGE CABLES" DATED 6/03/11 CUSTOMER: Barker + Calkins Inc. SITE ADDRESS 4010 NE Hancock St PORTLAND, OR 97212 PHOTOVOLTAIC SYSTEM ELECTRICAL SCH
VEATHER STATION: OWEST EXPECTED TEMPERATURE VERAGE HOTTEST TEMPERATURE VSTEM OVERVIEW RRAY RATED DC POWER OUTPUT @ S IUMBER OF MODULES IN ARRAY OF MODULE PER INVERTER OF MODULES IN BRANCH CIRCUIT #2 OF MODULES IN BRANCH CIRCUIT #2 OF MODULES IN BRANCH CIRCUIT #3 VMODULE RATINGS @ STC IODULE MODEL #: ATED MAX POWER OUTPUT PENACINCUIT VOLTAGE (Vmc) PERATING VOLTAGE (Vmc) HORT-CIRCUIT CURRENT (Isc)	SOLAR WORLD SOLAR WORLD SOLAR WORLD SOLAR WORLD SOLAR WORLD SW 250 MONO 250W 37.8V 31.1V 8.28A	OPERATING C OPERATING V MAXIMUM SYS SHORT CIRCL AC OUTPUT C NOMINAL AC V LABEL ON AC AC OUTPUT C NOMINAL AC V LABEL ON AC AC OUTPUT C NOMINAL AC V INVERTER RA MANUFACTUR MODEL RATED AC VO CEC WEIGHTT MAX AC POWI MAX DC VOLT	URRENT OLTAGE STEM VOLTAG DISCONNEC URRENT VOLTAGE DISCONNEC URRENT VOLTAGE DISCONNEC URRENT VOLTAGE TINGS RER LTAGE ED EFFICIENC ER OUTPUT AGE	C POWER SOURCE 8.05A 31.1V 341.7V 10.4A T BRANCH CIRCUIT #1 11.6A 240V T BRANCH CIRCUIT #2 11.6A 240V T BRANCH CIRCUIT #3 11.6A 240V T BRANCH CIRCUIT #3 11.6A 240V ENPHASE M215-60-240-2LL-S22/S23 240V 96.0% 215W 45V	LOAD CENTER MAIN BREAKER SIZ CIRCUIT BREAKER BUSBAR BACKFED CIRCUIT IS READILY ACCES READILY ACCES	BREAKER SIBLE	1) SYSTEM SHALL COM 2) SYSTEM SHALL COM 3) ALL COMPONENTS S 4) ALL EQUIPMENT SHA 5) EACH INVERTER SHA WITH FACTORY SUPPLI 6) TYPE THHN/THWN-2 7) THE LINE-TO-LINE AN ENTRANCE CONDUCTO ISTALLATION. THE VOL L1 TO L2 - 211 TO 264 V 8) INTERCONNECTION S 9) FROM TABLE IN TECI FOR M215 MICROINVER 9) FROM TABLE IN TECI FOR M215 MICROINVER 125 NE PORTLAND HWY PORTLAND, OR 97218	PLY WITH LOCAL, STATE, AND FEDERÀL REQU HALL BE GROUNDED PER NEC REQUIREMENT ALL BE LISTED PER NEC ALL BE DIRECTLY CONNECTED TO EACH PV M IED MODULE LEADS. SHALL BE USED WHERE IN CONDUIT NO LINE-TO-NEUTRAL VOLTAGE OF SERVICE DRS SHALL BE MEASURED PRIOR TO SYSTEM TAGES SHALL BE WITHIN THE FOLLOWING RA ac. L1 OR L2 TO NEUTRAL - 106 TO 132 Vac. SHALL COMPLY WITH NEC ARTICLE 690.64 HNICAL BRIEF "CALCULATING AC LINE VOLTAC RTERS WITH ENGAGE CABLES" DATED 6/03/11 CUSTOMER: Barker + Calkins Inc. SITE ADDRESS 4010 NE Hancock St PORTLAND, OR 97212 PHOTOVOLTAIC SYSTEM ELECTRICAL SCH SIZE: DRAWING NO DATE: REVISI
VEATHER STATION: OWEST EXPECTED TEMPERATURE VERAGE HOTTEST TEMPERATURE VSTEM OVERVIEW RRAY RATED DC POWER OUTPUT @ S UMBER OF MODULES IN ARRAY OF MODULE PER INVERTER OF MODULES IN BRANCH CIRCUIT #1 OF MODULES IN BRANCH CIRCUIT #2 OF MODULES IN BRANCH CIRCUIT #3 V MODULE SIN BRANCH CIRCUIT #3 V MODULE MANUFACTURER 10DULE MODEL #: ATED MAX POWER OUTPUT DPEN-CIRCUIT VOLTAGE (Voc) PERATING VOLTAGE (Vmp) HORT-CIRCUIT CURRENT (lsc) DPERATING CURRENT (lmp)	SOLAR WORLD SOLAR WORLD SOLAR WORLD SOLAR WORLD SW 250 MONO 250W 37.8V 31.1V 8.28A 8.05A	OPERATING C OPERATING V MAXIMUM SYS SHORT CIRCL AC OUTPUT C NOMINAL AC V LABEL ON AC AC OUTPUT C NOMINAL AC V LABEL ON AC AC OUTPUT C NOMINAL AC V INVERTER RA MANUFACTUP MODEL RATED AC VOL CEC WEIGHTT MAX AC POWI	URRENT OLTAGE STEM VOLTAGE DISCONNEC URRENT VOLTAGE DISCONNEC URRENT VOLTAGE DISCONNEC URRENT VOLTAGE DISCONNEC URRENT VOLTAGE ED EFFICIENC ER OUTPUT AGE RENT	C POWER SOURCE 8.05A 31.1V 41.7V 10.4A T BRANCH CIRCUIT #1 11.6A 240V T BRANCH CIRCUIT #2 11.6A 240V F BRANCH CIRCUIT #3 11.6A 240V ENPHASE M215-60-240-2LL-S22/S23 240V 96.0% 215W 45V 15A	LOAD CENTER MAIN BREAKER SIZ CIRCUIT BREAKER BUSBAR BACKFED CIRCUIT IS READILY ACCES CONFIDENTIAL: THE INFORMATION THIS DOCUMENT IS	A0 200 BREAKER SIBLE	1) SYSTEM SHALL COM 2) SYSTEM SHALL COM 3) ALL COMPONENTS S 4) ALL EQUIPMENT SHA 5) EACH INVERTER SHA WITH FACTORY SUPPLI 6) TYPE THHN/THWN-2 7) THE LINE-TO-LINE AN ENTRANCE CONDUCTCO ISTALLATION. THE VOL L1 TO L2 - 211 TO 264 V. 8) INTERCONNECTION S 9) FROM TABLE IN TECI FOR M215 MICROINVER MICROINVER MICROINSOLAR 6125 NE PORTLAND HWY PORTLAND, OR 7218 (503)222-2468	PLY WITH LOCAL, STATE, AND FEDERÀL RÉQU HALL BE GROUNDED PER NEC REQUIREMENT ALL BE ISTED PER NEC ALL BE DIRECTLY CONNECTED TO EACH PV M IED MODULE LEADS. SHALL BE USED WHERE IN CONDUIT ND LINE-TO-NEUTRAL VOLTAGE OF SERVICE DRS SHALL BE MEASURED PRIOR TO SYSTEM TAGES SHALL BE WITHIN THE FOLLOWING RA CL 10 R L2 TO NEUTRAL - 106 TO 132 Vac. SHALL COMPLY WITH NEC ARTICLE 690.64 HNICAL BRIEF "CALCULATING AC LINE VOLTAC RTERS WITH ENGAGE CABLES" DATED 6/03/11 CUSTOMER: Barker + Calkins Inc. SITE ADDRESS 4010 NE HAncock St PORTLAND, OR 97212 PHOTOVOLTAIC SYSTEM ELECTRICAL SCH SIZE: DRAWING NG DATE: REVISI 8.5 X 11 E1.0 #######
VEATHER STATION: OWEST EXPECTED TEMPERATURE VERAGE HOTTEST TEMPERATURE VSTEM OVERVIEW RRAY RATED DC POWER OUTPUT @ S IUMBER OF MODULES IN ARRAY OF MODULE PER INVERTER OF MODULES IN BRANCH CIRCUIT #1 OF MODULES IN BRANCH CIRCUIT #2 OF MODULES IN BRANCH CIRCUIT #3 V MODULE RATINGS @ STC IODULE MANUFACTURER IODULE MODEL #: ATED MAX POWER OUTPUT IPEN-CIRCUIT VOLTAGE (Voc) IPERATING VOLTAGE (Vmp) HORT-CIRCUIT CURRENT (Isc) IPERATING CURRENT (Imp) ERIES FUSE RATING	SOLAR WORLD PORTLAND INTL AIRPORT -6.0°C 36.0°C 10000W 40 1 13 13 14 14 SOLARWORLD SW 250 MONO 250W 37.8V 31.1V 8.28A 8.05A 16A	OPERATING C OPERATING C OPERATING V MAXIMUM SYS SHORT CIRCL AC OUTPUT C NOMINAL AC V LABEL ON AC AC OUTPUT C NOMINAL AC V INVERTER RA MANUFACTUF MODEL RATED AC VO CEC WEIGHTT MAX DC VOLT MAX DC VOLT	URRENT OLTAGE STEM VOLTAG IT CURRENT VOLTAGE DISCONNEC URRENT VOLTAGE DISCONNEC URRENT VOLTAGE DISCONNEC URRENT VOLTAGE ED EFFICIENC ER LTAGE ED EFFICIENC ER OUTPUT AGE ENT VUT VOLTAGE	C POWER SOURCE 8.05A 31.1V 6 41.7V 10.4A T BRANCH CIRCUIT #1 11.6A 240V T BRANCH CIRCUIT #2 11.6A 240V T BRANCH CIRCUIT #3 11.6A 240V ENPHASE M215-60-240-2LL-S22/S23 240V ENPHASE M215-60-240-2LL-S22/S23 240V 15A 215W 45V 15A 22V	LOAD CENTER MAIN BREAKER SIZ CIRCUIT BREAKER BUSBAR BACKFED CIRCUIT IS READILY ACCES CONFIDENTIAL: THE INFORMATION THIS DOCUMENT IS PROPERTY OF MR	A0 200 BREAKER SIBLE	1) SYSTEM SHALL COM 2) SYSTEM SHALL COM 3) ALL COMPONENTS S 4) ALL EQUIPMENT SHA 5) EACH INVERTER SHA WITH FACTORY SUPPLI 6) TYPE THHN/THWN-2 7) THE LINE-TO-LINE AN ENTRANCE CONDUCTC ISTALLATION. THE VOL 11 TO L2 - 211 TO 264 V. 8) INTERCONNECTION S 9) FROM TABLE IN TECI FOR M215 MICROINVER 0125 NE PORTLAND HWY PORTLAND, OR 97218 (503)222-2468 CCB#001663	PLY WITH LOCAL, STATE, AND FEDERÀL REQU HALL BE GROUNDED PER NEC REQUIREMENT ALL BE LISTED PER NEC ALL BE DIRECTLY CONNECTED TO EACH PV M IED MODULE LEADS. SHALL BE USED WHERE IN CONDUIT NO LINE-TO-NEUTRAL VOLTAGE OF SERVICE DRS SHALL BE MEASURED PRIOR TO SYSTEM TAGES SHALL BE WITHIN THE FOLLOWING RA ac. L1 OR L2 TO NEUTRAL - 106 TO 132 Vac. SHALL COMPLY WITH NEC ARTICLE 690.64 HNICAL BRIEF "CALCULATING AC LINE VOLTAC RTERS WITH ENGAGE CABLES" DATED 6/03/11 CUSTOMER: Barker + Calkins Inc. SITE ADDRESS 4010 NE Hancock St PORTLAND, OR 97212 PHOTOVOLTAIC SYSTEM ELECTRICAL SCH SIZE: DRAWING NO DATE: REVISI
VEATHER STATION: OWEST EXPECTED TEMPERATURE VERAGE HOTTEST TEMPERATURE VSTEM OVERVIEW RRAY RATED DC POWER OUTPUT @ S UMBER OF MODULES IN ARRAY OF MODULE PER INVERTER OF MODULES IN BRANCH CIRCUIT #1 OF MODULES IN BRANCH CIRCUIT #2 OF MODULES IN BRANCH CIRCUIT #3 V MODULE SIN BRANCH CIRCUIT #3 V MODULE MANUFACTURER 10DULE MODEL #: ATED MAX POWER OUTPUT DPEN-CIRCUIT VOLTAGE (Voc) PERATING VOLTAGE (Vmp) HORT-CIRCUIT CURRENT (lsc) DPERATING CURRENT (lmp)	SOLAR WORLD SOLAR WORLD SOLAR WORLD SOLAR WORLD SW 250 MONO 250W 37.8V 31.1V 8.28A 8.05A	OPERATING C OPERATING V MAXIMUM SYS SHORT CIRCL AC OUTPUT C NOMINAL AC V LABEL ON AC AC OUTPUT C NOMINAL AC V LABEL ON AC AC OUTPUT C NOMINAL AC V INVERTER RA MANUFACTUF MODEL RATED AC VOL CEC WEIGHTT MAX AC POWI	URRENT OLTAGE STEM VOLTAGE DISCONNEC URRENT VOLTAGE DISCONNEC URRENT VOLTAGE DISCONNEC URRENT VOLTAGE DISCONNEC URRENT VOLTAGE ED EFFICIENC ER OUTPUT AGE EEN UTVOLTAGE PUT VOLTAGE PUT VOLTAGE	C POWER SOURCE 8.05A 31.1V 31.1A 31.1V 31.1A 31.1V 31.1A	LOAD CENTER MAIN BREAKER SIZ CIRCUIT BREAKER BUSBAR BACKFED CIRCUIT IS READILY ACCES CONFIDENTIAL: THE INFORMATION THIS DOCUMENT IS	A0 200 BREAKER SIBLE	1) SYSTEM SHALL COM 2) SYSTEM SHALL COM 3) ALL COMPONENTS S 4) ALL EQUIPMENT SHA 5) EACH INVERTER SHA WITH FACTORY SUPPLI 6) TYPE THHN/THWN-2 7) THE LINE-TO-LINE AN ENTRANCE CONDUCTCO ISTALLATION. THE VOL L1 TO L2 - 211 TO 264 V. 8) INTERCONNECTION S 9) FROM TABLE IN TECI FOR M215 MICROINVER MICROINVER MICROINSOLAR 6125 NE PORTLAND HWY PORTLAND, OR 7218 (503)222-2468	PLY WITH LOCAL, STATE, AND FEDERÀL RÉQU HALL BE GROUNDED PER NEC REQUIREMENT ALL BE ISTED PER NEC ALL BE DIRECTLY CONNECTED TO EACH PV M IED MODULE LEADS. SHALL BE USED WHERE IN CONDUIT ND LINE-TO-NEUTRAL VOLTAGE OF SERVICE DRS SHALL BE MEASURED PRIOR TO SYSTEM TAGES SHALL BE WITHIN THE FOLLOWING RA CL 10 R L2 TO NEUTRAL - 106 TO 132 Vac. SHALL COMPLY WITH NEC ARTICLE 690.64 HNICAL BRIEF "CALCULATING AC LINE VOLTAC RTERS WITH ENGAGE CABLES" DATED 6/03/11 CUSTOMER: Barker + Calkins Inc. SITE ADDRESS 4010 NE HAncock St PORTLAND, OR 97212 PHOTOVOLTAIC SYSTEM ELECTRICAL SCH SIZE: DRAWING NG DATE: REVISI 8.5 X 11 E1.0 #######