

Idaho Power 2017 Integrated Resource Plan

Public Utility Commission of OregonPublic MeetingSeptember 26, 2017

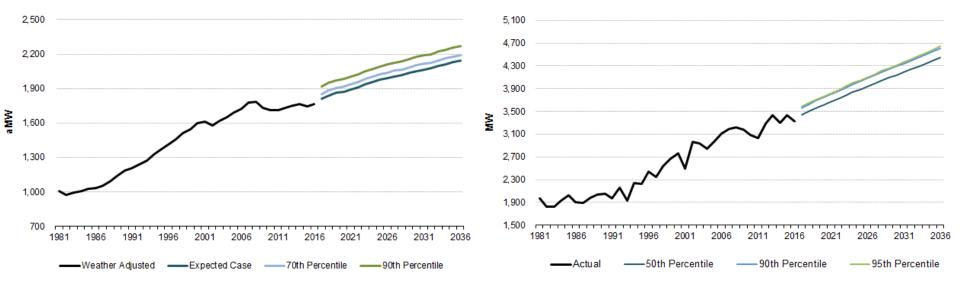
2017 IRP

- Goals
 - Identify sufficient resources to reliably serve the growing demand for energy within Idaho Power's service area throughout the 20-year planning period
 - Ensure the selected resource portfolio balances cost, risk, and environmental concerns
 - Give equal and balanced treatment to supply-side resources, demand-side resources, and transmission resources
 - Involve the public in the planning process in a meaningful way
- Planning period \rightarrow 2017-2036

2017 IRP

- Boardman to Hemingway (B2H) transmission line
- Jim Bridger units 1 and 2
- North Valmy

Load and Resource Balance


• Resources

- Idaho Power generation
 - Hydro 1,709 MW capacity nameplate
 - Natural gas 762 MW capacity nameplate
 - Coal 1,118 MW capacity nameplate
- Transmission (off-system purchases)
- Energy contracts
 - PURPA 1,135 MW capacity nameplate
 - PPA 150 MW capacity nameplate
- Demand-side resources
 - Energy efficiency 209 aMW in 2016
 - Demand response 390 MW capacity
- Load

2017 IRP – Load Forecast

- Growth rates
 - Average energy $\rightarrow 0.9\%$ per year
 - Peak-hour \rightarrow 1.4% per year
- Add ≈220k customers 2017-2036

2017 IRP – Resource Options

- Demand-side
 - Energy efficiency
 - Demand response
- Transmission
 - Boardman to Hemingway
- Natural gas
 - CCCT
 - SCCT
 - Reciprocating engines
- Solar PV
 - Utility-scale single-axis tracking
 - Rooftop residential
 - Rooftop C&I

- Storage
 - Pumped hydro
 - Li battery residential
 - Ice thermal storage
 - Zn battery
 - Vanadium flow battery
- Nuclear
 - Small modular reactor
- Wind
- CHP
- Geothermal
- Canal drop hydro
- Biomass anaerobic digester

2017 IRP – Key Considerations

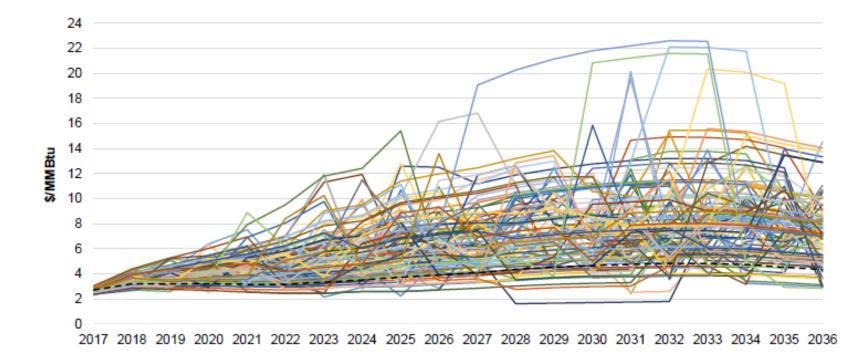
- Jim Bridger units 1 and 2
 - Environmental retrofit investments vs. early retirement alternatives
- Boardman-to-Hemingway (B2H) transmission line
 - B2H vs. alternative resources
- Portfolio design

	Primary Portfolio Element(s)							
Treatment of Jim Bridger Units 1 and 2	B2H	Solar PV/Natural Gas	Natural Gas					
Invest in SCR	P1	P2	P3					
Retire Unit 1 in 2028 and Unit 2 in 2024	P4	P5	P6					
Retire Unit 1 in 2032 and Unit 2 in 2028	P7	P8	P9					
Retire Unit 1 in 2022 and Unit 2 in 2021	P10	P11	P12					

Peak-Hour Capacity (MW)

2017 IRP – Portfolio Analysis

2017 IRP portfolios, NPV years 2017-2036 (\$000s)


	Pri				
Treatment of Jim Bridger Units 1 and 2	B2H	Natural Gas	Natural Gas	Average	Rank
Invest in SCR	\$6,400,696	\$6,497,505	\$6,530,856	\$6,476,352	3
Retire Unit 1 in 2028 and Unit 2 in 2024	\$6,338,683	\$6,566,567	\$6,508,242	\$6,471,164	2
Retire Unit 1 in 2032 and Unit 2 in 2028	\$6,335,771	\$6,503,524	\$6,483,000	\$6,440,765	1
Retire Unit 1 in 2022 and Unit 2 in 2021	\$6,400,507	\$6,579,769	\$6,671,510	\$6,550,595	4
Average	\$6,368,915	\$6,536,842	\$6,548,402		
Rank	1	2	3		

	P7 timeline										
ſ	Date	Installed Capacity (MW)									
	2026	B2H	500, 200 (Apr–Sep, Oct–Mar transfer capacity)								
	2031	Reciprocating engines	36								
	2032	Reciprocating engines	36								
	2033	CCCT (1x1)	300								
	2035	Reciprocating engines	54								
	2036	Reciprocating engines	54								
		Total	980								

Portfolio Analysis and Uncertainty

- Risk analysis
 - Customer load
 - Hydro production
 - Natural gas price

Portfolio Analysis and Uncertainty

• Qualitative risk

Risk	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12
Hydro—Water Supply Risk	=	=	=	=	=	=		=	=	=	=	=
Relicensing Risk	=	=	=	=	=	=		=	=	=	=	=
Regulatory Risk	=	=	=	=	=	=		=	=	=	=	=
NOx Compliance Alternatives Risk	<	<	<	=	=	=		=	=	<	<	<
Permitting/Siting Risk	=	=	=	=	=	=		=	=	=	=	=
Regional Resource Adequacy	=	<	<	=	<	<		<	<	=	<	<
DSM Implementation	=	=	=	=	=	=		=	=	=	=	=
Technological Obsolescence	=	>	>	=	>	>		>	>	=	>	>

Qualitative risk analysis

< Less risk

> More risk

= Equal risk

Qualitative benefit analysis

Benefit	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12
Regional Resource Diversity	=	<	<	=	<	<		<	<	=	<	<
Regional Transmission Initiatives	=	<	<	=	<	<		<	<	=	<	<
Transmission Tariff Revenue	=	<	<	=	<	<		<	<	=	<	<
Local Economic Effects	=	=	=	=	=	=		=	=	=	=	=

< Less benefit

= Equal benefit

2017 IRP – Action Plan (2017-2021)

- EIM
- North Valmy Unit 1
- Jim Bridger units 1 and 2
- B2H
- Boardman
- Gateway West
- Energy efficiency
- Carbon emission regulations
- North Valmy Unit 2