

January 9, 2022

VIA ELECTRONIC FILING

Public Utility Commission of Oregon Attn: Filing Center 201 High Street SE, Suite 100 Salem, OR 97301-3398

Re: UM 1020—PacifiCorp 2022 Blue Sky Grant Funding

At the request of Public Utility Commission of Oregon Staff, PacifiCorp d/b/a Pacific Power (PacifiCorp) provides for filing in the above-referenced docket the attached information regarding a project to which PacifiCorp proposes to provide Blue Sky grant funding. Staff is reviewing the project consistent with the processes outlined in Orders No. 17-289 and 17-455.

Please direct questions regarding this filing to Cathie Allen, Regulatory Affairs Manager, at (503) 813-5934.

Sincerely,

ph 1/2

Matthew McVee Vice President, Regulatory Policy and Operations

Applicant Information				
Host Organization	Fort George Brewery & Public			
City	House Astoria			
State	OR			
Project Information	- ON			
Technology Type	Solar PV			
Project Size (kW DC)	560.00			
Annual energy generation (kWh/yr)	615,231			
Electricity use of host facility (kWh/yr)	1,213,000			
Generation as percent of on-site use	51%			
Capacity factor	13%			

Budget	
Total eligible project cost (\$)	\$1,318,220.00
Total project cost per watt (\$/W)	\$2.35
Blue Sky funding request (\$)	\$100,000.00
Funding request as % of total project cost	8%
Scoring	
Sconny	
Feasibility/Readiness (35 pts)	28
	28 16
Feasibility/Readiness (35 pts)	
Feasibility/Readiness (35 pts) Costs and Financial Feasibility (20 pts) Community Benefits & Blue Sky Exposure (40	16

OVERVIEW SUMMARY STATEMENT

Fort George Brewery & Public House (Fort George) is a for-profit company striving to be a positive force for Astoria's community by providing a safe, opportunity-rich workplace and an excellent beer experience. Fort George is a hub of community in Astoria, hosting community benefit nights with local nonprofits, community education lectures, and collaborative beer projects that raise awareness and funds for nonprofits. Fort George has strong sustainability initiatives and strives to be a leader in reducing emissions from the beer industry in Clatsop County. Fort George's co-founder and sustainability director are the project managers for the project. The proposed solar PV project would be installed on the roof of Fort George's waterfront distribution center. Savings from the project would support Fort George's community efforts and support the business as it expands its role as an economic and environmental leader in Astoria.

Key Strengths:

- The project offers a unique, high visibility opportunity for Blue Sky.
- The applicant is community-oriented and supports the cultural and economic development of Astoria.
- Demonstrated commitment to energy efficiency and sustainability.

Key Weaknesses:

- The applicant does not have specific plans to use savings toward community impact in the <u>near</u> future.
- The project will likely be installed regardless of Blue Sky funding.

A. PROJECT FEASIBILITY & READINESS

- **Technology.** The solar PV system will consist of REC 445AA watt solar modules, five SolarEdge SE100KUS (480) inverters, and a customized SunModo tilted racking system to maximize efficiency.
- Project Team. The applicant's project team is highly qualified and has two strong proponents in Fort George's cofounder and the sustainability director. The selected contractor, Advanced Energy Systems, has installed similar Blue Sky funded systems and is an ETO Trade Ally.
- **Project Site.** The array will be installed on the flat roof of the waterfront distribution center and has virtually no shading. A new roof is being installed prior to installation. A structural engineer has already conducted an analysis and determined that the structure will be able to handle the load of the solar installation.
- **Timeline & Status.** The project has already secured an interconnection agreement with Pacific Power and a full stie assessment, including structural analysis, has been completed. The solar installation is scheduled to be completed in August 2023.
- **O&M.** Advanced Energy will provide a 2-year workmanship warranty for the project. Any installation or system production issues that arise in this time frame will be addressed by Advanced Energy Systems free of charge. The solar panels have a warranty of 20 years, and the inverters are under warranty for 12 years. Fort George will coordinate with Advanced Energy Systems to plan for additional O&M needs. The project's production data will be displayed on site in real time, and will be collected, collated, and assessed regularly by the sustainability director. The project will be insured under the property's insurance.

• **Energy Production.** The energy estimate is based on industry-standard methods and includes a site-specific shade analysis. The estimated net capacity factor of 13% is reasonable.

B. PROJECT COSTS, FINANCING & ADDITIONALITY

- **Project Budget.** The proposed budget is within a reasonable range for this type and size of project. The budget includes some contingency. Multiple bids were requested, but only one was received.
- **Funding Sources.** The applicant is requesting 8% funding from Blue Sky. The project is receiving \$144,460 from the Oregon Department of Energy and has applied for a 25% grant from the USDA Rural Energy for America Program. Fort George also plans to leverage tax credits and financing from U.S. Bank. Fort George is in good financial health and is able to pay for upfront costs of the system until Blue Sky reimbursement is received.
- Additionality. Blue Sky funding may not be required for the project to proceed but would support the financial viability of the project. Fort George is committed to installing solar and if they are able to finance what is needed to actualize the project with grants and out-of-pocket funds, the project will be installed without Blue Sky.

C. COMMUNITY BENEFITS AND BLUE SKY EXPOSURE

- **Community Benefits.** In addition to supporting the state's efforts for reduction of greenhouse gas emissions, Fort George is a leader in the economic revitalization of Astoria. Fort George works with local contractors on all of its projects, including the proposed solar installation. In the short-run, savings from the project will be used towards paying off the non-grant funded costs of the system. In the long-run, Fort George hopes to find innovative ways to use the savings in their community engagement and in supporting Astoria's economic growth.
- Educational Benefits. This project will be the first of its kind in the area. Signage will educate Fort George's customers about the benefits of solar energy and communicate the availability of Blue Sky. A public facing production monitoring website will be available and communicate environmental impacts, raising awareness of the importance and value of solar energy. The community will be invited to regular events held annually that will include education about solar energy and the project. Fort George will also reach out to local college administrators to provide educational opportunities relating to the benefits and career opportunities in solar power and renewable energy.
- **Community Leadership.** Fort George is a cultural and economic leader in the Astoria community, and the brewery serves as a hub of community activities. The brewery has been intentionally developed as a welcoming and beneficial space for all community members, including employees. The brewery hosts community benefit nights with local nonprofits, community education lectures, and collaborative beer projects that raise awareness and funds for nonprofits. Additionally, Fort George has a dedicated commitment to sustainability as a company and advocates for regional sustainability in the fermentation industry. Fort George submitted letters of support from Solar Oregon, Sustainable Northwest, and Skyline Energy Consulting.
- **Diversity, Equity, and Inclusion.** Astoria is a rural and low-income community, and Fort George serves all members of the community. Fort George's mission is to be a positive force for community and provide a safe, opportunity-rich workplace. They value and seek to employ individuals from diverse backgrounds.
- Blue Sky Recognition & Exposure. The project will provide Blue Sky recognition via onsite signage, a public facing production monitoring website, marketing on social media, newsletter and website posts, materials, and presentations at community events, and in any additional outreach that is developed. The applicant is also considering a large sign on the side of the building that faces Hwy 101, which would provide significant exposure. The solar array will be highly physically visible from various points in town, including from the Astoria-Megler Bridge. Fort George is a Blue Sky luminary partner. The Blue Sky participation rate in the region is 16%.

September 16, 2022

To: Blue Sky Community Projects application review committee

Please find the following supporting documents for the grant application:

- Signed Certification page
- Letters of Support for the proposed project
- Pacific Power Interconnection Review Report
- Quote from Advanced Energy Systems with cost breakdown into the following categories: design/engineering, equipment, labor, permits, other
- Photos of the site from different vantage points
- Solar access report
- Energy production estimate
- Site plan showing the locations of major equipment, point of interconnection, and any trenching required
- Project development schedule showing major milestones (permitting complete, procurement, construction start and end, commissioning
- One-line electrical diagram
- Structural engineering drawings and calculations, and recommendations for building structural upgrades, if applicable
- Equipment specifications
- Installer qualifications and/or resume of the project lead (years of experience, number of similar systems installed, relevant licenses and certifications)

F. Cert	ifications
The appl	icant certifies to each of the following (check all that are applicable):
\boxtimes	I certify that the host organization owns the property or has a long-term lease agreement that allows for the installation of the proposed project.
\boxtimes	I certify that the host organization has operating funds and capacity necessary to complete and maintain the proposed project.
\boxtimes	I certify that in preparation for submitting this application I have reviewed the applicant as well as the award recipient requirements, understand that should this project be awarded funding, my organization will be able to meet the award recipient requirements as described on the Pacific Power website.
\boxtimes	I attest that the information provided above responding to this application is both accurate and current.
\boxtimes	I understand that submitting an application in no way obligates Pacific Power to provide funding and that funds are distributed at the sole discretion of Pacific Power.

Signatures

The application form must be returned as a Microsoft Word document, but please feel free to provide your signed certification page in a separate document as a PDF or image file.

Signature	DocuSigned by:
Date	92 TEX THE TO ETTE 47 X. PDT
Printed Name	Renee hohnson text.
Title	SuiskaienabioleityerDexector
Organization	EDick George Bieewery + Public House
Contact number	9714-7235to 55146text.

If this request is being submitted by multiple parties or a party other than the host, please indicate below by providing the party's name, title and contact information. The project host/owner must approve the submittal on their behalf through signature demonstrating that the all parties linked to installation have reviewed the application and support the project.

Signature	DocuSigned by:
Date	9/16/26706880468. 9/16/2022 14:33:24 PDT
Printed Name	Chick Herelowinter text.
Title	PCtestident to enter text.
Organization	Edicit lGeorgerBrewerty
Contact number	59371915t355ter text.

August 31, 2022

To Whom it May Concern:

Fort George Brewery & Public House is always looking for ways to be more efficient, reduce the size of our carbon footprint, and help make Astoria a better place. We plan to install a sizeable solar array and two additional EV chargers at our waterfront location.

We believe that the adoption renewable power and electric vehicles as a transportation choice is critical in stemming the CO2 emissions that contribute to climate change and we intend to promote this choice strongly. As such, I am highly supportive of installing a 560 KW system and two EV charging stations at our new warehouse & tap-house facility to support both customers and our new company EV vehicles.

The highly visible location will enable us to provide numerous educational opportunities and promote the Blue Sky program widely. We would appreciate assistance in getting this project off the ground as we continue to work towards a post-pandemic recovery.

This application process has put us in touch with several folks at USDA and ETO that have encouraged additional resiliency measures. As is often the case with projects at Fort George, we fully expect this project to evolve to include additional battery storage and any other resiliency measures that will help us to be more self sufficient and serve the community.

Sincerely,

Chris Nemlowill Owner Fort George Brewery & Public House 70 W. Marine Dr. / 1483 Duane St. Astoria, OR 97103

September 13, 2022

Renée Johnson Sustainability Director Fort George Brewery + Public House Astoria, Oregon 97103 Email: renee@fortgeorgebrewery.com

RE: Pacific Power Blue Sky Grant Letter of Support from Sustainable NW

Ms. Johnson,

Solar Oregon is a non-profit organization based on Portland, Oregon supporting solar energy education. We lead tours, deliver workshops, advocate for pro-solar policies to help homeowners and communities navigate and accelerate the development of solar energy in Oregon and southwest Washington over the last 36 years.

SOLAR OREGON MISSION: to lead the way to a clean energy future where human prosperity is achieved through efficient technology and renewable energy.

SOLAR OREGON VISION: Incorporate solar design as a standard in the built environment to lead the nation with a clean energy economy.

Recognizing that business, local governments and non-profit organizations all play a major role in reducing our energy footprint, Solar Oregon reaches out to the professional and corporate community. Together, we are building a body of people, knowledge and success that benefits all Oregonians.

Solar Oregon could not achieve our mission alone and we appreciate our partners, especially those that show a commitment to solar education and

renewable energy leadership in the rural parts of our beautiful state. The Solar Oregon Board whole-heartedly supports selection of Fort George Brewery + Public House for a 2022 Blue Sky Grant from Pacific Power to support a landmark solar installation and solar education opportunities at their Astoria facility.

The attached photo was taken at a Solar Drinks and Information Session sponsored by Solar Oregon in August of 2017.

The Community panel included representatives from OSEIA, The Energy Trust of Oregon, and Energy Solutions and sparked conversations about renewables integration in Clatsop County.

Many thanks for your consideration of Fort George's application to your important program that is providing renewable power access in rural Oregon communities.

Best,

Kelly you

Kelly Yearick, Past President

September 12, 2022

Renée Johnson Sustainability Director Fort George Brewery + Public House Astoria, OR 97103 renee@fortgeorgebrewery.com

RE: Letter of Support Fort George Brewery + Public House to Pacific Power

Ms. Johnson,

<u>Sustainable Northwest</u> is pleased to provide this letter of support for the Fort George Brewery Pacific Power Blue Sky grant application. Sustainable Northwest brings entrepreneurial solutions to natural resource challenges to keep lands healthy and provide economic and community benefits. We believe a healthy economy, environment, and community are indivisible, and that all are strengthened by wise partnerships, policies, and investments.

Founded in 1994, our work focuses on forests, farms, and ranches; clean energy; water; and green markets throughout the Greater Northwest. Through this broad spectrum of work, we help to ensure both rural communities and urban centers have healthy landscapes, resilient economies, and engaged communities. We work on the ground in communities, collaborating to create long-term benefits.

To achieve our vision of healthy and resilient communities, strong economies and a healthy environment we must place equity at the center of our work. As we emphasize the indivisible link between economy and ecology, we are mindful that our efforts will only prosper through partnerships, programs, and policies that celebrate diversity, inclusion, equity, and justice.

We have reviewed Fort George Brewery + Public House application for the 2022 Pacific Power Blue Sky Grant and believe their project is aligned with Sustainable Northwest's mission. Sustainable Northwest supports truly equitable projects and opportunities for renewables options especially in our rural and underserved communities including Astoria, Oregon. We hold our work and partnerships to the same expectations and values we hold ourselves.

We commit to:

- Supporting economic opportunities that benefit challenged communities and setting small businesses up for success in competitive markets,
- Advocating for policies that maximize benefits to local communities and underserved populations,
- Convening and assisting collaborative processes that elevate diverse perspectives, and resetting the table when power imbalances are recognized, Enhancing the capacity of rural, place-based organizations,
- Constant learning, listening, and course corrections.

Thank you for your consideration of the Fort George Blue Sky Grant application. This project is in full alignment with our vision for a resilient, sustainable rural Oregon. We support this project and look forward to a future with more renewable energy installations developed in lower socioeconomic areas of Oregon.

Sincerely,

Greg Block, President Sustainable Northwest

September 8, 2022

Renée Johnson Sustainability Director Fort George Brewery + Public House Astoria, Oregon 97103 Via email: renee@fortgeorgebrewery.com

RE: Fort George Brewery + Public House 2022 Pacific Power Blue Sky Funding Application

Renee,

It is with great enthusiasm that I write this letter of support for Fort George's application to install solar and participate in Pacific Power's Blue Sky program. I have lived in Astoria since 2015 and have seen very few renewables projects emerge on the Oregon Coast. There is a misperception that it rains here therefore maybe solar is not the right fit. Yet, my 10-kW system installed in 2015 works well, provides green power for my home, and is visible in the neighborhood. Unfortunately, with the exception of just a couple smaller systems (e.g. at Clatsop Community College) there are few examples of renewables to encourage other adopters. Even the Astoria School Board passed on the opportunity to size systems for installation at Lewis and Clark Elementary and Astoria High School when the community passed our recent Bond measure.

We need more early and visible adopters like Fort George to initiate renewables conversations in rural NW Oregon. Fort George's proposal includes a great location for solar and the company offers multiple, well-attended annual events and festivals to further support renewable energy education for the community. Fort George is truly a community hub.

As the owner of the Astoria-based renewable energy and environmental consulting firm 7Skyline, LLC (<u>www.7Skyline.com</u>) I have voluntarily provided a preliminary environmental screening for the project. With the exception of the potential for temporary traffic impacts during construction that can be mitigated, the project should not have any significant environmental impacts and would be a great addition to our downtown.

Please help us encourage more green power in Clatsop County and support one of our most important, community-minded employers in the region by selecting Fort George for Blue Sky.

Sincerely,

Wi

Jen Rouda Principal Consultant 7Skyline, LLC 7 Skyline Place Astoria, Oregon 97103 510-225-8330 jennifer@7skyline.com

Level 2 Interconnection Review Report

Completed for FORT GEORGE BREWERY & PUBLIC HOUSE ("Applicant")

Proposed Interconnection On PacifiCorp's Existing 12.47-kV Circuit, 5A205 (Facility Point: 01208009.0077481)

4/21/2022

TABLE OF CONTENTS

DESCRIPTION OF THE GENERATING FACILITY	2
APPROVAL CRITERIA FOR LEVEL 2 INTERCONNECTION REVIEW	2
PROPOSED POINT OF INTERCONNECTION	2
TIER 2 INTERCONNECTION REVIEW RESULTS	2
4.1 860-039-0035(2) (A)	2
4.4 860-039-0035 (2) (D)	3
4.6 860-039-0035 (2) (F)	4
4.7 860-039-0035 (2) (G)	4
4.8 860-039-0035 (2) (н)	5
4.9 860-039-0035 (2) (I)	5
)	APPROVAL CRITERIA FOR LEVEL 2 INTERCONNECTION REVIEW PROPOSED POINT OF INTERCONNECTION

1.0 DESCRIPTION OF THE GENERATING FACILITY

FORT GEORGE BREWERY & PUBLIC HOUSE ("Applicant") has proposed interconnecting 559.81 kW DC of new generation to PacifiCorp's ("Electric Company") existing 12.47-kV Circuit, 5A205, located in ASTORIA, OR. The Applicant's generation project will provide a nameplate output of 425 kW of AC generation.

2.0 APPROVAL CRITERIA FOR LEVEL 2 INTERCONNECTION REVIEW

Pursuant to 860-039-0035(1) An Electric Company must apply the following Level 2 interconnection review procedure for an application to interconnect an eligible system that meets the following criteria:

- (a) The facility has a capacity of two megawatts or less; and
- (b) The facility does not qualify for or failed to meet applicable Level 1 interconnection review procedures.

3.0 PROPOSED POINT OF INTERCONNECTION

The proposed generation facility is to be interconnected to the existing 5A205 Circuit (12.47-kV), out of Youngs Bay Substation. The Applicant is looking to interconnect to facility point number 01208009.0077481.

4.0 TIER 2 INTERCONNECTION REVIEW RESULTS

4.1 860-039-0035(2) (a)

The aggregate generation capacity on the distribution circuit to which the net metering facility will interconnect, including the capacity of the net metering facility, will not cause any distribution protective equipment (including, but not limited to, substation breakers, fuse cutouts, and line reclosers), or customer equipment on the electric distribution system, to exceed 90 percent of the short circuit interrupting capability of the equipment. In addition, a net metering facility will not be connected to a circuit that already exceeds 90 percent of the short circuit interrupting capability, prior to interconnection of the facility.

Project fails review criteria?: False

These calculations use a generation power factor of 0.95, a single-phase fault current multiplier of 5, a three-phase fault current multiplier of 3, and line-to-line primary voltage of 12.47 kV.

Existing single-phase private generation: 31 kW. Single-phase current produced on primary during normal operation: 4.53 Amps. Single-phase current produced on primary during a fault condition: 22.7 Amps.

Existing three-phase private generation: 12 kW. Three-phase current produced on primary during normal operation: 0.58 Amps. Three-phase current produced on primary during a fault condition: 1.8 Amps.

Current produced by proposed generation system on primary: 20.71 Amps.

Current produced by proposed generation system on primary during a fault condition: 62.1 Amps.

Total fault current: 86.6 Amps.

The limiting distribution protective equipment is a single phase fuse cutout, with a rating of not less than 8000 Amps.

8000 x 0.9 = 7,200.0 Amps.

4.2 860-039-0035 (2) (b)

If there are posted transient stability limits to generating units located in the general electrical vicinity of the proposed point of common coupling, including, but not limited to within three or four transmission voltage level busses, the aggregate generation capacity, including the net metering facility, connected to the distribution low voltage side of the substation transformer feeding the distribution circuit containing the point of common coupling will not exceed 10 megawatts.

Project fails review criteria?: False

Are there posted transient stability limits to generation?: No

Aggregate single-phase generation on feeder: 31 kW Aggregate three-phase generation on feeder: 12 kW Proposed generation system: 425 kW

Total generation on circuit (existing and proposed): 468 kW Generation limit: 10 MW

4.3 860-039-0035 (2) (c)

The aggregate generation capacity connected to the distribution circuit, including the net metering facility, will not contribute more than 10 percent to the distribution circuit's maximum fault current at the point on the high voltage (primary) level nearest the proposed point of common coupling.

Project fails review criteria?: False

Fault current at the point of interconnection without the contribution of customer generation = 2242Fault current at the point of interconnection with the contribution of customer generation included = 2320

(2320 Amps - 2242 Amps) / 2242 Amps x 100 = 3.48%

4.4 860-039-0035 (2) (d)

If a net metering facility is to be connected to a radial distribution circuit, the aggregate

generation capacity connected to the electric distribution system by non-public utility sources, including the net metering facility, will not exceed 10 percent (or 15 percent for solar electric generation) of the total circuit annual peak load. For the purposes of this subsection, annual peak load will be based on measurements taken over the 12 months previous to the submittal of the application, measured for the circuit at the substation nearest to the net metering facility.

Project fails review criteria?: True

Peak load on circuit 5A205: 3100 kW

Percentage of peak load for comparison (use 15% for solar, 10% for other generation types): 465 kW

Total customer generation on circuit (existing and proposed): 468 kW

4.5 860-039-0035 (2) (e)

If a net metering facility is to be connected to three-phase, three wire primary public utility distribution lines, a three-phase or single-phase generator will be connected phase-to-phase.

Project fails review criteria?: False

Circuit 5A205 is Three-Phase, Four Wire. Generation is connected phase-to-phase?:

4.6 860-039-0035 (2) (f)

If a net metering facility is to be connected to three-phase, four wire primary public utility distribution lines, a three-phase or single-phase generator will be connected line-to-neutral and will be effectively grounded.

Project fails review criteria?: True

This review item refers to a customer generation facility's ability to manage a transient overvoltage condition. This can be accomplished by using a qualified inverter or by effectively grounding the generation system.

IEEE 1547.7 guidelines indicate this review item may be waived if the aggregate customer generation is less than 10% of the circuit's Light Load (for solar generation, the Daytime Light Load is used).

Light Load = 700 kW 10% of Light Load = 70 kW Sum of customer generation (existing and proposed): 468 kW

Transient overvoltage management has been achieved for this installation, either through the use of a qualified inverter or by the addition of an effective grounding system?: False

4.7 860-039-0035 (2) (g)

If a net metering facility is to be connected to a single-phase shared secondary, the aggregate generation capacity on the shared secondary, including the net metering facility, will not exceed 20 kilovolt-amps.

Project fails review criteria?: False

Phasing of this installation: Three Phase Existing customer generation on the secondary: 0 kW Review item has been cleared by Engineering?:

4.8 860-039-0035 (2) (h)

If a net metering facility is single-phase and is to be connected to a transformer center tap neutral of a 240 volt service, the addition of the net metering facility will not create a current imbalance between the two sides of the 240 volt service that is greater than 20 percent of the nameplate rating of the service transformer.

Project fails review criteria?: False

This review item refers to connecting a single-phase 120 V inverter on a single-phase 240 V service.

Phasing of this installation: Three Phase Voltage of this installation: 480V Existing load on service transformer: kW

4.9 860-039-0035 (2) (i)

A net metering facility's point of common coupling will not be on a transmission line.

Project fails review criteria?: False

This installation will interconnect on distribution circuit 5A205.

4.10 860-039-0035 (2) (j)

If an eligible system's proposed point of common coupling is on a spot or area network, the interconnection must meet the following additional requirements:

A) For a net metering facility that will be connected to a spot network circuit, the aggregate generation capacity connected to that spot network from the net metering facilities, and any generating facilities, will not exceed five percent of the spot network's maximum load;

(B) For a net metering facility that utilizes inverter-based protective functions, which will be connected to an area network, the net metering facility, combined with any other generating facilities on the load side of network protective devices, will not exceed 10 percent of the minimum annual load on the network, or 500 kilowatts, whichever is less. For the purposes of this paragraph, the percent of minimum load for solar electric

generation net metering facility will be calculated based on the minimum load occurring during an off-peak daylight period; and

(C) For a net metering facility that will be connected to a spot or an area network that does not utilize inverter-based protective functions, or for an inverter-based net metering facility that does not meet the requirements of paragraphs (A) or (B) of this subsection, the net metering facility will utilize low forward power relays or other protection devices that ensure no export of power from the net metering facility, including inadvertent export (under fault conditions) that could adversely affect protective devices on the network.

Project fails review criteria?: False

Circuit 5A205 is a Radial circuit.

Sum of customer generation (existing and proposed): 468 kW

Peak load on circuit 5A205: 3100 kW 5% of peak load on circuit : 155.0

Technology type of proposed generating facility: Inverter Light Load = 700 kW 10% of Light Load = 70 kW

Turning tax liability into renewable energy

Fort George Brewery - Distribution Facility

Site Location: 70 West Marine Drive Astoria, Oregon 97103

560 KW Solar Electric System

8 Deg. South Tilt-Rack Array

Presented by Justin Wilbur Tuesday, March 29, 2022

Since 2002 Advanced Energy Systems has completed hundreds of solar energy installations throughout the state. Our clients include private commercial, industrial, and residential customers, as well as local, state and federal agencies. We provide a turn-key solution including site evaluation, energy analysis, grant writing, tax incentive analysis, engineering, custom design, project management, installation, and service. Advanced Energy Systems is an Oregon-based company. www.AESrenew.com

Confidentiality Notice: This document is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, please contact the sender, and destroy all copies of the original document.

Advanced Energy Systems • 65 Centennial Loop, Eugene, OR 97401 • 541-683-2345 • www.aesrenew.com • CCB 160523

To: Chris Nemlowill Fort George Brewery - Distribution Facility 70 West Marine Drive Astoria, Oregon 97103

560 KW Solar Electric System

System Description:

A 560 kW PV power system, including REC 445AA watt solar modules, a customized racking system, stainless steel module fastening hardware, 5 Solaredge SE100KUS (480) inverter(s), live solar monitoring web page and all necessary conduit, wire, fuses and disconnects for an NEC-compliant system. Permit fees and utility paperwork included.

	Total Cost Installed		\$1,318,220
	Less Tax Credit & Incentive:		
	Federal Investment Tax Credit (ITC)	(342,737)	
	Blue Sky Grant at \$100,000	(100,000)	
	USDA REAP Grant	(329,555)	
	Available Federal & State Depreciation Benefits	(531,902)	
	Total Tax Credit & Incentive	(\$1,304,194)	
	Installed Net Cost Sub-Total	-	\$14,026
	Income Benefit		
	35 Year Energy Savings	(2,092,739)	
	Net System Balance	-	(\$2,078,713)
Cost Detail:			
Design / Engineering	\$1,820		
Equipment	\$912,591		
Labor	\$396,419		
Permits	\$7,390		
Other	\$0		

Confidentiality Notice: This document is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, please contact the sender, and destroy all copies of the original document.

Advanced Energy Systems • 65 Centennial Loop, Eugene, OR 97401 • 541-683-2345 • www.aesrenew.com • CCB 160523

	System Cost	Energy Tax Credit	MACRS Ta	x Deductions	Net Tax Benefits	Pacific Power	USDA	System Revenue	Net Ca	sh Flow
(ear	Cash Outflow	Federal Investment Tax Credit	Federal Depreciation @ 35% Tax Rate	State Depreciation @ 9.9% Tax Rate	Net Credits	Blue Sky Grant	REAP Grant	Annual Energy Savings	Cash Flow	Net Cash Balance
2021	(\$1,318,220)	\$342,737	\$251,054	\$17,596	\$611,386	\$100,000	\$329,555	\$40,274	(\$237,005)	(\$237,005
2022				28,153	28,153			41,162	69,315	(167,690
2023				16,892	16,892			42,070	58,962	(108,728
2024				10,135	10,135			42,999	53,134	(55,594)
2025				10,135	10,135			43,947	54,082	(1,511)
2026				5,068	5,068			44,917	49,985	48,473
2027								45,908	45,908	94,381
2028								46,921	46,921	141,302
2029								47,956	47,956	189,259
2030								49,014	49,014	238,273
2031								50,096	50,096	288,369
2032								51,201	51,201	339,570
2033								52,331	52,331	391,901
2034								53,486	53,486	445,386
2035								54,666	54,666	500,052
2036								55,872	55,872	555,924
2037								57,105	57,105	613,028
2038								58,364	58,364	671,393
2039								59,652	59,652	731,04
2040								60,968	60,968	792,013
2041			Summary					62,314	62,314	854,327
2042								63,688	63,688	918,010
2043	li li	nitial System Cost		(\$1,318	3,220)			65,094	65,094	983,10
2044				•				66,530	66,530	1,049,63
2045	Т	otal Tax Credits		681,7	69			67,998	67,998	1,117,63
2046		REAP Grant		329,5				69,498	69,498	1,187,13
2047		Blue Sky Grant		100,0				71,032	71,032	1,258,16
2048								72,599	72,599	1,330,76
2049	3	5 Year Total Energy Saving	IS	2,092,	739			74,201	74,201	1,404,96
2050								75,838	75,838	1,480,80
2051	N	let System Benefit		\$1,885	,843			77,511	77,511	1,558,31
2052				. ,				79,221	79,221	1,637,53
2053	F	Project IRR		23.6	<mark>%</mark>			80,969	80,969	1,718,50
2054		Simple Payback		6 Ye				82,756	82,756	1,801,26
2055	-							84,582	84,582	1,885,84

Fort George Brewery - Distribution Facility - 560 KW Solar Electric System Period Cash Flow (with BlueSky and USDA REAP Grants)

The enclosed figures are shown for discussion purposes only. Please consult with your financial advisor to determine the applicability of all tax credits, tax incentives, energy grants and rebates as your particular financial circumstances may be different from our assumptions. Incentives and rebates may be taxable in some cases. Credits, tax incentives, grants and rebates are subject to availability and are not guaranteed. This document is for the sole use of the intended recipient(s) and may contain proprietary and confidential information.

	System Cost	Energy Tax Credit	MACRS Tax	Deductions	Net Tax Benefits	USDA	System Revenue	Net Ca	sh Flow
ear	Cash Outflow	Federal Investment Tax Credit	Federal Depreciation @ 35% Tax Rate	State Depreciation @ 9.9% Tax Rate	Net Credits	REAP Grant	Annual Energy Savings	Cash Flow	Net Cas Balanc
2021	(\$1,318,220)	\$342,737	\$286,054	\$19,576	\$648,366	\$329,555	\$40,274	(\$300,025)	(\$300,02
2022				31,321	31,321		41,162	72,483	(227,54
2023				18,793	18,793		42,070	60,863	(166,67
2024				11,276	11,276		42,999	54,274	(112,40
025				15,034	15,034		43,947	58,981	(53,42
026				7,517	7,517		44,917	52,434	(989)
027							45,908	45,908	44,919
2028							46,921	46,921	91,840
029							47,956	47,956	139,79
2030							49,014	49,014	188,81
031							50,096	50,096	238,90
2032							51,201	51,201	290,10
033							52,331	52,331	342,43
2034							53,486	53,486	395,92
2035							54,666	54,666	450,59
036							55,872	55,872	506,46
2037							57,105	57,105	563,56
2038							58,364	58,364	621,93
2039							59,652	59,652	681,58
2040							60,968	60,968	742,55
2041			Summary				62,314	62,314	804,86
2042							63,688	63,688	868,55
2043	Ini	tial System Cost		(\$1,318	3,220)		65,094	65,094	933,64
2044							66,530	66,530	1,000,1
2045	Тс	tal Tax Credits		732,3	306		67,998	67,998	1,068,1
2046	RE	EAP Grant		329,5	555		69,498	69,498	1,137,6
2047							71,032	71,032	1,208,7
2048							72,599	72,599	1,281,3
2049	35	Year Total Energy Saving	S	2,092,	739		74,201	74,201	1,355,5
2050							75,838	75,838	1,431,3
051	Ne	et System Benefit		\$1,836	,381		77,511	77,511	1,508,8
052							79,221	79,221	1,588,0
2053	Pr	oject IRR		19.0	<mark>)%</mark>		80,969	80,969	1,669,0
2054	Si	mple Payback		7 Ye	ars		82,756	82,756	1,751,7
2055							84,582	84,582	1,836,3

Fort George Brewery - Distribution Facility - 560 KW Solar Electric System Period Cash Flow (with USDA REAP Grant)

The enclosed figures are shown for discussion purposes only. Please consult with your financial advisor to determine the applicability of all tax credits, tax incentives, energy grants and rebates as your particular financial circumstances may be different from our assumptions. Incentives and rebates may be taxable in some cases. Credits, tax incentives, grants and rebates are subject to availability and are not guaranteed. This document is for the sole use of the intended recipient(s) and may contain proprietary and confidential information.

Turning tax liability into renewable energy

Fort George Brewery - Distribution Facility - 560 KW Solar Electric System

Energy Savings

First Year Savings 615,231 kWh First Year Savings x \$0.065 From Pacific Power = **\$40,274 Savings** 35 Year Energy Savings 19,799,541 kWh at 2.7% Energy Rate Inflation

= \$2,092,739 Total Savings

Environmental Benefits

During its lifetime, this system will offset:

Annual Usage

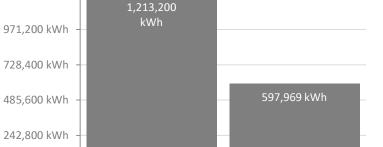
kWh

1,214,000 kWh

14,315.1 Tons of CO2

Which is the equivalent to the conservation of:

207,210 Trees


or. . .

909,030 Gallons of Gasoline

Utility Provided Energy Offset by Solar: 51%

Electrical Usage & Solar Production

Before Solar

After Solar

Total Electricity Usage (est.)

Energy Offset from 560 KW Solar Electric System

Confidentiality Notice: This document is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, please contact the sender, and destroy all copies of the original document.

Advanced Energy Systems • 65 Centennial Loop, Eugene, OR 97401 • 541-683-2345 • www.aesrenew.com • CCB 160523

Notes:

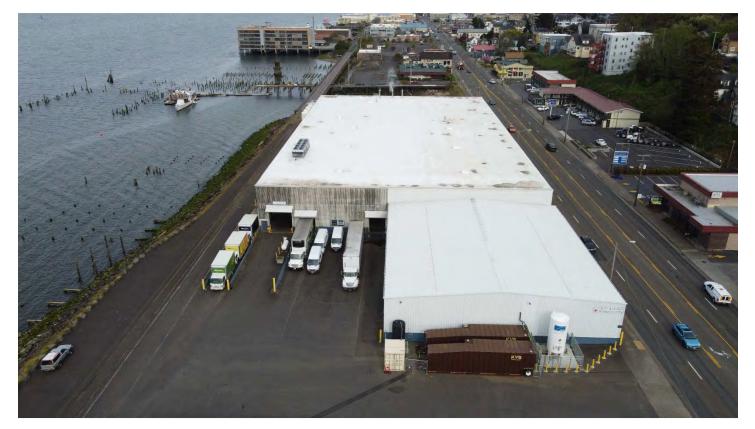
Notes - Proposal:

1. The prices quoted are valid through May 31, 2022.

2. A negative Net System Balance occurs when the combination of the tax credit, allowable depreciation, electric utility grant, and energy savings exceed the installed system cost over the 35 year system life. This represents an expected positive return. The tax credit and depreciation benefits are subject to eligibility and must be verified by your Financial Advisor.

3. The Federal Investment Tax Credit (ITC) can be carried back one year, taken in the first year, and carried forward until used up.

4. The MACRS Depreciation is calculated at the Federal tax rate and an Oregon tax rate listed in the financial summaries. Please check with your Financial Advisor to verify tax rates and adjust if necessary. System cost basis for depreciation purposes is reduced by 50% of ITC. The cost basis for depreciation also has any cash grants (USDA and BlueSky) deducted from system cost.


5. The system will require electrical and structural engineering reports to verify feasibility. These reports are required for obtaining permits. The costs of these reports are included in the total system cost quoted above. The cost estimates in this proposal assume standard installation techniques applicable to most buildings. If engineering determines structural or electrical upgrades are necessary to meet current building codes, the cost of the upgrades will be presented as a change order. Additional cost from change orders is also eligible for tax credits and depreciation benefits to the system owner.

6. Live web based monitoring requires an owner supplied connection to the internet no farther than 25 feet distance from the Solar Inverter. The monitoring system sends energy production data out to the solar monitoring database. This data is then accessed from an internet connected computer, website, or kiosk instantly.

7. The USDA REAP Grant and Pacific Power Blue Sky Grant are competitively awarded, and not guaranteed.

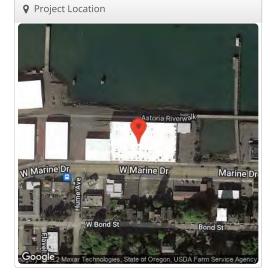
Confidentiality Notice: This document is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, please contact the sender, and destroy all copies of the original document.

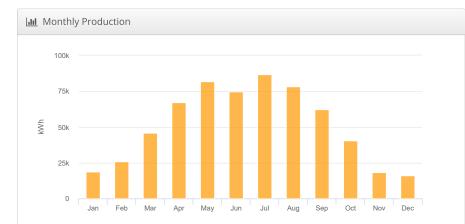
Photos of the Site

View from the west

Electrical Room, View from the south

View from the southeast


North Side of the building



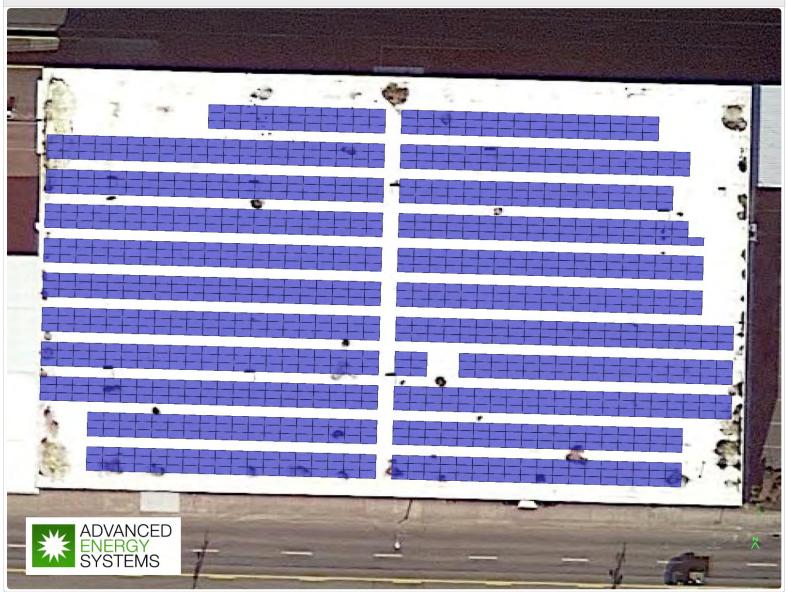
8 deg tilt - 560 kW USDA REAP Fort George Brewery, 70 West Marine Drive Astoria, Oregon 97103

🖋 Report	
Project Name	Fort George Brewery
Project Address	70 West Marine Drive Astoria, Oregon 97103
Prepared By	AES Design info@aesrenew.com

Lill System Metrics					
Design	8 deg tilt - 560 kW USDA REAP				
Module DC Nameplate	559.8 kW				
Inverter AC Nameplate	437.5 kW Load Ratio: 1.28				
Annual Production	615.2 MWh				
Performance Ratio	85.9%				
kWh/kWp	1,099.0				
Weather Dataset	TMY, 10km Grid (46.15,-123.85), NREL (prospector)				
Simulator Version	5059dd9741-c5e0721255-7687e1d04d- 81a823811a				

• Sources of System Loss

	Description	Output	% Delta
	Annual Global Horizontal Irradiance	1,204.5	
	POA Irradiance	1,279.3	6.2%
Irradiance	Shaded Irradiance	1,270.9	-0.7%
(kWh/m²)	Irradiance after Reflection	1,223.4	-3.7%
	Irradiance after Soiling	1,198.9	-2.0%
	Total Collector Irradiance	1,198.9	0.0%
	Nameplate	671,570.8	
	Output at Irradiance Levels	664,124.4	-1.1%
	Output at Cell Temperature Derate	662,739.0	-0.2%
Energy	Output After Mismatch	635,319.4	-4.1%
(kWh)	Optimal DC Output	633,827.2	-0.2%
	Constrained DC Output	630,892.6	-0.5%
	Inverter Output	618,313.6	-2.0%
	Energy to Grid	615,222.0	-0.5%
Temperature	Metrics		
	Avg. Operating Ambient Temp		11.1 °C
	Avg. Operating Cell Temp		17.4 °C
Simulation M	etrics		
		Operating Hours	4638
		Solved Hours	4638


Condition Set														
Description	Con	dition	Set ′	I										
Weather Dataset	TMY, 10km Grid (46.15,-123.85), NREL (prospector)													
Solar Angle Location	Meteo Lat/Lng													
Transposition Model	Perez Model													
Temperature Model Sandia Model														
	Rac	< Туре	9		a	a	b			Гетре	rature	Delta		
Temperature Model Parameters	Fixe	d Tilt			-	3.56	-0.0	75		3°C				
	Flus	h Mo	unt		-	2.81	-0.0455			0°C				
Soiling (%)	J	F	м		A	М	J	J	A	S	0	Ν	D	
	2	2	2	2		2	2	2	2	2	2	2	2	
Irradiation Variance	5%													
Cell Temperature Spread	4° C													
Module Binning Range	-2.59	% to 2	.5%											
AC System Derate	0.50%													
Module Characterizations		Module				Uploaded By			Characterization					
	REC (REC	445A/])	A 72			Folsom Labs		Spe PAN		eet Ch	aracte	rizatio	n,	
Component Characterizations	Dev	ice		Upl	oa	ided By			Cha	racteri	zation			

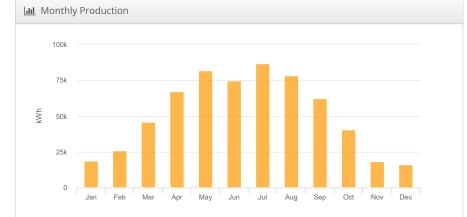
🔒 Components									
Component	Name	Count							
Inverters	Sunny Tripower_Core1 62-US-41 (SMA)	7 (437.5 kW)							
Strings	10 AWG (Copper)	77 (12,094.4 ft)							
Module	REC, REC445AA 72 (445W)	1,258 (559.8 kW)							

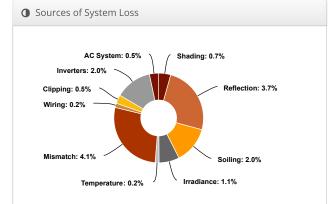
🛔 Wiring Zo	nes								
Description		Combiner Poles		Stri	ng Size	Stringing	Strategy		
Wiring Zone		-		4-1	7	Along Rac	king		
III Field Segr	ments								
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Power
Field Segment 1	Fixed Tilt	Landscape (Horizontal)	8°	181.58595°	4.5 ft	3x1	426	1,258	559.8 kW

Oetailed Layout

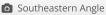
8 deg tilt - 560 kW USDA REAP Fort George Brewery, 70 West Marine Drive Astoria, Oregon 97103

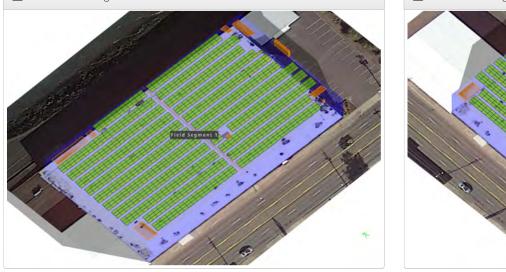
Shading Heatmap

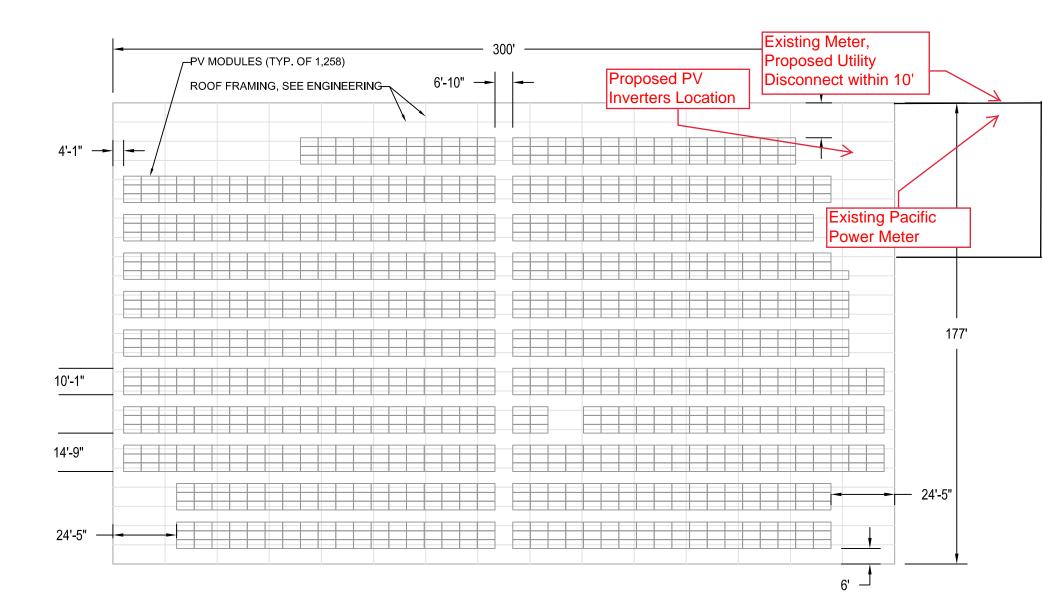

	1
Field Segment 1	
	1
1,296, (93%)	
1,190, (85%)	0
980, (70%)	N.

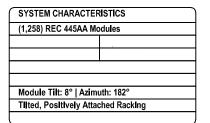

III Shading by Field Segment

Description	Tilt	Azimuth	Modules	Nameplat	e S	haded Irradia	ince	AC Energ	ξ γ	TOF ²	Solar Access	Avg	TSRF ²
Field Segment 1	8.0°	181.6°	1,258	559.8 kWp	o 1	,270.9kWh/m ²	2	615.2 M\	615.2 MWh ¹ 91		99.3%	90.7	7%
Totals, weighted by kWp			1,258	559.8 kWp	o 1	,270.9kWh/m	2	615.2 M\	Wh	91.3%	99.3%	90.7	7%
								² bas	ed on location Op	otimal POA Irradi	¹ approximate, v ance of 1,400.6kW	aries based on inv h/m ² at 36.1° tilt a	
III Solar Access by Mor	nth												
· · · · · · · · · · · · · · · · · · ·	nth	jan	feb	mar	apr	may	jun	jul	aug	sep	oct	nov	dec
Description	nth	jan 98%	feb 99%	mar 99%	apr 99%	may 99%	jun 99%	jul 99%	aug 100%	sep 100%	oct 99%	nov 99%	dec 98%
 Solar Access by Mor Description Field Segment 1 Solar Access, weighted by k 													


Shading Report produced by AES Design



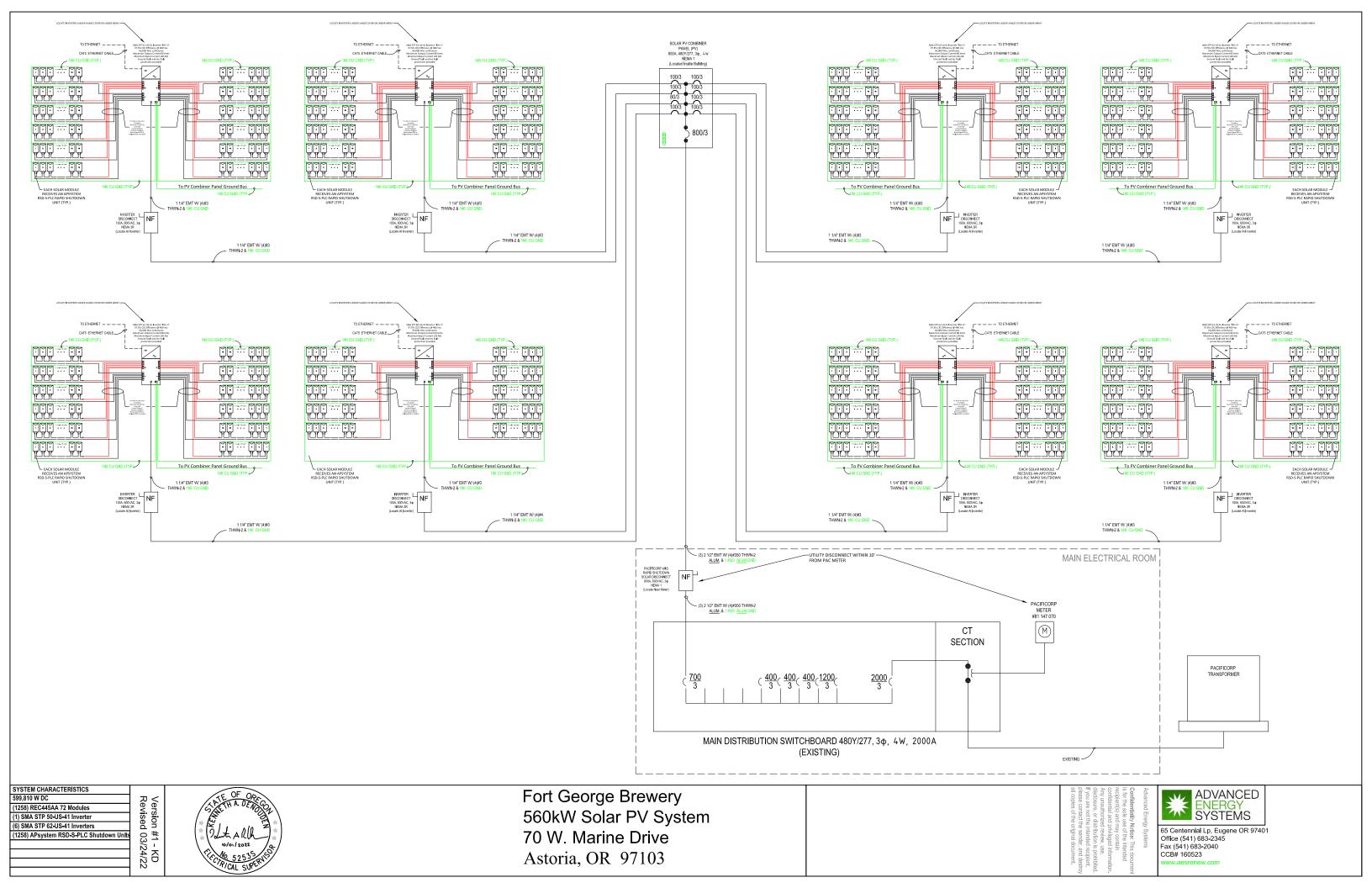



Field Segment 1

Fort George Brewery Distribution

560 kW Solar Energy System 70 West Marine Drive Astoria, Oregon 97103 Advanced Energy Systems©

Confidentiality Notice: This document is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, please contact the sender, and destroy all copies of the original document.



This design was created using solar energy.

65 Centennial Lp, Eugene OR 97401 Office (541) 683-2345 Fax (541) 683-2040 CCB# 160523

www.aesrenew.com

ID	Task Name	Duration	Start	Finish	2 Ma	Qtr 2, 2022 r Apr May Jun	Qtr 3, 2022	Qtr 4, 2022	Qtr 1, 2023	Qtr 2, 2023 ar Apr May Jur	Qtr 3, 202
1	Project Duration	377 days?	Thu 3/10/22	Fri 8/18/23							
2	Design Contract	4 days?	Thu 3/10/22	Tue 3/15/22	B		1	 	1		
3	Structural Engineering	7 days	Wed 3/16/22	Thu 3/24/22			 		1		
4	Electrical Engineering	7 days	Wed 3/16/22	Thu 3/24/22				1			
5	Contract	2 days	Tue 11/15/22	Wed 11/16/22	-	 	 				
6	Design and Permits	31 days	Mon 11/21/22	Mon 1/2/23					•		
7	Utility Interconnection	31 days	Mon 11/21/22	Mon 1/2/23				↓ ↓	11/21		
8	Permit Application / Review	24 days	Mon 11/21/22	Thu 12/22/22	1				1	<u> </u>	
9	Equipment Procurement	29 days	Fri 12/23/22	Wed 2/1/23							
10	Initiate Roofing Subcontract	2 days	Fri 12/23/22	Mon 12/26/22					12/23		
11	Award Subcontracts	7 days	Tue 1/3/23	Wed 1/11/23			1	 	1		
12	Procure PV Modules	22 days	Fri 12/23/22	Mon 1/23/23			1		*		
13	Procure Inverters	14 days	Tue 1/3/23	Fri 1/20/23			 	 	1		
14	Procure Racking System	22 days	Tue 1/3/23	Wed 2/1/23					1		
15	Procure Balance of System Electrical	15 days	Tue 1/3/23	Mon 1/23/23					1		
16	Installation	73 days?	Mon 5/8/23	Wed 8/16/23							
17	Mobilize at Site	2 days	Mon 5/8/23	Tue 5/9/23				- 		5/8	
18	Install Racking	45 days	Wed 5/10/23	Tue 7/11/23				 	 		
19	Install Inverters	20 days	Wed 5/31/23	Tue 6/27/23	-		1	 	1		
20	Install Rapid Shutdown Devices (RSD)	20 days?	Wed 5/31/23	Tue 6/27/23			1	 	 		
21	Install PV Modules	30 days	Wed 6/28/23	Tue 8/8/23			1	 	 		
22	Install Monitoring	6 days	Wed 8/9/23	Wed 8/16/23			 	 	 		🏌
23	Commissioning	8 days	Wed 8/9/23	Fri 8/18/23		 	 	 	 		
24	Start-up/Check-out System	1 day	Wed 8/9/23	Wed 8/9/23							
25	Substantial Completion	1 day	Thu 8/10/23	Thu 8/10/23							8 /
26	Final Permit Sign-off	4 days	Thu 8/10/23	Tue 8/15/23							
27	Utility Final Approval	1 day	Wed 8/16/23	Wed 8/16/23							8
28	Owner Training, O&M Manuals	2 days	Thu 8/17/23	Fri 8/18/23							i 🕇

CONSULTING STRUCTURAL ENGINEERS 86705 Pine Grove Road, Eugene, OR 97402 Phone (541) 912-3958 / Fax (541) 343-3401

STRUCTURAL CALCULATIONS

FORT GEORGE BREWERY DISTRIBUTION PHOTOVOLTAIC ARRAY ANCHORAGE

70 WEST MARINE DRIVE, ASTORIA, OR

Project Number 22-107

RENEWS: 6/30/2022

Prepared for

ADVANCED ENERGY SYSTEMS

MARCH 24, 2022

86705 Pine Grove Road, Eugene, OR 97402 (541) 912-3958

tructura - ource com

FORT GEORGE BREWERY DISTRIBUTION PHOTOVOLTAIC ARRAY ANCHORAGE

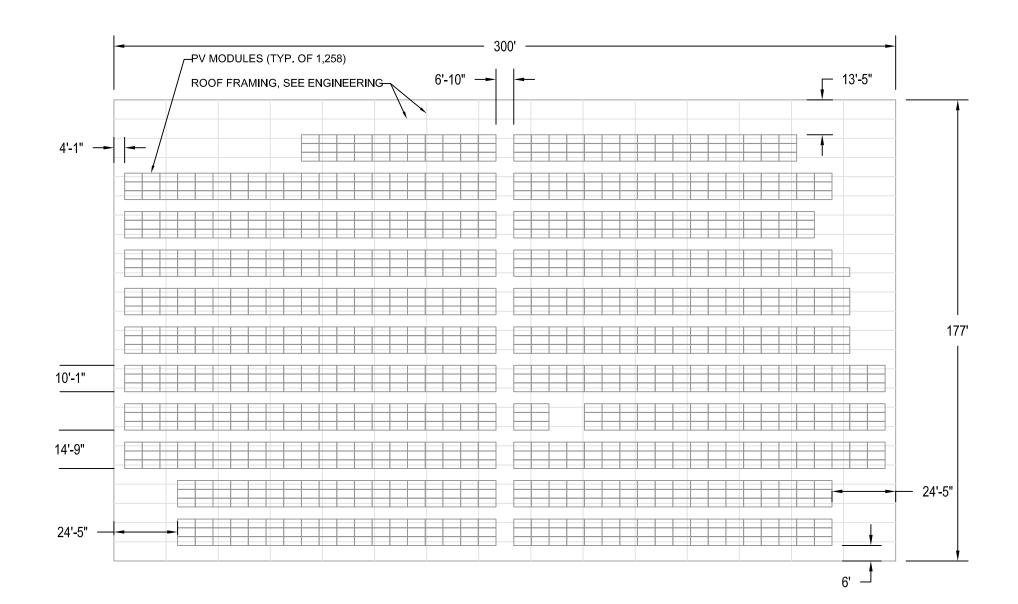
70 WEST MARINE DRIVE, ASTORIA, OR

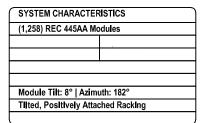
STRUCTURAL SUMMARY

A erie of ne photovo taic (PV) arra are propo ed to be attached to the roof of an exi ting ood-framed indu tria bui ding Ca cu ation and detai for anchorage of the arra to the roof are provided in thi engineering pac age Information from the origina tructura con truction document dated 5/11/60 ere u ed for the eva uation

The exi ting roof i framed ith 2X tongue and groove dec ing panning acro 4X14 pur in paced at 7 -4 on center hich are upported b g u am beam paced at 20 -0 on center The beam are configured in a three- pan arrangement There i a center ection ith a g u am beam that i upported b hinge connector at each end The t o end pan have arger g u am that canti ever into the center pan to pic up the centra g u am reaction Attached ca cu ation confirm that the exi ting framing i be acceptable to upport the additional oading from the propoled PV arra. A or able the tree is for the roof framing member of the uniform Building Code Excerpt from this code are included in this case and the tree to the

The PV arra i upported b a rac ing tem ith component manufactured b Sunmodo pecifica for thi purpo e Thi tem uti i e a erie for braced frame paced at 6-0 on center ith vertica anding direct on top of the 4X14 pur in Hori onta tee pipe beam pan from braced frame to braced frame A uminum rai are attached to the top of the pipe beam and the PV pane are c amped to the e rai Diagona brace are a o in ta ed para e to the pipe beam for atera tabilit. The vertica of the tem are tee pipe a o ith prefabricated ba e p ate. The e ba e p ate are ag bo ted direct into the top of the pur in for up ift re i tance.


A ide from the engineering item mentioned above, no further revie of the exi ting building tructure ha been performed b Structura Source at thi time


Regard,

KeinWilger

evin Wi ger, S E

Principa Structura Source, LLC

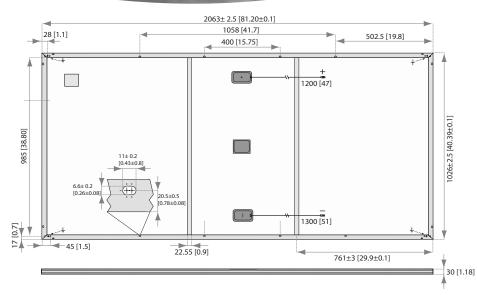
Fort George Brewery Distribution

560 kW Solar Energy System 70 West Marine Drive Astoria, Oregon 97103 Advanced Energy Systems©

Confidentiality Notice: This document is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, please contact the sender, and destroy all copies of the original document.

65 Centennial Lp, Eugene OR 97401 Office (541) 683-2345 Fax (541) 683-2040 CCB# 160523

www.aesrenew.com


REC ALPHX 72 SERIES

REC ALPHA 72 SERIES

GENERAL DATA

Cell type:	144 half-cut cells with REC heterojunction cell technology 6 strings of 24 cells in series	Conn
Glass:	0.13 in (3.2 mm) solar glass with anti-reflection surface treatment	Cabl
Backsheet:	Highly resistant polymeric construction	Dime
Frame:	Anodized aluminum	Weig
Junction box:	3-part, 3 bypass diodes, IP67 rated	Origi

ELECTRICAL DATA

Weig Orig Product Code*: RECxxxAA 72 Power Output - P_{MAX} (Wp) 430 435 Watt Class Sorting - (W) -0/+5 -0/+5 Nominal Power Voltage - V (V) 111 115

	Nominal Power Voltage - V _{MPP} (V)	44.1	44.5	44.8	45.3	45.6
STC	Nominal Power Current - I _{MPP} (A)	9.76	9.79	9.84	9.85	9.88
	Open Circuit Voltage - V _{oc} (V)	52.6	52.8	52.9	53.0	53.1
	Short Circuit Current - I _{sc} (A)	10.46	10.50	10.52	10.54	10.55
	Power Density (W/sq ft)	203.79	206.16	208.53	210.90	213.27
	Panel Efficiency (%)	20.3	20.6	20.8	21.0	21.3
	Power Output - P _{MAX} (Wp)	328	332	336	339	343
⊢	Nominal Power Voltage - V _{MPP} (V)	41.6	41.9	42.2	42.7	43.0
MO	Nominal Power Current - I _{MPP} (A)	7.88	7.91	7.95	7.95	7.98
2	Open Circuit Voltage - V _{oc} (V)	49.6	49.8	49.8	49.9	50.0
	Short Circuit Current - I _{sc} (A)	8.45	8.48	8.50	8.51	8.52

Values at standard test conditions (STC: air mass AM 1.5, irradiance 10.75 W/sq ft (1000 W/m²), temperature 77°F (25°C), based on a production

Spread with a tolerance of $P_{MAW} V_{QC} \&l_{sc} \pm 3\%$ within one wat class. Nominal module operating temperature (NMOT: air mass AM 1.5, irradiance 800 W/m², temperature 68°F (20°C), windspeed 3.3 ft/s (1 m/s). *Where xxx indicates the nominal power class (P_{MAW}) at STC above and is followed by the suffix XV for 1500V rated modules.

Measurements in mm [in]

nectors:	StäubliMC4Evo2 PV-KBT4-EVO-2/PV-KST4-EVO-2(4mm²) in accordance with IEC 62852 IP68 only when connected
le:	12 AWG (4 mm²) PV wire, 47 + 51 in (1.2+1.3 m) in accordance with EN 50618
iensions:	81.2 x 40.39 x 1.18 in (2063 x 1026 x 30 mm) 22.7 sq ft (2,12 m²)
ght:	52 lbs (23,5 kg)
gin:	Made in Singapore

IMAX I EVELSE			
	450	445	440
	-0/+5	-0/+5	-0/+5
	45.6	45.3	44.8
Nominal Mod	9.88	9.85	9.84
Temperature	53.1	53.0	52.9
Temperature	10.55	10.54	10.52
Temperature	213.27	210.90	08.53
	21.3	21.0	20.8

CERTIFICATIONS

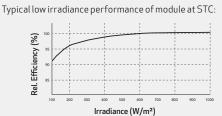
IEC 61215:2016, IEC 61730:2016, UL 61730						
IEC 62804	PID					
IEC 61701	Salt Mist					
IEC 62716	Ammonia Resistance					
UL1703	Fire Type Class 2					
IEC 62782	Dynamic Mechanical Load					
IEC 61215-2:2016	Hailstone (35mm)					
AS4040.2 NCC 2016	Cyclic Wind Load					
ISO 14001:2004, ISO 9001:20	15, OHSAS 18001:2007, IEC 62941					

WARRANTY

	Standard	RECI	ProTrust
Installed by an REC Certified Solar Professional	No	Yes	Yes
System Size	All	≤25 kW	25-500 kW
Product Warranty (yrs)	20	25	25
Power Warranty (yrs)	25	25	25
Labor Warranty (yrs)	0	25	10
Power in Year 1	98%	98%	98%
Annual Degradation	0.25%	0.25%	0.25%
Power in Year 25	92%	92%	92%
See warranty do	cuments for	details. Coi	nditions apply.

MAXIMUM RATINGS

Operational temperature:	-40+85°C
Maximum system voltage	e: 1500 V
Design load (+): snow Maximum test load (+):	3600 Pa (75.2 lbs/sq ft)* 5400 Pa (112.8 lbs/sq ft) [*]
Design load (-): wind Maximum test load (-):	1600 Pa (33.4 lbs/sq ft)* 2400 Pa (50.1 lbs/sq ft) [*]
Max series fuse rating:	25 A
Max reverse current:	25 A
	* Calculated using a safety factor of 1.5


*See installation manual for mounting instructions

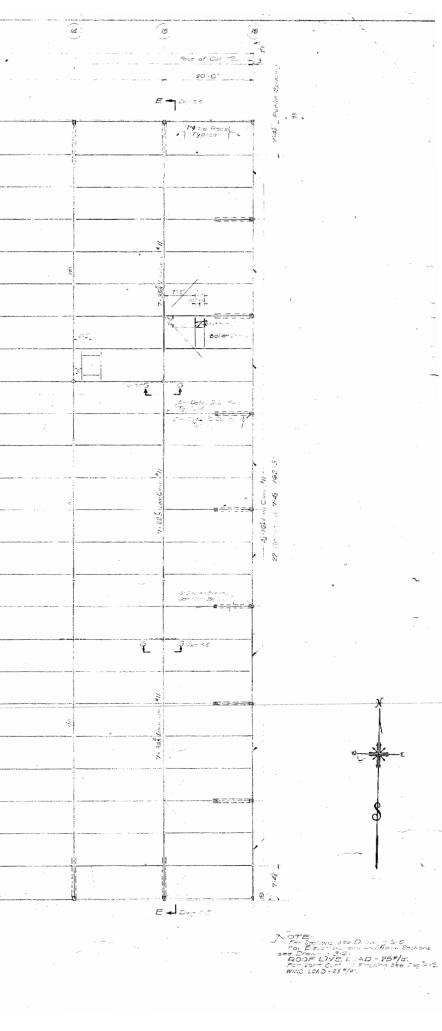
ATURE RATINGS*

Nominal Module Operating	Temperature:	44°	C(±2°C)
Temperature coefficient	ofP _{MAX} :	-0.2	26 %/°C
Temperature coefficient	of V _{oc} :	-0	24 %/°C
Temperature coefficient	ofl _{sc} :	0.0	04 %/°C

The temperature coefficients stated are linear values

LOW LIGHT BEHAVIOUR

REC Group is an international pioneering solar energy company dedicated to empowering consumers with clean, affordable solar power in order to facilitate global energy transitions. Committed to quality and innovation, REC offers photovoltaic modules with leading high quality, backed by an exceptional low warranty claims rate of less than 100ppm. Founded in Norway in 1996, REC employs 2,000 people and has an annual solar panel capacity of 1.8 GW. With over 10 GW installed worldwide, REC is empowering more than 16 million people with clean solar energy. REC Group is a Bluestar Elkem company with headquarters in Norway, operational headquarters in Singapore, and regional bases in North America, Europe, and Asia-Pacific.


REC

	12		2	3)	•) •	ē,			8		0		12	73)
ala.	÷.	Face of Cal	······································		: 	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		900-0 కై. గి లై 299's Face to Fran 13 రిలుకు 9 20-00 200	nt Goto.	· • • • • • • • • • • • • • • • • • • •	· · · · · · · · ·	· . ·	
xtervor ((Par Conspy Month	' 580 F# 856w)		-			5 - Drg. 5-5			
A	1 P-	{ Porte Rode }			· ·		ne a é una foir der det annonen mensemmenden un a		Potio Rods Tyoical					
Ret In	-									<u> </u>	9 <u></u> 1			
		jê: S Kros êr Jose Nofs Berry												
<u>s</u> - +														
- - - -			Ş	. 8			8		8					- U.
						8-3' _3'5' _ 3-5' [14][14]					Porin - Jert-			
C *		<u>.</u>	*						A			7		
D L and		anna an Anna a	1			borr stalling vert						/		
E ,		DwgSS-r9 /(San Deta 12 / Typ - 1	. G.S.				· · · · · · · · · · · · · · · · · · ·	* . 	See Catur D : A. Tyrizzi	Gen of	1.00 35	Gian be		
	•	Sor Dei - Din Ty: reai	p						Sec. 55 DI					
0, 6 10 1 1 Francisco 132 - O	. 11.		-	1 	1 Million May and an amplify and are an					••			4 ³	
E	91		31 6:	8					3		9			65
	V V KG& Lun													
	×		The Mago					• •						
g — .			0	5 L			-	- 			nne , i colora o e del della co	at a a an energy or ongoing (2)		
H	1	G	5 Jun 55	()			• Mare		Ģ	Garant I	I Dwg 315	G Lug Het		
		•									•	- 		
J	-₹		×	· · · · · · · · · · · · · · · · · · ·					A					
		Lig Lig	.e			<u>.</u>	ź		8					- 0k
		2		-						. 8-1 14 (c-c) . 25			- · · · · · · · · · · · · · · · · · · ·	
<u>K-</u> +	-								K					
22:16 22:16										Belier Small Selier Small SKG Kore Briss See Note			<i>t</i>	
10 - 10 - 10 10 - 10 10 - 10 10 - 10 10 10 10 10 10 10 10 10 10 10 10 10 1										- See Note	<u>-</u>			
C the	1					- - 	алар алар алар алар алар алар алар алар		E	جا:ss ۴	- Lance			v U

<u>ROOF</u> <u>PLAN</u> J.OTE: <u>All Boring</u> to be <u>4 · Id</u> · Salow Struct Groze <u>Unless</u> <u>Structures</u>, <u>Note:</u> Deck to be ² · Toigue one Gronve: Conservation Groot Planking, Joid perpendicular to perfiling ends to beer on perfilm.

.

.

PROJECT :

PAGE NUMBER :

FORT GEORGE BREWERY DISTRIBUTION

ROOFTOP PV ARRAY ANCHORAGE

ENGINEER : ____KEW ___ DATE : ____3/22/2022

COMPONENTS AND CLADDING ROOF WIND LOADS

MONOSLOPE FREE ROOF

Per ASCE 7-16 Chapters 26, 29, and 30

- qh = Velocity Pressure at Height H
 - = 0.00256 Kz Kzt Kd Ke V²

h =	35.0	(feet) Average Height at Rooftop Array
K7 -	1 1 2	for 30 to 35 ft Arroy Height and Evolutio D (ACC)

- Kz = 1.18 for 30 to 35 ft Array Height and Exposure D (ASCE7-16 Table 26.10-1)
- Kzt = 1.00 for Level Terrain
- Kd = 0.85 for Components and Cladding of Buildings (ASCE7-16 Table 26.6-1)
- Ke = 1.00 Ground Elevation Factor for elevation < 1,000 feet
- V = 120 Basic Wind Speed (mph) from OSSC for Clatsop County Category II Bldg Special Wind Region per OSSC Table 1609.3
- L = 142.0 (feet) Longest Horizontal Roof Dimension
- W = 10.1 (feet) Least Horizontal Roof Dimension

Monoslope free roof w/ 8 degree slope, so use ASCE 7-16 Figure 30.7-1

For 10'-1 1/2" wide array with 6'-0" veritcal spacing:

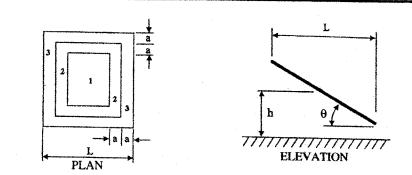
Effective Wind Area = 10.1' (0.5) 6.0' = 30.3 sq. ft.which is > a^2 and < $4a^2$

Zonal Dim. "a" = smaller of 10% of least horiz. dim. or 40% of roof height,

- = 1.01 feet, but not less than larger of 4% of least horiz. dim. or 3 feet
- = 3.00 feet

Therefore "a" = 3.00 feet

Pult = qh G Cp


G Cp = -1.40 Neg. External Pressure Coefficient for Zone 1

-2.10 Neg. External Pressure Coefficient for Zone 2

- -2.10 Neg. External Pressure Coefficient for Zone 3
- G Cp = 1.60 Pos. External Pressure Coefficient for Zone 1
 - 2.40 Pos. External Pressure Coefficient for Zone 2
 - 2.40 Pos. External Pressure Coefficient for Zone 3

Zone 1 Negative Design Wind Pressure	Zone 1 Positive Design Wind Pressure				
Pult = -51.8 psf	Pult = 59.2 psf				
Zone 2 Negative Design Wind Pressure	Zone 2 Positive Design Wind Pressure				
Pult = -77.6 psf	Pult = 88.7 psf				
Zone 3 Negative Design Wind Pressure	Zone 3 Positive Design Wind Pressure				
Pult = -77.6 psf	Pult = 88.7 psf				

Notation

a = 10% of least horizontal dimension or 0.4h, whichever is smaller but not less than 4% of least horizontal dimension or 3 ft (0.9 m).

h = Mean roof height, in ft (m).

L = Horizontal dimension of building, measured in along-wind direction, in ft (m).

 θ = Angle of plane of roof from horizontal, in degrees.

Net Pressure Coefficients, C_N

Roof	Effective Wind			Clear V	ind Flow			
Angle, θ	Area	Area Zone 3		Zo	me 2	Zone 1		
0°	$\leq a^2$	2.4	3.3	1.8	-1.7	1.2	-1.1	
	$> a^2, \le 4.0a^2$	1.8	-1.7	1.8	-1.7	1.2	-1.1	
	$> 4.0a^2$	1.2	-1.1	1.2	-1.1	1.2	-1.1	
7.5°	<i>≤ a</i> ²	3.2	-4.2	2.4	2.1	1.6	-1.4	
	$>a^2, \le 4.0a^2$	2.4	2.1	2.4	-2.1	1.6	-1.4	
	$> 4.0a^2$	1.6	-1.4	1.6	-1.4	1.6	-1.4	
15°	$\leq a^2$	3.6	-3.8	2.7	2.9	1.8	-1.9	
	$>a^2, \le 4.0a^2$	2.7	-2.9	2.7	-2.9	1.8	-1.9	
	$> 4.0a^2$	1.8	-1.9	1.8	-1.9	1.8	-1.9	
30°	$\leq a^2$	5.2	5	3.9	-3.8	2.6	-2.5	
	$>a^2, \le 4.0a^2$	3.9	-3.8	3.9	-3.8	2.6	-2.5	
	$> 4.0a^2$	2.6	-2.5	2.6	-2.5	2.6	-2.5	
45°	$\leq a^2$	5.2	-4.6	3.9	-3.5	2.6	-2.3	
	$> a^2, \le 4.0a^2$	3.9	-3.5	3.9	3.5	2.6	-2.3	
	$> 4.0a^2$	2.6	-2.3	2.6	-2.3	2.6	-2.3	
		Obstructed Wind Flow						
	-	Zo	ne 3	Zo	ne 2	Zo	Be 1	
0°	$\leq a^2$	1	-3.6	0.8	-1.8	0.5	-1.2	
	$> a^2, \le 4.0a^2$	0.8	-1.8	0.8	-1.8	0.5	-1.2	
	$> 4.0a^2$	0.5	-1.2	0.5	-1.2	0.5	-1.2	
7.5°	$\leq a^2$	1.6	-5.1	1.2	-2.6	0.8	-1.7	
	$> a^2, \le 4.0a^2$	1.2	-2.6	1.2	-2.6	0.8	-1.7	
	$> 4.0a^2$	0.8	-1.7	0.8	-1.7	0.8	-1.7	
15°	≤ a ²	2.4	-4.2	1.8	-3.2	1.2	-2.1	
	$>a^2 \le 4.0a^2$	1.8	-3.2	1.8	3.2	1.2	-2.1	
	$> 4.0a^2$	1.2	-2.1	1.2	-2.1	1.2	-2.1	
30°	$\leq a^2$	3.2	-4.6	2.4	-3.5	1.6	-2.3	
	$>a^2 \le 4.0a^2$	2.4	-3.5	2.4	-3.5	1.6	-2.3	
	$> 4.0a^2$	1.6	-2.3	1,6	-2,3	1.6	-2.3	
45°	$\leq a^2$	4.2	-3.8	3.2	-2.9	2.1	-1.9	
	$> a^2 \le 4.0a^2$	3.2	-2.9	3.2	-2.9	2.1	-1.9	
	$> 4.0a^2$	2.1	-1.9	2.1	-1.9			
	2 4.04	2.1	-1.7	2.1	-1.9	2.1	-1.9	

Notes

1. C_N denotes net pressures (contributions from top and bottom surfaces).

2. Clear wind flow denotes relatively unobstructed wind flow with blockage less than or equal to 50%. Obstructed wind flow denotes objects below roof inhibiting wind flow (>50% blockage).

3. For values of θ other than those shown, linear interpolation is permitted.

4. Plus and minus signs signify pressures acting toward and away from the top roof surface, respectively.

5. Components and cladding elements shall be designed for positive and negative pressure coefficients shown.

FIGURE 30.7-1 Components and Cladding (0.25 $\leq h/L \leq$ 1.0): Net Pressure Coefficient, C_N , for Open Buildings-Monoslope Free Roots, $\theta \leq 45^{\circ}$

itle Block Line 1 ou can change this area sing the "Settings" menu nd then using the "Printi itle Block" selection. itle Block Line 6	i item			Project Titl Engineer: Project ID: Project De		Pr	inted: 24 MAR 202	
General Beam					Software or	onvright ENERCALC	File: Fort Georg INC. 1983-2020, Build	
ic. # : KW-06009704					D BRAINO	Windor CUPLO	Structural S	
DESCRIPTION: typ General Beam Prope	. aluminum rail w	ith 3 rails per col	lumn of modules					
Elastic Modulus	10,000.0 ksi	<u> </u>	·····					
Span #1	Span Length =	1.250 ft	Area	= 10.0	in^2 Mon	nent of Inertia =	0.7270	in^4
Span #2	Span Length =	7.50 ft	Area			nent of Inertia =		
Span #3	Span Length =	1.250 ft	Area	= 10.0	in^2 Mon	nent of Inertia =		
D(0.009) S((0.076) W(0.337)	D(0.018) S(0.	152) W(0.674)	D(0.018) S(0	152) W(0.674)	D(0.009) S(0.)	076) W(0.337)	
						_(, _(
	±.				▲		•	
	×					× ×		
	X					Å		
	Span = 1.250 ft		Span =	7.50 ft		Span = 1.250	ft	
Annlied Loade				Sarvion In	ade entered 1	d Eactors will b	a analiad for a-	
Applied Loads Load(s) for Span Numb	hor 1			Service IO	oads entered. Loa	U FACIOIS WIII D		iculation:
Point Load : D = 0.0 Point Load : D = 0.0 Load(s) for Span Numb	180, S = 0.1520, 1 180, S = 0.1520, 1 per 3	W = 0.6740 k @ 5	.50 ft, (point load fro	om PV panel)				
Point Load : D = 0.0 Load(s) for Span Numb Point Load : D = 0.0	1180, S = 0.1520, 180, S = 0.1520, per 3 090, S = 0.0760, y = +D+0	W = 0.6740 k @ 5 W = 0.3370 k @ 1 0.750L+0.750S+0.4	.50 ft, (point load fr .250 ft, (point load f 0.599 k-ft N	om PV panel) rom PV panel) faximum Shear Load Com			0.43 +0.750S+0.450W Span ;	٠H
Point Load : D = 0.0 Point Load : D = 0.0 Load(s) for Span Numb Point Load : D = 0.0 DESIGN SUMMARY Maximum Bending Load Combination Span # where maximum	1180, S = 0.1520, 180, S = 0.1520, per 3 090, S = 0.0760, g = +D+0 num occurs m on span	W = 0.6740 k @ 5 W = 0.3370 k @ 1 0.750L+0.750S+0.4	.50 ft, (point load fr .250 ft, (point load f 0.599 k-ft N 450W+H	om PV panel) rom PV panel) flaximum Shea Load Com Span # wh	bination	Jrs	+0.750S+0.450W Span #	٠H
Point Load : D = 0.0 Point Load : D = 0.0 Load(s) for Span Numb Point Load : D = 0.0 DESIGN SUMMARY Maximum Bending Load Combination Span # where maxir Location of maximum Maximum Deflection Max Downward Trans Max Downward To Max Upward Total	180, $S = 0.1520$, 180, $S = 0.1520$, 180, $S = 0.1520$, per 3 090, $S = 0.0760$, y = +D+0 num occurs m on span on ansient Deflection otal Deflection Deflection	W = 0.6740 k @ 5 W = 0.3370 k @ 1 0.750L+0.750S+0.4	.50 ft, (point load fro .250 ft, (point load fro 0.599 k-ft N 450W+H Span # 2 3.797 ft 0.816 in -0.348 in 0.878 in -0.374 in	om PV panel) rom PV panel) flaximum Shea Load Com Span # wh	bination here maximum occu	Jrs	+0.750S+0.450W Span #	+H ≭ 1
Point Load : D = 0.0 Point Load : D = 0.0 Load(s) for Span Numb Point Load : D = 0.0 DESIGN SUMMARY Maximum Bending Load Combination Span # where maxir Location of maximum Maximum Deflection Max Downward Trans Max Downward Trans Max Downward Total Max Upward Total Max Upward Total Maximum Forces & S	180, S = 0.1520, 180, S = 0.1520, 180, S = 0.1520, ber 3 090, S = 0.0760, r = +D+0 num occurs m on span on ansient Deflection sient Deflection beflection Deflection Deflection Stresses for Loss	W = 0.6740 k @ 5 W = 0.3370 k @ 1 0.750L+0.750S+0.4	.50 ft, (point load fro .250 ft, (point load fro 0.599 k-ft N 450W+H Span # 2 3.797 ft 0.816 in -0.348 in 0.878 in -0.374 in	om PV panel) rom PV panel) faximum Sheat Load Com Span # wh Location o 110 86 102 80	bination lere maximum occu f maximum on spa	Jrs	+0.750S+0.450W Span ; 1.2	+++ ≇ 1 250 ft
Point Load : D = 0.0 Point Load : D = 0.0 Load(s) for Span Numb Point Load : D = 0.0 DESIGN SUMMARY Maximum Bending Load Combination Span # where maxir Location of maximum Maximum Deflectio Max Downward Trans Max Upward Trans Max Upward Total Max Upward Total Max Upward Total	180, S = 0.1520, 180, S = 0.1520, 180, S = 0.1520, ber 3 090, S = 0.0760, r = +D+0 num occurs m on span on ansient Deflection betal Deflection Deflection Deflection Deflection Stresses for Loa Max	W = 0.6740 k @ 5 W = 0.3370 k @ 1 0.750L+0.750S+0.4	.50 ft, (point load fro .250 ft, (point load fro 0.599 k-ft N 450W+H Span # 2 3.797 ft 0.816 in -0.348 in 0.878 in -0.374 in	om PV panel) rom PV panel) faximum Shea Load Com Span # wh Location o 110 86 102 80 Summary of Momen	bination lere maximum occu f maximum on spa	Jrs n	+0.750S+0.450W Span # 1.2 Shear Valu	+H ≄1 250 ft es (k)
Point Load : D = 0.0 Point Load : D = 0.0 Load(s) for Span Numb Point Load : D = 0.0 DESIGN SUMMARY Maximum Bending Load Combination Span # where maxir Location of maximum Maximum Deflection Max Downward Trans Max Downward Total Maximum Forces & S ad Combination Segment Length erall MAXimum Envelope	1180, S = 0.1520, 1180, S = 0.1520, 1180, S = 0.1520, 1180, S = 0.0760, 119, S	W = 0.6740 k @ 5 W = 0.3370 k @ 1 0.750L+0.750S+0.4 n ad Combination Stress Ratios	.50 ft, (point load fro .250 ft, (point load f 0.599 k-ft M 450W+H Span # 2 3.797 ft 0.816 in -0.348 in 0.878 in -0.374 in NS Mmax + Mmax	om PV panel) rom PV panel) faximum Shear Load Com Span # wh Location o 110 86 102 80 Summary of Momen - Ma - Max	bination iere maximum occu if maximum on spa it Values (k-ft)	Jrs n	+0.750S+0.450W Span # 1.2 Shear Valu Va Max Vnx	+H ≄1 250 ft es (k)
Point Load : D = 0.0 Point Load : D = 0.0 Load(s) for Span Numb Point Load : D = 0.0 DESIGN SUMMARY Maximum Bending Load Combination Span # where maxir Location of maximum Maximum Deflection Max Downward Trans Max Downward Trans Max Upward Total Max Upward Total	180, S = 0.1520, 180, S = 0.1520, 180, S = 0.1520, ber 3 090, S = 0.0760, 19 = +D+0 num occurs m on span on ansient Deflection sient Deflection total Deflection Deflection Deflection Stresses for Loa Max Span # N	W = 0.6740 k @ 5 W = 0.3370 k @ 1 0.750L+0.750S+0.4 n ad Combination Stress Ratios	.50 ft, (point load fro .250 ft, (point load f 0.599 k-ft M 450W+H Span # 2 3.797 ft 0.816 in -0.348 in 0.878 in -0.374 in NS Mmax + Mmax -0.27	om PV panel) rom PV panel) faximum Sheat Load Com Span # wh Location o 110 86 102 80 Summary of Momen - Ma - Max 0.27	bination iere maximum occu if maximum on spa it Values (k-ft)	Jrs n	+0.750S+0.450W Span # 1.2 <u>Shear Valu</u> Va Max Vnx 0.44	+H ≄1 250 ft es (k)
Point Load : D = 0.0 Point Load : D = 0.0 Load(s) for Span Numb Point Load : D = 0.0 DESIGN SUMMARY Maximum Bending Load Combination Span # where maxir Location of maximum Maximum Deflection Max Downward Tot Max Downward Total Max Upward Total Maximum Forces & 1 del Combination Segment Length srall MAXimum Envelope Dsgn. L = 1.25 ft Dsgn. L = 1.25 ft	1180, S = 0.1520, 1180, S = 0.1520, 1180, S = 0.1520, 1180, S = 0.0760, 119, S	W = 0.6740 k @ 5 W = 0.3370 k @ 1 0.750L+0.750S+0.4 n ad Combination Stress Ratios	.50 ft, (point load fro .250 ft, (point load f 0.599 k-ft M 450W+H Span # 2 3.797 ft 0.816 in -0.348 in 0.878 in -0.374 in NS Mmax + Mmax	om PV panel) rom PV panel) faximum Sheat Load Com Span # wh Location o 110 86 102 80 Summary of Momen - Ma - Max 0.27 0.60	bination iere maximum occu if maximum on spa it Values (k-ft)	Jrs n	+0.750S+0.450W Span # 1.2 Shear Valu Va Max Vnx	+H #1 50 ft es (k)
Point Load : D = 0.0 Point Load : D = 0.0 Load(s) for Span Numb Point Load : D = 0.0 DESIGN SUMMARY Maximum Bending Load Combination Span # where maxir Location of maximum Maximum Deflection Max Downward Trans Max Downward Trans Max Downward Trans Max Downward Total Max Upward Total Max Upward Total Maximum Forces & 1 ad Combination Segment Length erall MAXimum Envelope Dsgn. L = 1.25 ft +H	1180, S = 0.1520, 1180, S = 0.1520, 1180, S = 0.1520, 1180, S = 0.0760, 119, S = 0.0760, 119, S = 0.0760, 110, S	W = 0.6740 k @ 5 W = 0.3370 k @ 1 0.750L+0.750S+0.4 n ad Combination Stress Ratios	.50 ft, (point load fr .250 ft, (point load f 0.599 k-ft M 450W+H Span # 2 3.797 ft 0.816 in -0.348 in 0.878 in -0.374 in Mmax + Mmax -0.27 0.60 -0.27 -0.27	om PV panel) rom PV panel) faximum Sheat Load Com Span # wh Location o 110 86 102 80 Summary of Momen - Ma - Max 0.27 0.60 0.27	bination iere maximum occu if maximum on spa it Values (k-ft)	Jrs n	+0.750S+0.450W Span # 1.2 Shear Valu Va Max Vnx 0.44 0.44 0.22	+H ≄1 250 ft es (k)
Point Load : D = 0.0 Point Load : D = 0.0 Load(s) for Span Numb Point Load : D = 0.0 DESIGN SUMMARY Maximum Bending Load Combination Span # where maxir Location of maximum Maximum Deflection Max Downward Trans Max Downward To Max	1180, S = 0.1520, 1180, S = 0.1520, 1180, S = 0.1520, 1180, S = 0.0760, 119, S = 0.0760, 119, S = 0.0760, 110, S	W = 0.6740 k @ 5 W = 0.3370 k @ 1 0.750L+0.750S+0.4 n ad Combination Stress Ratios	.50 ft, (point load fro .250 ft, (point load fro 0.599 k-ft M 450W+H Span # 2 3.797 ft 0.816 in -0.348 in 0.878 in -0.374 in Mmax + Mmax 0.60 -0.27 -0.27 -0.27 -0.01 0.02 -0.01	om PV panel) rom PV panel) faximum Shea Load Com Span # wh Location o 110 86 102 80 Summary of Momen - Ma - Max 0.27 0.60 0.27 0.01 0.02	bination iere maximum occu if maximum on spa it Values (k-ft)	Jrs n	+0.750S+0.450W Span ; 1.2 <u>Shear Valu</u> Va Max Vnx 0.44 0.44	+H ≄ 1 250 ft es (k)
Point Load : D = 0.0 Point Load : D = 0.0 Load(s) for Span Numb Point Load : D = 0.0 DESIGN SUMMARY Maximum Bending Load Combination Span # where maxir Location of maximum Maximum Deflection Max Downward Trans Max Downward Trans Max Downward Trans Max Downward Trans Max Upward Trans Max Upward Trans Max Upward Total Maximum Forces & S ad Combination Segment Length erall MAXimum Envelope Dsgn. L = 1.25 ft Dsgn. L = 1.25 ft	1180, S = 0.1520, 1180, S = 0.1520, 1180, S = 0.1520, 1180, S = 0.0760, 119, S = 0.0760, 119, S = 0.0760, 110, S	W = 0.6740 k @ 5 W = 0.3370 k @ 1 0.750L+0.750S+0.4 n ad Combination Stress Ratios	.50 ft, (point load fr .250 ft, (point load f 0.599 k-ft M 450W+H Span # 2 3.797 ft 0.816 in -0.348 in 0.878 in -0.374 in Mmax + Mmax 0.60 -0.27 -0.27 -0.27	om PV panel) rom PV panel) faximum Shea Load Com Span # wh Location o 110 86 102 80 Summary of Momen - Ma - Max 0.27 0.60 0.27 0.01 0.02	bination iere maximum occu if maximum on spa it Values (k-ft)	Jrs n	+0.750S+0.450W Span ; 1.2 <u>Shear Valu</u> Va Max Vnx 0.44 0.22 0.02	+H ≄ 1 250 ft es (k)
Point Load : D = 0.0 Point Load : D = 0.0 Load(s) for Span Numb Point Load : D = 0.0 DESIGN SUMMARY Maximum Bending Load Combination Span # where maxir Location of maximum Maximum Deflection Max Downward Trans Max Upward Total Max Length erall MAXimum Envelope Dsgn. L = 1.25 ft -+H Dsgn. L = 1.25 ft -+H Dsgn. L = 1.25 ft -+H Dsgn. L = 1.25 ft	1180, $S = 0.1520$, 1180, $S = 0.1520$, 1180, $S = 0.1520$, 1180, $S = 0.0760$, 119, $S = 0.0760$, 110, $S = 0.0760$, 1	W = 0.6740 k @ 5 W = 0.3370 k @ 1 0.750L+0.750S+0.4 n ad Combination Stress Ratios	.50 ft, (point load fro .250 ft, (point load fro 0.599 k-ft N 450W+H Span # 2 3.797 ft 0.816 in -0.348 in 0.878 in -0.374 in NS Mmax + Mmax 0.60 -0.27 -0.27 0.60 -0.27 -0.01 -0.01 -0.01 -0.01	om PV panel) rom PV panel) faximum Sheat Load Com Span # wh Location o 110 86 102 80 Summary of Momen - Ma - Max 0.27 0.60 0.27 0.60 0.27 0.01 0.02 0.01 0.01	bination iere maximum occu if maximum on spa it Values (k-ft)	Jrs n	+0.750S+0.450W Span # 1.2 Shear Valu Va Max Vnx 0.44 0.44 0.22 0.02 0.02	+++ ≇ 1 250 ft
Point Load : D = 0.0 Point Load : D = 0.0 Load(s) for Span Numb Point Load : D = 0.0 DESIGN SUMMARY Maximum Bending Load Combination Span # where maxir Location of maximum Maximum Deflection Max Downward Trans Max Downward Trans Max Downward Trans Max Downward Trans Max Downward Trans Max Downward Trans Max Downward Total Maximum Forces & S ad Combination Segment Length erall MAXimum Envelope Dsgn. L = 1.25 ft Dsgn. L = 1.25 ft H Dsgn. L = 1.25 ft Jsgn. L = 1	1180, S = 0.1520, 1180, S = 0.1520, 1180, S = 0.1520, 1180, S = 0.0760, 119 = +D+0 110 = +D+0 1	W = 0.6740 k @ 5 W = 0.3370 k @ 1 0.750L+0.750S+0.4 n ad Combination Stress Ratios	.50 ft, (point load fro .250 ft, (point load fro 0.599 k-ft N 450W+H Span # 2 3.797 ft 0.816 in -0.348 in 0.878 in -0.374 in NS Mmax + Mmax 0.60 -0.27 -0.27 0.60 -0.27 -0.27 0.01 0.02 -0.01 -0.01 0.02 -0.01	om PV panel) rom PV panel) faximum Sheat Load Com Span # wh Location o 110 86 102 80 Summary of Momen - Ma - Max 0.27 0.60 0.27 0.60 0.27 0.60 0.27 0.01 0.02 0.01 0.02	bination iere maximum occu if maximum on spa it Values (k-ft)	Jrs n	+0.750S+0.450W Span # 1.2 Shear Valu Va Max Vnx 0.44 0.44 0.22 0.02 0.02 0.01 0.02 0.01 0.02 0.02	+H ≄1 250 ft es (k)
Point Load : D = 0.0 Point Load : D = 0.0 Load(s) for Span Numb Point Load : D = 0.0 DESIGN SUMMARY Maximum Bending Load Combination Span # where maxir Location of maximum Maximum Deflection Max Downward Trans Max Downward To Max Downward To M	1180, $S = 0.1520$, 1180, $S = 0.1520$, 1180, $S = 0.1520$, 1180, $S = 0.0760$, 119, $S = 0.0760$, 110, $S = 0.0760$, 1	W = 0.6740 k @ 5 W = 0.3370 k @ 1 0.750L+0.750S+0.4 n ad Combination Stress Ratios	.50 ft, (point load fro .250 ft, (point load fro 0.599 k-ft M 450W+H Span # 2 3.797 ft 0.816 in -0.348 in 0.878 in -0.374 in Mmax + Mmax 0.60 -0.27 -0.27 0.60 -0.27 -0.27 0.02 -0.01 -0.01 0.02 -0.01 -0.01	om PV panel) rom PV panel) faximum Shear Load Com Span # wh Location o 110 86 102 80 Summary of Momen - Ma - Max 0.27 0.60 0.27 0.01 0.02 0.01 0.02 0.01	bination iere maximum occu if maximum on spa it Values (k-ft)	Jrs n	+0.750S+0.450W Span # 1.2 Shear Valu Va Max Vnx 0.44 0.44 0.22 0.02 0.02 0.01 0.02	+H ≄1 250 ft es (k)
Point Load : D = 0.0 Point Load : D = 0.0 Load(s) for Span Numb Point Load : D = 0.0 DESIGN SUMMARY Maximum Bending Load Combination Span # where maxir Location of maximum Maximum Deflection Max Downward Trans Max Downward To Max Downw	1180, $S = 0.1520$, 1180, $S = 0.1520$, 1180, $S = 0.1520$, 1180, $S = 0.1520$, 1180, $S = 0.0760$, 119, $S = 0.0760$, 110, $S = 0.0760$,	W = 0.6740 k @ 5 W = 0.3370 k @ 1 0.750L+0.750S+0.4 n ad Combination Stress Ratios	.50 ft, (point load fro .250 ft, (point load fro 0.599 k-ft M 450W+H Span # 2 3.797 ft 0.816 in -0.348 in 0.878 in -0.374 in Mmax + Mmax 0.60 -0.27 -0.27 0.60 -0.27 -0.27 0.01 -0.01 0.02 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01	om PV panel) rom PV panel) faximum Shea: Load Com Span # wh Location o 110 86 102 80 Summary of Momen - Ma - Max 0.27 0.60 0.27 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.01	bination iere maximum occu if maximum on spa it Values (k-ft)	Jrs n	+0.750S+0.450W Span ; 1.2 Shear Valu Va Max Vnx 0.44 0.44 0.22 0.02 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02	+H ≄ 1 250 ft es (k)
Point Load : D = 0.0 Point Load : D = 0.0 Load(s) for Span Numb Point Load : D = 0.0 DESIGN SUMMARY Maximum Bending Load Combination Span # where maxir Location of maximum Maximum Deflection Max Downward Trans Max Downward Trans Max Upward Trans Max Upward Trans Max Upward Trans Max Upward Trans Max Upward Trans Max Upward Total Max Upward Total Maximum Forces & S ad Combination Segment Length erall MAXimum Envelope Dsgn. L = 1.25 ft Dsgn. L	1180, $S = 0.1520$, 1180, $S = 0.1520$, 1180, $S = 0.1520$, 1180, $S = 0.1520$, 1180, $S = 0.0760$, 119, $S = 0.0760$, 119, $S = 0.0760$, 110, $S = 0.0760$,	W = 0.6740 k @ 5 W = 0.3370 k @ 1 0.750L+0.750S+0.4 n ad Combination Stress Ratios	.50 ft, (point load fro .250 ft, (point load fro 0.599 k-ft M 450W+H Span # 2 3.797 ft 0.816 in -0.348 in 0.878 in -0.374 in Mmax + Mmax 0.60 -0.27 -0.27 0.60 -0.27 -0.27 0.02 -0.01 -0.01 0.02 -0.01 -0.01	om PV panel) rom PV panel) faximum Shear Load Com Span # wh Location o 110 86 102 80 Summary of Momen - Ma - Max 0.27 0.60 0.27 0.60 0.27 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02	bination iere maximum occu if maximum on spa it Values (k-ft)	Jrs n	+0.750S+0.450W Span # 1.2 Shear Valu Va Max Vnx 0.44 0.44 0.22 0.02 0.02 0.02 0.01 0.02 0.02 0.01	+H ≄ 1 250 ft es (k)
Point Load : D = 0.0 Point Load : D = 0.0 Load(s) for Span Numb Point Load : D = 0.0 DESIGN SUMMARY Maximum Bending Load Combination Span # where maxir Location of maximum Maximum Deflection Max Downward Trans Max Downward To Max	1180, S = 0.1520, 1 1180, S = 0.1520, 1 1180, S = 0.1520, 1 1180, S = 0.0760, 1 1180, S = 0.0760, 1 119, 1 110,	W = 0.6740 k @ 5 W = 0.3370 k @ 1 0.750L+0.750S+0.4 n ad Combination Stress Ratios	.50 ft, (point load fro .250 ft, (point load fro 0.599 k-ft M 450W+H Span # 2 3.797 ft 0.816 in -0.348 in 0.878 in -0.374 in Mmax + Mmax 0.60 -0.27 -0.27 0.60 -0.27 -0.27 0.60 -0.27 -0.27 0.01 -0.01 0.02 -0.01 -0.01 0.02 -0.01 -0.01 0.02 -0.01	om PV panel) rom PV panel) faximum Sheat Load Com Span # wh Location o 110 86 102 80 Summary of Momen - Ma - Max 0.27 0.60 0.27 0.60 0.27 0.60 0.27 0.60 0.27 0.60 0.27 0.01 0.02 0.01 0.02 0.01 0.02 0.01	bination iere maximum occu if maximum on spa it Values (k-ft)	Jrs n	+0.750S+0.450W Span # 1.2 Shear Valu Va Max Vnx 0.44 0.44 0.22 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02	+H ≄1 250 ft es (k)

Title Block Line 1 You can change this area using the "Settings" menu item and then using the "Printing & Title Block" selection. Title Block Line 6

Project Title: Engineer: Project ID: Project Descr:

General Beam Lic. # : KW-06009704

E Only

Printed: 24 MAR 2022, 3:25PM

File: Fort George PV.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.17 Structural Source, LLC

DESCRIPTION: typ. aluminum rail with 3 rails per column of modules

Load Combination	Dana #		ess Ratios			mmary of Mom						Shear Valu	ies (k)
	Span #	M	V	Mmax +	Mmax -	Ma - Max	Mnx	Mnx/Omeg	ja Cb	Rm	Va Max	Vnx	Vnx/Omeg
Dsgn. L = 1.25 ft +D+0.750Lr+0.750L+H	3			and the shift of the second	-0.11	0.11					0.08		-
Dsgn. L = 1.25 ft	1				-0.01	0.01					0.02		
Dsgn. L = 7.50 ft	2			0.02	-0.01	0.02					0.02		
Dsgn. L = 1.25 ft	3				-0.01	0.01					0.02		
+D+0.750L+0.750S+H											0.01		
Dsgn. L = 1.25 ft	1				-0.08	0.08					0.13		
Dsgn. L = 7.50 ft	2			0.18	-0.08	0.18					0.13		
Dsgn. L = 1.25 ft	3				-0.08	0.08					0.07		
+D+0.60W+H											0.07		
Dsgn. L = 1.25 ft	1				-0.26	0.26					0.42		
Dsgn. L = 7.50 ft	2			0.58	-0.26	0.58					0.42		
Dsgn. L = 1.25 ft	3				-0.26	0.26					0.21		
+D+0.750Lr+0.750L+0.450W+H											•		
Dsgn. L = 1.25 ft	1				-0.20	0.20					0.32		
Dsgn. L = 7.50 ft	2			0.44	-0.20	0.44					0.32		
Dsgn. L = 1.25 ft	3				-0.20	0.20					0.16		
+D+0.750L+0.750S+0.450W+H													
Dsgn. L = 1.25 ft	1			_	-0.27	0.27					0.44		
Dsgn. L = 7.50 ft	2			0.60	-0.27	0.60					0.44		
Dsgn. L = 1.25 ft	3				-0.27	0.27					0.22		
+0.60D+0.60W+0.60H													
Dsgn. L = 1.25 ft	1			·	-0.26	0.26					0.42		
Dsgn. L = 7.50 ft	2			0.57	-0.26	0.57					0.42		
Dsgn. L = 1.25 ft +D+0.70E+0.60H	3				-0.26	0.26					0.21		
	4				• • •								
Dsgn.L = 1.25 ft Dsgn.L = 7.50 ft	2			0.00	-0.01	0.01					0.02		
Dsgn. L = 1.25 ft	2 3			0.02	-0.01	0.02					0.02		
+D+0.750L+0.750S+0.5250E+H					-0.01	0.01					0.01		
Dsgn. L = 1.25 ft	1				0.00	0.00							
Dsgn. L = 7.50 ft	2			0.40	-0.08	0.08					0.13		
Dsgn. L = 1.25 ft	3			0.18	-0.08	0.18					0.13		
+0.60D+0.70E+H	5				-0.08	0.08					0.07		
Dsgn. L = 1.25 ft	1				0.01	0.04							
Dsgn. L = 7.50 ft	2			0.01	-0.01	0.01					0.01		
Dsgn. L = 1.25 ft	3			0.01	-0.01 -0.01	0.01					0.01		
-	-				-0.01	0.01					0.01		
Overall Maximum Defle	ctions			1									
Load Combination		Span	Max. *-" Defl	Location		Load Combin				Max.	"+" Defl	Location	in Span
D.0 7501 0 7500 0 45014		1	0.0000		0.000	+D+0.750L	+0.750S	+0.450W+H		-	0.3742		0.000
+D+0.750L+0.750S+0.450W	+H	2	0.8779		3.797						0.0000		0.000
		3	0.0000	3	3.797	+D+0.750L	.+0.750S	ю.450W+H		-	0.3748		1.250
Vertical Reactions					Support	notation : Far lef	t is #1			Values in	KIPS		
Load Combination	Su	ipport 1	Support 2	Support		port 4							
Overall MAXimum		-FF	1.011	1.011									
Overall MINimum				1.011									
+D+H			0.027	0.007									
+D+L+H				0.027									
+D+Lr+H			0.027	0.027									
			0.027	0.027									
+D+S+H			0.255	0.255									
+D+0.750Lr+0.750L+H			0.027	0.027									
+D+0.750L+0.750S+H			0.198	0.198									
+D+0.60W+H			0.634	0.634									
+D+0.750Lr+0.750L+0.450W			0.482	0.482									
+D+0.750L+0.750S+0.450W-	нH		0.653	0.653									
+0.60D+0.60W+0.60H			0.623	0.623									
			0.027	0.027									
+D+0.70E+0.60H				0.198									
	+H		0.198	0.130									
+D+0.70E+0.60H	H		0.198 0.016										
+D+0.70E+0.60H +D+0.750L+0.750S+0.5250E	н		0.016	0.016									
+D+0.70E+0.60H +D+0.750L+0.750S+0.5250E +0.60D+0.70E+H D Only	++1												
+D+0.70E+0.60H +D+0.750L+0.750S+0.5250E +0.60D+0.70E+H	+H		0.016	0.016									
+D+0.70E+0.60H +D+0.750L+0.750S+0.5250E +0.60D+0.70E+H D Only Lr Only L Only	++1		0.016 0.027	0.016 0.027									
+D+0.70E+0.60H +D+0.750L+0.750S+0.5250E +0.60D+0.70E+H D Only Lr Only	++1		0.016	0.016									

Title Block Line 1 You can change this area using the "Settings" menu item and then using the "Printing & Title Block" selection. Title Block Line 6				Project Title: Engineer: Project ID: Project Descr:	Printed: 24 MAR 2022. 3:25PM
	an change this area Engineer: the "Settings" menu item Project ID: hen using the "Printing & Project Descr: Block I selection. Block Line 6 Printed: 24 MAR 2022, 3:2 neral Beam : KW406009704 : KW4060009704 : KW406009704 : KW406009704 : KW406009704 : KW4				
A 1.					
General Beam					
2014년 이 전에서 이번 이 문화했지? 2017년 1월 2017년					Software copyright ENERCALC, INC. 1983-2020, Build: 12.20.5.17
Lic. # : KW-06009704					
Lic. # : KW-06009704	num rail with 3	rails per col	umn of modu	les	Software copyright ENERCALC, INC. 1983-2020, Build: 12.20.5.17
Lic. # : KW-06009704 DESCRIPTION: typ. alumin	num rail with 3	rails per col			Software copyright ENERCALC, INC. 1983-2020, Build: 12.20.5.17 Structural Source, LLC
Lic. # : KW-06009704	num rail with 3	rails per col			Software copyright ENERCALC, INC. 1983-2020, Build: 12.20.5.17 Structural Source, LLC
Lic. # : KW-06009704 DESCRIPTION: typ. alumin	num rail with 3 Support 1	rails per coli			Software copyright ENERCALC, INC. 1983-2020, Build: 12.20.5.17 Structural Source, LLC

Project Title: Engineer: Project ID: Project Descr:

Final Section	Properties	••••••				· · · · · · · · · · · · · · · · · · ·	·····	
otal Area	:	1.039 in^2	Ixx	:	0.9883 in^4	Sxx : - Y	:	0.6879 in^3
	G. distance from Da		lyy	:	0.9883 in^4	Sxx : +Y Syy : - X	;	0.6879 in^3 0.6873 in^3
X cg Dist.	:	1.438 in	Zxx	:	0.9120 in^3	Syy:-A Syy:+X	•	0.6873 in 3
Y cg Dist.	;	1.438 in	Zyy	:	0.9120 in^3			
dge Distances fro +X	om CG. :	1.438 in	Ň		1.437 in	r xx	:	0.9753 in
+^ -X	•	-1.438 in	+Y -Y	•	-1.437 in	r yy	r •	0.9753 in
				numim Section Prop	erties			
otation of All Con	nponents @ Angle	: 0.00 deg CC		ation Angle (CCW)	-0.120 deg		ent of Inertia	0.9883 in^4
			r: Ra	adius of Gyration	0.9753 in	S: Mod	tic Modulus	0.6879 in^3 0.9120 in^3
		CG						
		CG						

Rectangular & Circular Shapes

Circular Shape : 1	Radius =	1.438 in	Thickness	0.120 in
	Area =	6.496 in^2	Xcg = Ycg =	1.438 in 1.438 in

Printed: 22 MAR 2022, 1:31PM

Title Block Line 1		Project Title:	
You can change this		Engineer:	
using the "Settings" n and then using the "P		Project ID: Project Descr:	
Title Block" selection.			
Title Block Line 6			Printed: 22 MAR 2022, 1:53PM
Steel Beam		Software copyright ENERC,	File: Fort George PV.ec6 ALC, INC. 1983-2020, Build:12.20.5.17
Lic. #: KW-06009704 DESCRIPTION:	typical pipe beam for racking system		Structural Source, LLC
CODE REFE	RENCES		
	AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 n Set : ASCE 7-16		
Material Prop	erties		
Analysis Method : Beam Bracing : Bending Axis :	Allowable Strength Design Beam is Fully Braced against lateral-torsional buckling Major Axis Bending	Fy : Steel Yield : E: Modulus : 29,	50.0 ksi 000.0 ksi
5	D(0.202) S(0.101) V	W(0.447935)	······································
			Ť
	Pipe_2 1/2" dia	10S pipe	<u> </u>
Ł	Span = 5.7	70 ft	بعبيدين ۲
-			
Applied Loads			
	 calculated and added to loading 	Service loads entered. Load Factors w	ill be applied for calculations.

Beam self weight calculated and added to loading Uniform Load : D = 0.040, S = 0.020, W = 0.08870 ksf, Tributary Width = 5.050 ft

DESIGN SUMMARY

DESIGN SUMMARY Maximum Bending Stress Ratio Section used for this span Ma : Applied Mn / Omega : Allowable	Pipe_2 1/2" dia 10S 1.962 k-ft	Maximum Shear Stress Ratio = Section used for this span Va : Applied Vn/Omega : Allowable	Design OK 0.148 : 1 Pipe_2 1/2" dia 10S 1.377 k 9.332 k
Load Combination Location of maximum on span Span # where maximum occurs	+D+0.750S+0.450W 2.850ft Span # 1	Load Combination Location of maximum on span Span # where maximum occurs	+D+0.750S+0.450W 0.000 ft Span # 1
Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	n 0.372 in Rati 0.000 in Rati 0.402 in Rati 0.000 in Rati	o = 183 >=180. o = 0 <180.0 o = 170 >=120.	

Maximum Forces & Stresses for Load Combinations

Load Combination		Max Stre	ss Ratios		S	Summary of Mo	oment Valu	ies			Sumr	nary of Sh	ear Values
Segment Length	Span #	M	V	Mmax + N	/max -	Ma Max	Mnx	Mnx/Omega	Cb	Rm	Va Max	Vnx	Vnx/Omega
D Only								·					
Dsgn. L = 5.70 ft +D+S	1	0.367	0.063	0.84		0.84	3.80	2.28	1.00	1.00	0.59	15.59	9.33
Dsgn. L = 5.70 ft	1	0.548	0.094	1.25		1.25	3.80	2.28	1.00	1.00	0.87	15.59	9.33
+D+0.750S Dsgn. L = 5.70 ft +D+0.60W	1	0.503	0.086	1.14		1.14	3.80	2.28	1.00	1.00	0.80	15.59	9.33
+D+0.6000 Dsgn. L ≈ 5.70 ft +D+0.450W	1	0.847	0.145	1.93		1.93	3.80	2.28	1.00	1.00	1.35	15.59	9.33
Dsgn. L = 5.70 ft +D+0.750S+0.450W	1	0.727	0.124	1.65		1.65	3.80	2.28	1.00	1.00	1.16	15.59	9.33
Dsgn. L = 5.70 ft +0.60D+0.60W	1	0.862	0.148	1.96		1.96	3.80	2.28	1.00	1.00	1.38	15.59	9.33
Dsgn. L = 5.70 ft +0.60D	1	0.700	0.120	1.59		1.59	3.80	2.28	1.00	1.00	1.12	15.59	9.33
Dsgn. L = 5.70 ft	1	0.220	0.038	0.50		0.50	3.80	2.28	1.00	1.00	0.35	15.59	9.33
Overall Maximu	m Deflec	tions											
Load Combination		Span	Max. "-" Defl	Location in S	Span	Load Comb	ination			Max	. "+" Defi	Location	in Span
+D+0.750S+0.450W		1	0.4022	2.86	6						0.0000		0.000

Project Title: Engineer: Project ID: Project Descr:

Title Block Line 6				Printed: 22 MAR 2022, 1:53PM
Steel Beam				File: Fort George PV.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.17
Lic. # : KW-06009704				Structural Source, LLC
DESCRIPTION: typical p	pipe beam for rac	king system		
Vertical Reactions			Support notation : Far left is #1	Values in KIPS
Load Combination	Support 1	Support 2		
Overall MAXimum	1.377	1.377		
Overall MINimum	0.288	0.288		
D Only	0.587	0.587		
+D+S	0.874	0.874		
+D+0.750S	0.802	0.802		
+D+0.60W	1.352	1.352		
+D+0.450W	1.161	1.161		
+D+0.750S+0.450W	1.377	1.377		
+0.60D+0.60W	1.118	1.118		
+0.60D	0.352	0.352		
S Only	0.288	0.288		
W Only	1.277	1.277		

You can change this using the "Settings" and then using the " Title Block" selection	menu iter Printing 8								Engin							
Title Block Line 6 Wood Bean		· · · · ·													AR 2022.	
Lic. # KW-0600970											Sc	oftware copyrigh	ht ENERCALC, INC.	1983-20)20. Build:12	2.20.5.17
DESCRIPTION:		4x14 purl	in											Stru	ctural So	urce, LL
	••	•														
CODE REFE																
Calculations per	NDS 2	018, IBC	2018, 0	CBC 2	2019, A	SCE 7	'-16									
Load Combinati		ASCE 7	-10													
Material Prop																
Analysis Method : Load Combination	: Allowa	ble Stres	s Desig	ŋn				Fb			1,575.0		Modulus of Ela			
Load Combination	TAGUL	7-10						Fb Fc	- - Prll		1,575.0 1,700.0	psi osi	Ebend- xx Eminbend - xx	-	1,600.0; 690.0;	
		as Fir-Lar							- Perp		625.0	psi			000.0	NOI
Wood Grade	: Select	Structura	al circa	1958				Fv Ft			180.0	• .	Da-a't :			
Beam Bracing :	Beam	is Fully B	raced a	agains	st latera	al-torsi	onal b		ng		1,000.0	hai	Density		31.210 ₁	pct
									-							
					г	D(0.146	6) r/(1466	5/0 1	83251						
<		·····	\$					*	,			÷				\$
							1.1									
							n an									
\mathbf{X}							4	4x14								$\mathbf{\nabla}$
mm																A
I							Span	= 19.2	0 ft							1
							Span	= 19.2	0 ft							
	1997a - 18						Span	= 19.2	0 ft							
Applied Load					,		Span	= 19.2		ice load	ds entere	d Load Fa	ctors will be ar	nlied	for calcu	
), Lr = 0.02	20, S=0	.0250 k	sf, Trib	utary Wi				ice load	ds entere	d. Load Fa	ctors will be ap	oplied	for calcu	lations
Applied Load Uniform Load : DESIGN SUM	D = 0.020		20, S=0	.0250 k	sf, Trib	utary Wi				ice load	ds entere	d. Load Fa	ctors will be ap			
Uniform Load : DESIGN SUM Maximum Bendir	D = 0.020 IMARY ng Stres	s Ratio	20, S = 0 =	.0250 k		utary Wi).983	dth = 7	7.330 ft	Serv		ds entere Stress R		ctors will be ap		for calcu sign Of 0.441	
Uniform Load : DESIGN SUM	D = 0.020 IMARY ng Stres	s Ratio		.0250 k	C).983 4x14	dth = 7 1	7.330 ft Maxir	Serv	Shear (atio			sign Ol	: 1
Uniform Load : DESIGN SUM Maximum Bendir	D = 0.020 IMARY ng Stres	s Ratio	=	.0250 k	(1,78).983 4x14 30.99p	dth = 7 1 si	7.330 ft Maxir	Serv	Shear (Stress R	atio	=		sign Ok 0.441 4x14 91.21	: 1 psi
Uniform Load : DESIGN SUM Maximum Bendir Section used	D = 0.020 IMARY ng Stres for this	s Ratio		.0250 k	(1,78 1,81).983 4x14 30.99p 11.25p	dth = 7 1 si	.330 ft Maxir	Serv num S Sectio	Shear S n used	Stress R d for this	atio			sign Ok 0.441 4x14 91.21 207.00	: 1 psi psi
Uniform Load : DESIGN SUM Maximum Bendir Section used Load Combinatio Location of maxin	D = 0.020 IMARY ng Stres for this for this	s Ratio span pan	= = =	.0250 k	(1,78 1,81 +D).983 4x14 30.99p 11.25p 9+S+H 9.600ft	dth = 7 1 si si	.330 ft Maxir	Serv num S Sectio Load Ca	Shear S n used ombinat	Stress R d for this tion ximum on	atio span	=		sign Or 0.441 4x14 91.21 207.00 +D+S+H	: 1 psi psi
Uniform Load : DESIGN SUM Maximum Bendir Section used Load Combinatic Location of maxir Span # where maxir	D = 0.020 IMARY ng Stres for this for this mum on s aximum o	s Ratio span pan	= = =	.0250 k	(1,78 1,81 +D).983 4x14 30.99p I1.25p I+S+H	dth = 7 1 si si	.330 ft Maxir	Serv num S Sectio Load Ca	Shear S n used ombinat	Stress R d for this	atio span		Des	sign Ok 0.441 4x14 91.21 207.00	: 1 psi psi
Uniform Load : DESIGN SUM Maximum Bendir Section used Load Combinatio Location of maxir Span # where maxir Maximum Defi	D = 0.020 IMARY ng Stres for this for this mum on s aximum o ection	s Ratio span pan ccurs	= = = =	.0250 k	1,78 1,81 +D Spa).983 4x14 30.99p 11.25p 14.5+H 9.600ft an # 1	dth = 7 1 si si	.330 ft Maxir	Serv num S Sectio Load Co Location Span #	Shear S n used ombinat n of max where r	Stress R d for this tion ximum on	atio span	= = =	Des	sign Or 0.441 4x14 91.21 207.00 +D+S+H 18.149	: 1 psi psi
Uniform Load : DESIGN SUM Maximum Bendir Section used Load Combinatio Location of maxir Span # where maxir Maximum Defi Max Downwar Max Upward	D = 0.020 IMARY ng Stres for this on mum on s aximum o ection rd Transient Transient	s Ratio span ccurs ent Deflection	= = = =	.0250 k	(1,78 1,81 +D Spa).983 4x14 30.99p 11.25p 9+S+H 9.600ft	dth = 7 1 si si Ratio	2.330 ft Maxir	Serv num S Sectio Load Co Location Span # 443>	Shear S n used ombinat of may where r	Stress R d for this tion ximum on	atio span	= = =	Des	sign Or 0.441 4x14 91.21 207.00 +D+S+H 18.149	: 1 psi psi
Uniform Load : DESIGN SUM Maximum Bendir Section used Load Combinatio Location of maxir Span # where maximum Defil Max Downwar Max Upward T Max Downwar	D = 0.020 IMARY ng Stres for this for this on mum on s aximum o ection rd Transi Transient rd Total I	s Ratio span pan ccurs ent Deflection Deflection	= = = =	.0250 k	(1,78 1,81 +D Spa 0 0 0 0).983 4x14 30.99p 11.25p 11.25p 14.25	dth = 7 1 si si Ratio Ratio Ratio	7.330 ft Maxir	Serv num S Sectio Load Cd Location Span # 443: 0 < 246:	Shear S n used ombinat n of max where r >=360 <360 >=240	Stress R d for this tion ximum on	atio span	= = =	Des	sign Or 0.441 4x14 91.21 207.00 +D+S+H 18.149	: 1 psi psi
Uniform Load : DESIGN SUM Maximum Bendir Section used Load Combinatio Location of maxir Span # where ma Maximum Defi Max Downwar Max Upward T Max Downwar Max Upward T	D = 0.020 IMARY ng Stres for this for this for this mum on s aximum o ection rd Transi Transient rd Total Def	s Ratio span pan ccurs ent Deflect Deflection lection	= = = = n		(1,78 1,81 +D Spa 0 0 0 0 0	0.983 4x14 30.99p 11.25p 9+S+H 9.600ft an # 1 .519 in .000 in .934 in .000 in	dth = 7 1 si si Ratio Ratio Ratio	7.330 ft Maxir	Serv num S Sectio Load Cd Location Span # 443: 0 < 246:	Shear S n used ombinat n of may where r >=360 <360	Stress R d for this tion ximum on	atio span	= = =	Des	sign Or 0.441 4x14 91.21 207.00 +D+S+H 18.149	: 1 psi psi
Uniform Load : DESIGN SUM Maximum Bendir Section used Load Combinatio Location of maxir Span # where maximum Defil Max Downwar Max Upward T Max Downwar Max Upward T Max Upward T	D = 0.020 IMARY ng Stres for this for this for this mum on s aximum o ection rd Transi Transient rd Total Def	s Ratio span ccurs ent Deflection Deflection lection Stresse	= = = = n • • • • • • • •		(1,78 1,81 +D Spa 0 0 0 0 0	0.983 4x14 30.99p 11.25p 9+S+H 9.600ft an # 1 .519 in .000 in .934 in .000 in	dth = 7 1 si si Ratio Ratio Ratio	7.330 ft Maxir	Serv num S Sectio Load Cd Location Span # 443: 0 < 246:	Shear S n used ombinat n of max where r >=360 <360 >=240	Stress R d for this tion ximum on maximum o	span span occurs	= = =	Des	sign Or 0.441 4x14 91.21 207.00 +D+S+H 18.149	: 1 psi psi
Uniform Load : DESIGN SUM Maximum Bendir Section used Load Combinatio Location of maxir Span # where ma Maximum Defi Max Downwar Max Upward T Max Downwar Max Upward T Max Upward T Max Upward T Max Ownwar Max Upward T	D = 0.020 IMARY ng Stres for this for this for this mum on s aximum o ection rd Transi ransient rd Total I Total Def rces &	s Ratio span ccurs ent Deflection Deflection lection Stresse Max Stress	= = = tion n • • s for L	_oad	(1,78 1,81 +D Spa 0 0 0 0 0 0 0 0 0	0.983 4x14 30.99p 11.25p 9.600ft an # 1 .519 in .934 in .000 in binatic	dth = 7 1 si si Ratic Ratic Ratic Ratic	7.330 ft Maxir	Serv num S Sectio Location Span # 443: 0< 246: 0<	Shear S n used ombinat n of max where r >=360 <360 >=240 <240	Stress R d for this tion ximum on maximum maximum	atio span span occurs ment Values		Des	sign OF 0.441 4x14 91.21 207.00 +D+S+H 18.149 Span # 1 Span # 1	: 1 psi psi ft
Uniform Load : DESIGN SUM Maximum Bendir Section used Load Combination Load Combination Span # where may Maximum Defil Max Downwar Max Upward T Max Downwar Max Upward T Max Upward T Max Upward T Max Ownwar Max Upward T Max Ownwar Max Upward T Max Downwar Max Upward T Max Upward T Max Upward T	D = 0.020 IMARY ng Stres for this for this for this mum on s aximum o ection rd Transi Transient rd Total Def	s Ratio span ccurs ent Deflection Deflection lection Stresse	= = = = n • • • • • • • •		(1,78 1,81 +D Spa 0 0 0 0 0	0.983 4x14 30.99p 11.25p 9+S+H 9.600ft an # 1 .519 in .000 in .934 in .000 in	dth = 7 1 si si Ratio Ratio Ratio	7.330 ft Maxir	Serv num S Sectio Location Span # 443: 0< 246: 0<	Shear S n used ombinat n of max where r >=360 <360 >=240	Stress R d for this tion ximum on maximum o	span span occurs	= = = = F'b	Des	sign OF 0.441 4x14 91.21 207.00 +D+S+H 18.149 Span # 1 Shear Va fv	: 1 psi psi ft ft F'v
Uniform Load : DESIGN SUM Maximum Bendir Section used Load Combinatio Location of maxir Span # where ma Maximum Defi Max Downwar Max Upward T Max Downwar Max Upward T Max Upward T Max Upward T Max Ownwar Max Upward T	D = 0.020 IMARY ng Stres for this for this on mum on s aximum o ection rd Transi ransient rd Total I Total Def rces &	s Ratio span ccurs ent Deflection Deflection lection Stresse Max Stress	= = = tion n • • s for L	_oad	(1,78 1,81 +D Spa 0 0 0 0 0 0 0 0 0	0.983 4x14 30.99p 11.25p 9.600ft an # 1 .519 in .934 in .000 in 934 in .000 in c i	dth = 7 1 si si Ratic Ratic Ratic Cr	C_m	Serv num S Sectio Load Cd Location Span # 443: 0 < 246: 0 < C t	Shear S n used ombinat n of max where r >=360 <360 >=240 <240	Stress R d for this tion ximum on naximum maximum Mon M	atio s span span occurs ment Values fb	= = = = = F'b 0.00	Des V 0.00	sign OF 0.441 4x14 91.21 207.00 +D+S+H 18.149 Span # 1 Shear Va fv 0.00	: 1 psi psi ft lues F'v 0.0
Uniform Load : DESIGN SUM Maximum Bendir Section used Load Combination Location of maxin Span # where max Maximum Defil Max Downwar Max Upward T Max Downwar Max Upward T Max Upward T Ma	D = 0.020 IMARY ng Stres for this for this for this mum on s aximum o ection rd Transi ransient rd Total I Total Def rces & Span #	s Ratio span ccurs ent Deflection Deflection lection <u>Stresse</u> <u>Max Stress</u> <u>M</u> 0.558	= = = = tion n • s for L • Ratios V 0.250	_oad C _d 0.90	(1,78 1,81 +D Spa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.983 4x14 30.99p 11.25p 9.600ft an # 1 .519 in .934 in .000 in binatic	dth = 7 1 si si Ratic Ratic Ratic Ratic	C_{m} 330 ft Maxir C_{m} 1.00 1.00	Serv num S Sectio Location Span # 443: 0< 246: 0<	Shear S n used ombinat n of max where r >=360 <360 >=240 <240	Stress R d for this tion ximum on maximum maximum	atio span span occurs ment Values	= = = = F'b	Des	sign OF 0.441 4x14 91.21 207.00 +D+S+H 18.149 Span # 1 Shear Va fv	: 1 psi psi ft ft Fv 0.0 162.0
Uniform Load : DESIGN SUM Maximum Bendir Section used Load Combination Location of maxin Span # where max Maximum Defil Max Downwar Max Upward T Max Downwar Max Downwar Max Upward T Max Downwar Max Dow	D = 0.020 IMARY ng Stres for this for this for this mum on s aximum o ection rd Transi ransient rd Total I Total Def rces & Span #	s Ratio span pan ccurs ent Deflection Deflection lection Stresse Max Stress M	= = = = tion n • S for L	-oad	(1,78 1,81 +D Spa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.983 4x14 30.99p 11.25p 9.600ft an # 1 .519 in .000 in .000 in 0.000 in 0.0000 in 0.00000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.00000 in 0.0000 in 0.0000 in 0.00000 in 0.00000000 in 0.00000000000000000000000000000000000	dth = 7 1 si si Ratic Ratic Ratic Ratic C r 1.00 1.00 1.00	C_{m} 330 ft Maxir C_{m} 1.00 1.00	Serv num S Sectio Location Span # 443: 0 < 246: 0 < C t 1.00 1.00 1.00	Shear S n used ombinat n of max where r >=360 <360 >=240 <240 C L 1.00 1.00 1.00	Stress R d for this tion ximum on naximum maximum Mon M	atio s span span occurs ment Values fb	= = = = = = = F'b 0.00 1417.50 0.00 1575.00	V 0.00 1.25 0.00 1.25	sign OF 0.441 4x14 91.21 207.00 +D+S+H 18.149 Span # 1 Span # 1 Shear Va fv 0.00 40.54 0.00 40.54	: 1 psi psi ft ft Fv 0.0 162.0 0.0 180.0
Uniform Load : DESIGN SUM Maximum Bendir Section used Load Combination Location of maxin Span # where max Maximum Defil Max Downwar Max Upward T Max Downwar Max Upward T Max Upward T Ma	D = 0.020 IMARY ng Stres for this for this for this mum on s aximum o ection rd Transi ransient rd Total I Total Def rces & Span #	s Ratio span ccurs ent Deflection Deflection lection <u>Stresse</u> <u>Max Stress</u> <u>M</u> 0.558	= = = = tion n • s for L • Ratios V 0.250	_oad C _d 0.90	(1,78 1,81 +D Spa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.983 4x14 30.99p 11.25p 1+S+H 9.600ft an # 1 .519 in .000 in .000 in .000 in .000 in .000 in .000 in 1.00 1.00	dth = 7 I si si Ratic Ratic Ratic Cr 1.00 1.00	C_{m} C_{m} 1.00 1.00 1.00 1.00	Serv num S Sectio Load Co Location Span # 443 : 0 < 246 : 0 < C t 1.00 1.00 1.00 1.00	Shear S n used ombinat n of max where r >=360 <360 >=240 <240 C L 1.00 1.00 1.00 1.00	Stress R d for this tion ximum on naximum maximum M 6.76 6.76	atio span span occurs ment Values fb 791.55 791.55	= = = = = = = = = = = = = = = = = = =	V 0.00 1.25 0.00 1.25 0.00	Shear Va 5 5 5 5 5 5 5 5 5 5 5 5 5	: 1 psi psi ft ft ft ft 0.0 162.0 0.0 180.0 0.0
Uniform Load : DESIGN SUM Maximum Bendin Section used Load Combinatic Location of maxin Span # where ma Maximum Defil Max Downwar Max Upward T Max Upward T Max Upward T Max Upward T Length = 19.20 ft D+L+H Length = 19.20 ft D+L+H Length = 19.20 ft D+L+H	D = 0.020 IMARY ng Stres for this for this for this mum on s aximum o ection rd Transi Transient rd Total Def rces & Span # 1 1	pan ccurs ent Deflection Deflection lection Stresse <u>Max Stress</u> <u>M</u> 0.558 0.503 0.804	= = = tion n • s for L • Ratios V 0.250 0.225 0.360	 Cd 0.90 1.00 1.25	Comt 1,78 1,81 +D Spa 0 0 0 0 0 0 0 0 0 0 0 0 0	0.983 4x14 30.99p 11.25p 9.600ft an # 1 .519 in .934 in .934 in .000 in Dinatic C j 1.00 1.00 1.00 1.00	dth = 7 1 si si si Ratic Ratic Ratic Ratic Ratic C r 1.00 1.00 1.00 1.00 1.00	C_{m} C_{m} C_{m} 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Serv num S Sectio Load Co Location Span # 443: 0 < 246: 0 < C t 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Shear S n used ombinat of may where r >=360 <360 >=240 <240 C L 1.00 1.00 1.00 1.00 1.00 1.00	Stress R d for this tion ximum on maximum maximum Mon Mon 6.76	atio span span occurs ment Values fb 791.55	= = = = = = = F'b 0.00 1417.50 0.00 1575.00	V 0.00 1.25 0.00 1.25	sign OF 0.441 4x14 91.21 207.00 +D+S+H 18.149 Span # 1 Span # 1 Shear Va fv 0.00 40.54 0.00 40.54	: 1 psi psi ft ft ft ft 220 0.0 180.0 0.0 225.0
Uniform Load : DESIGN SUM Maximum Bendir Section used Load Combination Location of maxin Span # where max Maximum Defil Max Downwar Max Upward T Max Downwar Max Upward T Length = 19.20 ft D+L+H Length = 19.20 ft D+S+H Length = 19.20 ft	D = 0.020 IMARY ng Stres for this for this mum on s aximum o ection rd Transient rd Total Def rces & Span # 1 1 1 1	pan ccurs ent Deflection Deflection lection Stresse Max Stress M 0.558 0.503	= = = = tion n • s for L • Ratios V 0.250 0.225	 Cd 0.90 1.00	C F/V 1,78 1,81 +D Spa 0 0 0 0 0 0 0 0 0 0 0 0 0	0.983 4x14 30.99p 11.25p 9.600ft an # 1 .519 in .000 in .934 in .000 in Dinatic C i 1.00 1.00 1.00 1.00 1.00 1.00	dth = 7 1 si si si Ratic Ratic Ratic Ratic Ratic Ratic 1.00 1.00 1.00 1.00 1.00 1.00 1.00	2.330 ft Maxir D = D = D = D = D = C m 1.00 1.00 1.00 1.00 1.00 1.00	Serv num S Sectio Load Co Location Span # 443> 0 < 246> 0 < C t 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Shear S n used ombinat of may where r >=360 <360 >=240 <240 C L 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Stress R d for this tion ximum on naximum maximum M 6.76 6.76	atio span span occurs ment Values fb 791.55 791.55	= = = = = = = = = = = = = = = = = = =	V 0.00 1.25 0.00 2.51 0.00 2.82	Sign Of 0.441 4x14 91.21 207.00 +D+S+H 18.149 Span # 1 Span # 1 Shear Va fv 0.00 40.54 0.00 40.54 0.00 81.07 0.00 91.21	: 1 psi psi ft ft ft ft ft ft ft ft ft ft ft ft ft
Uniform Load : DESIGN SUM Maximum Bendin Section used Load Combinatic Location of maxin Span # where ma Maximum Defil Max Downwar Max Upward T Max Upward T Max Upward T Max Upward T Length = 19.20 ft D+L+H Length = 19.20 ft D+L+H Length = 19.20 ft D+L+H	D = 0.020 IMARY ng Stres for this for this mum on s aximum o ection rd Transient rd Total Def rces & Span # 1 1 1 1	pan ccurs ent Deflection Deflection lection Stresse <u>Max Stress</u> <u>M</u> 0.558 0.503 0.804	= = = tion n • s for L • Ratios V 0.250 0.225 0.360	 Cd 0.90 1.00 1.25	Comt 1,78 1,81 +D Spa 0 0 0 0 0 0 0 0 0 0 0 0 0	0.983 4x14 30.99p 11.25p 9.600ft an # 1 .519 in .934 in .934 in .000 in Dinatic C j 1.00 1.00 1.00 1.00	dth = 7 1 si si si Ratic Ratic Ratic Ratic Ratic C r 1.00 1.00 1.00 1.00 1.00	2.330 ft Maxir D = D = D = D = D = D = D = D = D = D =	Serv num S Sectio Load Co Location Span # 443> 0 < 246> 0 < C t 1.00 1.0	Shear S n used ombinat of may where r >=360 <360 >=240 <240 C L 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Stress R d for this tion ximum on maximum of maximum of Mon Mon 6.76 6.76 6.76 13.51 15.20	atio span span occurs ment Values fb 791.55 791.55 1,583.10 1,780.99	≓ = = = = = = = = = = = = = = = = = = =	V 0.00 1.25 0.00 2.51 0.00 2.82 0.00	Sign OF 0.441 4x14 91.21 207.00 +D+S+H 18.149 Span # 1 Span # 1 Span # 1 Shear Va fv 0.00 40.54 0.00 40.54 0.00 81.07 0.00 91.21 0.00	: 1 psi psi ft ft F'v 0.0 162.0 0.0 180.0 0.0 225.0 0.0 207.0 0.0 0.00
Uniform Load : DESIGN SUM Maximum Bendir Section used Load Combination Location of maxin Span # where max Maximum Defil Max Downwar Max Upward T Max Downwar Max Upward T Length = 19.20 ft D+L+H Length = 19.20 ft D+0.750Lr+0.750L+H Length = 19.20 ft D+0.750L+0.750S+H	D = 0.020 IMARY ng Stres for this for this for this mum on s aximum o ection rd Transient rd Total Def rces & Span # 1 1 1 1 1	s Ratio span ccurs ent Deflect Deflection Deflection Stresse Max Stress M 0.558 0.503 0.804 0.983 0.704	= = = = tion n • s for L • Ratios V 0.250 0.225 0.360 0.441 0.315	<u>-oad</u> C _d 0.90 1.00 1.25 1.15 1.25	C F/V 1,78 1,81 +D Spa 0 0 0 0 0 0 0 0 0 0 0 0 0	0.983 4x14 30.99p 11.25p 9+S+H 9.600ft an # 1 .519 in .000 in .934 in .000 in 0 1.00 in 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	dth = 7 1 si si si Ratic Ratic Ratic Ratic Ratic Ratic Ratic Ratic 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	2.330 ft Maxir D = D = D = D = D = D = D = D = D = D =	Serv num S Sectio Load Co Location Span # 443 > 0 < 246 > 0 < C t 1.00	Shear S n used ombinat of may where r >=360 <360 >=240 <240 C L 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Stress R d for this tion ximum on maximum of maximum of Mon Mon 6.76 6.76 6.76 13.51	span span occurs fb 791.55 791.55 1,583.10	= = = = = = = = = = = = = = = = = = =	V 0.00 1.25 0.00 2.51 0.00 2.82	Sign Of 0.441 4x14 91.21 207.00 +D+S+H 18.149 Span # 1 Span # 1 Shear Va fv 0.00 40.54 0.00 40.54 0.00 81.07 0.00 91.21	: 1 psi psi ft ft ft ft ft ft ft ft ft ft ft ft ft
Uniform Load : DESIGN SUM Maximum Bendir Section used Load Combination Location of maxin Span # where max Maximum Defil Max Downwar Max Upward T Max Downwar Max Upward T Length = 19.20 ft D+L+H Length = 19.20 ft D+S+H Length = 19.20 ft D+S+H Length = 19.20 ft D+0.750Lr+0.750L+H	D = 0.020 IMARY ng Stres for this mum on s aximum o ection rd Transient d Total Def rces & Span # 1 1 1 1	s Ratio span pan ccurs ent Deflect Deflection Deflection Stresse Max Stress M 0.558 0.503 0.804 0.983	= = = = tion n • s for L • Ratios V 0.250 0.225 0.360 0.441	<u>-oad</u> C _d 0.90 1.00 1.25 1.15 1.25	C F/V 1,78 1,81 +D Spa 0 0 0 0 0 0 0 0 0 0 0 0 0	0.983 4x14 30.99p 11.25p 9+S+H 9.600ft an # 1 .519 in .000 in .934 in .000 in 0 0 1.00 in 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	dth = 7 1 si si si Ratic Ratic Ratic Ratic Ratic Ratic Ratic Ratic 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	2.330 ft Maxir D = D = D = D = D = D = D = D = D = D =	Serv num S Sectio Load Co Location Span # 443: 0 < 246: 0 < C t 1.00	Shear S n used ombinat of max where r >=360 <360 >=240 <240 C L 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Stress R d for this tion ximum on maximum of maximum of Mon Mon 6.76 6.76 6.76 13.51 15.20	atio span span occurs ment Values fb 791.55 791.55 1,583.10 1,780.99	= = = = = = = = = = = = = = = = = = =	Des V 0.00 1.25 0.00 2.51 0.00 2.51 0.00 2.51 0.00 2.19	Shear Va 6.441 4x14 91.21 207.00 +D+S+H 18.149 Span # 1 Shear Va fv 0.00 40.54 0.00 40.54 0.00 81.07 0.00 91.21 0.00 70.94	: 1 psi psi ft ft ft ft ft ft ft ft ft ft ft ft ft

Project Title: Engineer: Project ID: Project Descr:

Wood Beam											Sof	ware convright	ENERCALC, IN		t George F	
Lic. #: KW-06009704												inclosed by fight	enter tor aco, int		tural Sou	
DESCRIPTION:	typical 4	x14 purli	n													
Load Combination		Max Stres	s Ratios								Mor	nent Values			Shear Va	lives
Segment Length	Span #	M	V	Cd	C _{F/V}	Ci	Cr	Сm	C t	C	М	fb	F'b	ν	fv	F'v
+D+0.70E+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 19.20 ft	1	0.314	0.141	1.60	1.000	1.00	1.00	1.00	1.00	1.00	6.76	791.55	2520.00	1.25	40.54	288.00
+D+0.750Lr+0.750L+0.4	50W+H				1.000	1.00	1.00	1.00	1.00	1.00		101.00	0.00	0.00	0.00	0.00
Length = 19.20 ft	1	0.550	0.246	1.60	1.000	1.00	1.00	1.00	1.00	1.00	11.82	1,385.21	2520.00	2.19	70.94	288.00
+D+0.750L+0.750S+0.45	юw+н				1.000	1.00	1.00	1.00	1.00	1.00		1,000.21	0.00	0.00	0.00	0.00
Length = 19.20 ft	1	0.609	0.273	1.60	1.000	1.00	1.00	1.00	1.00	1.00	13.09	1,533.63	2520.00	2.43	78.54	288.00
+D+0.750L+0.750S+0.52	250E+H				1.000	1.00	1.00	1.00	1.00	1.00		1,000.00	0.00	0.00	0.00	0.00
Length = 19.20 ft	1	0.609	0.273	1.60	1.000	1.00	1.00	1.00	1.00	1.00	13.09	1.533.63	2520.00	2.43	78.54	288.00
+0.60D+0.60W+0.60H					1.000	1.00	1.00	1.00	1.00	1.00		.,	0.00	0.00	0.00	0.00
Length = 19.20 ft	1	0.188	0.084	1.60	1.000	1.00	1.00	1.00	1.00	1.00	4.05	474.93	2520.00	0.75	24.32	288.00
+0.60D+0.70E+0.60H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 19.20 ft	1	0.188	0.084	1.60	1.000	1.00	1.00	1.00	1.00	1.00	4.05	474.93	2520.00	0.75	24.32	288.00
Overall Maxim	um De	eflectio	ns													
Load Combination		S	pan	Max. "-"	Defl	Location	in Span		.oad Co	mbinatio	ń		Max. "+"	Defl L	ocation in	Span
+D+S+H			1	0.9	345		9.670						0.0			

Load Combination	Span	Max. Downward	d Defl	Location i	n Span	Max. Upward De	əfi	Location in S	pan
+D+H	1	0.4153	in	9.670		0.0000	in	0.000	f
+D+L+H	1	0.4153	in	9.670	ft	0.0000	in	0.000	f
+D+Lr+H	1	0.8307	in	9.670	ft	0.0000	in	0.000	f
+D+S+H	1	0.9345	in	9.670	ft	0.0000	in	0.000	f
+D+0.750Lr+0.750L+H	1	0.7268	in	9.670	ft	0.0000	in	0.000	f
+D+0.750L+0.750S+H	1	0.8047	in	9.670	ft	0.0000	in	0.000	f
+D+0.60W+H	1	0.4153	in	9.670	ft	0.0000	in	0.000	f
+D+0.70E+H	1	0.4153	in	9.670	ft	0.0000	in	0.000	f
+D+0.750Lr+0.750L+0.450W+H	1	0.7268	in	9.670	ft	0.0000	in	0.000	f
+D+0.750L+0.750S+0.450W+H	1	0.8047	in	9.670	ft	0.0000	in	0.000	f
+D+0.750L+0.750S+0.5250E+H	1	0.8047	in	9.670	ft	0.0000	in	0.000	f
+0.60D+0.60W+0.60H	1	0.2492	in	9.670	ft	0.0000	in	0.000	f
+0.60D+0.70E+0.60H	1	0.2492	in	9.670	ft	0.0000	in	0.000	f
D Only	1	0.4153	in	9.670	ft	0.0000	in	0.000	f
Lr Only	1	0.4153	in	9.670	ft	0.0000	in	0.000	f
S Only	1	0.5192	in	9.670	ft	0.0000	in	0.000	f
Vertical Reactions		Supp	ort notati	on : Far left is #	¥1	Values in K	IPS		
Load Combination	Support 1	Support 2						· · · · · · · · · · · · · · · · · · ·	
Overall MAXimum	3.167	3.167							
Overall MINimum	1.759	1.759							
+D+H	1.407	1.407							
+D+L+H	1,407	1.407							
+D+Lr+H	2.815	2.815							
+D+S+H	3.167	3.167							
+D+0.750Lr+0.750L+H	2.463	2.463							
+D+0.750L+0.750S+H	2.727	2.727							
+D+0.60W+H	1.407	1.407							
+D+0.70E+H	1.407	1.407							
+D+0.750Lr+0.750L+0.450W+H	2.463	2.463							

+D+0.750Lr+0.750L+0.450W+H	2.463	2.463
+D+0.750L+0.750S+0.450W+H	2.727	2.727
+D+0.750L+0.750S+0.5250E+H	2.727	2.727
+0.60D+0.60W+0.60H	0.844	0.844
+0.60D+0.70E+0.60H	0.844	0.844
D Only	1.407	1.407
Lr Only	1.407	1.407
S Only	1.759	1.759

H Only

	neo de la companya d	ALLOW ABLE	UNIT	STRESSES. F	POUNDS PER	L RQ. ENCH	
SPECIES AND COMMERCIAL GRADE	L GRADE	Come Pression Parallel to Grain	Com- Dresson Perpetr- docutat to Grain	Extreme Fuber in Ronding Cand Persion Farallel to Ctaun)	Maximum Horsonia Stear	Modulus Modulus Eacerterty	Ruce under Antres Antres Antres
	SYMBOL:		T	: or t			na je boljano na
DOUGLAS FIR COAST REGION (Contid)			venture in .		na mana a su		
, 	1841	1.480	410	1,710	ът.	we poly	U.R.C.
	л С Ж	1,350		1,075	.011	1.600 000	Standurd
	1.1.4. 1.1.4.1.	1,050	410 300	1.080	- 017		No. 25-2-58
WAY LAND AND FIRE TRANSPORT AND A CONTRACT OF A CONTRACT O		 M - Company and a second s second second sec	on - tablet were not stated and the state of the state - too	and a state of the	all the second	unia Participante Marticipante	2
Select Structural	J.&P.	1.750	227 4 5 5	2 2 7	ي م	10181201829	
Structural	J &P	1.400	3	1,900	8		UML
Common Structural	J.&P.	1.250	380	1,450	• C	1 600 000	Standard Standard
Select Structural	P.&T.	1,750	4 55			>	No. 25-4-58
Structural	. 	1.100	100	, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,		
Common Structural	P.&T.	1.250	380	1 - - - - - - - - - - - - - - - - - - -			
HEMLOCK, EASTERN:				an a			- Common of Common State St
Select Structural	J.&PB.&S.	850	. , '	1,300	\$		
The structural	- * *			1.200	60 60		UBC
Common Structural	J.&P.	650	380	1.100	60	1 100 000 1	Crandard
Cullity Structural	J.&P.	600		920	6		
Select Structural	P.&T.	850	- 10 - 14		, theorem		
HEMLOCK, WEST COAST:			An one of the second se	an an the anti-transformer of the second sec		Konská – neventevente	and the second
Select Structural	L.F.	060	330	1.440			
15W) fIndustrial	L.F.	906	330	1.350	3		
1200 fIndustrial	L L	810	330	1,0%0	ŝ	2001001 - T	No 25-6-55
Select Structural	J.&P.	1,080	330	3.440			

TABLE No. 23-A-Continued

1958 EDITION

Title Block Line 1								F	⁻ rojec	t Title:	:					
You can change this a									Engine Projec							
using the "Settings" m and then using the "Pr										t Desc	or:					
Title Block" selection.																
Title Block Line 6													Prir		AR 2022,	
Wood Beam											Soft	ware copyright	ENERCALC, I		rt George F 20, Build:12.	
Lic. # : KW-06009704														Strue	tural Sou	rce, LLC
DESCRIPTION:	center s	span giula	m beam	1												
CODE REFER	ENCE	S														
Calculations per I Load Combination				CBC 2	019, AS	SCE 7	-16									
Material Prop	erties															
Analysis Method :			s Desig	n				Fb +	•		2,600.0 p		Modulus of I			
Load Combination	ASCE	7-10						Fb - Fc -	Prll		2,600.0p 2,000.0p		Ebend- xx Eminbend - ;		600.0k/ 620.0k	
		s Fir-Lard							Perp	-	415.0 p	si				
Wood Grade :	glulam	combinat	tion nu	mber	11 circa	a 1958	}	Fv Ft			165.0 p 2,000.0 p		Donaitu		21 210-	م ر
Beam Bracing :	Beam i	s Fully Br	raced a	igains	t latera	l-torsic	onal bu		9	4	2,000.0 μ	51 1	Density		31.210p	CI
D(2.93) Lr(2.932	!) S(3.66	5) D(2.9	93) Lr(2.	932) S((3.665)	D(2.9	93) Lr(2	2.932) \$	8(3.665	5) D((2.93) Lr(2	.932) S(3.6	65) D(2	.93) Lr(2.	932) S(3.	665)
				•												
							7.0 X	22.62	5				****			
1							Span =	= 31.50	ft						1	
·															+	
Applied Loads			****							ce load	is entered	. Load Fa	ctors will be	applied	for calcu	lations.
Point Load : D = Point Load : D =																
Point Load : D =																
Point Load : D =	2.930, L	.r = 2.932,	S = 3.66	i5 k @ 2	23.130 ft	, (point	load fro	m purli	ns)							
Point Load : D =			S = 3.66	i5 k @ :	30.460 ft	, (point	load fro	m purli	ns)							
DESIGN SUMI Maximum Bendin					0	.769: 1		Mavin	num S	hoor 9	Stress Ra	atio	 	Des	sign OK 0.496	
Section used f			-	7	.0 X 22		•				d for this		-	7.0 X	22.625	
			=		,	0.50p							=		94.19	•
Load Combination			=			0.00p +S+H	SI	ı	oad Co	ombinat	ion		22		189.75 +D+S+H	•
Location of maxim	num on s		=		1	5.750ft		L	ocation	n of max	kimum on s		=		23.223	
Span # where max		curs	=		Spa	an # 1		5	Span #	where r	naximum c	occurs	=		Span # 1	
Maximum Defle Max Downward		ent Deflect	tion		1	020 in	Ratio	=	370>	-240						
Max Upward T	ransient	Deflectior			0.	000 in	Ratio	=	0 <	<240						
Max Downward Max Upward T							Ratio Ratio		205>	>=180 <180						
Movimum For		Stroope	o for l	and					-							
Load Combination				_Uau	COMD	main	JII3	•			Mon	nent Values			Shear Va	lues
Segment Length	Span #	М	V	Сd	C _{F/V}	Ci	Cr	Сm	c _t	CL -	M	fb	F'b	V	fv	F'v
+D+H		0.40-	0 000			4	4						0.00	0.00	0.00	0.00
Length = 31.50 ft +D+L+H	1	0.437	0.282	0.90	1.000 1.000	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	50.86	1,022.06	2340.00 0.00	4.42 0.00	41.85 0.00	148.50 0.00
Length = 31.50 ft	1	0.393	0.254	1.00	1.000	1.00	1.00	1.00	1.00	1.00	50.86	1,022.06	2600.00	4.42	41.85	165.00
+D+Lr+H Length = 31.50 ft	1	0.629	0.406	1.25	1.000 1.000	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	101.76	2,044.81	0.00 3250.00	0.00 8.84	0.00 83.72	0.00 206.25
+D+S+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 31.50 ft +D+0.750Lr+0.750L+H	1	0.769	0.496	1.15	1.000 1.000	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	114.49	2,300.50	2990.00 0.00	9.94 0.00	94.19 0.00	189.75 0.00
Length = 31.50 ft	ment Length Span # M gth = 31.50 ft 1 0.437 H				1.000	1.00	1.00	1.00	1.00		89.04	1,789.12	3250.00	7.73	73.25	206.25

Title Block Line 1 You can change this area using the "Settings" menu item and then using the "Printing & Title Block* selection. Title Block Line 6

Project Title: Engineer: Project ID: Project Descr:

Wood Beam Lic. # : KW-06009704

Load Combination

Printed: 24 MAR 2022, 3:27 PM

File: Fort George PV.ec6 Software copyright ENERCALC, INC. 1983-2020, Build 12.20.5.17 Structural Source, LLC

DESCRIPTION: center span glulam beam

Load Combination		Max Stres	s Ratios								Мог	ment Values			Shear Va	lues
Segment Length	Span #	М	۷	Сd	C _{F/V}	Ci	Cr	Cm	Ct	C	М	fb	F'b	v	fv	F'v
+D+0.750L+0.750S+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00		
Length = 31.50 ft	1	0.663	0.427	1.15	1.000	1.00	1.00	1.00	1.00	1.00	98.58	1.980.89	2990.00	8.56	0.00	0.00
+D+0.60W+H					1.000	1.00	1.00	1.00	1.00	1.00	30.30	1,900.09			81.10	189.75
Length = 31.50 ft	1	0.246	0.159	1.60	1.000	1.00	1.00	1.00	1.00	1.00	50.86	1 000 00	0.00	0.00	0.00	0.00
+D+0.70E+H					1.000	1.00	1.00	1.00	1.00	1.00	00.00	1,022.06	4160.00	4.42	41.85	264.00
Length = 31.50 ft	1	0.246	0.159	1.60	1.000	1.00	1.00	1.00	1.00	1.00	50.00	4 000 00	0.00	0.00	0.00	0.00
+D+0.750Lr+0.750L+0.4	50W+H	0.210	0.100	1.00	1.000	1.00	1.00	1.00	1.00	1.00	50.86	1,022.06	4160.00	4.42	41.85	264.00
Length = 31.50 ft	1	0.430	0.277	1.60	1.000	1.00	1.00	1.00					0.00	0.00	0.00	0.00
+D+0.750L+0.750S+0.4	50\\	0.400	0.211	1.00	1.000				1.00	1.00	89.04	1,789.12	4160.00	7.73	73.25	264.00
Length = 31.50 ft	4	0.476	0 207	4 00		1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
+D+0.750L+0.750S+0.5		0.470	0.307	1.60	1.000	1.00	1.00	1.00	1.00	1.00	98.58	1,980.89	4160.00	8.56	81.10	264.00
	250E+H	0.470			1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 31.50 ft	7	0.476	0.307	1.60	1.000	1.00	1.00	1.00	1.00	1.00	98.58	1,980.89	4160.00	8.56	81.10	264.00
+0.60D+0.60W+0.60H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 31.50 ft	1	0.147	0.095	1.60	1.000	1.00	1.00	1.00	1.00	1.00	30.52	613.23	4160.00	2.65	25.11	264.00
+0.60D+0.70E+0.60H					1.000	1.00	1.00	1.00	1.00	1.00		• • • • • •	0.00	0.00	0.00	0.00
Length = 31.50 ft	1	0.147	0.095	1.60	1.000	1.00	1.00	1.00	1.00	1.00	30.52	613.23	4160.00	2.65	25.11	264.00
Overall Maxim	um De	flectio	ns									010120		2.00	20.11	204.00

Load Combination	Span	Max. "-" Defi L	ocation in Span	Lo	oad Combinatio	n	Max. *	+" Defl	Location in S	pan
+D+S+H	1	1.8356	15.750				0	.0000	0.00	0
Maximum Deflections f	or Load	Combinations	5							-
Load Combination		Span	Max. Downward	d Defl	Location i	n Span	Max. Upward I	Defl	Location in S	inan
+D+H		1	0.8155	in	15.750	ft.	0.0000	in	0.000	ft
+D+L+H		1	0.8155	in	15.750	ft	0.0000	in	0.000	ft
+D+Lr+H		1	1.6316	in	15.750	fi fi	0.0000	in	0.000	ft
+D+S+H		1	1.8356	in	15.750	ft	0.0000	in	0.000	ft
+D+0.750Lr+0.750L+H		1	1.4276	in	15.750	ft	0.0000	in	0.000	
+D+0.750L+0.750S+H		1	1.5806	in	15.750	ft	0.0000	in	0.000	ft
+D+0.60W+H		1	0.8155	in	15.750	ft	0.0000	in	0.000	ft
+D+0.70E+H		1	0.8155	in	15.750	ft ft	0.0000	in	0.000	ft
+D+0.750Lr+0.750L+0.450W+H		1	1.4276	in	15.750	ft	0.0000	in	0.000	ft
+D+0.750L+0.750S+0.450W+H		1	1.5806	in	15.750	ft	0.0000	in		ft
+D+0.750L+0.750S+0.5250E+H		1	1.5806	in	15.750	ft	0.0000	in	0.000	ft
+0.60D+0.60W+0.60H		1	0.4893	in	15.750	n ft	0.0000	in	0.000	ft
+0.60D+0.70E+0.60H		1	0.4893	in	15.750	n ft			0.000	ft
D Only		1	0.8155	in	15.750	n ft	0.0000	in	0.000	ft
Lr Only		1	0.8161	in	15.750		0.0000	in	0.000	ft
S Only		1	1.0201	in		ft	0.0000	in	0.000	ft
•		I	1.0201	111	15.750	ft	0.0000	in	0.000	ft
Vertical Reactions			Supp	ort notat	ion : Far left is #	‡1	Values in	KIPS		
Load Combination		Support 1	Support 2							
Overall MAXimum		16.435				·····				
Overall MINimum		9.133								
+D+H		7.302	7.348							

	9.100	9. I9Z
+D+H	7.302	7,348
+D+L+H	7.302	7.348
+D+Lr+H	14.608	14.702
+D+S+H	16.435	16.540
+D+0.750Lr+0.750L+H	12.782	12.863
+D+0.750L+0.750S+H	14.152	14.242
+D+0.60W+H	7.302	7.348
+D+0.70E+H	7.302	7.348
+D+0.750Lr+0.750L+0.450W+H	12.782	12.863
+D+0.750L+0.750S+0.450W+H	14.152	14.242
+D+0.750L+0.750S+0.5250E+H	14.152	14.242
+0.60D+0.60W+0.60H	4.381	4.409
+0.60D+0.70E+0.60H	4.381	4.409
D Only	7.302	7.348
Lr Only	7.307	7.353
S Only	9.133	9.192
H Only		

Title Block Line 1 Project Title: You can change this area Engineer: Project ID: using the "Settings" menu item Project Descr: and then using the "Printing & Title Block" selection. Title Block Line 6 Printed: 24 MAR 2022. 3:28PM File: Fort George PV.ec6 Wood Beam Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.17 Structural Source, LLC Lic. # : KW-06009704 DESCRIPTION: end span glulam beam with cantilever CODE REFERENCES Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : ASCE 7-10 **Material Properties** Analysis Method : Allowable Stress Design 2,600.0 psi E : Modulus of Elasticity Fb+ Load Combination ASCE 7-10 Fb-2,600.0 psi 1,600.0ksi Ebend- xx Fc - Prli 2,000.0 psi 620.0ksi Eminbend - xx Fc - Perp 415.0 psi : Douglas Fir-Larch Wood Species Fv 165.0 psi Wood Grade ; glulam combination number 11 circa 1958 Ft 2,000.0 psi Density 31.210 pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling 7.0 X 35.625 7.0 X 35.625 Span = 59.0 ft Span = 13.250 ft Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Load for Span Number 1 Point Load : D = 7.330, Lr = 2.932, S = 3.665 k @ 1.140 ft, (point load from purlins) Point Load : D = 2.930, Lr = 2.932, S = 3.665 k @ 14.670 ft, (point load from purlins) Point Load : D = 2.930, Lr = 2.932, S = 3.665 k @ 22.0 ft, (point load from purlins) Point Load : D = 2.930, Lr = 2.932, S = 3.665 k @ 29.330 ft, (point load from purlins) Point Load : D = 2.930, Lr = 2.932, S = 3.665 k @ 36.670 ft, (point load from purlins) Point Load : D = 2.930, Lr = 2.932, S = 3.665 k @ 44.0 ft, (point load from purlins) Point Load : D = 2.930, Lr = 2.932, S = 3.665 k @ 51.330 ft, (point load from purlins) Point Load : D = 2.930, Lr = 2.932, S = 3.665 k @ 0.0 ft, (point load from purlins) Load for Span Number 2 Point Load : D = 2.930, Lr = 2.932, S = 3.665 k @ 7.330 ft, (point load from purlins) Point Load : D = 7.325, Lr = 7.325, S = 9.162 k @ 13.250 ft, (point load from purlins) DESIGN SUMMARY **Design OK** Maximum Bending Stress Ratio 0.736 1 Maximum Shear Stress Ratio 0.900:1 = Section used for this span 7.0 X 35.625 Section used for this span 7.0 X 35.625 2,200.68psi 170.71 psi = 2,990.00psi ----189.75 psi Ξ Load Combination +D+S+H Load Combination +D+S+H Location of maximum on span Ξ 59.000ft Location of maximum on span 56.034 ft -Span # where maximum occurs Span #1 Span # where maximum occurs -Span #1 Maximum Deflection Max Downward Transient Deflection 1.697 in Ratio = 417>=240 Max Upward Transient Deflection -0.244 in Ratio = 1300>=240 Max Downward Total Deflection 3.408 in Ratio = 207>=180 Max Upward Total Deflection -0.658 in Ratio = 482>=180

Maximum Forces & Stresses for Load Combinations

Load Combination	1	Max Stres	s Ratios								Mon	nent Values			Shear Val	
Segment Length	Span #	М	V	Cd	C _{F/V}	Ci	Cr	с _т	C t	СL	М	fb	F'b	V	fv	F'v
+D+H													0.00	0.00	0.00	0.00

Title Block Line 1 You can change this area using the "Settings" menu item and then using the "Printing & Title Block" selection. Title Block Line 6

Project Title: Engineer: Project ID: Project Descr:

Wood Beam Lic. # : KW-06009704

Printed: 24 MAR 2022, 3:28PM File: Fort George PV.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.17 Structural Source, LLC

DESCRIPTION: end span glulam beam with cantilever

Load Combination		Max Stres	s Ratios								Mor	ment Values			Shear Va	alues
Segment Length	Span #	М	v	Сd	C _{F/V}	Ci	Cr	Сm	с _t	с _г _	М	fb	F'b	V	fv	F'v
Length = 59.0 ft	1	0.451	0.547	0.90	1.000	1.00	1.00	1.00	1.00	1.00	130.26	1.055.73	2340.00	13.50	81.19	148.50
Length = 13.250 ft	2	0.427	0.547	0.90	1.000	1.00	1.00	1.00	1.00	1.00	123.28	999.10	2340.00	10.81	81.19	148.50
+D+L+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 59.0 ft	1	0.406	0.492	1.00	1.000	1.00	1.00	1.00	1.00	1.00	130.26	1.055.73	2600.00	13.50	81.19	165.00
Length = 13.250 ft	2	0.384	0.492	1.00	1.000	1.00	1.00	1.00	1.00	1.00	123.28	999.10	2600.00	10.81	81.19	165.00
+D+Lr+H					1.000	1.00	1.00	1.00	1.00	1.00		000.10	0.00	0.00	0.00	0.00
Length = 59.0 ft	1	0.603	0.741	1.25	1.000	1.00	1.00	1.00	1.00	1.00	241.83	1,959.87	3250.00	25.40	152.80	206.25
Length = 13.250 ft	2	0.603	0.741	1.25	1.000	1.00	1.00	1.00	1.00	1.00	241.83	1,959.87	3250.00	21.07	152.80	206.25
+D+S+H					1.000	1.00	1.00	1.00	1.00	1.00	211.00	1,000.07	0.00	0.00	0.00	0.00
Length = 59.0 ft	1	0.736	0.900	1.15	1.000	1.00	1.00	1.00	1.00	1.00	271.54	2.200.68	2990.00	28.38	170.71	189.75
Length = 13.250 ft	2	0.736	0.900	1.15	1.000	1.00	1.00	1.00	1.00	1.00	271.54	2,200.68	2990.00	23.64	170.71	189.75
+D+0.750Lr+0.750L+H					1.000	1.00	1.00	1.00	1.00	1.00	271.54	2,200.00	0.00	23.04	0.00	0.00
Length = 59.0 ft	1	0.529	0.654	1.25	1.000	1.00	1.00	1.00	1.00	1.00	212.19	1.719.68	3250.00	22.43	134.90	206.25
Length = 13.250 ft	2	0.529	0.654	1.25	1.000	1.00	1.00	1.00	1.00	1.00	212.19	1,719.68	3250.00	18.50	134.90	206.25
+D+0.750L+0.750S+H					1.000	1.00	1.00	1.00	1.00	1.00	212.13	1,7 13.00	0.00	0.00	0.00	206.25
Length = 59.0 ft	1	0.636	0.782	1.15	1.000	1.00	1.00	1.00	1.00	1.00	234.47	1.900.28	2990.00	24.66	148.33	189.75
Length = 13.250 ft	2	0.636	0.782	1.15	1.000	1.00	1.00	1.00	1.00	1.00	234.47	1,900.28	2990.00	20.43	148.33	189.75
+D+0.60W+H				-	1.000	1.00	1.00	1.00	1.00	1.00	201.11	1,000.20	0.00	0.00	0.00	0.00
Length = 59.0 ft	1	0.254	0.308	1.60	1.000	1.00	1.00	1.00	1.00	1.00	130.26	1.055.73	4160.00	13.50	81.19	264.00
Length = 13.250 ft	2	0.240	0.308	1.60	1.000	1.00	1.00	1.00	1.00	1.00	123.28	999.10	4160.00	10.81	81.19	264.00
+D+0.70E+H					1.000	1.00	1.00	1.00	1.00	1.00		000.10	0.00	0.00	0.00	0.00
Length = 59.0 ft	1	0.254	0.308	1.60	1.000	1.00	1.00	1.00	1.00	1.00	130.26	1,055.73	4160.00	13.50	81.19	264.00
Length = 13.250 ft	2	0.240	0.308	1.60	1.000	1.00	1.00	1.00	1.00	1.00	123.28	999.10	4160.00	10.81	81.19	264.00
+D+0.750Lr+0.750L+0.4	50W+H				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 59.0 ft	1	0.413	0.511	1.60	1.000	1.00	1.00	1.00	1.00	1.00	212.19	1,719.68	4160.00	22.43	134.90	264.00
Length = 13.250 ft	2	0.413	0.511	1.60	1.000	1.00	1.00	1.00	1.00	1.00	212.19	1,719.68	4160.00	18.50	134.90	264.00
+D+0.750L+0.750S+0.4	50W+H				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 59.0 ft	1	0.457	0.562	1.60	1.000	1.00	1.00	1.00	1.00	1.00	234.47	1,900,28	4160.00	24.66	148.33	264.00
Length = 13.250 ft	2	0.457	0.562	1.60	1.000	1.00	1.00	1.00	1.00	1.00	234.47	1.900.28	4160.00	20.43	148.33	264.00
+D+0.750L+0.750S+0.52	250E+H				1.000	1.00	1.00	1.00	1.00	1.00		1,000,20	0.00	0.00	0.00	0.00
Length = 59.0 ft	1	0.457	0.562	1.60	1.000	1.00	1.00	1.00	1.00	1.00	234.47	1,900.28	4160.00	24.66	148.33	264.00
Length = 13.250 ft	2	0.457	0.562	1.60	1.000	1.00	1.00	1.00	1.00	1.00	234.47	1,900.28	4160.00	20.43	148.33	264.00
+0.60D+0.60W+0.60H					1.000	1.00	1.00	1.00	1.00	1.00		1,000120	0.00	0.00	0.00	0.00
Length = 59.0 ft	1	0.152	0.185	1.60	1.000	1.00	1.00	1.00	1.00	1.00	78.16	633.44	4160.00	8.10	48.71	264.00
Length = 13.250 ft	2	0.144	0.185	1.60	1.000	1.00	1.00	1.00	1.00	1.00	73.97	599.46	4160.00	6.49	48.71	264.00
+0.60D+0.70E+0.60H					1.000	1.00	1.00	1.00	1.00	1.00		•••••	0.00	0.00	0.00	0.00
Length = 59.0 ft	1	0.152	0.185	1.60	1.000	1.00	1.00	1.00	1.00	1.00	78.16	633.44	4160.00	8.10	48.71	264.00
Length = 13.250 ft	2	0.144	0.185	1.60	1.000	1.00	1.00	1.00	1.00	1.00	73.97	599.46	4160.00	6.49	48.71	264.00
Overall Maxim	um De	flectio	ns													
Load Combination		S	pan	Max. "-"	Defl	Location	in Span	L	oad Cor	nbinatio	n		Max. "+	* Defl L	ocation in	Span
الت محرك			1	24	002	~	7 950									

						-
+D+S+H	1	3.4083	27.358		0.0000	0.000
	2	0.0000	27.358	+D+S+H	-0.6582	13.250
Maximum Deflections		ombinations				

Load Combination	Span	Max. Downward Def	Lo	cation in	Span	Max. Upward D	efl	Location in St	pan
+D+H	1	1.7114 in		27.687	ft	0.0000	in	0.000	ft
+D+L+H	1	1.7114 in	:	27.687	ft	0.0000	in	0.000	ft
+D+Lr+H	1	3.0694 in	:	27.358	ft	0.0000	in	0.000	ft
+D+S+H	1	3.4083 in		27.358	ft	0.0000	in	0.000	ft
+D+0.750Lr+0.750L+H	1	2.7299 in	:	27.358	ft	0.0000	in	0.000	ft
+D+0.750L+0.750S+H	1	2.9841 in		27.358	ft	0.0000	in	0.000	ft
+D+0.60W+H	1	1.7114 in	:	27.687	ft	0.0000	in	0.000	ft
+D+0.70E+H	1	1.7114 in		27.687	ft	0.0000	in	0.000	ft
+D+0.750Lr+0.750L+0.450W+H	1	2.7299 in		27.358	ft	0.0000	in	0.000	Ħ
+D+0.750L+0.750S+0.450W+H	1	2.9841 in		27.358	ft	0.0000	in	0.000	ft
+D+0.750L+0.750S+0.5250E+H	1	2.9841 in	:	27.358	ft	0.0000	in	0.000	ft
+0.60D+0.60W+0.60H	1	1.0268 in	:	27.687	ft	0.0000	in	0.000	ft
+0.60D+0.70E+0.60H	1	1.0268 in		27.687	ft	0.0000	in	0.000	ft
D Only	1	1.7114 in	:	27.687	ft	0.0000	in	0.000	ft
Lr Only	1	1.3581 in	:	27.358	ft	0.0000	in	0.000	ft

Title Block Line 6	Printed: 24 MAR 2022, 3:28PM
Wood Beam	File: Fort George PV.ec6
Lic. # - KW-06009704	Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.17
	Structural Source, LLC

DESCRIPTION: end span glulam beam with cantilever

Maximum Deflections for Load Combinations

Load Combination	Span	Max. Downwa	rd Defi	Location in Span	Max. Upward Defl	Location in Spa	in
S Only	1	1.6969	in	27.358 ft	0.0000 in		f
Vertical Reactions		Sup	port notatior	1 : Far left is #1	Values in KIPS		
Load Combination	Support 1	Support 2	Support 3				
Overall MAXimum	31.807	52.340					
Overall MINimum	14.437	27,710					
+D+H	17.370	24.630					
+D+L+H	17.370	24.630					
+D+Lr+H	28.921	46.792					
+D+S+H	31.807	52.340					
+D+0.750Lr+0.750L+H	26.033	41.251					
+D+0.750L+0.750S+H	28.198	45.412					
+D+0.60W+H	17.370	24.630					
+D+0.70E+H	17.370	24.630					
+D+0.750Lr+0.750L+0.450W+H	26.033	41.251					
+D+0.750L+0.750S+0.450W+H	28.198	45.412					
+D+0.750L+0.750S+0.5250E+H	28.198	45.412					
+0.60D+0.60W+0.60H	10.422	14.778					
+0.60D+0.70E+0.60H	10.422	14.778					
D Only	17.370	24.630					
Lr Only	11.550	22.163					
S Only	14.437	27.710					
H Only							

	Inch.
	square
1	1.1ď
	pounds per square Inch.
	louding.
	of
	mal conditions of la
	Dormal
	for
	31
	it stresses are for normal
	unit
	Allowable

NOLLYN NATTON	SPECIES	SPECTES AND COMMERCIAL GRADE COMBINATION	MERCIAL	EX FREM	EX FREME FIBER	TENSION PARALICEL TO GRAIN	TENSION PARALLEL 10 GRAIN	COMPRESSION PARALLEL TO GRAIN "E	Ession Fr. To	KINIKA KINIKA SIIEAN	FON PER PENDICER GRAIN
жîн		and the second s		io "Souri complexication of the second se		intergramment in the state of the second sec	e unite 🤹 rélinandadementi		nonesaa ahaa ahaa ahaa ahaa ahaa ahaa ahaa		in the second
N	Grude of	Number	Grade	1 rom 4	15 01	From 4	15 01	1 cm 4	× 5-	naryte interdetenenindetekteinenenen	nionalization of the second
an a	pur do T is		Lanuat-		Leun.	La mina-	Lamona-	Launas-	Lamma.	4788×49 ° · · ·	ain, aa a A
۰ ا	RAILON -	80010 10	Liron I	tions	f tion	teans	[[1]]	14081	* 6 %*	• • •	. ,
	DOUCH, AS JIR	, never for the second s									· · · · · · · · · · · · · · · · · · ·
1	Cieur (Denve) f		Denke Select	3000	MUL	3000	NOT	24(8)	2300	165	150
	Clour (Denke) *	Oac	Dene Cost.	4000	10.00	2600	1990	1100	2300 2	165	ב י רי
	l'ienve helest	NA.	Dense Selves	3900	3000	999: 	3000	215	8	191	5
1999 1997	Clear ICHAS	0 Dar	Select	2800	28¢H	2100	2800	5100	2200		415
	Grain - Veler		Structural Select	2600	2800	OBSE	2860	2 J (K)	200 2	¥ Y	
	Sic crust Select	ľ wo	Summer Computer on	0092	8	2000	8092	2002	1002	- 12 - 22 - 22	1.
n (Steertval Çîji î Nafam	Oak	Çerin açû an	2600	2400	\$200	2400	6061			
nin 2000. TART :	L'ENC CADE	28	Dex Cont	3400	200	1600	N U	330	3062	¥. 4	
	Derve Const.	1 / 14 of	Condragase	2400	26.00	2200	2400	1906)	UUC:	: 2.3% (ag ²) (23 27 27
س		OR LI Crai	Construction	5400	3000	2200	24000	<u>8</u>	1000		•
		l « c	Surviura	34,00	5 <u>6</u>	A)17	24(3)	000.7	SUN	2	400 2019 80
12	Seecents (% Ir a Merican	i i i	Šta neča na	2200	2200	2000	7:400	S S S	NU & I	105	3 ⁰ , 20 8. 1
6	Sole.	ali E Jaco	Nardard	3200	500	2007	6062	(CO)	006-1	*	4:5
4 v •	an rawan ara a tana a tana Ang ang ang ang ang ang ang ang ang Ang ang ang ang ang ang ang ang ang ang a		Crimely (Land)	90097 10007	832	2007 2007	2400 2420	()) 		24) € 22) € 2000 - 12 2000 - 12 2000 - 12	/ • 35 a 7, p
	Mendard	i jaryi eet	Surcara	1600	2002		2400			e 54 2 423 	2 4 2 4 7

Table No. 25-C 1958 EDITION UNIFORM BUILDING CODE

www.structural-source.com

PROJECT: PAGE NUMBER: _____ <u>FORT GEORGE BREWERY</u> <u>ROCLE 700 PV</u> ENGINEER: <u>KEW</u> DATE: 3.22-22

STEER POST UPLIET PAICHORDGE POST SPACING 26.0' ON CENTER TRIB WIDTH = 10,11/2 BEAMS = 5.05' TRIC DREN = 6.01 (5.051) = 30,20 UPLIET FORCE - 30,3 \$ (77,6 PSF (0,6) - 0,6 (4PSF)) × 1340# ASD DL DETERMINE MIN. LENGTH OF TWO 5/16" DID. LAG BOLTS INTO 4X14 PURLINS BLIOWBECE WIDTHRAWL FROM NOSTABLE 12.20 W/ G=0,50 = 266 PLI POR LDF : 1.0 MIN, EMBEDMENT = 1340#/1.6 (2SCREWS) 266 PLI = 1.57" LDE LAGBOLT HOS TO POSS THROUGH : 14" BOSS PLDTE + 2x TEG DECKING = 13/4" LAG BOLT TIP LENGTH 3 51164 USE 5/16" DIR. X 4" LAG BOLTS EMBEDMENT = 4" - 1,75" - 0,30" = 1.95" > 1.57" OK

Table 12.2A Lag Screw Reference Withdrawal Values, W¹

Tabulated withdrawal design values (W) are in pounds per inch of thread penetration into side grain of wood member. Length of thread penetration in main member shall not include the length of the tapered tip (see 12.2.1.1).											
	gth of thre	ead penetra	ation in m	ain memb	er shall no	ot include	the length	of the tape	ered tip (s	ee 12.2.1.1)
Specific									- 6		
Gravity,				·····		rew Diam			14.1		
G ²	1/4"	5/16"	3/8"	7/16"	1/2"	5/8"	3/4"	7/8"	1"	1-1/8"	1-1/4"
0.73	397	469	538	604	668	789	905	1016	1123	1226	1327
3 071	- 381	450	S16	578		387	868	974	1077	.1176	.1273
0.68	357	422	484	543	600	709	813	913	1009	1103	1193
6.67 m	- 269	413 -	473	SH	581	764	796	399	987	1078	1167
0.58	281	332	381	428	473	559	641	719	7 9 5	869	940
0.55	- 260	307	352	398	E-407	- 516	592	664	734	802	868
0.51	232	274	314	353	390	461	528	593	656	716	775
0.50	225	3260 S	305	- 342 -		447	513	\$76	636	695	752
0.49	218	258	296	332	367	434	498	559	617	674	730
0.02	<u>, 285</u>						. 41 2	525	580		686
0.46	199	235	269	302	334	395	453	508	562	613	664
								1473	- 525	574	62 1
0.43	179	212	243	273	302	357	409	459	508	554	600
								. 40	490	535	- 579
0.41	167	198	226	254	281	332	381	428	473	516	559
								412	415	497	538
0.39	155	183	210	236	261	308	353	397	438	479	518
1038					and a substance of the			301	-422	461	- 498
0.37	143	169	194	218	241	285	326	367	405	443	479
								- 332	389	425	- 460
0.35	132	156	179	200	222	262	300	337	373	407	441
			NY C						<u> </u>	339	367

Tabulated withdrawal design values, W, for lag screw connections shall be multiplied by all applicable adjustment factors (see Table 11.3.1).
 Specific gravity, G, shall be determined in accordance with Table 12.3.3A.

adjustment factors (see Table 11.3.1) to obtain adjusted withdrawal design values, W¹.

$$W = 1380 \,G^{5/2} \,D$$
 (12.2-3)

(b) The nail or spike reference withdrawal design value, W, in lbs/in. of penetration, for a smooth shank stainless steel nail or spike driven into the side grain of a wood member, with the nail or spike axis perpendicular to the wood fibers, shall be determined from Table 12.2D or Equation 12.2-4, within the range of specific gravities, G, and nail or spike diameters, D, given in Table 12.2D. Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Table 11.3.1) to obtain adjusted withdrawal design values, W'.

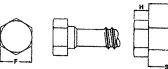
$$W = 465 G^{3/2} D$$
 (12.2-4)

(c) For calculation of the fastener reference withdrawal design value in pounds, the unit reference withdrawal design value in lbs/in. of fastener penetration from 12.2.3.1a or 12.2.3.1b shall be multiplied by the length of fastener penetration, p_t , into the wood member.

12.2.3.2 Deformed shank nails

(a) The reference withdrawal design value, in lbs/in. of ring shank penetration, for a Roof Sheathing Ring Shank nail or Post-Frame Ring Shank nail driven in the side grain of the main member, with the nail axis perpendicular to the wood fibers, shall be determined from Table 12.2E or Equation 12.2-5, within the range of specific gravities and nail diameters given in Table 12.2E. Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Table 11.3.1) to obtain adjusted withdrawal design values, W.

$$W = 1800 G^2 C$$


(12.2-5)

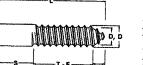

DOWEL-TYPE FASTENERS

Table L2 Standard Hex Lag Screws¹

- $D_r = root diameter$
- S = unthreaded body length
- T = minimum thread length²

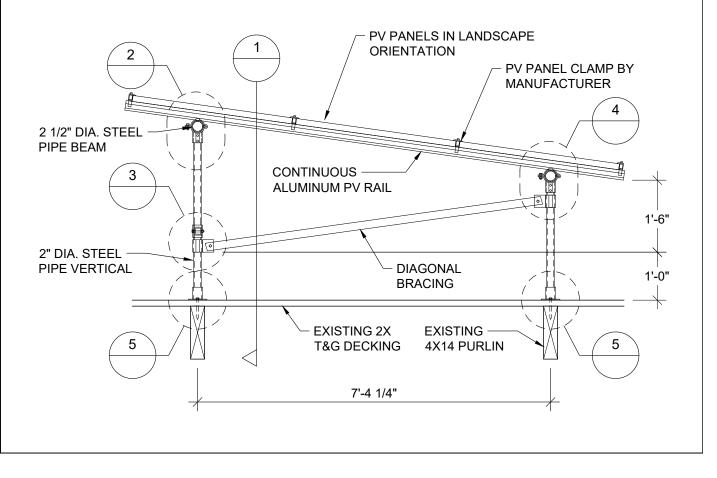
E = length of tapered tip L = lag screw length
N = number of threads/inch
F = width of head across flats
H = height of head

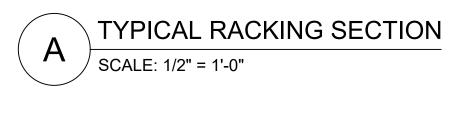
					Redu Body D		Full- Diarr	Body ieter				
Length,							Diameter,					
L		1/4"	5/16"	3/8"	7/16"	1/2"	5/8''	3/4"	7/8"	1"	1-1/8"	1-1/4"
	Dr	0.173"	0.227"	0.265"	0.328"	0.371"	0.471"	0.579"	0.683"	0.780"	0,887"	1.012"
	E	5/32"	3/16"	7/32"	9/32"	5/16"	13/32"	1/2"	19/32"	11/16"	25/32"	1
	н	11/64"	7/32"	1/4"	19/64"	11/32"	27/64"	1/2"	37/64"	43/64"	3/4"	7/8" 27/32"
	F	7/16"	1/2"	9/16"	5/8"	3/4"	15/16"	1-1/8"	1-5/16"	1-1/2"	1-11/16"	1-7/8"
	N	10	9	7	7	6	5	4-1/2	4	3-1/2	3-1/4	1
	S	1/4"	1/4"	1/4"	1/4"	1/4"				5-172	3-1/4	3-1/4
1"	Т	3/4"	3/4"	3/4"	3/4"	3/4"						
	T-E	19/32"	9/16"	17/32"	15/32"	7/16"						
	S	1/4"	1/4"	1/4"	1/4"	1/4"				+		+
1-1/2"	Т	1-1/4"	1-1/4"	1-1/4"	1-1/4"	1-1/4"						
	T-E	1-3/32"	1-1/16"	1-1/32"	31/32"	15/16"						
	S	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"	+		+		
2"	Т	1-1/2"	1-1/2"	1-1/2"	1-1/2"	1-1/2"	1-1/2"					
	T-E	1-11/32"	1-5/16"	1-9/32"	1-7/32"	1-3/16"	1-3/32"					
	S	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	+		+	+	+
2-1/2"	т	1-3/4"	1-3/4"	1-3/4"	1-3/4"	1-3/4"	I-3/4"					
	T-E	1-19/32"	1-9/16"	1-17/32"	1-15/32"	1-7/16"	1-11/32"					
	S	1"	1"	1"	1"	1"	1"	1"	1"			ļ
3	Т	2"	2"	2"	2"	2"	2"	2"	1	1"		
	T-E	1-27/32"	1-13/16"	1-25/32"	1-23/32"	1-11/16"	1-19/32"	1-1/2"	2"	2"		
	S	1-1/2"	1-1/2"	1-1/2"	1-1/2"	1-1/2"	1-1/2"	1-1/2"	1-13/32"	1-5/16"		ļ
4"	т	2-1/2"	2-1/2"	2-1/2"	2-1/2"	2-1/2"	2-1/2"		1-1/2"	1-1/2"	1-1/2"	I-1/2"
	T-E	2-11/32"	2-5/16"	2-9/32"	2-7/32"	2-3/16"	2-1/2 2-3/32"	2-1/2"	2-1/2"	2-1/2"	2-1/2"	2-1/2"
	S	2"	2"	2"	2"	2"	2-3/32	2"	1-29/32"	1-13/16"	1-23/32"	1-5/8"
5"	Т	3"	3"	3"	3"	3"	2" 3"	2" 3"	2"	2"	2"	2"
	T-E	2-27/32"	2-13/16"	2-25/32"	2-23/32"	2-11/16"	2-19/32"	1	3"	3"	3"	3"
	S	2-1/2"	2-1/2"	2-1/2"	2-1/2"	2-1/2"	2-19/32	2-1/2"	2-13/32"	2-5/16"	2-7/32"	2-1/8"
6"	Т	3-1/2"	3-1/2"	3-1/2"	3-1/2"	3-1/2"	3-1/2"	2-1/2"	2-1/2"	2-1/2"	2-1/2"	2-1/2"
	Т-Е	3-11/32"	3-5/16"	3-9/32"	3-7/32"	3-3/16*	3-3/32"	3-1/2"	3-1/2"	3-1/2"	3-1/2"	3-1/2"
	S	3"	3"	3"	3"	3"	3"	3"	2-29/32"	2-13/16"	2-23/32"	2-5/8"
7"	Т	4"	4"	4"	4"		3" 4"	3" 4"	3"	3"	3"	3"
	T-E	3-27/32"	3-13/16"	3-25/32"	3-23/32"	3-11/16"	1	4"	4"	4"	4 ⁺	4"
	S	3-1/2"	3-1/2"	3-1/2"	3-1/2"	3-1/2"	3-19/32"	3-1/2"	3-13/32"	3-5/16"	3-7/32"	3-1/8"
8"	Т	4-1/2"	4-1/2"	4-1/2"	4-1/2"	1	3-1/2"	3-1/2"	3-1/2"	3-1/2"	3-1/2"	3-1/2"
	T-E	4-11/32"	4-5/16"	4-9/32"	4-1/2 4-7/32"	4-1/2"	4-1/2"	4-1/2"	4-1/2"	4-1/2"	4-1/2"	4-1/2"
	S	4"	4"	4"	4"	<u>4-3/16"</u> <u>4"</u>	4-3/32"	4"	3-29/32"	3-13/16"	3-23/32"	3-5/8"
9"	T	5"	5"	5"	5"	4 5"	4"	4"	4"	4"	4"	4"
	T-E	4-27/32"	4-13/16"	4-25/32"	4-23/32"	4-11/16"	5"	5"	5"	5"	5"	5"
	S	4-1/2"	4-1/2"	4-1/2"	4-23/32		4-19/32"	4-1/2"	4-13/32"	4-5/16"	4-7/32"	4-1/8"
10"	Ť	5-1/2"	5-1/2"	4-1/2 5-1/2"	4-1/2" 5-1/2"	4-1/2"	4-1/2"	4-1/2"	4-1/2"	4-1/2"	4-1/2"	4-1/2"
	T-E	5-11/32"	5-5/16"	5-9/32"	5-1/2" 5-7/32"	5-1/2"	5-1/2"	5-1/2"	5-1/2"	5-1/2"	5-1/2"	5-1/2"
+	S	5"	5" 5"	5"	5-7732	5-3/16"	5-3/32"	5"	4-29/32"	4-13/16"	4-23/32"	4-5/8"
11"	T	5 6"	5 6"	5" 6"		5"	5"	5"	5"	- 5"	5"	5"
	T-E	5-27/32"	5-13/16"	o 5-25/32"	6" 5 22/22#	6"	6"	6"	6"	6"	6"	6"
+	S	6"	6"	<u>5-25/32"</u> 6"	5-23/32"	5-11/16"	5-19/32"	5-1/2"	5-13/32"	5-5/16"	5-7/32"	5-1/8"
12"	T	6"	6"	6" 6"	6" 6"	6" 6"	6" ("	6"	6"	6"	6"	6"
	T-E	5-27/32"	5-13/16"	5-25/32"	6" 5 22/22"	6"	6"	6"	6"	6"	6"	6"
		ied in ANSL			5-23/32"	5-11/16"	5-19/32"	5-1/2"	5-13/32"	5-5/16"	5-7/32"	5-1/8"

1. Tolerances are specified in ANSI/ASME B18.2.1. Full-body diameter and reduced body diameter lag screws are shown. For reduced body diameter lag screws, the unthreaded body diameter may be reduced to approximately the root diameter, D_r.

Minimum thread length (T) for lag screw lengths (L) is 6" or 1/2 the lag screw length plus 0.5", whichever is less. Thread lengths may exceed these minimums up to the full lag screw length (L).

APPENDIX

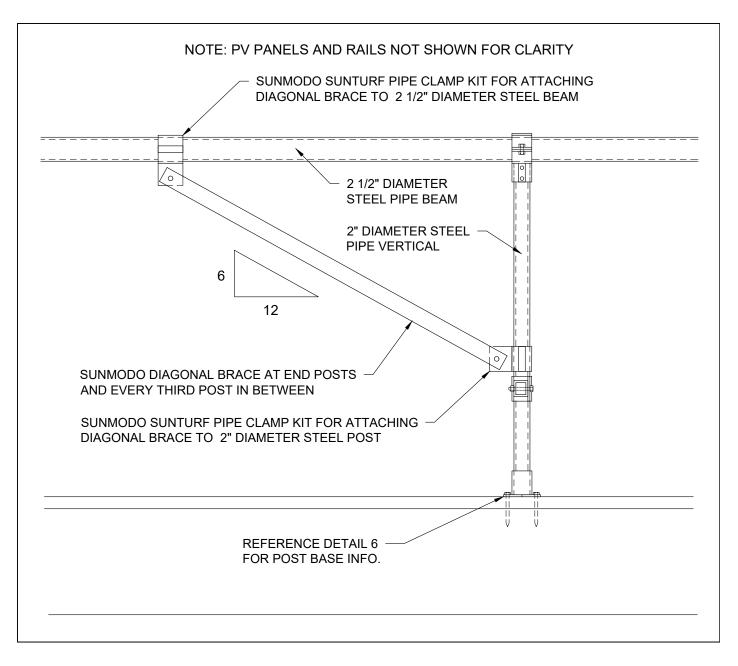


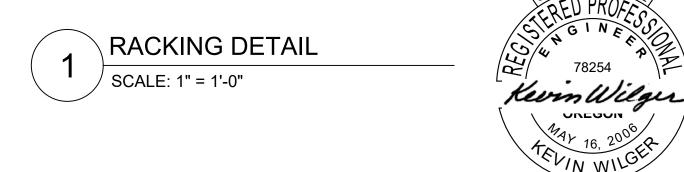

PROJECT :	PAGE NUMBER :
FORT GEORGE B	REWING COMPANY PV

ENGINEER : <u>KEW</u> DATE : <u>3/24/2022</u>

NOTES:

- 1. ALUMINUM RAILS SHALL SUNMODO HR300 RAILS, WITH 3 RAILS PER COLUMN OF PV PANELS EQUALLY SPACED ACROSS THE PANEL WIDTH.
- 2. VERTICALS SHALL BE LOCATED DIRECTLY OVER EXISTING 4X14 PURLINS AND SPACED AT 6'-0" ON CENTER MAXIMUM SPACING ALONG LENGTH OF PURLINS.
- 3. MAXIMUM CANTILEVER OF 2 1/2" DIAMETER PIPE BEAMS SHALL BE 2'-0" PAST LAST VERTICAL.
- 4. STEEL PIPE SHALL BE SCHEDULE 10S HOT-DIP GALVANIZED WITH Fy = 50 KSI.

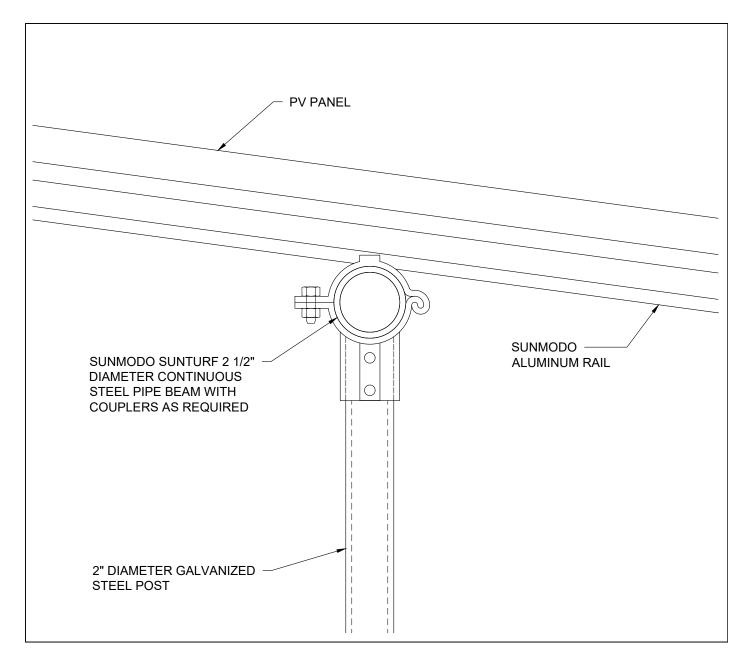


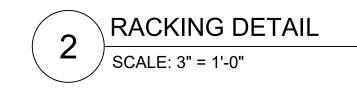


PROJECT :	PAGE NUMBER :	
FORT GEORGE	BREWING COMPANY PV	

ENGINEER : <u>KEW</u> DA

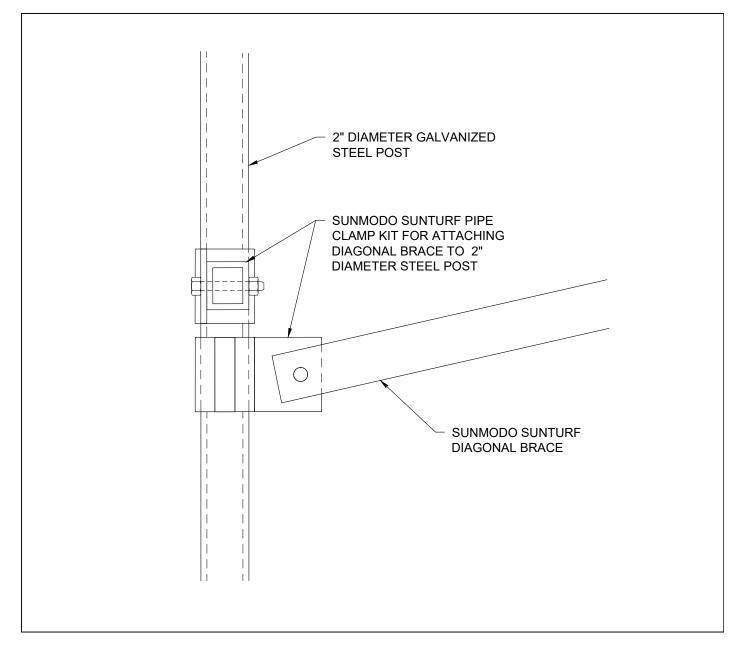
DATE : 3/24/2022

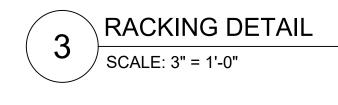




PROJECT :	PAGE NUMBER :
FORT GEORGE	BREWING COMPANY PV

ENGINEER : KEW DATE : 3/24/2022

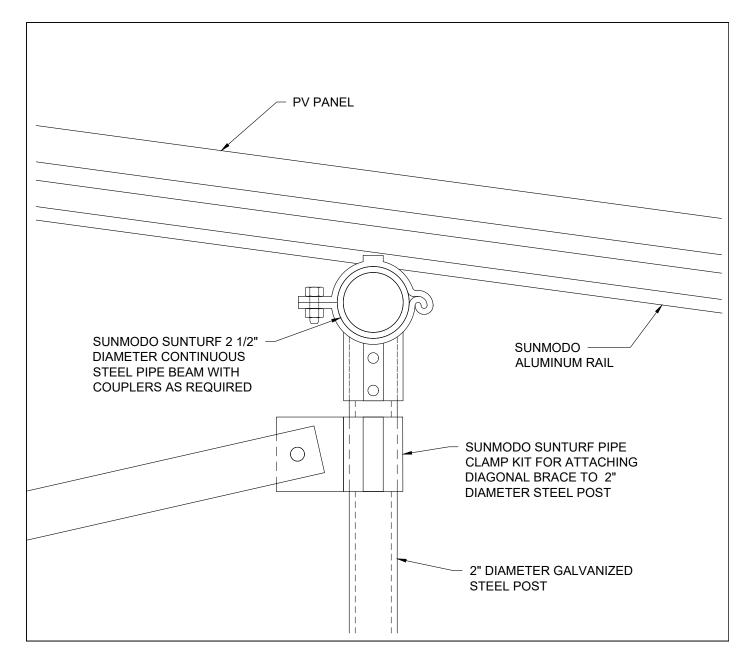


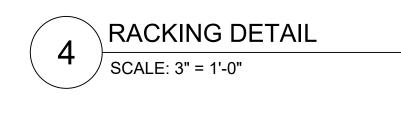

PROJECT :

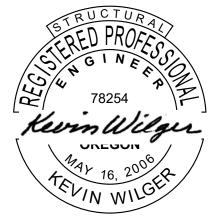
PAGE NUMBER : _____

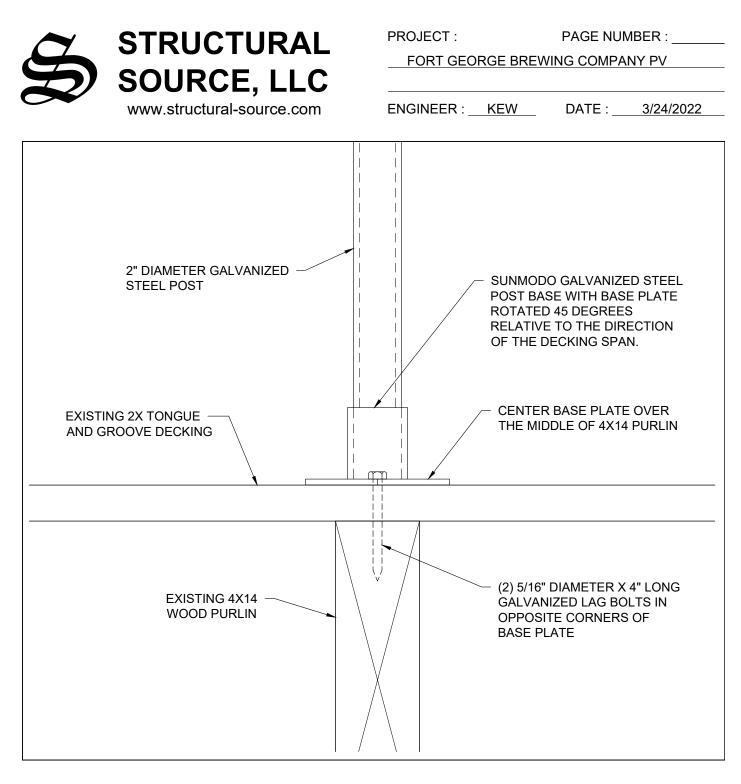
FORT GEORGE BREWING COMPANY PV

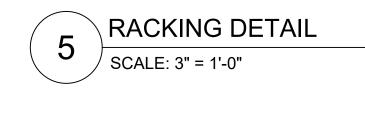
ENGINEER : ____KEW___ DATE : ____3/24/2022_

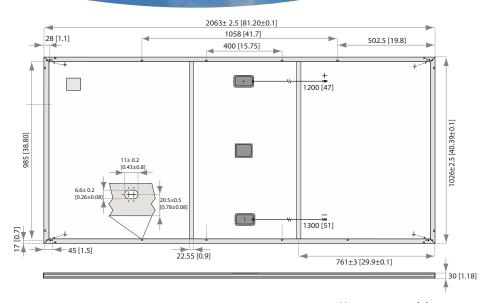



 PROJECT :
 PAGE NUMBER : _____


 _____FORT GEORGE BREWING COMPANY PV


ENGINEER : KEW


DATE : 3/24/2022


REC ALPHX 72 SERIES

REC ALPHA 72 SERIES

GENERAL DATA

ELECTRICAL DATA

Celltype:	144 half-cut cells with REC heterojunction cell technology 6 strings of 24 cells in series	C
Glass:	0.13 in (3.2 mm) solar glass with anti-reflection surface treatment	C
Backsheet:	Highly resistant polymeric construction	D
Frame:	Anodized aluminum	W
Junction box:	3-part, 3 bypass diodes, IP67 rated in accordance with IEC 62790	0

Measurements in mm [in]

cors: PV-KBT4-EVO-2/PV-KST4-EVO-2(4mm ²) in accordance with IEC 62852 IP68 only when connected	Connectors:	- / 5
12 AWG (4 mm²) PV wire, 47 + 51 in (1.2+1.3 m) in accordance with EN 50618	Cable:	ר t
81.2 x 40.39 x 1.18 in (2063 x 1026 x 30 mm) 22.7 sq ft (2,12 m²)	Dimensions:	t n
52 lbs (23,5 kg)	Weight:	n
Made in Singapore	Origin:	t C
	Duradicat	

Product Code*: RECxxxAA 72

	Power Output - P _{MAX} (Wp)	430	435	440	445	450
	Watt Class Sorting - (W)	-0/+5	-0/+5	-0/+5	-0/+5	-0/+5
	Nominal Power Voltage - V _{MPP} (V)	44.1	44.5	44.8	45.3	45.6
Ч	Nominal Power Current - I _{MPP} (A)	9.76	9.79	9.84	9.85	9.88
ST	Open Circuit Voltage - V _{oc} (V)	52.6	52.8	52.9	53.0	53.1
	Short Circuit Current - I _{sc} (A)	10.46	10.50	10.52	10.54	10.55
	Power Density (W/sq ft)	203.79	206.16	208.53	210.90	213.27
	Panel Efficiency (%)	20.3	20.6	20.8	21.0	21.3
	Power Output - P _{MAX} (Wp)	328	332	336	339	343
от	Nominal Power Voltage - V _{MPP} (V)	41.6	41.9	42.2	42.7	43.0
NMO	Nominal Power Current - I _{MPP} (A)	7.88	7.91	7.95	7.95	7.98
2	Open Circuit Voltage - V _{oc} (V)	49.6	49.8	49.8	49.9	50.0
	Short Circuit Current - I _{sc} (A)	8.45	8.48	8.50	8.51	8.52

Values at standard test conditions (STC: air mass AM 1.5, irradiance 10.75 W/sq ft (1000 W/m²), temperature 77°F (25°C), based on a production Spread with a tolerance of $P_{\mu_{NN}}$ V_G & $L_{\mu_{n}}$ ±3% within one watclass. Nominal module operating temperature (NMOT: air mass AM 1.5, irradiance 800 W/m², temperature 68°F (20°C), windspeed 3.3 ft/s (1 m/s).

Where xxx indicates the nominal power class (P_{Max}) at STC above and is followed by the suffix XV for 1500V rated modules

REC Group is an international pioneering solar energy company dedicated to empowering Committed to quality and innovation, REC offers photovoltaic modules with leading high quality, backed by an exceptional low warranty claims rate of less than 100ppm. Founded in Norway in 1996, REC employs 2,000 people and has an annual solar panel capacity of 1.8 GW. With over 10 GW installed worldwide, REC is empowering more than 16 million people with clean solar energy. REC Group is a Bluestar Elkem company with headquarters in Norway, operational headquarters in Singapore, and regional bases in North America, Europe, and Asia-Pacific.

CERTIFICATIONS

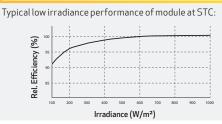
IEC 61215:2016, IEC 61730:2	2016, UL 61730
IEC 62804	PID
IEC 61701	Salt Mist
IEC 62716	Ammonia Resistance
UL1703	Fire Type Class 2
IEC 62782	Dynamic Mechanical Load
IEC 61215-2:2016	Hailstone (35mm)
AS4040.2 NCC 2016	Cyclic Wind Load
ISO14001:2004. ISO 9001:2015	5. OHSAS 18001:2007. IEC 62941

WARRANTY

Standard	REC	ProTrust
No	Yes	Yes
All	≤25 kW	25-500 kW
20	25	25
25	25	25
0	25	10
98%	98%	98%
0.25%	0.25%	0.25%
92%	92%	92%
	No All 20 25 0 98% 0.25%	No Yes All <25 kW

MAXIMUM RATINGS

Operational temperature:	-40+85°C
Maximum system voltage	e: 1500 V
Design load (+): snow Maximum test load (+):	3600 Pa (75.2 lbs/sq ft)* 5400 Pa (112.8 lbs/sq ft)*
Design load (-): wind Maximum test load (-):	1600 Pa (33.4 lbs/sq ft)⁺ 2400 Pa (50.1 lbs/sq ft)*
Max series fuse rating:	25 A
Max reverse current:	25 A
	* Calculated using a safety factor of 1.5


*See installation manual for mounting instructions

TEMPERATURE RATINGS*

Nominal Module Operating Temperature:	44°C(±2°C)
Temperature coefficient of P _{MAX} :	-0.26 %/°C
Temperature coefficient of V_{oc} :	-0.24 %/°C
Temperature coefficient of I _{sc} :	0.04 %/°C

*The temperature coefficients stated are linear values

LOW LIGHT BEHAVIOUR

Ref: PM-DS-12-03-Rev- B 08.20

REC

SUNNY TRIPOWER CORE1 33-US / 50-US / 62-US

Fully integrated

- Innovative design requires no additional racking for rooftop installation
- Integrated DC and AC disconnects and overvoltage protection
- 12 direct string inputs for reduced labor and material costs

Increased power, flexibility

- Multiple power ratings for small to large scale commercial PV installations
- Six MPP trackers for flexible stringing and maximum power production
- OptiTrac[™] Global Peak shade tolerant MPP tracking

Enhanced safety, reliability

- Integrated SunSpec PLC signal for module-level rapid shutdown compliance to 2017 NEC
- Next-gen DC AFCI arc-fault protection certified to new Standard UL 1699B
- Smart monitoring, control, service
- Advanced smart inverter grid support capabilities
- Increased ROI with SMA ennexOS cross sector energy management platform
- SMA Smart Connected proactive O&M solution reduces time spent diagnosing and servicing in the field

SUNNY TRIPOWER CORE1 33-US / 50-US / 62-US

It stands on its own

The Sunny Tripower CORE1 is the world's first free-standing PV inverter for commercial rooftops, carports, ground mount and repowering legacy solar projects. Now with expanded features and new power classes, the CORE1 is the most versatile, costeffective commercial solution available. From distribution to construction to operation, the Sunny Tripower CORE1 enables logistical, material, labor and service cost reductions. Integrated SunSpec PLC for rapid shutdown and enhanced DC AFCI arc-fault protection ensure compliance to the latest safety codes and standards. With Sunny Tripower CORE1 and SMA's ennexOS cross sector energy management platform, system integrators can deliver comprehensive commercial energy solutions for increased ROI.

Technical data*	Sunny Tripower CORE1 33-US	Sunny Tripower CORE1 50-US	Sunny Tripower CORE1 62-US
Input (DC)	50000 W/ 070	75000111 070	00750 \\\ 070
Maximum array power Maximum system voltage	50000 Wp STC	75000 Wp STC 1000 V	93750 Wp STC
Rated MPP voltage range	330 V 800 V	500 V 800 V	550 V 800 V
MPPT operating voltage range		150 V 1000 V	
Minimum DC voltage / start voltage		150 V/188 V	
MPP trackers/strings per MPP input		6/2	
Maximum operating input current/per MPP tracker		120 A/20 A	
Maximum short circuit current per MPPT / per string input		30 A / 30 A	
Output (AC)			
AC nominal power	33300 W	50000 W	62500 W
Maximum apparent power	33300 VA	50000 VA	66000 VA
Output phases / line connections		3/3-(N)-PE	
Nominal AC voltage		480 V / 277 V WYE 244 V 305 V	
AC voltage range Maximum output current	40 A	244 V 303 V 64 A	79.5 A
Rated grid frequency	40 A	60 Hz	77.3 A
Grid frequency/range		50 Hz, 60 Hz/-6 Hz+6Hz	
Power factor at rated power/adjustable displacement		1/0.0 leading0.0 lagging	
Harmonics THD		<3%	
Efficiency			
CEC efficiency (preliminary)	97.5%	98%	98%
Protection and safety features			
Load rated DC disconnect		•	
Load rated DC disconnect		•	
Ground fault monitoring: Riso / Differential current		•/•	
DC AFCI arc-fault protection		•	
SunSpec PLC signal for rapid shutdown		•	
DC reverse polarity protection		•	
AC short circuit protection		•	
DC surge protection: Type 2 / Type 1+2		0/0	
AC surge protection: Type 2 / Type 1+2		0/0	
Protection class/overvoltage category (as per UL 840)		I/IV	
General data			
Device dimensions (W/H/D)	621 mm,	/733 mm/569 mm (24.4 in x 28.8 in	x 22.4 in)
Device weight		84 kg (185 lbs)	
Operating temperature range		-25 °C+60 °C (-13 °F+140 °F)	
Storage temperature range		-40 °C +70 °C (-40 °F +158 °F)	
Audible noise emissions (full power @ 1m and 25 °C)		65 dB (A)	
Internal consumption at night		5 W	
Topology		Transformerless	
Cooling Concept	Opfi	Cool (forced convection, variable speed Type 4X, 3SX (as per UL 50E)	i rans)
Enclosure protection rating Maximum permissible relative humidity (non-condensing)		100%	
Additional information		100 %	
Mounting		Free-standing with included mounting fe	et
DC connection AC connection	¢	Amphenol UTX PV connectors rew terminals - 4 AWG to 4/0 AWG CL	1/41
AC connection LED indicators (Status/Fault/Communication)	Sci		
Network interfaces: Ethernet/WLAN/RS485		● (2 ports) / ● / O	
Data protocols: SMA Modbus/SunSpec Modbus/Webconnect			
Multifunction relay		•	
OptiTrac Global Peak (shade-tolerant MPP tracking)		•	
Integrated Plant Control / Q on Demand 24/7		•/•	
Off-Grid capable / SMA Fuel Save Controller compatible		•/•	
SMA Smart Connected (proactive monitoring and service support)		•	
Certifications (pending as of June 2018)			
Certifications and approvals	UL 1741, UL 169	99B, UL 1998, IEEE 1547, CAN/CSA-C	22.2 No. 62109
FCC compliance		FCC Part 15 Class A	
Grid interconnection standards	L	JL 1741 SA - CA Rule 21, HECO Rule 14	Η
Advanced grid support capabilities	L/HFRT, L/HVRT, Volt-VAr,	Volt-Watt, Frequency-Watt, Ramp Rate	Control, Fixed Power Factor
Warranty			
Standard		10 years	
Optional extensions		15 / 20 years	
O Optional features • Standard features - Not available	* Preliminary data as of June 20	· · ·	
Type designation	STP33-US-41	STP50-US-41	STP62-US-41
Accessories			
SMA Data Manager M		sal Mounting System	C Surge Protection Module Kit
SMA Data Manager M EDMM-US-10 SMA Sensor Modu MD.SEN-US-40		KIT-10	C Surge Protection Module Kit C_SPD_KIT1-10, AC_SPD_KIT2_T1T2
		KIT-10	C_SPD_KIT1-10, AC_SPD_KIT2_T1T2 C Surge Protection Module Kit
		KIT-10	C_SPD_KIT1-10, AC_SPD_KIT2_T1T2

Toll Free +1 888 4 SMA USA www.SMA-America.com

SMA America, LLC

SUNMODI. OVAN THE ROOF

SunModo offers the next generation Flat Roof Mount System with SunTurf[™]. The streamlined design is robust, versatile, and specially engineered for multiple configurations.

By spanning over roof obstructions, the system takes full advantage of the available roof surface thereby maximizing the PV system size and increasing your ROI.

The SunTurf™ Roof Mount Advantage

- Elevated solar arrays to maximize roof space and system size.
- ✓ Easy access to roof surfaces for maintenance and repair.
- Components optimized for strength, durability and fast installation.
- Easily scalable from kilowatts to multimegawatts PV Arrays.
- ✓ UL 2703 Listed by Intertek.

Key Features of SunTurf™ Ground Mount System

The SunTurf[™] flat roof system is perfect to elevate above obstructions such as HVAC, Pipes and Vents. The streamlined design combines the simplicity of a pipe-based system with next-level engineering. No drilling is required to attach the aluminum rails to the horizontal pipe. The system can be easily adjusted to account for multiple roof pitches on site.

Technical Data	
Application	Flat Roof
Material	High grade aluminum, galvanized steel and 304 stainless steel hardware
Module Orientation	Portrait and landscape
Tilt Angle	Range between 10 to 50 degrees
Mounting Options	Wood roof joists, metal beams and concrete roof surfaces
Structural Integrity	IBC compliant, stamped engineering letters available
Certification	UL 2703 Listed by ETL
Warranty	20 Years

Statement of Qualifications

TABLE OF CONTENTS

CONTENTS

A1.	HISTORY & ORGANIZATION	2
	TEAM QUALIFICATIONS	
	BUSINESS LICENSES & PROFESSIONAL CERTIFICATIONS	
	REPRESENTATIVE PROJECTS	
	Case study #1: Oregon department of transportation Baldock Project Case Study #2 Toyota of Corvallis - Net Zero, LEED Platimun Building	
(Case study #3: EWEB Howard Elementary School BESS	6
(Case study #4: Oregon Military Department Joint Force HQ Case study #5: Junction city high school	6
(ASE STUDY #5: JUNCTION CITY HIGH SCHOOL	6

A1. HISTORY & ORGANIZATION

Advanced Energy Systems LLC (AES), founded in 2002, embodies 25 years of hands-on involvement in the renewable energy industry and is, today, the leading commercial solar integrator in Oregon. AES provides turn-key systems including, site evaluation, energy analysis, tax and utility incentive administration, engineering, design, project management, as well as remote monitoring and system maintenance.

AES specializes in commercial, municipal, and industrial solar electric systems, with dozens of installations in all parts of the state. Our local design team, installation crew, and management staff provide broad experience and an in-depth understanding of all aspects of Oregon's renewable energy sector. Since 2002, AES has installed the majority of commercial solar energy systems in Oregon.

Remaining at the forefront of the state's developing green economy, AES has, in many instances, partnered with local equipment manufacturers, by installing modules built in Hillsboro, inverters assembled in Bend, and metal racking formed in Portland. We are proud of this utilization of local materials and services, which helps Oregon's local economy. The resultant shortened shipping distances and simplified logistics with local suppliers also increases overall economy and measured sustainability in our projects.

A2. TEAM QUALIFICATIONS

Eric Nill,

Principal, Managing Member LLC

Eric is privileged to lead the company's team of 22 solar professionals that includes electricians, solar technicians, plumbers, PV systems designers, sales consultants and administrative staff. In 2010, Eric was elected to the Board of Directors of the Oregon Solar Industries Association (OSEIA), serving a second term as Board vice-chair. He is an Oregon Department of Energy Tax Credit Certified Technician and holds a Certificate from NABCEP in PV technology.

Previously, Eric served as CTO and construction manager for the Guaranty group of auto and RV dealerships with locations in Oregon, California and Arizona. Prior to joining Guaranty, Eric founded, and managed, Valhall, Inc., a company that built energy-efficient and affordable housing using factory processes developed in Sweden. Eric holds an M.A. in International Studies (focused in resource economics) and MBA from the University of Oregon and a B. A. in International Relations from Pomona College.

Ken DenOuden

Senior Project Manager, Supervising Electrician

A native Oregonian, Ken was born and raised in the Eugene area. He is a graduate of the University of Oregon with a degree in economics and business administration. Having worked for more than two decades with major electrical contractors in the Oregon region, Ken has a deep background in all phases of electrical construction, budgeting, and project management.

Ken has an Oregon Journeyman Electrical License, an Oregon Supervising Electrical License, an Idaho Master Electrical License, and is a NABCEP certified solar installer. With an interest in solar and renewable energy since childhood, Ken is dedicated to expanding the utilization of renewable energy in the marketplace. Ken's specific expertise includes:

- 25+ years of experience in construction and electrical design. Has been employed by Advanced Energy Systems for 13 Years as lead electrical designer, PM, and supervising electrician.
- NABCEP certified Solar PV Installer 091110-27
- Supervising Electrician State of Oregon 5253S
- Project Managed installation of over 16MW of Solar PV.
- Lead electrical design professional
- Management of design team members
- Project Management Professional (PMP) 1514122

Thomas Brex

Director of Operations, Lead Solar PV Layout Designer & Project Manager

Thomas has been with Advanced Energy Systems for twelve years. He has substantial expertise in the Computer Assisted Design, layout, material integration, installation, and procurement relating to solar PV systems. Having completed advanced studies in solar technologies, Thomas also has a Bachelor of Arts degree in Religion and Philosophy from Prescott College in Prescott Arizona.

Since joining Advanced Energy Systems, Thomas has contributed to hundreds of solar installations. Thomas has vast experience with project development, project management, contract negotiation, system design, grant writing, coordination with engineers, permitting, material procurement, scheduling, field team support, owner training, and warranty service.

Paul Vermilyea

Construction Superintendent

Paul is among the most experienced Solar PV installers in the State of Oregon having personally supervised the installation of over 16 MW of solar capacity, as well as dozens of battery and generator projects during his professional career. Paul has been employed by Advanced Energy Systems for 15 years. He has an outstanding record of supervising multiple teams of electricians and solar installers. Paul is also the service director and normally the company's interface with building and electrical inspectors at job completion.

• Journeyman Electrician State of Oregon - 21079J

A3. BUSINESS LICENSES & PROFESSIONAL CERTIFICATIONS

Advanced Energy Systems, LLC was incorporated within the State of Oregon in 2004. AES is in good standing with the Secretary of State of Oregon and with all of its licensing bodies. AES's relevant licenses include:

License	License Number
Oregon General Contractor License	CCB 160523
Oregon Electrical Contractor License	C341
Oregon Plumbing Contractor License	20-431PB
NABCEP Certification	091110-27
Energy Trust of Oregon Solar Trade Ally	1006
ODOE Solar Tax Credit Technician	

Figure 1: AES Licenses & Certifications

A4. REPRESENTATIVE PROJECTS

CASE STUDY #1: OREGON DEPARTMENT OF TRANSPORTATION 1.75 MW BALDOCK PROJECT

The Oregon Department of Transportation in partnership with Solar Way (a consortium comprised of Advanced Energy Systems, Moyano Group, PGE, US Bank, Aadland Evans, Good Company, Energy Trust of Oregon, Oregon Department of Energy, Solar World, PV Powered, and United Fund Advisors),

activated a 1.75 MW Solar Electric System on the I-5 Baldock Rest Area near Aurora, Oregon. The system feeds directly into the PGE grid to offset ODOT highway lighting energy needs. The system is a showcase for Oregon's emerging green technology sector because the manufacturer of the solar modules and inverters, as well as the engineers, and construction contractors are all located in Oregon.

Figure 1: ODOT Baldock Rest Area

CASE STUDY #2 TOYOTA OF CORVALLIS - NET ZERO, LEED PLATIMUN BUILDING

AES completed a 274 kW installation for Toyota of Corvallis. The array covers the roof of the new building designed to be a model of efficiency. The building was awarded LEED Platinum, the highest standard measured by the US Green Building Council.

The system uses SolarWorld PV modules on a ballasted racking system, and three Solectria PVI 75 inverters.

Figure 2: Toyota of Corvallis

CASE STUDY #3: EWEB HOWARD ELEMENTARY SCHOOL BESS

Eugene Water and Electric Board (EWEB) and The Eugene School District 4J partnered to construct a 560kW, 480VAC, 1020kWh BESS system. EWEB owns the BESS and supplies energy and backup power to the school. The project is being used as a test case by EWEB and is also paired with a newly installed water well to be used for neighborhood emergency water in the event of a major disruption. AES partnered with WorleyParsons to design in install this project.

Figure 3: Howard Elementary School BESS

CASE STUDY #4: OREGON MILITARY DEPARTMENT JOINT FORCE HQ

Oregon Military built their new HQ in Salem with a 120kW Solar Photovoltaic System mounted to the metal Standing Seam roof.

The system comprised of 348 Solarworld 345 watt modules, Solaredge inverters, and an Ironridge racking system. It produces approximately 144,000 kWh of electricity per year. During the system's estimated 35 year lifespan, the energy produced will offset over 3,700 tons of CO2, 390,000 gallons of gasoline, or over 28 acres of forest preserved from deforestation.

Figure 6: Oregon Military Joint Force HQ

CASE STUDY #5: JUNCTION CITY HIGH SCHOOL

AES completed a 74 kW installation for the Junction City School District. The array covers the roof of the new classroom building designed to offset a portion of the schools energy consumption. Built off of the standing seam roofing, the array is flush mounted using S-5! Standing seam clamps and a Sunmodo racking system.

The system uses SolarWorld PV modules, Solaredge DC to DC optimizers and Inverters.

Figure 5: Junction City High School

For more project examples, please see our website's commercial and municipal projects page: <u>http://aesrenew.com/commercial-projects/</u>