

In the Community to Serve ${ }^{\circ}$

2011
Integrated Resource Plan

December 15, 2011

TABLE OF CONTENTS

Pages
Section 1 -Executive Summary 4
Section 2 - Introduction \& Planning Overview

- Company Overview 10
- Bundled vs. Unbundled 11
- IRP Guidelines \& Policies 12
- Resource Decision Making Overview 14
- Disclaimer 15
Section 3 - Demand Forecast
- Annual Growth \& Use per Customer Forecasts 17
- Peak Day Forecasting 18
- Recent Economic Events 18
- Forecast Results 18
- Demand Forecast Uncertainties 22
Section 4 - Distribution System Enhancements
- Distribution System Modeling 24
- Engineering Modeling by Town 24
- Key Findings 25
Section 5 - Supply Side Resources
- Gas Supply Resource Options 28
- Capacity Resource Options 34
- Natural Gas Price Forecast 39
- Supply Side Uncertainties 42
- Financial Derivatives 43
- Portfolio Purchasing Strategy 43
Section 6 - Demand Side Resources
- Demand Side Management Overview 47
- Two-Year Action Plan Update 47
- Potential DSM Measures and Their Costs 52
- Oregon Conservation Potential Study Results 55
- Washington Conservation Potential Study Results 60
- Conservation Summary 64
- DSM Implementation Issues and Uncertainty 64
- Environmental Externalities 67
- Other Demand Side Management 68
Section 7 - Resource Integration
- Resource Optimization Analysis Tools 70
- Scenarios versus Simulations 73
- Decision Making Tool 73
- Key Inputs 75
- Integration Results \& Findings 77
Section 8 - Two Year Action Plan 91

LIST OF APPENDICES

Appendix A - IRP Process

Appendix A-1 IRP Workplan
Appendix A-2 TAG Meeting Participants, Agendas and Materials
Appendix A-3 IRP Guidelines \& Rules
Appendix B-Demand Forecast Appendices
Appendix B-1 Demand Forecast Model Escalation Rates
Appendix B-2 Demand Forecast Model Results \& Summary Tables
Appendix C - Distribution System Analysis
Appendix D - Conservation Measures - Technical Potential
Appendix D-1 Oregon Residential Measures
Appendix D-2 Oregon Commercial \& Industrial Measures
Appendix D-3 Washington Residential Measures
Appendix D-4 Washington Commercial \& Industrial Measures

Appendix E - Supply Resource Alternatives

Appendix F - Capacity Requirements \& Peak Day Planning Appendix G -Weather \& Price Uncertainty Analyses
 Appendix H - Avoided Cost Calculations
 Appendix I - Prior 2-Year Action Plan Update

Section 1

Executive Summary

Cascade's resource planning continues to focus on ensuring that the Company can meet the needs of our firm gas sales customers in a way that minimizes costs over the long term. Although some pipeline area zones indicate potential shortfalls, in aggregate, through 2012, Cascade has sufficient upstream pipeline capacity. However, as we move past the 2012-2013 winter heating season, primarily as a result of Cascade's growth in its residential and commercial customer base, Cascade's capacity will fall short of its design peak day demand forecast. As a result Cascade is entering a period where it will need to acquire additional resources to meet the growing needs of these core customers. The following summarizes key findings from this plan.

Adequacy of Gas Supply

Physical gas supply is expected to be adequate to meet growing demand in the Pacific Northwest and North America. New supply development technologies continue to provide additional resources in British Columbia and the Rocky Mountain regions. Shale gas from the Horn River Basin, Montney and Marcellus are likely to keep sufficient supplies available in North America. Several sources believe that shale is set to comprise more than a third of the US production by the mid 2020s. Well performance in the Horn River play has improved over the past few years. Although players must overcome a multitude of challenges, including a remote operating environment, water availability and disposal issues, infrastructure constraints, and high upfront capital costs, Canadian production and exports are anticipated to decline.

Still, due to on-going financial and regulatory issues, there is still some question as to whether or not a new pipeline will transport Alaskan gas into the North American market, or if it will be completed within the Company's planning period. The Mackenzie Gas Project, which would bring gas from the Canadian Arctic to Alberta, has pushed out their start date to 2018 (from 2014) due to regulatory issues, incomplete financial arrangements and staffing shortages. The Alaska pipeline project, designed to deliver 4.5 (up to $5.9 \mathrm{Bcf} / \mathrm{d}$ under maximum compression) Bcf/d from Alaska's North Slope into Alberta and/or the US Lower-48, is not dead, with two competing projects still officially in the works. The TransCanada-ExxonMobil Alaska Pipeline Project is expected to file their draft Resource Reports to FERC in the coming months, although, like many projects-it may expand to include an LNG option. Still, Lower-48 shale development has called into question the ultimate need for this project but indicators are that eventually it will get done around 2023.

Load Resource Balance

During this planning cycle, Cascade continued to evaluate the impacts on both its load and resources and portfolio costs associated with its peak day planning criteria. Until the 2008 IRP, Cascade had historically utilized a system average of 65 heating degree days (dd) for its peak demand forecast as it represented the coldest day recorded in Cascade's 60 plus years of weather history. However, the Company had only experienced a 65dd once in its history (which occurred in 1968), and therefore commencing with the 2008 Plan, the Company modified its design day criteria to utilize the coldest day during the past 30
years. This modification reduced the peak day to 61dd which occurred as recently as 1990.

The following graph shows the peak day requirements compared to the Company's existing pipeline capacity resources under the various load growth forecasts. Shortfalls in the 2010/2011 period will be met through citygate peaking resources.

Figure 1-A

Analytical Methods

Cascade continues to utilize the SENDOUT® model to assist with the analysis of resource alternatives. SENDOUT® is a linear optimization model that helps identify the long-term least cost combination of resources to meet stated loads. The model determines the optimal portfolio of resources that will minimize costs over the planning horizon based on a set of assumptions regarding resource alternatives, resource costs, demand growth and gas prices. Linear optimization models, such as SENDOUT®, are basically deterministic. In other words, they solve the "least cost problem" based upon the assumptions provided to the model. As a result, the Company, beginning with its 2007 IRP, expanded its uncertainty analysis through the purchase of VectorGas ${ }^{T M}$ (an add-on product) that facilitated the ability to model gas price and load (driven by weather) uncertainty. The

Monte-Carlo functionality was integrated in SENDOUT® Version 12.5, which is the platform that Cascade used to prepare its integration analysis. The Monte-Carlo modeling capability provides additional information to decision-makers under conditions of uncertainty. The Monte-Carlo analysis was used in this plan to test the physical and financial risks associated with the optimal portfolio from the basecase planning scenario. This tool provides a valuable enhancement to the robustness of the Company's resource planning.

Generic Resources

One of the purposes of Integrated Resource Planning is to identify an illustrative resource portfolio to help guide specific resource acquisitions. In this planning cycle, the Company considered a host of resource alternatives that can be added to its resource portfolio, including additional conservation programs, incremental off-system storage alternatives at MIST and AECO, additional transportation capacity on both Williams and GTN pipeline systems, several of the proposed pipelines to move Rockies gas to the northwest, along with on-system satellite LNG facilities, biogas, and imported LNG. Typically, utility infrastructure projects are "lumpy", since demand grows annually at a small percentage rate, while capacity is typically added on a project-by-project basis. Utilities often have surplus capacity and must "grow into" their new pipeline capacity, because it is more cost effective for pipelines to build for several years' worth of load growth at one time than to make small additions each year. However, the Company can minimize the impacts through the acquisition of citygate peaking resources which include both the supplies and the associated pipeline delivery for a certain number of days or through the purchase of other's excess capacity through short or medium term capacity releases.

Analytical Framework

Traditional integrated resource planning would include analyses targeted at identifying the optimal long-term resource portfolio to meet the demand of the gas utility's customers across a few customer growth and gas price scenarios. In this plan, Cascade's resource analysis includes 8 different scenarios that focus solely on gas utility operations. In addition to scenario analysis, Cascade performed two different kinds of Monte-Carlo analyses to examine a variety of risks as noted above.

Summary of Key Findings

- Cascade anticipates its core customer base will continue to grow over the planning horizon and annual throughput is anticipated to increase between 1.181\% and 1.49\% per year.
- The projected costs for natural gas have declined significantly and long-term prices are estimated to range between $\$ 3.75$ to $\$ 6$ over the planning horizon compared to the $\$ 8$ to $\$ 13$ forecasted in the 2008 IRP. This improvement to the long-term gas supply outlook is a stark contrast to the diminishing supply outlook that was prevalent during the development of the Company's 2008 IRP.
- The basecase results indicate energy efficiency programs with a levelized cost of 70 cents per therm or less are cost-effective over the planning horizon, with the price uncertainty analysis indicating that the levelized costs will likely range between 64 to 79 cents per therm. However, if carbon legislation is established during the planning horizon similar to that described in Section 6, the cost-effectiveness limits could increase between 8 to 16 cents depending upon the level of the costs and the timing of the implementation.
- As described in Section 6, the conservation potential analyses indicate that over the 20 year planning horizon the technical potential associated with cost effective conservation measures is 23,193,554 therms in Oregon and 44,275,021 therms in Washington for a combined total of $67,468,575$ therms.
- Even with energy efficiency programs, Cascade will need to acquire additional capacity resources or enter into other supply arrangements to meet anticipated peak day requirements, primarily due to continued growth in the company's residential and commercial customer base. On September 1, 2010 Williams announced that the Blue Bridge I-5 corridor project had been shelved, and with uncertainty surrounding the likelihood of Palomar being built, Ruby Pipeline is emerging as a possible transportation resource to bring Rockies supplies to central Oregon, via Malin and backhaul service on GTN. Ruby went on line this year and has been running at near capacity since it's in-service date. Utilizing the SENDOUT resource optimization model, several scenarios were run to test the viability of acquiring Ruby capacity either based on existing recourse rates, discounted rates and via capacity release through a third party. Incremental and corresponding GTN Malin north capacity was also modeled at recourse (secondary firm) and higher pricing levels. Basin prices in the model over the 20 year planning horizon have Rockies trading at a slight discount to AECO, Malin and Sumas (\$0.06-\$0.15). Regardless of the scenarios modeled, SENDOUT consistently selected Ruby capacity in a range of 17,000 to approximately 19,000 dths/day.
- Many of the proposed pipeline projects will not be viable resources for some time. In the interim, capacity shortfalls will be met through the use of peaking and citygate gas supply deliveries which will utilize third-party (non-Cascade) upstream pipeline transportation.
- Satellite LNG facilities that are located within Cascade's distribution system are also attractive alternatives. Satellite LNG may alleviate the need for incremental pipeline capacity and to the extent the facility could be strategically located on a portion of the distribution system, it could provide the further benefit of eliminating or reducing distribution system constraints. Cascade has considered bio natural gas (BNG) as an alternative, but at the time of this writing, there are no viable projects available to our distribution territory. Regardless, prior to any BNG supplies being added to the portfolio, gas quality issues will need to be satisfactorily addressed. In addition to

Cascade, upstream pipelines, such as Northwest Pipeline are beginning to address gas quality issues regarding BNG. We will continue to monitor our market intelligence sources to see if viable BNG opportunities develop.

- None of the proposed LNG projects are within Cascade's distribution system. Many of the proposed LNG import facilities located in the Pacific Northwest (Bradwood Landing, Jordan Cove) would require backhaul capability or additional infrastructure on upstream pipelines in order to reach Cascade's distribution system. Prior to September 19, 2008, LNG supplies sourced at Kitimat were selected as part of the least cost-portfolio mix, however, on September 19, 2008, Kitimat LNG announced that the development focus of the facility would switch from a regasification to a liquefaction facility, making Kitimat an exporter, rather than an importer of natural gas. Kitimat did leave open the possibility of providing regasification in addition to liquefaction. As of this writing, it appears that Kitimat will focus on exporting natural gas, particularly given the huge supply of shale gas from northeastern British Columbia. The company did analyze the other two LNG options in the Northwest (Bradwood and Jordan Cove) along with the incremental pipeline capacity that would be necessary to reach Cascade's service territory and found that based on preliminary cost estimates that model preferred the Ruby and Malin transportation resources over the import LNG options. The company will continue to monitor the impact of various imported LNG options and update its modeling assumptions as more information becomes available.
- 20 year portfolio costs, on a Net Present Value (NPV) basis, are expected to range between $\$ 2,448,210,000$ to $\$ 3,216,376,000$ for the planning period, with an average cost per therm ranging between $\$.354748$ and $\$.447916$.

Use and Relevance of the Integrated Resource Plan

Cascade's Integrated Resource Plan provides the strategic direction guiding the Company's long-term resource acquisition process. The plan does not commit Cascade to the acquisition of a specific resource type or facility, nor does it preclude the Company from pursuing a particular resource or technology. Rather, the plan identifies key factors related to resource decisions and provides a method for evaluating resources in terms of their cost and risk. Cascade recognizes that integrated resource planning is a dynamic process reflecting changing market forces and a changing regulatory environment.

Section 2

Introduction and Planning Overview

Company/Service Area Profile - Customers, Resource Maps

Beginning in 1953, Cascade Natural Gas Corporation began acquiring small local gas distribution companies in anticipation of the construction of an interstate pipeline to bring natural gas into the Pacific Northwest in 1956. The pipeline began in New Mexico and moved northwesterly into the northeast corner of Oregon and on into Washington, to the Canadian border near Sumas, Washington. Cascade's distribution system tapped into the pipeline at many places in Oregon and Washington. Usually, an industrial operation located in the area made it economically feasible for Cascade to construct its initial distribution system to serve the industrial customer and then branch out from there to serve the residential and commercial communities in the nearby area.

Today, Cascade's service territory covers about 32,000 square miles and extends over 700 highway miles from end to end, encompassing a richly diverse economic base as well as varying climatological areas (see service area map, Figure 2-A). Cascade serves 96 communities throughout Washington and Oregon consisting of about 260,000 customers. All of the communities Cascade serves are small cities and towns. This makes Cascade unique in the gas distribution business in the Pacific Northwest. Cascade's customer base currently includes approximately 226,000 residential customers, 33,000 commercial customers, and 700 industrial customers. Cascade's sales volumes reflect the ratio of approximately 75% in Washington and 25% in Oregon.

Bundled vs. Unbundled Service

Since Cascade began distributing natural gas in the Pacific Northwest, the Company has offered its customers a "bundled" natural gas distribution service. This bundled service included purchasing the gas supply, transporting that supply to Cascade's city gate, and distributing that transported supply to each Cascade customer through the Company's local distribution system. Customers receiving traditional bundled services are referred to as core customers. In 1989, Cascade "unbundled" its rates and as a result approximately 200 of the 700 industrial customers have elected to become "non-core" customers. These customers have made the choice to rely on alternative methods of service rather than the traditional bundled gas supply and pipeline transportation services available to core customers for their gas requirements. Therefore, providing gas supply and transportation capacity resources to non-core customers is not considered part of this Integrated Resource Plan as such resources are separate from the supply and capacity contracts for the core customers who continue to utilize Cascade's bundled system gas supplies and capacity. Although the resource needs for non-core customers are not included in either the conservation or supply side resource analysis, their contracted peak day delivery is considered in the distribution system planning analysis discussed in Section 4.

For the Calendar year ended December 2010, Cascade's 260,000 residential customers represented approximately 13% of the total natural gas delivered on Cascade's system, while the 33,000 commercial customers represented approximately 10% and the 500 core market industrial customers consumed approximately 2% of total gas throughput.

FIGURE 2-A

The remaining 200 non-core industrial customers represented about 75% of total throughput.

Cascade purchases natural gas from a variety of suppliers and transports gas supplies to its distribution system via two natural gas pipeline companies. Williams' Northwest Pipeline GP (NWP) provides access to British Columbia and domestic Rocky Mountain gas while the Gas Transmission Northwest (GTN) provides access to Alberta gas. Cascade also holds transportation contracts upstream of these systems on TransCanada Pipeline's Foothills Pipeline (formerly ANG) and Alberta System (also known as NOVA), as well as on Westcoast Energy, Inc. (Spectra Energy).

IRP Guidelines and Policies

Cascade utilizes integrated resource planning to maximize the efficiencies of the Company's utility operations. The planning process includes an assessment of current and future gas load requirements, the possible resource options for serving the projected load requirements, and a selection of the set of least cost resource alternatives with acceptable level of reliability through the use of an optimization model. Monte-Carlo simulation tools
are utilized to further analyze the results of the optimization model to quantify the range of uncertainty in market price and demand due to changes in weather.

Cascade is subject to regulatory oversight by the Washington Utilities and Transportation Commission (WUTC) and the Oregon Public Utility Commission (OPUC). Each commission has established a set of guidelines or rules, which the company's plan must meet. In Washington those guidelines are contained in WAC 480-90-238 and in Oregon the guidelines are found in the Commission Order No. 07-002 in docket UM 1056. In general, both Commissions' guidelines require that the utility develop a range of demand forecasts, examine all feasible resources for meeting that demand whether they are supply-side or demand side and compare them on an equal basis, considering the uncertainty over the planning horizon, develop a 2 year action plan and involve the public and the various stakeholders in the planning process.

Cascade believes that its IRP meets the substantive requirements of both the Washington and Oregon Commissions. This IRP includes a range of demand forecasts that encompass the anticipated forces, both economic and weather-driven, that will impact the load forecasts over the planning horizon. The demand side resource section includes an assessment of technically feasible improvements in the efficient use of natural gas. The supply resource section includes a discussion of the supply side resource options available including an assessment of conventional and commercially available nonconventional gas supplies, an assessment of opportunities for additional company-owned and contracted storage, and an assessment of the Company's existing pipeline transportation capability and reliability along with the opportunity for incremental pipeline transportation resources. The integration section provides a comparative evaluation of the cost of the various resource options on a consistent and comparable method. The resource integration section also describes the integration of the demand forecast and resource evaluations into a long range resource plan describing the strategies designed to reliably meet current and future needs at the lowest reasonable cost to Cascade's ratepayers. The short-term action plan describes the specific actions the utility will take to implement the long-range integrated resource plan during the next two years and reports on the Company's progress in meeting its prior 2-year action plan goals.

Cascade believes all resources described in this IRP have been evaluated on a consistent and comparable basis through the use of its optimization model. Uncertainty has been considered in each component of this plan. The demand forecast includes a reasonable range of uncertainty as quantified in the low, medium and high load growth scenarios along with the additional simulation analysis calculated through Sendout'®s Monte-Carlo functionality that assesses the impacts of weather on the load forecasts. The demand side and supply side resource sections describe relative uncertainties regarding reliability, cost and operating constraints and external costs. Uncertainties associated with the environmental effects of carbon emissions have also been included through an analysis of the impact of carbon legislation on the portfolio. Price volatility and market risks and their impacts on the Company's long-term resource portfolio have been assessed through the use of the Sendout ${ }^{\circledR}$ model.

To involve public interests in the development stages of this IRP, Cascade has a Technical Advisory Group (TAG). Three meetings were held to discuss the major IRP topics including the demand forecast, distribution system planning, demand side resources, supply side resources, and resource integration and uncertainty analysis. The TAG meetings were helpful to Cascade as questions were answered and varying points of view were explored. Appendix A-2 contains an outline of the meeting content, a list of participants and the presentation materials.

Appendix A-3 provides additional information regarding the specific requirements or guidelines for each commission and how the company has met those requirements.

Resource Decision Making Process Overview

Cascade makes resource decisions based on the best quantitative and qualitative information available. The IRP tools that are continually evolving assist Cascade in formulating energy resource decisions in a logical, consistent and comparable manner. The steps outlined below are those utilized by Cascade for both its short-term and longterm resource decisions:

1. Construct a range of possible demand forecasts for the core market.
2. Calculate avoidable distribution system enhancement costs.
3. Provide the optimization model the existing supply side and demand side resource options to meet demand.
4. Run the optimization model to identify resource needs including the types of resources and their timing requirements. The existing portfolio is modeled under a range of demand forecast conditions.
5. Identify incremental supply and demand side resources to satisfy a range of incremental growth scenarios.
6. Run the optimization and Monte-Carlo simulation models to identify the bestfit portfolio given an expected range of forecasted core loads and operating conditions.

The resource decision-making process is dynamic and ongoing and the Company's resource strategy must constantly evolve to reflect dynamic market forces and a continually changing regulatory environment. This IRP document represents a snapshot in time similar to a balance sheet. It is not meant to be a prescription for all future energy resource decisions as conditions will change over the planning horizon and will impact areas covered by this IRP. Rather, this document is meant to describe the currently anticipated conditions over the long-term planning horizon, the anticipated resource selections and most importantly the process for making resource decisions.

Disclaimer -Important notice

Cascade makes the following cautionary statements in its Integrated Resource Plan and appendices to make applicable and to take advantage of the safe harbor provisions of the Private Securities Litigation Reform Act of 1995 for any forward-looking statements made by or on behalf of Cascade. This Plan, its appendices, and any amendments or supplements to it, include forward-looking statements, which are statements of expectations, beliefs, plans, objectives, and assumptions of future events or performance. Words or phrases such as "anticipates", "believes", "estimates", "expects", "intends", "plans", "predicts", "projects", "will likely result", "will continue" or similar expressions identify forward-looking statements.

Forward-looking statements involve risks and uncertainties which could cause actual results or outcomes to differ materially from those expressed. Cascade's expectations, beliefs and projections are expressed in good faith and are believed by the Company to have a reasonable basis; however, there can be no assurance that Cascade's expectations, beliefs or projections will be achieved or accomplished.

Any forward-looking statement speaks only as of the date on which such statement is made and except as required by law, Cascade undertakes no obligation to update any forward-looking statement to reflect events or circumstances after the date on which such statement is made or to reflect the occurrence of unanticipated events. New factors emerge from time to time and it is not possible for management to predict all such factors, nor can it assess the impact of any such factor on the business or the extent to which any factor, or combination of factors, may cause results to differ materially from those contained in any forward-looking statement. These materials and any forward-looking statements within them should not be construed as either projections or predictions or as business, legal, tax, financial, or accounting advice and should not be relied upon for any such purpose.

Section 3

Demand Forecast

Each year Cascade develops a 20 -year forecast of customers, therm sales and peak requirements for use in short (annual budgeting) and long-term (distribution and integrated resource planning) planning processes. This forecast is a robust portfolio of estimates created by enhancing a single best-estimate forecast with various potential economic, demographic and marketplace eventualities into low, medium and high growth forecast scenarios. The scenarios are used for distribution system enhancement planning and as inputs in optimization models to determine the least cost portfolio of supply and DSM resources.

Forecast Methodology

Cascade begins the forecast process by developing three separate econometric models for each of the Company's 15 districts. Three models for each district, for a total of 45 models, predict customer counts in the three main core customer classes - residential, commercial and industrial. Models are built from the district level up as it is the smallest level at which there is a high degree of consistency and availability of raw data. This is a change of methodology from previous years where certain models were built from the town level and others from the district. The unification of methodologies is expected to increase reliability of the forecast. The district models are rolled up into zones which segregate Cascade's system based on pipelines and weather (see Appendix C).

In addition to these 45 customer count forecasting models, a separate and parallel set of 45 models is developed to estimate per-customer therm usage for each customer class in each district. A multiplicative combination of the customer count and therm usage models is Cascade's annual load projection.

Customer count forecasts are designed to reflect both demographic trends and economic conditions both in the short and long term. Indicators included in the model include: employment and household count forecasts, mortgage rates (for residential customer counts) and the prime rate (for commercial and industrial customer counts). Therm forecasts are constructed from median household income forecast, weather and natural gas prices. Economic indicator forecasts are supplied by Woods \& Poole. Mortgage and prime rates are forecast by Cascade using base data provided by Freddie Mac and the Federal Reserve, respectively. Past weather is sourced from NOAA and future weather is Cascade's 20 -year normal developed for the Company's last rate case. Natural gas prices are provided by Wood Mackenzie and equal weights are assigned to the AECO, NYMEX and SUMAS indexes based on Cascade's general portfolio mix (Appendix E). These indicators and the functional forms illustrated below were chosen over others as they were the most consistent in returning statistically valid results. Historical data used in the regression extends back up to 1980 for customer counts and 1994 for therms.

$$
\begin{aligned}
& \text { RESc } c_{t, d}=f\left(\text { employment }_{t, d}, \text { households }_{t, d}, \text { mortgage rate }_{t, d}\right) \\
& \text { COMc }_{t, d}, \text { IND }_{t, d}=f\left(\text { employment }_{t, d}, \text { households }_{t, d}, \text { prime rate }_{t, d}\right) \\
& R E S t_{t, d}, \text { COM }_{t, d} \text { INDt } \\
& t, d \\
& =f\left(H D D s_{t, d}+M H I_{t, d}+N G \$_{t, d}\right) \\
& \text { Load }_{y e a r}=\sum_{d=1}^{15} R E S c_{t, d} * R E S t_{t, d}+\text { COMc }_{t, d} * \text { COMt }_{t, d}+I N D c_{t, d} * I N D t_{t, d}
\end{aligned}
$$

Customer count and therm forecasts are augmented by revisions to the base data and output to create a portfolio of potential scenarios. Low and high growth scenarios are created by altering Woods \& Poole's forecasts to reflect Cascade's service territory's strongest and weakest performing decades over the last 30 years (Appendix B). These scenarios, along with the original best-estimate mid case scenario, encapsulate a range of most-likely possibilities given known data. Based on historical experience, Cascade expects system load will likely remain within a range bounded by the low and high growth scenarios.

Peak Day Forecast

In order to ensure satisfaction of core customer demand on the coldest days, Cascade develops peak day usage forecasts in conjunction with annual basis load forecasts. Peak day forecasts enable Cascade to make prudent distribution system and peak capacity planning decisions to fulfill its responsibility to provide heating under all but force majeure conditions, particularly as most space-heating customers will have no alternative heating source during the coldest of days in the event gas does not flow.

Historically Cascade has developed peak day forecasts based on a 65 HDD day ($0^{\circ} \mathrm{F}$) to reflect the coldest day in Cascade's 60-year weather history. Cascade's 2008 IRP changed this practice to reflect the coldest day during the past 30 years. This record is held by December 21, 1990 at 61 HDDs. The peak day forecast is developed by adjusting the therm usage on coldest day in recent history (January 5, 2004 at 56 HDD) upwards to an estimate of therm usage would have been had that day been 61 HDD. The therm usage is then applied to each district and escalated into the future at the forecast therm usage annual growth rate.

This method rests on the assumption that core market load shape does not significantly change throughout the forecast horizon. Cascade believes that the peak day forecast conservatively overestimates peak day usage as the base forecast does not explicitly include future conservation measures implemented by customers that would act to increase energy efficiency and reduce therm day usage.

Forecast Results

Load growth across Cascade's system through 2030 is expected to fluctuate between 1.5 and 1.7% annually, with lower, recessionary growth in the short term. Load growth consists of a split between residential and commercial demand, with a slow decline in industrial demand.

	Residential	Commercial	Industrial	System
$\mathbf{2 0 1 1} \mathbf{- 2 0 1 6}$	1.71%	1.68%	-3.22%	1.48%
$\mathbf{2 0 1 6} \mathbf{- 2 0 2 1}$	1.78%	1.81%	-1.85%	1.66%
$\mathbf{2 0 2 1} \mathbf{- 2 0 2 6}$	1.74%	1.83%	-1.06%	1.68%
$\mathbf{2 0 2 6} \mathbf{- 2 0 3 1}$	1.50%	1.59%	-1.24%	1.46%
$\mathbf{2 0 1 1 - \mathbf { 2 0 3 1 }}$	1.68%	1.73%	-1.84%	1.57%

Table 3-1: Expected Load Growth by Class
In absolute numbers, system load under normal weather conditions is expected to reach 412 million therms in 2030, up from an estimate of 300 million for 2011. A majority of core load today is residential. Not only will this continue into the future, but since residential load growth is expected to be higher than commercial and industrial, residential customers will experience a slightly increased profile on Cascade's system.

Figure 3-1: Relative Expected Load by Class

	Residential	Commercial	Industrial
$\mathbf{2 0 1 1}$	$163,007,592$	$122,912,569$	$13,931,851$
$\mathbf{2 0 1 6}$	$177,442,906$	$133,565,259$	$11,822,190$
$\mathbf{2 0 2 1}$	$193,769,389$	$146,098,658$	$10,767,863$
$\mathbf{2 0 2 6}$	$211,207,260$	$159,939,319$	$10,202,021$
$\mathbf{2 0 3 1}$	$227,541,615$	$173,091,273$	$9,586,154$
$\mathbf{2 0 1 1 - 2 0 3 1}$	39.6%	40.8%	-31.2%

Table 3-2: Expected Load by Class
Residential and commercial load growth is primarily a result of increased customer counts. The number of residential and commercial customers is expected to increase faster than therm usage. Several factors are believed to be the cause of this phenomenon; among them are soft conservation, building codes and heat pump penetration. This reduction is more prevalent among residential customers than commercial.

	Residential	Commercial	Industrial
$\mathbf{2 0 1 1}$	230,833	34,618	441
$\mathbf{2 0 1 6}$	255,767	38,204	400
$\mathbf{2 0 2 1}$	282,006	41,954	377
$\mathbf{2 0 2 6}$	309,492	45,861	365
$\mathbf{2 0 3 1}$	338,158	49,908	361
$\mathbf{2 0 1 1 - 2 0 3 1}$	$\mathbf{4 6 . 5} \%$	44.2%	-18.2%

Table 3-3: Expected Customer Counts by Class
Core industrial load and customer counts are a more complex and difficult to distill story. First, industrial users in Cascade's service territory are subject to the same overarching economic conditions that industry elsewhere in the United States has been experiencing. A slow but steady economic shift away from manufacturing towards the service industry is reflected in lower industrial load and less industrial customers. Second, industrial customers may be faced with consolidation and mergers, which would reduce customer counts faster than per customer therm usage. Third, within the historical data period used to develop the industrial customer econometric models was the introduction of unbundled service. With unbundling, many industrial customers have switched to non-core, a trend that will continue into the future. For this reason, the 18\% reduction in core industrial demand does not necessarily indicate that industry in Cascade's service territory is in a state of distress.

Year	Residential	Commercial	Industrial
$\mathbf{2 0 1 1}$	706	3551	31590
$\mathbf{2 0 1 6}$	694	3496	29553
$\mathbf{2 0 2 1}$	687	3482	28565
$\mathbf{2 0 2 6}$	682	3487	27959
$\mathbf{2 0 3 1}$	673	3468	26581
$\mathbf{2 0 1 1 - 2 0 3 1}$	-4.7%	-2.3%	-15.9%

Table 3-4: Expected Reduction in Therm Usage per Customer

Geography

Load across Cascade's two-state service territory is expected to increase 37\%, with the Oregon portion outpacing Washington at 41% versus 35%.

	Washington	Oregon	System
$\mathbf{2 0 1 1}$	$228,027,758$	$73,858,065$	$301,885,823$
$\mathbf{2 0 1 6}$	$246,062,671$	$78,801,495$	$324,864,165$
$\mathbf{2 0 2 1}$	$266,601,645$	$86,068,075$	$352,669,721$
$\mathbf{2 0 2 6}$	$288,322,552$	$95,059,860$	$383,382,411$
$\mathbf{2 0 3 1}$	$308,136,988$	$104,108,821$	$412,244,144$

Table 3-5: Expected Load by State
Within Oregon, the Bend area is expected to grow significantly faster than the rest of Eastern Oregon. Pendleton is expected to grow faster than Cascade's Baker/Ontario region, which is expected to experience minimal growth.

20-Year Load	Growth
Baker	0.5%
Bend	54.5%
Ontario	-4.0%
Pendleton	22.1%
Oregon	41.0%

Table 3-6: Oregon 20-Year Load Growth by District

Peak Day

Residential customers have higher temperature sensitivity than commercial or industrial. Because of their increasing profile on Cascade's system over the coming 20 years, weather-sensitive peak demand will increase faster than annual load. 2010 load on 61 HDDs is expected to be 3.6 million therms, rising to 5.4 million by 2030. Peak day load will increase at 2.0% annually while annual load will increase by 1.6%.

Table 3-7: Expected Peak Day Growth and Therms

High and Low Scenarios

High and low scenarios were created by examining the best and poorest performing years from the historical data period, 1980 to 2009. These scenarios bookend the range within which annual load and peak day usage will reside should underlying indicators vary from Woods \& Poole's long range estimates.

	Low	Mid	High
$\mathbf{2 0 1 0 - 2 0 1 5}$	1.30%	1.48%	1.71%
$\mathbf{2 0 1 5 - 2 0 2 0}$	1.47%	1.66%	1.82%
$\mathbf{2 0 2 0} \mathbf{- 2 0 2 5}$	1.49%	1.68%	1.85%
$\mathbf{2 0 2 5 - 2 0 3 0}$	1.28%	1.46%	1.67%
$\mathbf{2 0 1 0} \mathbf{- 2 0 3 0}$	1.39%	1.57%	1.76%

Table 3-8: Expected Total System Load Growth Across Scenarios
Load growth under poor economic conditions is expected to be around 1.4% annually over the forecast period while load growth under good economic conditions is expected to be around 1.8% annually. The cumulative effect of high growth over 20 years could result in additional load of 20 million therms while low growth will result in load 17 million therms less than predicted in the medium growth scenario.

	Low	Mid	High
$\mathbf{2 0 1 0}$	$299,438,282$	$301,885,823$	$304,992,382$
$\mathbf{2 0 1 5}$	$319,401,636$	$324,864,165$	$331,972,707$
$\mathbf{2 0 2 0}$	$343,577,530$	$352,669,721$	$363,230,566$
$\mathbf{2 0 2 5}$	$369,975,542$	$383,382,411$	$398,054,290$
$\mathbf{2 0 3 0}$	$394,334,672$	$412,244,157$	$432,407,449$
Deviation	$(17,909,485)$		$20,163,292$

Table 3-9: Expected Total System Load Across Scenarios

Uncertainties

This forecast represents Cascade's best guess about future events. There are several important factors that make prediction future load at this time particularly difficult economic recovery, carbon legislation, building code changes, carbon legislation, direct use campaigns, soft conservation, and long term weather patterns. The range of scenarios presented here encompasses the full range of possibilities through econometric analysis. These forecasts were created after running through a matrix of different functional forms and economic indicators. The chosen indicators, unchanged from Cascade's 2008 IRP, where chosen because of their consistency in returning statistically valid results. While they maybe the best mathematically, they are not the sole and only determinants of load. As a result, while Cascade believes that the numbers presented here are accurate, and that the scenarios presented represent the full range of possibility, there is and always will be uncertainties in predicting the future.

Section 4

Distribution System Enhancements

Forecasting by town allows Cascade to estimate the need for distribution system enhancements with a reasonable level of accuracy in the near term of the planning horizon. A localized forecast approach also allows a non-coincidental peak forecast to be developed which is necessary when estimating distribution system enhancement needs. Gas supply and pipeline transportation become secondary issues if the distribution system is constrained. An important part of the planning process is to determine potential areas of distribution system constraints, analyze possible solutions, and estimate costs for eliminating constraints.

Distribution System Modeling

Gas distribution networks rely on pressure differentials to move gas from one place to another. If the pressure is exactly the same on both ends of a pipe, the gas will not flow. Therefore, it is important that gas engineers design the distribution network such that the pressure in the pipe will always be high enough that a differential can be created when gas leaves the system. As gas flow increases, pressure is lost due to friction. Using the laws of fluid mechanics, engineers determine the maximum flow of gas through a pipe of a certain diameter and length that will not cause pressure drops that are too great. This process is known as "gas distribution system modeling".

The modeling process is important because it lets the engineer determine how much flow can be delivered at various places on the distribution system. For instance, when large customers are added to a distribution network, the engineer must determine if the network capacity is large enough to provide the additional flow needed to fulfill customer requirements. Modeling is also important when planning new distribution systems. The correct size main distribution pipes must be installed to allow for the flow needed to meet the requirements of current customers, and reasonably anticipated future customers at reasonable costs.

It is desirable to know if an existing distribution system has enough capacity to satisfy new loads due to increasing numbers of customers in the future. The model can also be used to simulate increasing the gas flows through the existing pipes until the pressure loss in the pipes becomes unacceptable.

Engineering Modeling by Town

Utilizing computer software, individual models were created for each of Cascade's different systems. These models include both high-pressure lines and distribution system networks. As gas loads are simulated to increase according to the load forecasts, the pressures within each system are checked. When the simulation shows the pressure dropping to an unacceptable level, that system and the surrounding area is determined to be a constraint area. When constraint areas are found, the analyst determines the most effective way of solving the problem. The solutions sometimes entail increasing the pressure in the system. However, in most situations where future constraint areas are identified, some amount of looping is also needed. The costs for the loops are determined based on system wide averages of past system reinforcements and extensions projects. The average cost per foot is established for
each area, and then the most cost-effective alternative to solving the pressure problem is found. After these costs are tabulated, potential reductions of demand within constraint areas due to conservation will be included in the analysis to determine whether any of the costs can be avoided or delayed.

The modeling output is compared to and, where appropriate, supplemented with data from local field personnel to provide forecasts by town. This allows the analyst to specifically determine, town by town, what reinforcement would be necessary to each system for each year. These town by town costs are then grouped together by gate station.

Key Findings

The results of the distribution system analysis are shown in Table 4-1. The table shows the estimated costs of distribution system enhancements necessary to eliminate constraint areas over the 20 year planning horizon. Appendix C contains further information regarding the possible solutions to alleviate the distribution system constraints. It should be noted that the proposed solutions are preliminary estimates of reinforcement solutions and actual solutions may be different due to differences in actual growth patterns and/ or construction conditions from those assumed in the initial modeling.

These results were based on the best information available and included both the anticipated load growth for the core market from the medium demand forecast along with the contracted peak delivery for each of the non-core customers.

Equally important is to review the impacts of proposed conservation resources on anticipated distribution constraints. Although the Company historically provides utility sponsored conservation programs throughout a particular jurisdiction (i.e. all of Washington or all of Oregon), there may be instances where a more targeted approach could reduce or delay the estimated reinforcement for a specific area. However, as will be discussed in Section 5, the acquisition of conservation resources is entirely dependent upon the individual consumers' day-to-day purchasing and behavior decisions. Although the utility attempts to influence these decisions through its conservation programs, the consumer is still the ultimate decision maker regarding the purchase of a conservation measure. Therefore, the Company does not anticipate that the peak day load reductions resulting from incremental conservation will be adequate enough to eliminate distribution system constraint areas at this time. However, over the longer term, (the 2011 through 2025 timeframe) the opportunity for targeted conservation programs to provide a cumulative benefit that offsets potential constraint areas may be an effective strategy.

Table 4-1
Yearly Reinforcement Costs by Gate

Gate	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2022
Arlington Bellingham I Bend E Stanwood Hermiston Kennewick Lynden Madras Mount Vernon Pasco Pendleton Prineville Redmond Sedro Woolley Shelton Stanwood Sumas Boarder Sunriver Umatilla Walla Walla Yakima	$\begin{array}{r} \$ 90,480 \\ \$ 1,564,500 \\ \$ 145,730 \\ \$ 28,493 \\ \$ 81,345 \\ \$ 7,788 \\ \\ \$ 298,493 \\ \$ 306,050 \end{array}$	$\$ 373,293$ $\$ 75,668$ $\$ 4,225,000$ $\$ 112,100$	$\$ 40,000$ $\$ 1,053,775$ $\$ 128,325$ $\$ 22,403$ $\$ 117,705$ $\$ 46,328$ $\$ 705,589$	$\begin{array}{r} \$ 82,954 \\ \\ \$ 40,238 \\ \\ \$ 218,595 \\ \$ 251,309 \\ \$ 35,018 \\ \$ 97,440 \end{array}$	$\begin{array}{r} \$ 2,671,000 \\ \\ \$ 61,553 \\ \$ 872,356 \\ \$ 134,438 \\ \$ 63,240 \end{array}$	$\$ 875$ $\$ 30,450$ $\$ 164,002$ $\$ 1,229,080$ $\$ 62,776$ $\$ 39,235$ $\$ 875$ $\$ 1,590,000$ $\$ 51,983$ $\$ 43,718$	$\begin{array}{r} \$ 349,192 \\ \$ 1,699,000 \\ \$ 149,640 \\ \$ 210,800 \end{array}$	$\begin{array}{r} \$ 56,115 \\ \$ 79,388 \\ \$ 113,782 \\ \$ 35,888 \\ \\ \$ 106,773 \\ \$ 1,915,000 \end{array}$	$\$ 15,660$ $\$ 1,057,000$ $\$ 81,128$ $\$ 81,833$ $\$ 224,727$	$\begin{array}{r} \$ 710,200 \\ \$ 5,425 \\ \$ 113,782 \\ \$ 1,140,718 \\ \$ 77,574 \end{array}$	\$174,876
Grand Total	\$2,522,877	\$4,786,061	\$2,114,124	\$725,553	\$3,802,587	\$3,212,993	\$2,408,632	\$2,306,944	\$1,460,347	\$2,047,699	\$174,876
Gate	2023	2024	2025	2026	2027	2028	2029	2030	2031	Grand	
Arlington Bellingham I Bend E Stanwood Hermiston Kennewick Lynden Madras Mount Vernon Pasco Pendleton Prineville Redmond Sedro Woolley Shelton Stanwood Sumas Boarder Sunriver Umatilla Walla Walla Yakima	$\begin{aligned} & \hline \$ 116,024 \\ & \$ 128,915 \\ & \$ 256,709 \\ & \$ 170,000 \end{aligned}$	$\begin{array}{r} \$ 34,800 \\ \$ 2,600,000 \\ \$ 20,880 \\ \$ 229,068 \\ \$ 40,000 \end{array}$	$\begin{array}{r} \$ 29,145 \\ \$ 5,575,000 \\ \$ 295,944 \end{array}$	\$29,146	$\begin{array}{r} \$ 203,535 \\ \$ 81,000 \end{array}$	$\begin{array}{r} \$ 149,616 \\ \$ 67,260 \\ \\ \$ 1,072,139 \end{array}$	$\begin{aligned} & \$ 56,333 \\ & \$ 35,872 \\ & \$ 12,180 \end{aligned}$	$\begin{array}{r} \$ 43,283 \\ \$ 43,065 \\ \$ 41,978 \\ \$ 208,640 \\ \$ 50,925 \\ \$ 119,625 \end{array}$	$\begin{array}{r} \$ 60,465 \\ \$ 250,000 \end{array}$		$\$ 132,559$ $\$ 573,608$ $\$ 7,459,578$ $\$ 82,954$ $\$ 187,908$ $\$ 5,589,261$ $\$ 449,235$ $\$ 1,229,080$ $\$ 77,213$ $\$ 695,581$ $\$ 28,493$ $\$ 156,940$ $\$ 696,560$ $\$ 910,389$ $\$ 13,724,471$ $\$ 408,649$ $\$ 2,530,856$ $\$ 349,767$ $\$ 210,800$ $\$ 63,240$ $\$ 2,027,100$
Grand Total	\$671,648	\$2,924,748	\$5,900,089	\$29,146	\$284,535	\$1,289,015	\$104,385	\$507,515	\$310,465		\$37,584,238

Section 5

Supply Side Resources

Cascade's core market residential and small volume commercial and industrial customers expect and require the highest reliability of energy service. Because of the Company's obligation to provide gas service to these customers, the Company must determine and achieve the needed degrees of service reliability and attain the lowest costs possible while providing an infrastructure that responds to the customers' concerns in meeting customer growth and provides all necessary administrative services to provide the stated services. Assuming such an infrastructure is in place and operating effectively, the most important functions necessary for reliable natural gas service are planning for, providing and administering the gas supply, interstate pipeline transportation capacity, and distribution service components that constitute the "bundled services" required by core market customers.

Cascade's 20-year supply side resource goal is to continue to meet the energy needs of its core market customers with a package of services that combine adequate gas supplies and cost-effective winter peaking services with long-term pipeline transportation contracts and sufficient distribution system capacity at the lowest possible cost.

This section describes the various gas supply resource and transportation resource options that are available to the Company as supply side resources.

Gas Supply Resource Options

Gas supply options available to Cascade to meet the core market demand requirements generally fall into two groups: 1) Firm gas supplies on a short or long-term basis, and 2) Short term gas supplies purchased on the open market as needed for a particular month for one or more days. A separate and important source of gas supply is natural gas storage service, which is required to meet the needs of the broad seasonal peak and the needle peaks of the heating season in order to provide economical service to low load factor customers.

Firm Supply Contracts

Firm supply contracts commit both the seller and the buyer to deliver and take gas on a firm basis, except for force majeure conditions. From Cascade's perspective, the most important consideration is the seller's contractual commitment to make gas available day in and day out, regardless of market conditions. Firm supplies are a necessary component of Cascade's core market portfolio given the obligation to serve and the lack of easily obtainable alternatives for consumers during periods of peak demand. Firm contracts can provide baseload services, provide seasonal peaking services during the winter months, or can be used to meet daily needle peaking requirements. Each of these services is discussed briefly below.

Baseload resources are those that are taken day in and day out, 365 days a year. As a result, baseload gas tends to be the least expensive of the firm supply contracts because it matches the production of gas and guarantees the producer that the volumes will be taken. Cascade's ability to contract for baseload supplies is limited because of
the relatively low summer demand on the system. Baseload resources are used to meet the non-weather sensitive portion of the core market requirements, or may be used to refill storage reservoirs during periods of lower demand.

Winter gas supplies are firm gas supplies that are purchased for a short period during the winter months to cover increased loads, primarily for space heating. The contracts are typically 3 to 5 month durations (primarily November through March). This enables the Company to ensure firm winter supplies without incurring obligations for high levels of take during periods of low demand in the summer months. Winter supplies combined with baseload supplies will be adequate to cover the moderately cold days in winter.

Peaking gas supplies, similar to storage, are firm contracts purchased only as load actually materializes due to high winter demand. That is, the producer must deliver the gas when the Company requires it, but the Company is not required to take gas unless needed to meet customer load requirements. Peaking resources typically allow the Company to take between 15 and 20 days of service during the winter period. These resources are more expensive than baseload or winter supplies and typically include fixed charges to cover the costs for the producers to stand by to deliver the supplies.

Needle peaking resources are utilized during severe or "arctic" cold experiences when demand can increase sharply. These resources are very expensive and are available for a very short period of time. One source of needle peaking gas supply that is actually a form of demand side management may be obtained from Cascade's industrial customer base. These customers would be required to maintain standby or alternate fuel capability that Cascade would contract the right to request the customer switch to so Cascade could utilize (divert) their gas supply and transportation capacity to meet the Company's core market requirements. The benefits associated with this type of resource would include lowering the demand of the industrial facility, and providing a like amount of additional gas supply with pipeline capacity to meet core demand. Needle peaking requirements can also be met through the use of propane air plants, or on-site liquefied natural gas (LNG) facilities.

Contract terms for firm commodity supplies vary greatly. Some contracts specify fixed prices, while others are based on indexes that float from month to month. Some contracts have fixed reservation charges assessed each month, while others may have minimum daily or monthly take requirements. Most contain penalty provisions for failure to take the minimum supply according to the contract terms. Contract details will also vary from year to year, depending on company and supplier needs and the general trends in the market.

Appendix E summarizes the gas supply alternatives evaluated during this planning cycle.

Spot Market Supplies

Gas that is purchased for a short period of time (1 to 30 days) when neither the seller nor the buyer has a longer-term firm commitment to deliver or take the gas is referred to as a spot market purchase. Spot market supplies differ from firm resources in that they are more volatile, both in terms of availability and price, and are largely influenced by the laws of supply and demand.

In general, spot market supplies are provided from gas supplies not under any longterm firm contract, as mentioned above. Therefore, as firm market demand decreases, more gas becomes available for the spot market. Prices for spot market supplies are market driven and may be either lower or higher than prices under firm supply contracts. In warmer weather, as firm market demand requirements decrease, usually more gas becomes available for the spot market, resulting in lower prices. In colder weather, as firm markets demand their gas supplies, the remaining spot market supplies can carry higher prices until the price equates or exceeds that of alternate energy supplies (such as oil or electricity). Spot supplies can be expected to move to the markets that offer the highest price, which in turn can affect delivery reliability. ${ }^{1}$

Due to the potential for interruption of the spot market, these supplies are not considered as reliable a source of gas supply for the winter peaking requirements of Cascade's core market. As identified earlier, part of the reason these supplies are considered less reliable is that these volumes are made available after longer-term firm commitments have been contracted for delivery by upstream suppliers. These available volumes are likely to vary daily, depending on production or the suppliers' ability to store un-marketed supply. Under a NAESB (North American Energy Standards Board) contract, which is the standard contract used by buyers and sellers when entering into short term supply transactions, parties have the ability to identify firm variable or interruptible quantities for these supplies. Therefore, these spot volumes are more susceptible to daily operational constraints on the upstream pipelines. This is particularly true in the case of Northwest Pipeline, which is a displacement pipeline with bi-directional flow. Depending on how gas is scheduled versus actually flowing between compressor stations, constraints can possibly occur. Complicating matters is that each of the pipelines has multiple supply scheduling deadlines, allowing scheduled volumes to be adjusted. As a result, at any given point in the process, constraints can occur, leading to the potential of the scheduled spot supply volumes being reduced or not delivered to the citygate at all.

The role for spot market gas supply in the core market portfolio is based upon economics. Spot market supplies may be used to supplement firm contracts during

[^0]periods of high demand or to displace other volumes when it is cost-effective to do so. For example, should prices in one basin drop radically compared to another basin, a contract may allow the flexibility to reduce takes in order to take advantage of supply from a lower priced basin. Depending upon availability and price, spot market volumes may be used in place of storage withdrawal volumes to meet firm requirements on a given day or for mid-heating season refills of storage inventory during periods of weather moderation.

Other Unconventional Gas Supply Resources

Cascade considers Unconventional Gas Supply Resources such as supplies from an LNG Import Terminal, BNG or other manufactured gas supply opportunities as speculative supply side resources at this point in time. In most cases unconventional gas supply resources would become an alternative to traditional gas supplies from the conventional gas fields in Canada or the Rockies and would have to compete for inclusion in the Company's portfolio planning. Of the two LNG Import Terminal projects since the publishing of the last IRP, only Jordan Cove appears to still be in a forward stage of development. NorthernStar Natural Gas, owner of the proposed Bradwood Landing LNG facility on the Columbia River near Clatskanie, Oregon announced the suspension of development in May 2010. Further, Palomar Gas Transmission has withdrawn its application for a certificate to build a natural gas pipeline in Oregon, and it has told the Federal Energy Regulatory Commission that it continues to work with potential customers and a potential additional partner to provide a regional solution to the need for access to this important form of energy. Palomar said that while they will no longer seek to permit a pipeline to serve the previously proposed liquefied natural gas terminal on the Columbia River, it will continue its effort to find commercial support for a new pipeline in Oregon to meet the needs of the Pacific Northwest.

It should be noted though that Jordan Cove has indicated that they may switch the project to an export facility.:

- Bradwood Landing: Palomar Pipeline would extend 110 miles north from near Molalla, Oregon to the proposed facility near Willamette. Since the project is only "suspended" and not terminated we decided to model the project even though the LNG facility looks unlikely to be built as of this writing.
- Jordan Cove: The Pacific Connector Gas Pipeline Project is a proposed 234mile, 36 -inch diameter pipeline designed to transport up to 1 billion cubic feet of natural gas per day from the Jordan Cove LNG terminal to markets in the region. The Pacific Connector project includes interconnects to Williams' Northwest Pipeline near Myrtle Creek, Oregon.; Avista Corporation's distribution system near Shady Cove, Oregon.; Pacific Gas and Electric Company's gas transmission system; Tuscarora Gas Transmission's system; and Gas Transmission Northwest's system, all located near Malin, Oregon.
Another alternative is BNG. Bio natural gas continues to receive increased attention as a possible resource. BNG typically refers to a gas produced by the biological
breakdown of organic matter in the absence of oxygen. BNG originates from biogenic material and is a type of biofuel. One type of BNG is produced by anaerobic digestion or fermentation of biodegradable materials such as biomass, manure or sewage, municipal waste, green waste and energy crops. This type of BNG comprises primarily methane and carbon dioxide. The principal type of BNG is wood gas which is created by gasification of wood or other biomass. This type of BNG is comprised primarily of nitrogen, hydrogen, and carbon monoxide, with trace amounts of methane.

The gases methane, hydrogen and carbon monoxide can be combusted or oxidized with oxygen. Air contains 21\% oxygen. This energy release allows BNG to be used as a fuel. BNG can be used as a low-cost fuel in any country for any heating purpose, such as cooking. It can also be utilized in modern waste management facilities where it can be used to run any type of heat engine, to generate either mechanical or electrical power. BNG is a renewable fuel, which can be used for transport, and electricity production, so it attracts renewable energy subsidies in some parts of the world.

In many cases, there is currently not enough pricing and availability information available to be considered in this planning cycle; however, where possible, we have endeavored to analyze those situations where we feel sufficient data is available. Cascade continues to monitor the BNG activities of companies such as Pacific Gas \& Electric, Sempra Utilities and Puget Sound Energy.

Storage Resources

Cascade also utilizes natural gas storage to meet a portion of the requirements of its core market. Storing gas supplies, purchased and injected during periods of low demand, is a cost-effective way of meeting some of the peak requirements of Cascade's firm market. Natural gas can be stored in naturally occurring reservoirs, such as depleted oil or gas fields, salt caverns or other geological formations with an impermeable cap over a porous reservoir. Gas can also be stored in vessels or tanks under pressure as compressed natural gas, or cooled to a liquid state, which is liquefied natural gas (LNG).

Natural gas storage service is not only an excellent supply source for meeting peak winter demand, but it can also be an important gas supply management tool. Storing excess or unused supply during periods of low demand increases the annual utilization rate of a supply contract, therefore improving the annual load factor for the Company's gas supplies. Improving the annual load factor of a supply contract improves the Company's ability to purchase gas supplies on a more economical basis. Purchasing natural gas for storage during periods of low demand generally yields prices at the low point on the seasonal price curve. The lower cost of supply helps to offset the costs associated with the storage facility.

Depending upon the location of the storage facility, pipeline transportation may also be required. Storage facilities located within the Company's distribution system or on the interstate pipeline are preferable to those located "off-system". Off-system storage
requires additional pipeline transportation and may limit the flexibility of the resource. Cascade does not own its own storage facility and therefore must contract with storage owners to access a portion of their storage capacity. In 1994, Cascade had two contracts for utilization of underground storage located at Jackson Prairie (SGS-1). SGS-1 service is contracted directly from NWP and additional SGS-1 service was assigned from Avista Corporation for Cascade's use. Both of these contracts provided daily deliverability and seasonal inventory capacity. However, Avista declined to extend its agreement with Cascade and the Avista storage service was no longer available following the 2006/07 heating season.

Consequently, Cascade entered into an Agreement with Northwest Pipeline for additional Jackson Prairie storage service that will replace the access to storage that was available through the Avista storage contract. The new Agreement will provide Cascade with twice the amount of daily deliverability of the Avista agreement (30,000 Dth/d vs. $15,000 \mathrm{Dth} / \mathrm{d}$) with approximately the same annual storage quantity. The Jackson Prairie expansion will be fully operational by Spring 2012. Cascade has also entered into a companion transportation Agreement with Northwest Pipeline for the transportation of gas supplies stored under this Agreement to Cascade's service area. The Company also has contracted for service (LS-1) from NWP's Plymouth, Washington LNG facility. Both Jackson Prairie facilities and the Plymouth facility are located directly on NWP's transmission system. Therefore, storage withdrawal rates can be changed several times during an individual gas day to accommodate weather driven changes in core customer requirements. This type of operating flexibility would not necessarily be available with off-system storage.

Withdrawal capabilities must also be accompanied by firm capacity on the transporting pipeline(s) to be of any value as a reliable source of gas supply. Cascade's SGS-1 and LS-1 service requires TF-2 firm transportation service for storage withdrawals, and Cascade has sufficient firm TF-2 service to meet its storage daily deliverability levels.

Figure 5-A provides a map of the various storage discussed above, as well as the location of other storage facilities in the region.

FIGURE 5-A

Capacity Resource Options

Capacity options are either interstate pipeline transportation resources or capacity on Cascade's local distribution system. Cascade's local distribution system was built to serve the entire connected load in its various distribution service areas, on a coincidental demand basis, regardless of the type of service the customer may have been receiving. Cascade generally has the distribution capacity available to deliver the gas to customers if the pipeline delivers the gas to the Company's citygate stations. Core interruptible service relates to the spot market supplies and interruptible interstate pipeline transportation contracted to serve these markets. Cascade does not contract for firm supply or interstate transportation for these interruptible customers. Cascade's interruptible rates also reflect the fact that no firm supply or transportation services are purchased on behalf of interruptible customers.

Interstate Pipeline Transportation Services

Pipeline transportation resources are utilized to transport the gas supplies from the producer/supply sources to Cascade's system. Cascade currently purchases supplies from three different regions or basins: U.S. Rockies, British Columbia, and Alberta, Canada. Unless the gas supplies have been "bundled" by the supplier, these resources require pipeline transportation to deliver them to Cascade's local distribution system.

Cascade has several long-term annual contracts with NWP, one long-term annual contract and three long-term winter-only contracts with GTN (including the upstream capacity on Trans Canada Pipeline's Foothills and Alberta systems), and one long-term annual contract with Spectra in British Columbia, Canada. These contracts do not include storage or other peaking services that provide additional delivery capability rights ranging from 9 to 120 days.

As noted earlier, available capacity exists on two of the three upstream pipelines serving the region: Spectra Energy's T-South Mainline from Northeast BC to the BC-Washington Border at Sumas, and TransCanada's GTN System that takes natural gas from Alberta at Kingsgate, Idaho and ships it to and through the region. The Company constantly reviews existing capacity options and works to negotiate contract terms that make sense for both parties, whenever we determine a project is viable.

Figure 5-B provides a schematic of Cascade's various transportation agreements, approximate contract demand (in thousands of dths) and their general flow patterns.

FIGURE 5-B

Proposed and New Pipelines

Additionally, several pipeline projects have been proposed by a variety of developers to serve the region. As noted below, some of these projects which were part of the last IRP, are no longer active.

- Blue Bridge Pipeline - Williams Gas Pipeline Company and Puget Sound Energy proposed this project which included the installation of additional compression horsepower at existing Northwest Pipeline stations and the construction of up to 172 miles of 30 -inch pipeline and 16 miles of 36 -inch
pipeline. The project was designed to deliver about $500 \mathrm{MMcf} / \mathrm{d}$ from Stanfield, Oregon to the I-5 Corridor and generally follow Northwest Pipeline's existing pipeline corridor for the majority of the route. On September 1, 2010 the partners announced that they had filed with FERC to shelve the project.
- Palomar Pipeline - Palomar Gas Transmission is a partnership between NW Natural and TransCanada. The proposed 212 mile, 36 -inch-diameter underground pipeline will extend from TransCanada's GTN system near Madras, Oregon to NW Natural's system near Molalla, Oregon. It will be a bidirectional pipeline with an initial capacity of $1,200 \mathrm{MMcf} / \mathrm{d}$. As noted earlier, Palomar Gas Transmission has withdrawn its application for a certificate to build a natural gas pipeline in Oregon.
- Integrated Blue Bridge/Palomar project - Essentially would create an "Oregon Hub" via a Transportation by Other (TBO) process using vintage NWP capacity across the Columbia Gorge combined with vintage GTN capacity from Stanfield to Madras, then using Palomar capacity from Madras to Molalla tied to NWP expansion capacity up the I-5 Corridor in Washington. The inservice date was projected to be 2016. This project was presented at an extraordinary joint meeting of the Washington and Oregon utility commissions in February 2011.
- Pacific Connector Gas Pipeline Project - as identified earlier, is a proposed 234-mile, 36-inch diameter pipeline designed to transport up to 1 billion cubic feet of natural gas per day from the Jordan Cove LNG terminal to markets in the region. The Pacific Connector project includes interconnects to Williams' Northwest Pipeline near Myrtle Creek, Oregon.; Avista Corporation's distribution system near Shady Cove, Oregon.; Pacific Gas and Electric Company's gas transmission system; Tuscarora Gas Transmission's system; and Gas Transmission Northwest's system, all located near Malin, Oregon
- Southern Crossing Pipeline Extension - this is a project development that is being developed by Terasen Gas. It will extend the existing Southern Crossing from Oliver BC to Kingsvale BC. This bi-directional pipeline would flow new production from Northern BC east to GTN or move Alberta gas into the I-5 corridor via Spectra Pipeline.

On July 28, 2011, El Paso Corporation placed the Ruby Pipeline in service. Ruby is a 680-mile, 42-inch interstate natural gas pipeline, providing transportation service from Opal, Wyoming, to interconnections near Malin, Oregon. Ruby has an initial design capacity of up to 1.5 billion cubic feet per day (Bcf/d) and traverses portions of four states: Wyoming, Utah, Nevada, and Oregon. The project utilizes four compressor
stations: one near the Opal Hub in southwestern Wyoming; one south of Curlew Junction, Utah; one at the mid-point of the project, north of Elko, Nevada; and one in northwestern Nevada.

Cascade's utilization of pipeline transportation and peak day capacity for core and contracted for non-core firm transportation gradually changes over the planning horizon. Current company-acquired firm supplies utilize existing core firm transportation capacity. Future core market growth utilizes non-core firm transportation capacity that will be converted to core market firm transportation capacity as core market growth occurs. Figure 5-C provides a map of the current existing and various pipeline projects discussed above.

FIGURE 5-C

Transportation resources historically have been purchased from the pipeline at the time of an expansion under long-term (twenty to thirty year) contracts. As a result, the Company may find that it has capacity excess to its core market needs, especially in the early years following an expansion. Since late 1989, Cascade has, through its Optional Firm Pipeline Capacity tariffs, allowed its non-core customers to utilize Cascade's firm pipeline capacity that is excess to current core customer requirements. By accepting all of the obligations associated with the underutilized pipeline capacity, the non-core customers have relieved Cascade's core customers of the costs associated with holding the pipeline capacity for future growth.

Additionally, pipeline capacity is a tradable commodity through the Electronic Bulletin Board (EBB). Should a utility have temporarily underutilized transportation capacity it
can release that capacity to third parties. Such activities allow holders of pipeline capacity contracts to recoup a portion of the fixed costs incurred. The value of the capacity will fluctuate depending upon market conditions. Any pipeline capacity in excess of core requirements for periods exceeding 30 days is offered to qualified buyers. The capacity is first offered to Cascade's customers, secondly to any broker, marketer or aggregator for service to Cascade customers and third to any broker, marketer or aggregator for service to non-Cascade customers. Absent a sale to these markets, the excess capacity is offered to any market through the respective pipeline's EBB.

As Cascade's customer count and loads continue to grow, the Company will need to acquire additional capacity resources. In May 2011, Cascade was able to obtain vintage NWP capacity through a pre-arranged agreement with the Pipeline that will provide additional MDDOs (daily delivery) to several gates, including Yakima/Union Gap on the Wenatchee lateral and Bellingham/ (Ferndale) gates. This capacity (27,063 dths) becomes available to Cascade in April 2012. The current vintage transportation rates on NWP compared favorably to any of the other proposed pipeline projects at the time, such as Blue Bridge/Palomar integrated project. For the past several Integrated Resource Plans, Cascade has identified the need for incremental pipeline capacity in order to meet anticipated peak day requirements for its core market as early as the 2012/2013 timeframe. Additionally, there are several locations where Cascade's design day requirements are greater than existing contracted delivery, including the Bellingham area. With the incremental capacity Cascade will have enough receipt MDQ to meet core requirements until 2023 and will provide adequate delivery MDDO's until the 2022 timeframe. The table below describes the capacity:

TABLE 5-1
NWP Incremental Vintage Capacity, effective 4/1/2012

Receipt Point	Delivery Pt	Del Pt Qty (Dths)
Sumas	Bellingham	8,074
Sumas	Prosser	29
Sumas	Yakima/Union Gap	310
Sumas	Umatilla	6,160
Sumas	Plymouth LNG	12,490

Some of the growth will require Cascade to look at alternatives to pipeline mainline capacity such as LNG satellite facilities located near or within the Company's distribution system. The Company is continuing to study the viability of LNG satellite facilities to meet these needs.

The Wenatchee lateral is an example where an LNG satellite facility may be more cost effective than the traditional solution of pipeline expansion for solving the upcoming capacity constraints on the lateral. Preliminary cost studies indicate that an LNG satellite facility solution may be $1 / 3$ to $1 / 2$ the cost of a pipeline expansion project that would provide the same peak day incremental capacity.

Additionally, the historic load growth the Company enjoyed throughout much of its service areas has begun to create the need to increase the physical capabilities of some of the pipeline's citygates. Even though Cascade may have an adequate amount of pipeline capacity available on the pipe, it may not have the contractual or physical capabilities at the citygate to meet the incremental load requirements. LNG satellite facilities or trucked in LNG re-gasification facilities or other similar type solutions may provide lower cost alternatives to the cost of city gate rebuilding projects. The Company will continue to study the viability of these alternatives.

Appendix E provides a summary of current and potential capacity resources evaluated during this planning cycle.

Natural Gas Price Forecast

For IRP planning purposes the company develops a baseline, high and low natural gas price forecast. Demand, oil price volatility, the global economy, electric generation, opportunities to take advantage of new extraction technologies, hurricanes and other weather activity will continue to impact natural gas prices for the foreseeable future. Cascade has considered price forecasts from several sources, such as Wood Mackenzie, Energy Information Administration, the Financial Forecast Center's forecast, as well as our observations of the market to develop the low, base and high price forecast. The following discussion provides an overview of the development of the baseline forecasts.

Development of Baseline Henry Hub price forecast

Cascade's long term planning price forecast is based on a blend of current market pricing along with long term fundamental price forecasts. Since pricing on the market is heavily influenced by Henry Hub prices, the Company closely monitors this market trend. While not a guarantee of where the market will ultimately finish, the current market (NYMEX) is the most current information available that provides some direction as to future market prices. On a daily basis, we can see where Henry Hub is trading and how the future basis differential in our physical supply receiving areas (Sumas, AECO, Rockies) is trading.

The fundamental forecasts include Wood Mackenzie, Energy Information Administration (EIA), Northwest Power Planning Council, the Texas Comptroller and the Financial Forecast Center's long term price forecasts. Wood MacKenzie publishes a long-term price forecast each quarter to subscribing customers. This forecast is broken down by month through the planning horizon and includes Henry Hub as well as basis differentials for our receiving areas. The company also considers the EIA forecast; however, it has its limitations since it is not always as current as the most recent market activity. Further, EIA forecast provides monthly breakdowns in the short term, but longer term forecasts are by year. Many of the other sources above also only provide price forecasts by year. Given Cascade's load profile and the need for more winter gas than summer, the company develops a pattern based on the market monthly forward prices to create a long-term, monthly Henry Hub price.

With a monthly Henry Hub price determined for the above sources, the company assigns a weight to each source to develop the monthly Henry Hub price forecast for the 20 year planning horizon. The forecast weighting factors are shown in Table 5-2 on the following page. At the time the price forecast was developed, the Financial Forecast Center forecast was significantly lower than the Wood Mackenzie forecast and the forward market. Given the significantly higher future prices at the time versus the Comptroller forecast, the company decided to severely limit the Financial Forecast Center from the weighted average. In recent years the EIA forecast has often been lower than the actual monthly price, however it is still a respected industry barometer of prices. Therefore, the EIA forecast was given a higher weight. As discussed earlier, while current market pricing may not accurately predict the final market price, it often is a reliable indicator. Therefore, the company gave the current market pricing some weight based on nearness to term.

Development of the Basis Differential for Sumas, AECO and Rockies

Since the company's physical supply receiving areas (Sumas, AECO, and Rockies) are at a discount to Henry Hub, we utilize the basis differential from Wood Mackenzie's most recent update and compare that to the future markets basis trading as reported in public market. Although it is impossible to accurately predict the future, for trading purposes, the most recent period has been the best indicator of the direction of the market. Correspondingly, we applied a weighted average to determine the individual basis differential in the price forecast. Typically, we give the most weight to the current NYMEX Henry Hub price in the early years. As our forecast moves ahead we start to reduce the impact of the NYMEX (and the impact of speculation and other market uncertainties) and give greater weight to NWPPC, Wood Mackenzie and EIA.

In order to determine the low case and high case, the Company utilized the EIA economic growth factors (EIA Annual Energy Outlook 2011, Table E-1). This resulted in using 2.1 for the Low Case, 2.7 for the Reference Case and 3.2 for the High Case.

TABLE 5-2
HENRY HUB FORECAST WEIGHTING FACTORS

Year	Financial Forecast Center	NWPPC	TEXAS Comptroller	WoodMac	EIA	NYMEX

Figure 5-D on the following page provides a summary of the medium price forecast for the various indices over the 20 year planning horizon. Appendix E provides the detailed 20 year price forecasts.

FIGURE 5-D

Supply Side Resource Uncertainties

Several uncertainties exist in evaluating supply-side resources. They include regulatory risks, deliverability risks, and price risks. Regulatory risks include the unknown impacts of future Federal Energy Regulatory Commission or Canada's National Energy Board rulings that may impact the availability and cost of interstate pipeline transportation.

Deliverability risk is the risk that the firm supply will not be available for delivery to the Company's distribution system. Purchasing resources from larger producers or marketers who typically have gas reserves in multiple locations may minimize this risk. The risks associated with prices rising or falling during any winter period represents another supply-side uncertainty. To the extent the company purchases firm contracts that are tied to an index price, it may be at risk for paying more than was initially anticipated for the resource when the decision was made. Price risks associated with climbing prices can be minimized through the use of fixed price contracts or through the use of financial derivatives.

It should be noted that several proposals being discussed or that are in process involve a number of Canadian upstream pipelines which could have a direct impact on the availability of supply or at least may pose potential risks to increases in the price of supplies sourced from British Columbia and Alberta. For example, in response to competitive pressure on their mainline tolls, TransCanada Pipeline filed with the NEB to extend NOVA service east to Steelman and west to Kingsgate. This includes the roll-in of Foothills Pipeline. Under the plan, TCPL estimates western shippers (i.e. Cascade)
will save between 5-7 cents including fuel. Eastern shippers will also see reduced rates while receipt shipper rates will increase 3-5 cents. Increases in costs for receipt shippers led to concerns that commodity prices for future gas supplies on the Alberta system may raise substantially. The Company will continue to monitor and be actively involved in the various pipeline forums as these initiatives develop.

Financial Derivatives

Cascade constantly seeks methods to ensure ratepayers of price stability. In addition to methods such as long-term physical fixed price gas supply contracts and storage, another means for creating stability is through the use of hedges, or financial derivatives. The general concept is to lock-in a forward natural gas price with a hedge, consequently eliminating exposure to significant swings in rising and falling prices. Financial derivatives include futures, swaps, options on futures or some combination of these.

Natural gas futures contracts are actively traded on the New York Mercantile Exchange (NYMEX). The use of futures allows parties to lock-in a known price for extended periods of time (up to 6 years) in the future. Contracts are typically made in quantities of 10,000 dekatherms to be delivered to agreed-upon points (e.g., Sumas, Station 2, AECO, Northwest Pipeline Rockies, etc.) In a "swap", parties agree to exchange an index price for a fixed price over a defined period. In this scenario, Cascade would be able to provide its customers with a fixed price over the duration of the swap period. In theory, the idea is to level the price over the long term. Futures and swaps are typically called "costless" because they have no up-front cost.

Unlike futures and swaps, an option on futures only provides protection in one direction-either against rising or falling prices. For example, if Cascade wanted to protect itself against rising gas prices but keep the ability to take advantage of falling prices, Cascade can purchase a "call" option on a natural gas future contract. This arrangement would give the Company the right (but not the obligation) to buy the futures contract at a previously determined price ("strike price"). Similar to insurance, this transaction only protects the company from volatile price spikes, via a premium. The premium is typically a function of the variance between the strike price compared to the underlying futures price, the period of time before the option expires, and the volatility of the futures contract.

Portfolio Purchasing Strategy

Cascade's Gas Supply Oversight Committee (GSOC) oversees the Company's gas supply purchasing strategy. Beginning with the 2004/05 gas supply portfolio, Cascade has employed a more rigorous gas procurement strategy for both physical gas supplies and for hedging the price of the core portfolio. Cascade has contracted for physical supplies for up to three years (based on a warmer-than-normal weather pattern). The Company's current gas procurement strategy is to have physical gas supplies under contract for 100% of year one's warmer than normal core needs, 66% of year two, and 33% of year three. This strategy results in the need to contract annually for
approximately one-third of the core portfolio supply needs for the upcoming three-year period. Under this procurement strategy, this leaves roughly 10 to 20% of the annual portfolio to be met with spot purchases. Spot purchases consist of either "First of the Month" deals executed during bid week for the upcoming month, or day purchases which are utilized to meet incremental daily needs.

Once the portfolio procurement strategy and design has been approved by GSOC, the Company employs a variety of methods for securing the best possible deal under existing market conditions. Cascade employs a bidding process when procuring Fixed physical, Indexed Spot physical, as well as financial swaps used to hedge the price of index based physical supplies. In the bidding process we alert a minimum of three suppliers and/or financial counterparties of the specific gas supply transactions Cascade plans to fill. We then collect bids from these parties over a period of days or weeks depending on the number or time requirements of the packages sought, comparing the indicative pricing to each party as well as comparing the information to market intelligence available at the time. Ideally, after monitoring these indicatives and the market, Cascade will award the specific packages to individual parties. Naturally, price is the principle factor; however, Cascade also considers reliability, financial health, past performance, and the party's share of the overall portfolio so that we ensure party diversity. It should be noted that there is always the possibility the lowest market price may be during a period when we are initially gathering the price indicatives; in that situation there is a risk that a sudden price run-up may lead to filling the transaction at the higher end of the bids over time, or delay the acquisition to another time. However, the reverse is also true - the initial price indicatives may start high and drop over time allowing us to capture the transaction on the downward swing. In the end, timing is always a factor as the market cannot be predicted with any certainty.

GSOC also oversees the Company's gas supply hedging strategy. The Company's current gas hedging strategy is to hedge 45% of the contracted physical supplies of year $1,30 \%$ of year 2 and 15% of year three. Depending on market conditions, the strategy allows for the ratchets to increase to $75 \%, 50 \%$ and 30%, respectively, provided current market information supports moving to a higher level. Currently, depressed market prices have significantly reduced the need for financial swaps; the Company's current strategy is to rely primarily on fixed-priced physical supplies for hedging purposes.

Cascade's programmed buying approach has Cascade negotiating with suppliers and/or financial institutions throughout the year, loosely grouped during three specific time periods (Spring, Summer, and Fall). Ideally, the periods are designed so that each pricing basin (Sumas, Rockies, AECO) has financial swaps or fixed-pried physical supplies in each of the three buy periods. Typically, financial swaps are contracted in amounts in standard blocks of 10,000 dths. While it is possible to contract for other amounts, deviating from the standard blocks could potentially result in having to pay a premium as it is harder for the financial institution to hedge that odd amount with one of their counterparties. As a relatively small LDC, Cascade's ability to hedge in standard
blocks is severely limited. Dividing the blocks into numerous smaller or odd sizes would incur increased transactional costs. In fact, some trading partners will not even consider executing a transaction that has varying volumes or are of a non-standard size. Consequently, Cascade's procurement and hedging periods are designed with these concerns in mind while trying to ensure that the total notional volume to be contracted is spread as equally as possible across the buy periods. Utilizing the consistency of a programmed buying method as described above should help ensure that any locked-in prices provide stability over time, in addition to preventing Cascade from being over or under hedged. In the current contract year and beyond, Cascade plans to annually review our gas procurement physical and hedging strategy and, if unchanged, the company would continue its physical and hedging strategies as outlined above.

Cascade believes its gas procurement strategy is achieving diversity and flexibility in its gas supply portfolio through a combination of physical and financial structures. This goal encompasses not only supply basin origination and capacity limitations, but also includes a combination of pricing options that will assist Cascade in minimizing exposure to price volatility. The programmed buying approach to locking in a significant portion of gas prices maintains a market sensitive and balanced supply portfolio that continues to represent stable pricing as well as secure physical supplies for the Company's core customers.

Section 6

Demand Side Resources

Introduction and Overview

Demand Side Management (DSM) resources are generally thought of as conservation measures or actions that result in the reduction of natural gas consumption due to increases in efficiency of energy use or load management. Oregon and Washington Utility Commissions require gas utilities to consider cost-effective DSM resources in their energy portfolio on an equal and comparable basis with supply side resources. In the gas industry, DSM resources are conservation measures that include but are not limited to ceiling, wall and floor insulation, higher efficiency gas appliances, insulated windows and doors, ventilation heat recovery systems and weather stripping to name a few. By prompting customers to change their demand for gas, Cascade can displace the need to purchase additional gas supplies, displace or delay contracting for incremental pipeline capacity and possibly displace or delay the need for reinforcements on the Company's distribution system.

There are two basic types of demand side resources. These are baseload resources and heat sensitive resources. Baseload options are those that displace the need for baseload supply-side resources. They will offset gas supply requirements day in and day out regardless of the weather. Baseload DSM resources include high efficiency water heaters, higher efficiency cooking equipment and horizontal axis washers. Heat sensitive DSM resources are measures whose therm savings increase during cold weather. For example, a high efficiency furnace will lower therm usage in the winter months when the furnace is utilized the most and will provide little if any savings in the summer months when the furnace is rarely used or is turned off. Examples of heat sensitive DSM measures are ceiling/floor/wall insulation measures, high efficiency gas furnaces, and improvements to duct work. These types of measures will offset more of the peaking or seasonal gas supply resources, which are typically more expensive than baseload supplies.

Due to differences in the approach to DSM acquisition between Cascade's Oregon and Washington jurisdictions, each of the states will be addressed individually. In Oregon, the Company has been tasked with evaluating the funding adequacies of its public purpose charges that go to the Energy Trust as well as the Company's own low-income programs. In Washington, Cascade is updating the technically achievable conservation potential in its Washington service territory.

2-Year Action Plan Update

Oregon Conservation Programs and the Energy Trust of Oregon

Since July 2006, Cascade has relied on the Energy Trust of Oregon (ETO) for the delivery and administration of its conservation programs in Oregon. As the delivery agent for gas conservation efforts in rate-qualified customer homes and facilities, The Energy Trust of Oregon has played a prominent role in both the establishment of the ETO's annual therm savings targets in the Company's service territory, and the determination of needed funds to acquire those therm savings. As reported by the ETO in their annual report to the Oregon Public Utilities Commission (OPUC), the 2010 therm savings
achievement in Cascade's service territory was 367,875 (including market transformation savings of 57,616 therms), just shy of their annual goal for that year, but above their IRP target for the same timeframe. Spending was $\$ 1.3$ million, a notable reduction from their initial estimates. The ETO estimates that their 2011 achievements will be on par with their existing IRP target of 391,754 . The preliminary target established for 2012 is is 368,445 therms or 85% of the stretch (IRP) goal of 433,465 (without market transformation) and are expected to be achievable despite the ETO's significant downward revisions to the 20 year therm savings potential for the Company. Due to the independent nature of the Organization, and continued discussion surrounding the Data Sharing Agreements with its member utilities, the Energy Trust remains inhibited in its ability to provide detailed information to the Company regarding customer homes and facilities served through this program. As a result, greater Company analysis of these achievements, and their effects to customer usage by service area, cannot be performed at this time. This is relevant in light of significant changes to ETO's assessment of natural gas conservation potential in our service area. ,In order to initiate greater dialogue regarding data sharing, Cascade has provided an open letter to the Energy Trust on October 6, 2011 requesting more comprehensive and transparent data from the Organization in order to better understand and respond to requests for additional funds. Meetings are being arranged, and the Company is optimistic that we will be able to reach a solution amicable to both the Trust and our ratepayers.

Oregon Low Income Weatherization Program

From January $1^{\text {st }}$ through December 31, 2010, 132 homes have been weatherized in Oregon with an annual cumulative savings of 21,168 therms and with $\$ 261,057.66$ provided in rebates. This represents a significant growth in program participation and low-income CNGC households served during the calendar year. This increased momentum reflects in part a strengthened relationship between CNGC and the Community Action Agencies (CAAs) delivering the Weatherization Assistance Program (WAP). The most significant factor to this ramp-up has also the availability of ARRA dollars to the Agencies to serve more low income households in the State of Oregon. Leveraged against CNGC rebate monies, the WAP has been able to serve a significantly higher number of Cascade customers than in prior years. Through September, 2011, Cascade's Oregon Low Income Energy Conservation Program (OLIEC) has served 46 homes and achieved a savings figure of approximately 66,200 therms with a total expenditure of approximately $\$ 7,575,237$. This is slightly lower than the achievement numbers from the same time in the prior year, reflecting the impending expiration of the ARRA monies, but still a significant upward improvement from the previous level of savings to CNGC low income households.

Cascade continues to work closely with its Oregon Low Income Advisory Group to better understand the capacity of the WAP (Weatherization Assistance Program) to serve Cascade homes and evaluate strategies designed to maintain active Agency participation in the program either through modifications to the program measures,
incentives, or delivery approach. Such utility collaboration will become particularly important in light of impending reductions to both ARRA and other critical federal funding sources.

Program modifications discussed with the Advisory Group and implemented in 2010 included an extension of the OLIEC program to incorporate rebates for high efficiency natural gas water heaters, and allow participation by non-profit entities engaged in providing affordable, energy-efficient housing for low-income individuals. Cascade will continue its efforts to identify opportunities to utilize the available OLIEC funds in a manner that achieves the greatest amount of cost-effective therm savings at homes occupied by low-income households.

Outside Determinants of Customer Usage

Cascade has remained active in monitoring external developments at the state and national level which carry potential impacts to customer usage within our service territory. Such developments include changes to Residential and Commercial building codes. Several substantial changes to Washington code were scheduled to go into effect on July 1, 2010 but have experienced subsequent delays. These changes are likely to have direct impacts to the operation of our Conservation Incentive Program. The Washington State Building Code Council will enter into regular rulemaking to determine whether implementation should be further delayed until April 1, 2011. Measures resulting from this new code that have the potential to impact Cascade's Conservation Incentive Program are outlined below:

- PTCS Duct Sealing (Residential- Existing) - A duct sealing standard equal in stringency to the PTCS standard will become mandatory. Code will mandate this new standard be enforced whenever homeowners make space conditioning alterations to their home. A space conditioning alteration is defined as any change to the heating and air conditioning equipment (i.e. replacing a furnace).

The technical potential for the Company to claim savings from this measure is no longer viable since it will soon be mandated by the State. Therefore potential for gas savings to 2030 is reduced by approximately 790k therms (or the amount Stellar associated with this measure). The inclusion of potential from PTCS duct sealing is still viable as a stand-alone measure, but should be reduced downward to reflect that measure potential is now limited to existing homes where space-conditioning equipment has not been altered.

PTCS Duct Sealing (Residential- New) - On average, 56\% of the deemed savings associated with ENERGY STAR certified homes comes from insulation and duct sealing. If the new code equals or exceeds insulation and duct sealing standards for ENERGY STAR certified homes, it may be necessary to reduce the deemed savings (and total technical potential for the CIP) associated with this measure. However this may be somewhat offset by therm savings increases, as ENERGY STAR home requirements may become more stringent in 2011.

As a means of trying to prepare our contractors for the upcoming changes, CNGC contractors have made numerous calls to builders, HVAC contractors, and insulation contractors. These calls were used to inform program participants of the upcoming code changes, WSU trainings available, and the Trade Ally equipment discounts. Feedback from contractors and builders has made it clear that a small number of contractors feel prepared to comply with these code changes in 2010 and both compliance and enforcement of these codes may take a while to be consistent.

Windows (Commercial) - The proposed 2009 WA State Energy Code will eliminate most of the new building window measures proposed in the Stellar report by virtue of requiring a reduction of U values (overall heat transfer coefficient). The old code allowed U values for windows of .55 Btu/sq ft, and the Stellar report used reduced U values ranging from .45 to .31 for modeling their new window measures. The new code stipulates maximum U values of .40 for aluminum frame windows (eliminates potential new window measures E129, E130, E126, E127 in Stellar) and . 32 for vinyl windows (eliminates new window measures E123 and E124). This only leaves E131 and E128 for Aluminum frame windows and E125 for vinyl windows, but with commensurate greatly reduced efficiency gains over newer code requirements.

Washington Program Cost Effectiveness \& Emerging Technologies

As the energy efficiency market continues to develop, and conservation technologies become more prevalent, the efficiency, availability, and costs of such measures may evolve over time. The Company continues to work closely with its Program Management Engineers to monitor such changes and determine the most prudent course of action for our Conservation Programs.

An example of an emerging technology that has become affordable and marketaccessible within Cascade's service territory is the $90 \%+$ Combo Heat/Water Heat System utilizing a high-efficiency condensing tankless water heater. Over the course of several years, this measure has come down in cost and has become increasingly available within Cascade's service territory. As a result, this promising measure was added to the CNGC conservation portfolio in 2009.

In addition, the Company has also raised the R -values (a measure of insulation's ability to resist heat traveling through it) eligible for rebate in its Commercial/Industrial program, creating two tiers of incentives. An incentive was added for certain boiler steam traps; the incentive where raised for high efficiency boilers, and adjustments were made to the standards and inputs of boilers and furnaces as appropriate.

Following the Company's 2-Year Action Plan, Cascade continues to monitor the viability of .70 conventional water heaters and other emerging technologies in order to assess their applicability to our service territory. If, and when, such measures become market available, we will take steps to include them in our conservation portfolio.

Impacts of Washington's Climate Change Challenge

Since Governor Gregiore announced the Executive Order creating Washington's Climate Change Challenge in February 2007, Cascade has monitored the progress of the Challenge as it pertains to the Utility. On September 23, 2008, the Western Climate Initiative (WCI) released its Greenhouse Gas Cap and Trade design recommendations. WCI participants, which include both Washington and Oregon, have a certain amount of flexibility in setting requirements for implementation, compliance, and enforcement of the program. However key recommendations from the WCl can be found below:

- Reduce GHG emissions to 15\% below 2005 levels by 2020
- GHG measurements and monitoring begin 1/1/10 for reporting in early 2011
- First compliance period begins $1 / 1 / 12$ - electric generations (including imports); industrial and commercial combustion; industrial process non-combustion emissions
- Second compliance period begins $1 / 1 / 15-$ residential, commercial, and industrial fuel combustion below 25,000 metric ton threshold; transportation fuel
- No set date for allowance allocations, but they will be established prior to 2012
- Encourage entities to reduce GHG emissions 1/1/08-12/31/11 by issuing Early Reduction Allowances that are in addition to allocated allowances and are treated like allocated allowances

Since the 2008 IRP, the Washington Department of Ecology has moved forward with enacting Executive Order 09-05 Washington's Leadership on Climate Change which went into effect May 21, 2009 and directs state agencies to, among other deliverables:

- Continue to work with six other Western states and four Canadian provinces in the Western Climate Initiative to develop a regional emissions reduction program design;
- Work with companies that emit 25,000 metric tons or more each year to develop emission reduction strategies; and
- Work with businesses and interested stakeholders to develop recommendations on emission benchmarks by industry to make sure 2020 reduction targets are met.

During the 2009 Washington Legislative Session, Legislators passed Engrossed Second Substitute Senate Bill 5854 (E2SSB 5854) that amended Chapter 19.27A RCW with the intent of assisting with the implementation of Order 09-05 by tracking energy consumption in buildings. State agencies, colleges, universities and non-residential facilities encompassing more than 10,000 square feet of conditioned space are now
directed to track usage with the US Environmental Protection Agency's Portfolio Manager. To facilitate this tracking, the Legislature has directed all electric and natural gas utilities with more than 25,000 WA customers to provide energy consumption information, upon request, for all non-residential and qualifying public agency buildings to which they provide service. In compliance with this mandate, Cascade has begun to provide this critical information as requested.

Following a WCI benchmarking symposium held on May 19, 2010, stakeholders to this initiative have developed a final white paper which explores "Issues and Options for Benchmarking Industrial Greenhouse Gas Emissions". According to the paper, State and federal policy makers are still considering several approaches to achieving emissions benchmarks (once finalized) including the use of Voluntary Performance Goals, a "Cap and Trade" system, or Regulatory GHG performance standards. Since the nature of such benchmarks and final method of delivery are still unknown, Cascade is not yet fully able to anticipate how this initiative will affect the Company and its customers. However, it is likely that we will have a clearer picture of next steps and impacts as we move closer to the Governor's benchmarking deadline of July 1, 2011.

Already, the impacts of benchmarking and pending legislation are being felt across the state. Electric utilities such as Puget Sound Energy have begun to actively implement "Direct Use" efforts in anticipation of impending climate change legislation. Since Direct Use is often the most prudent use of energy resources, the Company will carefully monitor how environmentally responsible load switching of this nature would be treated under a cap-and-trade scenario.

Additionally, the code changes discussed earlier (and poised to take effect in late 2010/early 2011) are also a direct product of Washington's aggressive climate change efforts. Such increases in efficiency resulting from code would preemptively capture high percentages of the savings potential outlined in Cascade's conservation potential study, but would not be attributable to the Company itself.

Because the final design, breadth, and ultimate impacts of climate change legislation are yet unknown, the Company is examining bundles of measures which become cost effective under different price indicators. This will prepare us to adapt as appropriate in the future.

Potential DSM Measures and Their Costs

The first task in designing any DSM program is to analyze and determine costs and the associated energy savings for conservation measures along with estimating their applicability within Cascade's service territory. Evaluating specific measures involves ranking measures by levelized cost per therm saved. Each measure's cost and estimated therm savings are compared to supply side costs over a 20-year planning horizon. Administration expenses are included only in total program costs, not in measure costs and are expected to vary by program type and duration.

A total resource cost (TRC) approach is used to evaluate the cost-effectiveness of all DSM resources. The TRC method compares total net costs of DSM resources to the total net cost of supply side resources displaced. A program or measure is cost-effective if the present value of energy savings and non-energy benefits derived from installing that measure is greater than the total resource cost (TRC) of the program or measure. Nonenergy benefits may include, for example, water savings from low-flow showerheads and higher efficiency clothes washers or reductions in maintenance costs.

As stated in previous IRPs, the Company's conservation potential (both "technical" and "achievable") was initially determined through a comprehensive study performed by Stellar Processes in conjunction with Ecotope in 2006. This study expanded upon the findings of the Energy Trust of Oregon and further assessed the breadth of available conservation opportunities within Cascade's service territory.

An assessment of all energy savings that could be accomplished in the absence of market barriers such as cost and customer awareness (technical potential) was formulated by Stellar/Ecotope by examining the baseline usage of customers by building type and sector to better understand the savings that could be achieved by measure and portfolio. The study provided analysis to determine the feasibility for utility customers to engage in specific conservation activities and measures. Applicability of some measures might depend on the fuel for space heating, for example. Also, the amount of remaining potential is affected by the extent to which the market of a specific product is currently saturated. Utility forecasted growth was then applied to estimate the amount of structures with conservation potential in future years. The study then aimed to quantify energy usage by customer sector (commercial, industrial, residential) and then by the customer type within each sector (single family, small office, wood products, etc). The Energy Trust further refined the assessment of technical potential within Cascade's service territory based on their understanding of the energy/equipment markets and their prior experience operating such programs in the State or Oregon. Outcomes were then translated into an assessment of achievable potential, or what conservation is feasible under "real world" conditions and takes into account customer awareness, participation, and economic constraints.

In 2008, Stellar was once more approached by the ETO to refine savings and cost estimates for previously identified measures. It also explored the feasibility of new and emerging technologies that were unavailable during the original study. A January 2011 report prepared for the Trust (entitled "Energy Efficiency and Conservation Measure Resource Assessment for the years 2010-2030") offered several major revisions to previous understandings of the Company's conservation potential and has led the ETO to offer a significant reassessment of conservation potential over the 20 year outlook. This study was modified for the Cascade Natural Gas service area in July 2011 and again in September, 2011 to help refine and assess the estimates of long-term technical therm savings potential.

One prominent change to the most recent conservation Assessment is the appearance of a major reduction to natural gas conservation potential due to significant adjustments to previous assumptions. The new report also includes the use of "Benefit Cost Ratio" as a screening criterion to determine cost-effectiveness as opposed to the strict use of levelized cost. The BCR model is comprised of the Net Present Value of Benefits divided by Total Resource Cost. This change is more significant for electric measures which would not be covered under a CNGC Gas Conservation effort since it takes savings during peak period into account.

The 2011 Stellar Assessment further notes that, at the direction of Energy Trust Staff, "program related costs" were not included as a factor in cost effectiveness screening of the individual measures as it was noted to be outside the scope of the Study. The levelized costs utilized in the Study do represent the total societal cost of efficiency measures (sans admin expenses). The Study indicated that they have provided "the basic information on the costs of measures, which the Energy Trust will combine with their knowledge of markets and programs and incentives to develop estimates of total program costs to society and (separately) to the utility system". Most of the proposed measures in the study fall within the cost-effectiveness screen with the "one large exception [of] solar water heaters which remain expensive even after tax credits" according to the Stellar Report. The report goes on to explain that "Energy Trust has found solar water heat to be cost-effective using a more complex cost-effectiveness methodology than the simple first cut approach employed in this study". The Company is in conversation with the Energy Trust regarding the methodologies surrounding the complex assessment and how they could be best employed to measure other innovative but less commonly available conservation measures such as natural gas heat pump technology.

For the residential sector, Stellar/Ecotope continued to apply prototype models over the climate zones developed in the original study. This was done in order to estimate major end use consumption, calibrated to actual sector consumption. Table 6-1 shows the climate zones utilized and the areas in Cascade's Washington and Oregon Service territory assigned to each zone.

Table 6-1
CLIMATE ZONES

WASHINGTON			OREGON	
ZONE 1	ZONE 2	ZONE 3	ZONE 1	ZONE 2
Bellingham	Aberdeen	Sunnyside	Bend	Baker
Mount Vernon	Bremerton	Tri-Cities		Ontario
	Longview	Walla Walla		Pendleton
	Longview	Wenatchee		
		Yakima		

For the Commercial sector, EUI factors provided consumption by end-uses and were based on information developed from a Washington Natural Gas study prepared in
1995. For the industrial sector, Stellar developed sharedown fractions that allowed therm sales to be applied towards specific end-uses.

Following the comprehensive examination of all cost-effective and realistically achievable measures, the Company (in WA, and Energy Trust in OR) was able to estimate attainable program ramp-up rates that consider marketing, technology delivery channels, and other program constraints to develop a 20 -year DSM deployment scenario with year-by-year achievable savings. This timeframe, and all associated potential, have been adjusted for the 2011 IRP to consider the final updates made to the most recent Stellar/Ecotope study referenced earlier in this document. As a part of updating the Washington study, Cascade revised the forecasted growth rates utilized in Stellar's original study with the current expectations for growth in both the residential and commercial/industrial sectors. The forecasted growth rate is based on the most recent demand forecast detailed in Section 4 of this plan.

Oregon Conservation Study Results

The complete list of the measures and their applicability to Cascade's Oregon Service territory is included in Appendix D. For purposes of the Oregon study, the ETO chose to include measures which screen at $1 \$ 1.00$ avoided costs. However, as stated earlier, they have also included Solar measures, which have costs above that threshold and the Trust already includes those measures in their conservation resource stack as well as other efficiency measures determined to produce sufficient additional benefits to warrant their inclusion. Table $6-2$ shows the group of residential measures and their technical applicability in Cascade's Oregon service territory based on the published study and metrics provided by the Energy Trust. Cascade's prior IRP noted that Oregon's technical potential, particularly for the residential market was likely high due to the significant decline in the demand forecast, primarily in the Company's Central Oregon service territory where new construction had fallen off significantly from the levels seen through 2008. This prediction appears to have been consistent with the revised data now offered by the ETO which indicates a reduction in technical potential by over an approximate 12 million therms.

Table 6-2

RESIDENTIAL CONSERVATION MEASURES

 TECHNICAL POTENTIAL BY 2031| OREGON | | |
| :---: | :---: | :---: |
| Measure Description | Gas Savings Therms | Levelized Cost (\$/th) |
| Gas Hi-eff Washer (New) | 4,283 | -\$3.31 |
| Gas MEF 2.0 Washer (New) | 322 | -\$3.18 |
| Gas Hi-eff Washer (Replace) | 48,769 | -\$3.09 |
| Gas ETO Dishwasher (New) | 138 | -\$2.49 |
| Gas ETO Dishwasher (Replace) | 8,459 | -\$2.47 |
| Gas MEF 2.0 Washer | 1,660 | -\$2.12 |
| Heating Upgrade (AFUE 95) (ZC) | 9,721 | -\$0.70 |
| Heating Upgrade (AFUE95) (ZB) | 13,874 | -\$0.49 |
| AFUE 92 to condensing combo hydrocoil, ZC (New) | 24,026 | \$0.04 |
| AFUE 92 to condensing combo hydrocoil, ZB (New) | 21,650 | \$0.05 |
| AFUE 95 Furnace, ZB (Replace) | 220,493 | \$0.11 |
| AFUE95 Furnace, ZC (Replace) | 157,662 | \$0.16 |
| Window, retro (U-.20), ZB (Retro) | 387,586 | \$0.28 |
| E* Insulation, Ducts, DHW, Lights (ZB) (New) | 2,749,381 | \$0.28 |
| E* Insulation, Ducts, DHW, Lights (ZC) (New) | 2,015,061 | \$0.34 |
| Window, retro ($\mathrm{U}=.35$) ZB | 694,784 | \$0.40 |
| Upgrade Gas Hearth | 5,988 | \$0.46 |
| Window, retro ($\mathrm{U}=.20$), ZC | 233,490 | \$0.47 |
| Near Net Zero (Gas ZB) (New) | 1,310,649 | \$0.49 |
| HRV, ZB (Retro) | 196,522 | \$0.53 |
| Window, retro ($\mathrm{U}=.35$) ZC | 499,806 | \$0.56 |
| Tank Upgrade (50 gal gas) | 77,004 | \$0.60 |
| Near New Zero (Gas ZC) (New) | 281,389 | \$0.62 |
| HRV, ZC (Retro) | 99,779 | \$0.76 |
| Window ($\mathrm{U}=.20$) (New) | 68,085 | \$0.78 |
| HRV, E* (Gas, ZB) (New) | 394,464 | \$0.87 |
| Solar Hot Water (50 Gals) w/Gas Backup (Retro) | 71,316 | \$0.90 |
| Solar Hot Water (50 Gals) w/Gas Backup (New) | 54,168 | \$0.92 |
| MF Corridor Ventilation (New) | 6,460 | \$0.93 |
| MF Corridor Ventilation (Retro) | 20,656 | \$0.93 |
| Window (U=.20) ZC (New) | 56,676 | \$0.94 |

TOTAL TECHNICAL POTENTIAL
9,734,321

Table 6-3 shows the list of measures and their technical applicability to Cascade's commercial market sector in Oregon.

Table 6-3

COMMERCIAL CONSERVATION MEASURES TECHNICAL POTENTIAL BY 2031

OREGON		
Measure Description	Gas Savings Therms	Levelized Cost (\$/th)
EStar Steam Cooker (Replace)	43	-\$1.85
EStar Steam Cooker (New)	19	-\$1.85
EStar Commercial Clothes Washer (Retrofit)	11	\$0.01
EStar Fryer (New)	7,614	\$0.01
EStar Fryer (Replace)	21,560	\$0.04
Estar Convection Oven (Replace)	1,318	\$0.06
HW Boiler Tune (Retrofit)	688	\$0.07
Roof Insulation- Attic R0-30	38,423	\$0.13
Hot Water Temperature Reset (Retrofit)	54,421	\$0.14
DHW Showerheads (Retrofit)	20,327	\$0.12
Wall Insulation- Blown R-11 (Retrofit)	319,414	\$0.18
Roof Insulation- Rigid R0-11 (Replace)	6,157	\$0.19
Steam Balance (Retrofit)	18,700	\$0.20
Wall Insulation- Spray On for Metal Buildings (Retrofit)	74,119	\$0.21
DHW Wrap (Retrofit)	1,639	\$0.21
Estar Convection Oven	698	\$0.22
Roof Insulation- Blanket R0-19 (Retrofit)	102,150	\$0.25
Roof Insulation- Blanket R0-30 (Retrofit)	107,174	\$0.27
Roof Insulation- Rigid R0-22 (Replace)	6,988	\$0.30
DCV (Retrofit)	113,718	\$0.31
Vent Damper (Retrofit)	6,058	\$0.31
Roof Insulation - Rigid R11-22 (Replace)	18,127	\$0.44
Heat Reclaim (Replace)	6,561	\$0.24
Heat Reclaim (New)	5,213	\$0.24
Hot Food Holding Cabinet (New)	447	\$0.41
Hot Food Holding Cabinet (Replace)	1,265	\$0.42
Roof Insulation- Attic 11-30 (Retrofit)	87,293	\$0.43
SPC Hieff Boiler (Retrofit)	256	\$0.41
Ducts (Retrofit)	46,345	\$0.51
SPC Hieff Boiler (New)	987	\$0.43
SPC Cond Boiler Replace	741	\$0.52

Ozone Laundry Treatment	15,030	$\$ 0.57$
Combo Hieff Boiler (New)	2,254	$\$ 0.59$
DHW Recirc Controls (Retrofit)	34,677	$\$ 0.63$
DHW Faucets (New)	120	$\$ 0.65$
DHW Facuets (Retrofit)	1,355	$\$ 0.65$
EStar Griddle (New)	177	$\$ 0.69$
EStar Griddle (Retrofit)	334	$\$ 0.63$
SPC Cond Boiler (New)	2,364	$\$ 0.53$
Combo Hieff Boiler (Retrofit)	2,553	$\$ 0.66$
Waste Water Heat Exchanger (Retrofit)	3,957	$\$ 0.67$
DHW Condensing Tank (New)	7,227	$\$ 0.73$
DHW Condensing Tank (Retrofit)	8,186	$\$ 0.73$
Power Burner (Retrofit)	62,502	$\$ 0.74$
Condensing Furnace (New)	10,353	$\$ 0.81$
Roof Insulation - Roofcut 0-22 (Retrofit)	17	$\$ 0.83$
Rooftop Condensing Burner (New)	11.949	$\$ 0.96$
DHW Pipe Insulation (New)	179	$\$ 0.98$
TOTAL TECHNICAL POTENTIAL	$\mathbf{1 , 2 3 1 , 7 0 8}$	

Note on Industrial Potential:
The details behind the Company's technical industrial potential may require further analysis and refinement by the Energy Trust of Oregon and is unavailable at this time. However, according, to the ETO the current Cascade deployment scenario and relevant ramp rates correspond to $1,397,825$ of therm savings for Energy Trust's Industrial program. This would correspond to a combined technical potential of 2,629,533 therms, or approximately 230 k therms less than the achievable potential identified by the ETO later in this document. Both the industrial and commercial conservation screens reflect a good-faith assessment of technical potential offered by the ETO. The data is based on best-estimates supported by the most recent Stellar-Ecotope study and additional analysis by Energy Trust staff. The analysis of achievable commercial/industrial potential noted later in the IRP offers a more optimistic view of therm savings opportunities based on a ground-level assessment conducted by the Organization's field team. This accounts for the inverse correlation between technical and achievable potential as it relates to Cascade's Oregon service territory.

The 2011 Stellar Processes resource assessment identified 633,000 therms of costeffective, achievable resource potential in Industrial sites in Cascade Natural Gas territory for the 20 year IRP window. This presents a discrepancy of 873,370 therms of savings between what ETO Planners believe they can realistically achieve and the total resource potential identified in the market. Energy Trust has acknowledged this
discrepancy, and feels confident moving forward with the higher potential forecasts on the following grounds;

- The Stellar Processes resource assessment model did not classify customers in the exact way that that Energy Trust separates its customers into sectors, and so a distributional discrepancy is introduced.
- The Stellar Processes model assumes that those customers who are identified as Industrial have a gas load that is dominated by processes, with very little of the load going to space conditioning needs.
- Weatherization measures such as air abatement, retro-commissioning (RCx), and custom O\&M have dominated historical (actual reportable) CNG Industrial sector savings (92% of total savings). This is not reflected in the Stellar Resource Assessment Industrial supply curve.
- Forecasts for potential savings from emerging technologies are also excluded from the supply curve. Recent study presented at ACEEE found the Northwest Power and Conservation Council's 5 year annual Power Plans to always find new resource available in the next years' Plans.

With the list of measures established, the next step was to determine the achievable potential and the 20-year DSM deployment scenario along with the associated annual utility costs to determine the level of funding that will be necessary to obtain those therm savings. The measures are grouped into categories (SF New construction, SF Retrofit, etc.) and deployment curves were developed.

It should be noted that the 2010 CNG IRP featured relatively 'flat' growth in therm savings from year-to-year after 2015. This is a result of simplifying assumptions employed in previous IRP planning processes, where it was assumed that a roughly $1 / 20^{\text {th }}$ of the technical potential was available in each year (flat or zero ramp rate). More recently, Energy Trust has shifted away from this approach by utilizing information about the current state of technologies and programs, as well as expected changes in codes and standards to estimate more realistic ramp rates. This difference can be seen most prominently when comparing the 'shape' of the acquisition curves featured in each of the 2010 and 2011 IRP's. The previous (2010) acquisition curve can be characterized by its relative flatness resulting from flat ramp rates, while the more recent (2011) acquisition curve has a more pronounced shape and definition as a consequence of using more detailed and granular data in the forecasting process.

Annual therm savings targets associated with the Low Income WAP have been included in the deployment curves as a separate line item as they are separate from the ETO's
targets. The Resource Assessment prepared by Stellar, includes the Conservation potential associated with the Low Income housing stock.

It should be noted, that the figures shown for the residential and commercial sector represent the ETO's best case "stretch" scenario annual therm savings targets for the planning horizon. In their annual budgeting process the ETO will typically develop their minimum target by applying 85\% to their best case scenario to develop a range of therm savings to be achieved. For the2012 period, the estimated range of annual therm savings for Cascade's program would be between 368368,445 and 433433,465 and the estimated costs to achieve the stretch therm savings is currently estimated at $\$ 2,797,995$.

Washington Conservation Study Results

As mentioned earlier, in 2008 the ETO approached Stellar to update the 2006 Oregon study. This Oregon update provided Cascade the opportunity to apply the relevant revisions seen in the Oregon assessment to the Washington study prepared in 2006. The most substantive change to the conservation assessment was the incorporation of the revised customer load growth forecast which significantly reduced the technical potential in the residential sector. In the 2008 Plan, it was estimated that the technical potential by 2030 for the residential sector was approximately 40 million therms, when screened at a levelized cost per therm of $\$.85$. The impact of including the revised load forecast reduced the residential technical potential to 26 million. The complete list of measures and their applicability to Cascade's Washington service territory are included in Appendix D-3 \& D-4.

Since the completion of the 2008 IRP, the projected costs for natural gas have declined significantly and long-term prices are estimated to range between \$5 to \$6 over the planning horizon compared to the $\$ 8$ to $\$ 10$ forecasted in the 2008 IRP. This dramatic change is not only a result of the demand destruction that has occurred as a result of the global recession, but perhaps has been more heavily influenced by the new supply development technologies that are providing additional gas resources in North America. Shale gas from the Horn River Basin, Montney and Marcellus are likely to keep sufficient supplies in North America and some believe that shale gas could represent more than a third of the US production by the mid 2020s. This improvement to the long-term gas supply outlook is a stark contrast to the diminishing supply outlook that was prevalent during the development of the Company's 2008 IRP. As a result Cascade's historical approach of screening measures at a levelized cost of $\$.85$ per therm must be modified with this IRP.

For this IRP, the company has grouped the residential measures into the following categories: Existing Shell Measures, New Construction Shell Measures, Domestic Water Heating (DWH), HVAC, Boiler to Combo System, and Appliances. Table 6-4 shows the group of residential measures and their technical applicability in Cascade's Washington service territory under the various levelized therm assumptions.

TABLE 6-4

		RESIDENTI	WASHINGTO L TECHNIC	L POTENTI			
			Scre	ned at Leve	ized cost/the	m of	
	$\leq \$ 0.65$	\$0.70	\$0.75	\$0.85	\$1.00	\$1.50	>\$2.00
Existing Shell	3,585,461	3,585,461	3,585,461	3,585,461	3,585,461	3,585,461	3,585,461
New Construction							
Shell	5,776,721	5,776,721	5,776,721	7,920,357	9,365,736	9,365,736	9,365,736
HVAC	2,183,200	4,452,534	4,482,246	5,753,797	7,698,678	7,892,797	8,249,568
Water Heating							
(New/Existing)	155,904	155,904	155,904	1,135,937	1,135,937	1,878,664	1,878,664
Boiler to Combo							
System	6,777,258	6,777,258	6,777,258	6,777,258	6,777,258	6,777,258	6,777,258
Appliances	1,060,550	1,065,143	1,065,143	1,065,143	1,065,143	1,065,143	1,065,143
Total	19,539,094	21,813,021	21,842,733	26,237,953	29,628,213	30,565,059	30,921,830

Table 6-5 shows the list of measures and their technical applicability to Cascade's commercial/industrial market sector. Changes to the Commercial segment are primarily the result of modification to the original Stellar estimates for potential heat reclaim measures and the applicability of cost effective window measures within Cascade's service territory.

Table 6-5

COMMERCIALIINDUSTRIAL CONSERVATION MEASURES
TECHNICAL POTENTIAL BY 2030

Measure Description	Therms	Cost (\$/th)
Shell Measures	$11,606,000$	$\$ 0.29$
O\&M and Controls	$1,245,000$	$\$ 0.42$
Cooking	$2,646,000$	$\$ 0.35$
New Cooking	944,000	$\$ 0.35$
New Heaters	975,000	$\$ 0.03$
Replace Heaters	$1,717,000$	$\$ 0.31$
New Boilers	673,000	$\$ 0.09$
DHW Measures	839,000	$\$ 0.55$
Replace Boiler	437,000	$\$ 0.53$
New DHW Measures	405,000	$\$ 0.60$
Refer Heat Reclaim	470,500	$\$ 0.80$
New Refer Heat Reclaim	277,800	$\$ 0.80$
Solar Pool Heat	29,400	$\$ 0.91$
New Solar Pool Heat	6,400	$\$ 0.95$
New Windows	231,250	$\$ 1.50$
TOTAL COMMERCIAL	$\mathbf{2 2 , 5 0 2 , 3 5 0}$	
Boilers	442,000	$\$ 0.18$
Shell Measures	294,000	$\$ 0.22$
Unit Heater	176,000	$\$ 0.18$
Process Hot Water	47,000	$\$ 0.10$
Specialty Hot Water	16,000	$-\$ 0.81$
TOTAL INDUSTRIAL	$\mathbf{9 7 5 , 0 0 0}$	

TOTAL TECHNICAL POTENTIAL 23,477,350
Based on the above technical potential, the Company has developed an estimate of the incremental conservation resources that can be acquired through 2030 on an annual basis. The company followed the ETO's approach used to develop the targets for Oregon, making modifications when necessary to recognize the differences associated with Cascade's Washington service territory.

It should be noted, that historically, the company has estimated the achievable potential and then estimated the annual targets based on a percentage of the achievable potential. The company modified its approach for this IRP, basing the annual estimates as a percentage of the technical potential rather than estimating the achievable potential and then developing the deployment curves. This modified approach results in achievable potential in the range of 65 to 85% of the technical potential over the 20 year planning horizon. Consistent with the development of the Oregon deployment curves, Cascade grouped the measures into categories (SF New construction, SF Retrofit, etc.) and deployment curves were developed utilizing the following key assumptions:

- In the area of Residential New Construction it was assumed that the technical potential would be spread equally over the 20 year planning horizon. Continuing from the deployment curves estimated in the 2008 Plan, it is assumed that participation levels will continue to ramp-up over the planning horizon, assuming 15% in 2011 and reaching a maximum participation of 75% by 2018.
- In the area of Residential replacement market, similar to the new construction sector, it was assumed that the technical potential would be spread equally over the 20 year planning horizon. Participation levels continue to ramp up, beginning with 30% in 2011 reaching maximum participation of 80\% in 2017.
- Participation in the Residential Retrofit market was also assumed to continue to ramp-up over the 20 year planning horizon. Similar to the Oregon approach, it was assumed that over the 20 year horizon, that 80% of the technical potential would be realized through the residential retrofit program. Since the program is still relatively new (2010 is only the third year that retrofit measures have been included in the Company's residential program), participation levels were assumed to range from 3\% in 2011reaching a maximum of 6\% in 2017.
- In the Commercial retrofit market, similar to the residential retrofit market, it was assumed that participation levels would range from 3\% in 2011 to a maximum of 6\% in the 2017 period.
- In the Commercial/Industrial New Construction and Replacement markets, the technical potential was spread evenly over the 20 year planning horizon. On the new construction side, participation levels ramp-up from 15\% in 2011 to 75% in 2018. In the replacement market, the ramp-up period begins at 20% in 2011 and increases 5% per year until reaching the maximum participation level of 75% in 2021.
- Annual therm savings targets associated with the Low Income Weatherization program have been included in the deployment curves as a separate line item. The Low Income Weatherization program is delivered by the Community Action agencies rather than the third party contactor who delivers the residential program and therefore separate targets are necessary. The Resource Assessment prepared by Stellar, includes the conservation potential associated with the Low Income housing stock.
- In developing the estimated costs to achieve the annual therm savings targets, it was assumed that commercial therm savings could be achieved at $\$ 4 /$ therm while the residential sector would require approximately $\$ 6.50 /$ therm.

Based on the assumptions outlined above, the estimated annual therm savings targets for the Washington Residential and Commercial/Industrial programs are shown in Table 6-6
on the following page. Similar to the ETO's approach, the figures shown for the residential and commercial sector represent Cascade's best case scenario for annual therm savings targets for the planning horizon.

Table 6-6 illustrates that Cascade anticipates its Low Income Weatherization program will be able to achieve a savings target of 40,000 in CY11, and 45,000 in CY12, then leveling off to a savings of 35,000 therms in CY13 and beyond. These numbers were determined by analyzing the capacity and limitations of the weatherization delivery network, as well as the potential for alternative avenues of therm savings during the years ahead. The company believes that the ARRA funding, which must be spent down by March 2012, will result in higher participation levels in 2011 and 2012. However, once the ARRA funding is spent, the company anticipates a return to the 35,000 level.

Conservation Summary

Based on the deployment curves developed for each state, Cascade estimates that the cumulative therm savings targets for the 2 Year Action Plan period (2011 - 2012) represents the displacement of approximately 44,869 residential customers' annual load requirements.

DSM Implementation Issues and Uncertainties

The amount of DSM potential identified for the plan relies on the best available information today about prices, efficiency, consumer behavior and preferences, and projects information 20 years into the future. As with other resources, DSM resource assessments depend heavily on energy load forecasts and projected growth rates with all of the associated uncertainties. Also similar to supply side resources, assessments of DSM potential are limited by what is currently available in the marketplace in terms of costeffective technologies for improving energy efficiency. The impacts of new technologies and new energy efficiency codes and standards are difficult to accurately predict. This uncertainty is mitigated through the biennial updates of the IRP, which provide the opportunity to incorporate improvements in demand side technologies and programs.

However, somewhat unique to demand side resources are the utility's dependence on a large number of small purchases with each tied to the individual consumers' day-to-day purchasing and behavioral decisions. The utility attempts to influence these decisions through its programs, but the consumer is the ultimate decision maker regarding the purchase of DSM resources. Cascade's assessments of DSM make the best possible estimates of participation and costs, however, like any new program, the amounts are likely to vary from planning estimates.

Table 6-6
Estimated Achievable Therm Savings

	Residential	Washington Comml/Ind	Low Inc.	Residential	Oregon Comm/Indl	Low Income	Annual Savings	Cumulative Therm Savings
2011	332,399	336,772	40,000	180,462	276,741	12,000	1,178,374	1,178,374
2012	396,845	356,237	45,000	158,058	275,407	15,000	1,246,547	2,424,921
2013	479,384	421,936	35,000	183,867	293,596	10,000	1,423,783	3,848,704
2014	581,840	487,636	35,000	184,321	239,056	10,000	1,537,853	5,386,557
2015	684,296	553,335	35,000	191,633	204,161	10,000	1,678,425	7,064,983
2016	786,752	619,035	35,000	205,236	204,161	10,000	1,860,184	8,925,167
2017	889,208	684,734	35,000	241,621	154,161	10,000	2,014,724	10,939,891
2018	907,301	730,969	35,000	458,437	129,161	10,000	2,270,868	13,210,759
2019	907,301	769,712	35,000	458,437	127,041	10,000	2,307,491	15,518,250
2020	907,301	808,454	35,000	458,437	121,056	10,000	2,340,248	17,858,498
2021	907,301	847,197	35,000	458,437	117,161	10,000	2,375,096	20,233,593
2022	907,301	885,939	35,000	458,437	114,161	10,000	2,410,838	22,644,431
2023	907,301	885,939	35,000	458,457	109,161	10,000	2,405,858	25,050,290
2024	907,301	885,939	35,000	458,437	104,161	10,000	2,400,838	27,451,128
2025	907,301	885,939	35,000	436,410	99,161	10,000	2,373,811	29,824,939
2026	907,301	885,939	35,000	414,383	94,161	10,000	2,346,784	32,171,723
2027	854,428	861,995	35,000	392,356	89,161	10,000	2,242,940	34,414,663
2028	801,555	838,051	35,000	348,301	86,661	10,000	2,119,568	36,534,231
2029	748,682	814,107	35,000	348,301	17,500	10,000	1,973,590	38,507,821
2030	722,245	802,135	35,000	348,301	15,233	10,000	1,932,914	40,440,735

It should be noted that yearly savings forecasts for the first five years of the deployment scenario (2012-2016) start at the sector level, where Energy Trust program managers employ a "bottom-up" approach to estimating savings for the immediate future. This process takes into account recent program volume at the measure level, projects 'in-the-pipeline', and the state of the current economic climate all within the context of the total achievable resource potential identified by Stellar Processes July 2011 Resource Assessment.

Annual savings forecasts and corresponding program growth rates for the last 15 years of the deployment do not feature as prominently in the inclusion of program manager's predictions or historical savings trends. Instead, in these years more weight is placed on the ramp rates described in the Stellar Processes Deployment Scenario, which the ETO considers more indicative of broader economic trends and movements. These more general economic trends affecting the last 15 years of the deployment scenario can summarized as;

- Moderate growth in savings starting in 2016 as strength in overall economy begins to return.
- A peak in savings in 2019 due to an expected residential code upgrade in 2017 (see assumptions tab of Stellar Deployment Scenario 09-26-11)
- Savings falling gradually after 2019. (IRP projection does not include the adoption of new technologies in the forecast).

It has been agreed with ETO's Board, the OPUC and the IOUs that a range of conservation estimates is necessary. The Stretch goal is to be used for estimating funding levels, and the Conservative goal (85% of Stretch) is a lower confidence bound which may be used by IRP planners and as a performance metric for ETO. Therefore the figures in Table 6-6 reflect the best case or "stretch" scenario identified as achievable by the Energy Trust. Based on the significant updates to the Energy Trust's 2011 Resource Assessment described earlier, the estimated achievable therm savings in Oregon for the 20 year period has been reduced by approximately 1.7 million therms since the last IRP. The conservative deployment scenario identified by ETO would reduce conservation potential by an additional approximate 1.4 million. As suggested earlier, changes in achievable resource potential can be attributed to changes in the baseline as a result of codes and standards, a reduction in the levilized cost threshold from \$1.0/therm to $\$.75 /$ therms, and to revisions of load growth forecasts in the face of slow economic growth resulting from an ongoing recovery from the 2008 recession and housing market collapse.

As discussed above, actual implementation design, delivery, and market conditions will cause energy-efficiency program savings and costs to vary. Customer participation in a program is heavily influenced by the level of incentive paid by the utility or Energy Trust versus the cost to the customer. External infrastructure considerations must also be addressed, such as product availability to utility customers and an adequate network of contractors, retailers, and other trade allies to support a program. As new measures or expanded programs are developed and added to the current program mix, internal and external resources and capabilities need to grow accordingly and progress through a "learning curve". For this reason, the company estimated conservation acquisition schedule increases over time. Additionally, revisions to the company's existing programs may be necessary and will result in additional impacts on the company's projected participation levels.

Other uncertainties relating to conservation resources include the risk of free riders, and lost opportunities. Free riders are those individuals that would have undertaken some form of conservation action even if a program had not existed. Measuring free rider impacts makes program evaluation difficult since it requires information on a hypothetical situation that, by definition, will never be observed. Lost opportunities assume that the opportunity to install cost-effective conservation measures occurs only once in the life of a home, office, or industrial plant. If all potential cost-effective conservation is not installed at one time, future DSM opportunities may be lost as a result. This is most likely true for commercial/industrial resources since it is unlikely that a business would close down or curtail operations for any period just to install conservation measures.

As discussed earlier, the potential for building code changes over the planning horizon represent another uncertainty that could impact the ability of the company to achieve its
therm savings goals. When the code changes fully take effect, as they were recently in Oregon, both the Company's programs and targets will need to be adjusted.

Potential carbon legislation is another area of uncertainty that Cascade continues to monitor closely. In Washington, specific requirements resulting from the Western Climate Initiative's (WCI) Greenhouse Gas Cap and Trade design recommendation are still unknown. The recommendations though include reducing greenhouse gas emissions to 15% below 2005 levels by 2020. GHG measurements and monitoring began on January 1, 2010, for reporting in early 2011. The first phase of the cap-and-trade program is proposed to begin in 2012, covering emissions from electricity. The second phase would begin in 2015, when the program expands to include other fossil fuels, including natural gas.

Although Oregon is a participant in the WCl , its governor, Ted Kulongoski, unveiled his own plan that includes the goal of reducing greenhouse gas levels to 10\% below 1990 levels by the year 2020. The multi-faceted plan includes a regional cap and trade program, which if approved by the Legislature, would go into effect in 2012. Also included, among other proposals, are energy efficiency tax incentives and low-income support.

At the Federal level, the traction for national legislation such as Kerry-Lieberman has decreased significantly and it is uncertain at this point the level of impact federal legislation will have as compared to the impacts of regional legislation.

Environmental Externalities

When evaluating DSM resources, the company also includes an evaluation of the impacts of environmental externalities. The impact of utilizing energy on the environment continues to be a subject of societal concern and debate. If there are impacts that cannot be repaired naturally within a reasonable period of time, damage cost to the environment occurs for which society will have to pay in some, as yet undetermined, form. The question of who pays, how much and when payment should be made, are complicated issues.

For many years, The Northwest Power and Conservation Council (NPCC) has utilized a 10% cost advantage for electric utilities acquiring conservation resources to realize the benefits of not using supply side resources. Such electric utility benefits include reduced fish and wildlife impacts, load stability, load predictability and improved air quality. As discussed in Section 7, when calculating the avoided cost figures, the company includes an incremental cost advantage for conservation resources. Historically, Cascade has included the 10% cost advantage for conservation resources which was consistent with Oregon's requirements for gas utilities for mandated residential weatherization programs. For this plan, the company developed a graduated scale ranging from 5\% for short-term measures up to a 20% factor for longer-lived measures. The use of a graduated scale is an attempt to recognize non-quantifiable benefits associated with conservation, such as price certainty \& a hedge value against future carbon costs.

The OPUC issued Order 93-965 (UM-424) to address how utilities should consider the impact of environmental externalities in planning for future energy resources that goes beyond the 10\% cost advantage discussed above. In June 2008, the OPUC issued Order 08-338 (UM1302) which revised the IRP Guidelines associated with the analysis of environmental costs. The original guideline established in UM1056, required utilities to analyze the range of potential CO2 costs referenced in Order 93-965. Rather than providing a specific range of potential CO 2 costs to be analyzed, the revised guideline requires the utility to construct a basecase portfolio that reflects what it considers to be the most likely regulatory compliance future for the various emissions. Additionally the guideline requires the utility to develop several compliance scenarios ranging from the present CO2 regulatory level to the upper reaches of credible proposals and each scenario should include a time profile of CO 2 costs.

Unlike electric utilities, environmental cost issues rarely impact a gas utility's supply-side resource choices. For example, Cascade cannot choose between coal-fired generation or wind energy sources to meet its load requirements. As a natural gas distribution company, the Company's only supply-side energy resource is natural gas. However, environmental externality costs do make a difference in the comparison between supplyside and demand-side resources.

At the time of this writing, specific details on the level of carbon allowances and how they may be allocated to the gas utilities under a cap and trade program are still unknown. Therefore, in an effort to create a more realistic and robust assumption with regard to potential Carbon legislation, Cascade utilized the most recent draft legislation, the KerryLieberman proposal. Table 6-7 on the following page shows the updated analysis.

Other Demand Side Management

The general purpose of demand response is to help manage demand during periods of system stress. The term encompasses a number of activities including real time pricing, time of use rates, critical peak pricing, demand buyback, interruptible rates, and direct load controls. As discussed earlier, the majority of Cascade's annual throughput is for non-core transportation service customers who are responsible for securing their own pipeline capacity arrangements. Of the remaining industrial sales, approximately 25% of that load is being met through interruptible sales service. Interruptible service is attractive for large volume customers because of the lower distribution margin involved. As a result, the company believes that all customers that can manage their operations on interruptible service are currently served on an interruptible basis - leaving little opportunity to reduce peak loads through expanded interruptible service.

Table 6-7

Natural Gas Environmental Externality Cost Analysis Updated with EIA's Estimated Emission Factors \& Inflation				
	ission	Emission (Lbs/Therm)	Cost (\$/Lb)	Externality Adder (\$/Therm)
SCENARIO 1				
NO2	\$2500/Ton	0.008	\$1.250	\$0.010
CO 2	\$12/Ton	11.673	\$0.006	\$0.070
TOTAL				\$0.080
SCENARIO 2				
NO2	\$2500/Ton	0.008	\$1.250	\$0.010
CO2	\$15/Ton	11.673	\$0.008	\$0.088
TOTAL				\$0.098
SCENARIO 3				
NO2	\$2500/Ton	0.008	\$1.250	\$0.010
CO2	\$18/Ton	11.673	\$0.009	\$0.105
TOTAL				\$0.115
SCENARIO 4				
NO2	\$2500/Ton	0.008	\$1.250	\$0.010
CO 2	\$20/Ton	11.673	\$0.010	\$0.117
TOTAL				\$0.127
SCENARIO 5				
NO2	\$2500/Ton	0.008	\$1.250	\$0.010
CO 2	\$25/Ton	11.673	\$0.013	\$0.146
TOTAL				\$0.156
SCENARIO 6				
NO2	\$2500/Ton	0.008	\$1.250	\$0.010
CO 2	\$30/Ton	11.673	\$0.015	\$0.175
TOTAL				\$0.185

General Assumptions:
Externality Adder reflects 1st year adder
Adder will increase annually by 3% and will be adjusted by the CPI, estimated to be 3.5\%/year

Section 7

Resource Integration

Resource integration is the last step in Cascade's IRP process. It involves finding the least cost mix of demand and supply side resources given the forecasted load requirements of the core customers. The tool used to accomplish this task is a computer optimization model known as SENDOUT®. This model permits the Company to quickly develop and analyze a variety of resource portfolios to help determine the type, size, and timing of resources best matched to forecast requirements. SENDOUT® is very powerful and complex. It operates by combining a series of existing and potential demand side and supply side resources and optimizes their utilization, at the lowest net present cost over the entire planning period, for a given demand forecast.

Resource Optimization Analysis Tools

SENDOUT®'s broad capabilities allow the Company to develop supply and demand relationships that closely mirror Cascade's existing operations. Cascade continued to model demand areas grouped by the various pipeline zones, a practice that began with the 2008 IRP. A copy of the network diagram is shown in Figure 7-A on the following page. These demand centers reflect on a daily basis, the aggregate 20 year load forecasts of Cascade's core market customers being served from either Northwest Pipeline GP (NWP) or Gas Transmission Northwest (GTN) interstate pipeline facilities. Individual transportation segments, storage, supply and demand side resources, both existing and potential, are targeted to these pipeline zones. This level of precision allows SENDOUT® to consider each resource on an individual basis within the portfolio while also recognizing where physical system limitations exist. Resource characteristics such as a supply contract's daily delivery capability, minimum take requirements, maximum daily transport capability by individual segment, and storage inventory limitations and withdrawal and injection curve characteristics can be part of each resource's basic model inputs. The ability to model resources in this fashion allows SENDOUT® to tailor its optimization within envisioned constraints and ensures that the model's optimal solution can work under anticipated operating conditions.

However, because SENDOUT® utilizes a linear programming approach, its results are considered "deterministic". For example, the model knows the exact load and price for every day of the planning period based on the analyst's input and can therefore minimize costs in a way that would not be possible in the real world. Therefore, it is important to acknowledge that linear programming analysis provides helpful but not perfect information to guide decisions.

Since decisions are made in the context of uncertainty about the future, in 2006 Cascade purchased VectorGas ${ }^{\text {TM }}$. VectorGas ${ }^{\text {TM }}$ was an add-in product to the SENDOUT® model that facilitates the ability to model gas price and load uncertainty (driven by weather) into the future. VectorGas ${ }^{\text {TM }}$ utilizes a Monte Carlo approach in combination with the linear programming approach in SENDOUT®. The VectorGas ${ }^{\top M}$ functionality was integrated in the SENDOUT® software with Version 12.5 which is the platform that Cascade prepared its integration analysis. The addition of the Monte-Carlo modeling capability provides

FIGURE 7-A

additional information to decision makers under conditions of uncertainty. This tool continues to enhance the robustness of the Company's long-term resource planning and acquisition activities.

Scenarios versus Simulations

Prior to discussing the modeling process, inputs, and ultimately the results of the analyses, a brief discussion of the term scenarios versus simulations is necessary. As stated earlier, SENDOUT®relies on a series of inputs or assumptions and then solves for the least cost solution based on the information provided to the model. Each group of assumptions is considered a scenario. For example, the company models medium load growth under average weather conditions where the assumed daily weather pattern is input into the SENDOUT ®model. The company also runs scenarios utilizing the low and high growth forecasts and historically has run several different price assumption scenarios. The results of each of these scenarios provide an answer or a least cost solution, which the optimization model has solved based on its perfect knowledge. Historically, this has provided the range of expected outcomes. However, with the addition of the Monte-Carlo functionality, the Company can now run simulations to determine if the scenario results are reasonable and to provide an expected range of results based on a statistical analysis.

Table 7-1 provides the list of scenarios included in this IRP and their key assumptions. To assess the impacts due to variations due in pricing and weather the company ran MonteCarlo simulations on the Basecase scenario. The Company utilized the Basecase scenario as it represents the scenario Cascade considers most likely to be experienced over the planning horizon. In addition to the 200 draws, the Company prepared several sensitivity scenarios to test the resource selections when the baseline conditions were changed. Table 7-2 below describes those sensitivity scenarios.

Decision Making Tool

Analysis of optimization model results and other operational and contractual constraints allows Cascade to make more informed resource decisions. The IRP optimization model output and Monte-Carlo simulation analysis will provide the quantifiable output from numerous model inputs. The model does not prescribe the ultimate resource portfolio. It can only determine the least cost set of resources given their specific pricing and quantifiable constraint characteristics. However, there are many other combinations of resources that may be available over the planning horizon. Cascade must still make subjective risk judgments about unquantifiable and intangible issues related to resource selections. These will include future flexibility, supplier deliverability risk, pipeline(s) risk, financial risk to the utility and its ratepayers, operational constraints, regulatory risk, etc. The risk judgments are combined with the quantitative IRP analysis to form actual resource decisions.

TABLE 7-1
SUMMARY OF PORTFOLIO ANALYSIS AND RESOURCE ALTERNATI VES

Scenario Name	Key Elements in SENDOUT Scenario
Basecase	Medium Load Growth, Medium Gas Price Forecast, Average weather with Peak Event. Includes existing supply contracts, incremental supplies (peaking, annual, seasonal and citygate) from various receipt points (AECO, Rockies, Sumas, Station 2, Malin, as well as behind the citygate (satellite LNG). Incremental supplies also include propane, satellite LNG (behind citygate), imported LNG (Jordan Cove, Bradwood Landing), current upstream pipeline transport capacity, as well as proposed pipelines and extensions (Blue Bridge, Ruby, Pacific Connector, and Palomar). We also included Cascade's current Jackson Prairie storage accounts, our Plymouth LNG account, as well as the potential to obtain a third party's Jackson Prairie account, as well as AECO and Mist storage.
Limited Canadian Imports	Model contains all the elements of the Basecase, but incremental Annual AECO and seasonal Sumas resources will be unavailable to the model. Additionally, annual Sumas max is lowered from 100,000 to 50,000 dths. The intent to is to restrict the amount of Canadian imports by at least 20%
Blue Bridge With GTN backhaul and Palomar	Model contains all the elements of the Basecase, however, but includes the ability to backhaul from GTN-Malin to Palomar and then to NWP at Blue Bridge Sunstone was not available as a potential resource; Rockies gas had no choice but to flow on NWP.
No Rockies price advantage	Model contains all the elements of the Basecase; however, all potential incremental resources are priced at NYMEX flat with no basis adder. In other words, incremental AECO, Sumas and Rockies all have the same price.
Ruby Pipeline	Model contains all the elements of the Basecase; however, Ruby Pipeline is added as an additional resource. For modeling purposes we assume the $\$ 0.95$ rate (the max rate identified in their tariff) The model is set up so that Ruby becomes an option to move Rockies gas to GTN, where it would require incremental GTN capacity (backhaul) to move to Cascade's citygates, likely in Central Oregon, although it is possible to move the gas to Stanfield for transport on NWP
Pacific Connector	Model contains all the elements of the Basecase; however, Pacific Connector is added as an additional resource. In addition, we will add incremental LNG (Jordan Cove) as a potential resource. For modeling purposes we started with Pacific Connector transport priced at approximately 3 times the current NWP rate. The model is set up so that Pacific Connector becomes an option to move imported LNG to GTN, where it would require incremental GTN capacity (backhaul) to move to Cascade's citygates.
Palomar	Model contains all the elements of the Basecase; however, Palomar Pipeline is added as an additional resource. In addition, we will add incremental LNG (Bradwood Landing) as a resource. We will use the max rate identified in their tariff. The model is set up so that Palomar becomes an option to move imported LNG to GTN, where it would take incremental GTN capacity (backhaul) to move to Cascade's citygates. We also will look to see about using Palomar to backhaul to NWP near Portland and move supplies up BlueBridge or continue along NWP
AECO Storage	Model contains all the elements of the Basecase; however, AECO storage is added as a resource. The inventory is set at 300,000 dths, with daily withdrawal rights of 10,000 dths a day. This storage will be setup like the existing Jackson Prairie to be 100% full at the start of each heating season. The model is set up so that Canadian withdrawals can use incremental GTN capacity.

Key Inputs

Demand Forecast Items \& Weather Assumptions

The optimization process compares a portfolio of resources against a specific demand requirement. SENDOUT® generates a daily demand forecast by combining base load and temperature sensitive usage factor inputs with a specified daily temperature pattern input. The company develops usage factors for each of the zones shown on Figure 7-A, this includes nine demand centers on NWP and one on GTN which is utilized to meet Cascade's Central Oregon load. In order to develop the temperature sensitive usage factors on a zone by zone basis, the company reviewed pipeline deliveries for the 2004 through 2009 period and developed monthly use per customer per degree day factors. The annual customer growth rates from the low, medium and high forecasts discussed in Section 3 were developed for each of the NWP zones and were applied to 2009 monthly core customer counts. Weather patterns for each of the zones were developed based on 5 distinct weather areas The weather areas and their applicability to each of the zones is shown in Appendix B-1.

Prior to the 2007 IRP, the company had developed daily temperature patterns to estimate the impact of weather ranging from warmer than normal to design conditions, with the expected portfolio being one with average weather. The average weather pattern historically had been based on the 20 year average excluding the high/low annual degree day totals to develop an annual total for each area. These totals were then allocated to the daily readings based on the 90/91 winter pattern since that was the most recent year in the company's weather history with a peak day reading of 61 dds. However, with the
ability to run Monte-Carlo simulations, the company modified its approach and developed its "average" weather pattern based on the company's 60+ year weather history, and the expected degree days for each month. The average pattern for each area was approached on a month-by-month expected value and then the degree days were allocated within the month based on the past years' average daily distribution. Since a peak event can occur in an otherwise normal weather year, the average weather scenario includes one 3-day peak event, which includes a design day reading of 61 degree days system wide.

Demand Side Alternatives

For purposes of this IRP, the Company has utilized the annual achievable potential schedule shown on Table 6-6 in section 6 as an input to the optimization model. Because the company models demand by individual zone, conservation has been treated as a "must-take" supply alternative available at the pipeline citygate level. This approach allows the conservation resource to displace supply and pipeline transportation resources that would otherwise be necessary to meet demand requirements. For purposes of modeling, 80% of the identified Oregon Conservation resources are assumed to occur on the GTN pipeline with the remaining 20% occurring on Northwest pipeline. Washington conservation was modeled as a must-take resource at the NWP citygate. Because the acquisition of DSM is dependent upon a number of small purchases, determining which pipeline zones will procure the most conservation at this point is still premature. In future planning cycles, the company will continue to review the results of the participation levels and determine if more detailed assumptions on conservation acquisition can be modeled. Under the basecase scenario the company has assumed that conservation resources could be purchased, on a levelized cost per therm basis of $\$ 6$. The cost per therm figure of $\$ 6$ is an estimate of the combined Total Resource Cost for all measures included in the program, including program delivery and administration costs.

Supply Side Resource Alternatives

For modeling purposes, supply side alternatives are grouped into one of three categories: gas supply, storage facilities, or pipeline transportation. As discussed in Section 5, some of the supply alternatives include one or more of these categories. For example, a gas supply resource may be delivered at Cascade's citygate, essentially reducing the requirement for firm pipeline capacity. A satellite LNG facility (whether trucked in or liquefied on site) located within Cascade's distribution system can reduce the need for pipeline capacity on a peak day as the supplies will be available to be directly flowed into Cascade's local system. The following table provides a high level summary of the resource alternatives considered over the planning horizon.

Table 7-3

Supply Side Alternatives Modeled	
Resource	Scenario Considered
Conventional Gas Supply Contracts with annual, seasonal or winter only characteristics delivered to Northwest Pipeline \& GTN Systems	
Conventional Gas Supply Peaking Contracts Delivered to Northwest Pipeline \& GTN Systems	All
Gas Supply Peaking Contract delivered to Cascade's citygates	All
LNG Import Supplies Delivered to Northwest Pipeline System	All
Satellite LNG Storage within Cascade's distribution sytem	All
Additional Pipeline Capacity secured through medium--long term capacity agreements	All

Natural Gas Price Forecast

Price volatility has become an on-going factor in the natural gas industry since 2005. Prices in the natural gas market continued to be volatile through 2008 (upwards to $\$ 13$ per dth), but have since dropped considerably (currently around \$4). As discussed in Section 5, natural gas prices will continue to be influenced by demand, oil price volatility, the global economy, electric generation, new extraction technologies, hurricanes and other weather activity. As a result, it is impossible to accurately predict what future natural gas prices will be over the planning horizon. However, Cascade has considered price forecasts from several sources, such as Wood Mackenzie, Energy Information Administration, the Financial Forecast Center's forecast, as well as our observations of the market to develop our low, base and high price forecast. As mentioned earlier details of the company's price forecast can be found in Appendix E.

The Company compared the Monte-Carlo price simulation results to the low, base and high forecasts and found that the 200 draws captured the same range of pricing outlined in the forecasts shown in the Appendix. Therefore, individual deterministic runs under the low and high price forecast were not run.

Integration Results and Key Findings

As described earlier in this section, Cascade performed eight different scenarios and the results are summarized below. However, it should be noted that the results of these analyses should be considered broadly. Like all analyses, the results of the resource optimization models are dependent upon the input assumptions provided. Scenario and Monte-Carlo analysis help by providing information on the ranges of input assumptions. Whether Cascade eventually secures these particular resources, acquires ones of comparable size and characteristics, or decides on an alternative approach is subject to ongoing resource investigation and evaluation activities. Specific resources made
available to the model at this time may or may not be physically available at the time they are needed nor economically attractive in comparison to alternatives that may become available in the future. Therefore, prior to securing any of these resources, additional analyses of the specific resource must be completed.

The results of the various scenarios are fairly consistent and reveal the following general trends:

- The basecase results indicate energy efficiency programs with a levelized cost of 70 cents per therm or less are cost-effective over the planning horizon, with the price uncertainty analysis indicating that the levelized costs will likely range between 64 to 80 cents per therm. However, if a carbon cost adder was established during the planning horizon similar to those described in Section 6, the cost-effectiveness limits could increase between 8 to 16 cents depending upon the level of the carbon adder and the timing of its implementation. Cascade used the conservation curves based on a levelized cost of 70 cents per therm in developing its conservation deployment curves.
- Even with energy efficiency programs, Cascade will need to acquire additional capacity resources to meet anticipated peak day requirements, due to Cascade's continued growth in its residential and commercial customer base. Several of Cascade's existing transportation agreements will expire over the next several years. In most cases, Cascade has the unilateral right to extend or cancel the expiring contracts upon one year's notice. As a result, the company will have the opportunity to review alternatives to extend or replace those contracts.
- Since Williams announced that the Blue Bridge I-5 corridor project had been shelved, and with uncertainty surrounding the likelihood of Palomar being built, Ruby Pipeline is emerging as a more feasible transportation resource to bring Rockies supplies to Central Oregon, via Malin and backhaul service on GTN. Ruby transport could take the form of a long-term transportation agreement or via a capacity release from a current Ruby shipper.
- Another alternative to acquiring Rockies supplies, without becoming a shipper on Ruby, would be to enter into supply arrangements with parties at Malin, or a possible exchange arrangement involving Stanfield.
- Satellite LNG/Peak shaving facilities located within Cascade's distribution system (for example Zones 10 and 11-the Wenatchee lateral) may also be an attractive alternative to incremental pipeline capacity in areas where physical limitations at the gate stations would result in even higher costs associated with a pipeline solution. There may be additional advantages to such a strategy to the extent a facility could be strategically located on a portion of the distribution system that will eliminate or reduce distribution system constraints.
- The -proposed Pacific Northwest LNG import facilities will require incremental transportation via NWP or GTN. The Company has insufficient information available as to the likelihood and costs associated with acquiring additional transport capability to move supplies from the proposed Northwest facilities to Cascade's distribution system.
- We considered the impact of possible reductions in exports of gas supplies physically produced in British Columbia and Alberta, by limiting the amount of physical Canadian supplies that could be exported via existing infrastructure at Station 2, Sumas or AECO to 80\%. Under this scenario, the model chose to increase the amount of imported Rockies gas via either Ruby/Malin or Malin/Stanfield exchange. Given the proliferation of shale gas, we do not see access to Canadian gas being a problem—gas will be available—however, we will be competing with many parties and consequently, may experience potential volatility and price spikes.
- A scenario was developed to move LNG from the proposed Bradwood Landing facility, connecting to Palomar Pipeline and ultimately delivered to Madras, OR where it would flow on incremental GTN capacity to serve Central OR. At this time, it is uncertain whether or not the facility at Warrenton will be put into service.
- Similarly, the company evaluated transporting LNG from Jordon Cove via Pacific Connector Pipeline and then backhauling supplies on GTN to serve Central OR. Similar to the Bradwood Landing example discussed above, this scenario is complicated because it is unclear whether GTN will provide firm backhaul capability. It appears the infrastructure required to provide that firm backhaul service on GTN coupled with the transport from the facility makes this scenario appear to be undesirable, given other potential options.
- Incremental Jackson Prairie storage was also selected by the model. The company will continue to evaluate potential options to acquire more on system storage capabilities.
- 20 year portfolio costs on a Net Present Value (NPV) basis, are expected to range between $\$ 2,448,210,000$ to $\$ 3,216,376,000$ for the planning period, with an average cost per therm ranging between $\$.354$ and $\$.447$.

Table 7-4 on the following page summarizes the results from each of the modeling scenarios.

Table 7-4
SUMMARY OF PORTFOLIO ANALYSIS RESULTS

$\begin{gathered} \text { SENDOUT } \\ \text { RUN } \\ \hline \end{gathered}$	Results
All Resources	The all resource run allows the company to determine the likely basecase although the company still runs sensitivities on the various pipeline projects. Currently Blue Bridge, accompanied with incremental NWP capacity seems to be selected. Malin exchanges seem to be preferred to capacity acquisition due to rate stacking with the Palomar and Ruby options. Satellite LNG facilities located within Cascade's distribution system may also be an attractive alternative to incremental pipeline capacity in areas where physical limitations at the gate stations would result in even higher costs associated with a pipeline solution. There may be additional advantages to such a strategy to the extent a facility could be strategically located on a portion of the distribution system that will eliminate or reduce distribution system constraints.
Limited Canadian Imports	- Most believe that while imports may lessen, they will be available (at a price). - Natural gas is expected to be abundant for the foreseeable future - The other storage options may provide some other sourcing possibilities.
Blue Bridge With GTN backhaul and Palomar	- Rate stacking - Basis parity would mean this provides transportation diversity as opposed to supply diversity - GTN backhaul offering - Potential bottleneck at Stanfield and/or Malin
No Rockies price advantage	In this run, the model chose to increase the amount of imported LNG in Oregon as Canadian resources were restricted. Some interest was also shown in acquiring Ruby. We continue to run numerous sensitivities with varying levels of restrictions in order to see the impact to the portfolio.
Ruby Pipeline	- Rate stacking (GTN and Ruby) - Basis parity would mean this provides transportation diversity as opposed to supply diversity - GTN backhaul offering - Potential bottleneck at Stanfield and/or Malin
Pacific Connector	- Unknown if facility will ever get built - GTN backhaul offering - Rate stacking - Potential bottleneck at Stanfield and/or Malin
Palomar	- Unknown if facility will ever get built - GTN backhaul offering - NWP additional facilities needed? - Potential bottleneck at Washougal, Stanfield and/or Malin
$\begin{aligned} & \hline \text { AECO } \\ & \text { Storage } \end{aligned}$	- Competition with Alberta for re-fill volumes - Rate stacking

Peak Day Planning Results

Figure 7-B-1 through 7-B-3 shows the projected peak day requirements compared to the Company's existing capacity resources under the medium load growth forecast. This same comparison was completed for both the high and low load growth forecasts and results of the zone by zone analysis are included in Appendix F. Under all growth scenarios, the company will require incremental peak day delivery in order to meet Cascade's anticipated peak loads located on the Northwest Pipeline system. This shortfall results from the expiration of a leased storage agreement that ended in April 2007. As discussed in Section 5, the company has acquired incremental Jackson Prairie storage inventory and withdrawal capability through the participation in the JP expansion open season, which took place during early 2006. The Company has also entered into a companion transportation agreement with Northwest Pipeline for the transportation to deliver the stored supplies under this agreement to Cascade's service territory. In the interim, Cascade will meet its peak day requirements with citygate peaking resources.

Figure 7-B-1
SYSTEM Peak Day Demand \& Existing Capacity Resources Medium Load Forecast

Note: WGPW Capacity is net of Non-Core primary term capacity requirements

Figure 7-B-2

Figure 7-B-3

For modeling purposes, the company included several capacity alternatives to meet peak planning needs. Based on the analysis, peak day requirements will be met through a blend of resources. For purposes of the graphical depiction, the company has shown the incremental conservation resources as a capacity resource. As shown in Figures 7-C-1 through 7-C-3, incremental pipeline capacity on NWP, GTN, along with a combination of citygate peaking, and satellite LNG alternatives will be used to meet growing peak requirements.

FIGURE 7-C-1

Peak Day Demand \& Capacity Resource Comparison Medium Load Forecast (Total System)

FIGURE 7-C-2

FIGURE 7-C-3

Annual Load Requirements and Weather Uncertainty

The annual load requirements will vary dramatically based on the weather assumptions. Through the use of SENDOUT'® Monte-Carlo functionality, the company has the ability to analyze the impacts of weather on its load forecast. Figure 7-D shows the overall expected range of the load forecasts, before considering load reductions that can be achieved through incremental conservation programs. The chart provides the upper parameter, which is based on the assumption that the high load growth forecast occurs, with the lower parameter occurring under the low load growth forecast. Capturing the uncertainty around the medium load growth forecast was accomplished through Sendout's Monte-Carlo functionality. The Monte-Carlo simulation performed 200 draws, with each draw calculating the monthly load based on the weather as randomly determined by the model for each of the weather zones. Figure 7-E provides a more in depth look at the medium scenario results. The absolute maximum and absolute minimum amounts depict the minimum or maximum system demand from the 200 draws for a particular year. The absolute maximum/minimum does not represent any single results for the 20 year planning horizon.

Figure 7-D
Expected Annual Usage-Medium Load Growth Total System

FIGURE 7-E

Forecast Annual Usage
Total System-Medium Load Growth

Additional tables and graphical analyses summarizing the weather and its impact on the annual load forecast are included in Appendix G-1.

To meet this demand, the company will need to acquire a blend of gas supply and conservation resources. For purposes of this plan, the company has estimated the level of conservation that is achievable over the course of the planning horizon which was discussed at length in Section 6. Figure 7-F shows how the company anticipates meeting the projected load over the planning horizon under the basecase scenario. Variations in the portfolio in order to meet actual load requirements during any year will occur primarily through the purchase of just-in-time, or spot gas purchases.

FIGURE 7-F

Annual Supply \& Load Requirements

\square BASELOAD	\square DSM
\square JUST IN TIME (SPOT)	\square PEAKING/CITYGATE
\square SATLLNG/PK SHAVING	\square SEASONALNTR
\square STORAGEWD	- ANNUAL LOAD MEDIUM GROWTH SCENARIO

Impacts of Price Uncertainty and Overall System Costs

The ability to accurately forecast long-term gas prices is influenced by two different types of uncertainty: uncertainty related to long-term changes in the industry and uncertainty related to short-term gas price variability. Contributing to long-term uncertainty are long term supply and demand issues, including growth in demand for electric generation, changes in LNG import infrastructure, possible pipelines to bring Alaskan and other frontier gas supplies to market. Short-term price variability also affects the long-term predictability of gas prices. Even if long-term supply and demand outcomes are exactly as projected, actual prices in future months will still reflect variability due to short-term market conditions. In order to estimate this uncertainty, the Company utilized SENDOUT's Monte-Carlo functionality, to analyze the impacts of price on the portfolio costs. Since natural gas is becoming more of a national market the company believes that volatility in the NYMEX prices will have a far larger influence on the portfolio's price volatility compared to the volatility in the AECO, Sumas and Rocky Mountain basin differentials. Figure 7-G shows the overall expected range of the NYMEX prices over the planning horizon. The absolute maximum and absolute minimum amounts depicts the minimum amount or maximum
amount from the 200 draws for a particular year. The Absolute maximum/minimum does not represent any single draw result for the 20 year planning horizon.

FIGURE 7-G

Figure 7-H compares the expected range of NYMEX prices from the Monte-Carlo analysis including the Environmental Externality costs that were discussed in Section 6. The highest anticipated NYMEX prices would result if the Scenario 3 Carbon Cost Adder was implemented in 2011. In that scenario, Carbon Cost Adder would increase the baseline forecasts by $\$ 1.85 /$ dkth beginning in the first year, ramping up to $\$ 4.38 /$ dkth over the 20 year planning horizon. The impact of the price volatility on the overall cost of the longterm portfolio is shown below in Figure 7-I. Further tables and graphical analyses summarizing the pricing simulations are included in Appendix G-2.

FIGURE 7-H PRICE FORECAST-NYMEX Average Annual Price

FIGURE 7-I

Table 7-5 on summarizes the Net Present Value of the 20-year portfolio costs and average cost per therm for each of the scenarios and includes the anticipated range of costs from the Monte-Carlo modeling.

TABLE 7-5

	NPV 20 Yr Portfolio costs in \$000's		Average Cost Per Therm	
Basecase Scenario	\$	2,747,378	\$	0.388872
High Load Growth	\$	3,267,486	\$	0.425008
Low Load Growth	\$	2,657,113	\$	0.408042
Environmental Externalities Case 1	\$	3,149,964	\$	0.445903
Environmental Externalities Case 2	\$	3,272,814	\$	0.463253
Environmental Externalities Case 3	\$	3,518,517	\$	0.498047
Simulation Results				
Monte-Carlo Average	\$	2,816,873	\$	0.399799
Monte-Carlo Expected High	\$	3,216,376	\$	0.447916
Monte-Carlo Expected Low	\$	2,448,210	\$	0.354748

Based on the basecase results, Cascade has calculated its avoided costs. Cascade's avoided cost estimates represent the marginal cost of natural gas usage incremental to the forecasted demand. In other words, avoided cost is the unit cost to serve the next unit of demand during any given period of time. If demand-side management measures reduce customer demand, the Company is able to "avoid" certain commodity and transportation costs. This concept is important to assessing the proper value to demand-side management efforts. As discussed in Section 6, when calculating the avoided cost figures, the company includes an incremental cost advantage for conservation resources to recognize the non-quantifiable benefits associated with conservation such as price certainty and hedge value against future carbon costs. Based on the annual costs from the Basecase scenario, the Company has estimated that the avoided costs are $\$ 11.02$ for 30-year measures and the cost-effectiveness limit is 65 cents per therm. Under the Carbon Scenarios, the avoided costs for 30-year measures range between to $\$ 12.34$ up to $\$ 13.56$ or 73 to 80 cents per therm. Additional information regarding the calculation of these avoided cost estimates is included in Appendix H .

Section 8

Two-year Action Plan

Prior IRP Action Plan and Progress Review

Cascade filed its last Integrated Resource Plan in December 2008. Since that time, Cascade has made significant progress in meeting its 2-Year Action Plan. Appendix I includes the detailed Two-year Action Plan along with a description of the Company's progress on each of the items.

2011 Action Plan

Cascade's 2010 Action Plan continues to focus on the following five areas:

- Demand Forecasting
- Distribution System Constraint Analysis
- Demand Side Resources
- Supply Side Resources
- Integration

The 2 year action plan embodies Cascade's commitment to maximizing the efficiency from its Integrated Resource Plan and to achieving the lowest cost resource portfolio of reliable natural gas services and conservation.

1. In continuing efforts to create a more accurate load forecast, Cascade will research the viability of expanding the detail of the data by determining therm usage per customer per degree day by customer class (residential, commercial, etc.) along with the non-heat sensitive baseload usage. This is largely dependent upon the capabilities of the Company's new Customer Information System which came on-line in July 2010. We are continue to work toward generating reports and data extracts from the new system to improve the forecast process.
2. Cascade will continue to monitor outside determinants of natural gas usage, such as legislative building code changes and electrical "Direct Use" campaigns as they are determined to significantly affect the Company's forecast.
3. Cascade will continue to monitor the effectiveness of the Oregon Public Purpose Fund to ensure the funds are adequate to capture significant portions of achievable therm savings in Oregon.
4. The company will continue to follow and analyze the impacts of the Western Climate Initiative and proposed carbon legislation at both the state and federal level as they pertain to natural gas conservation, as well as other such acts that may arise from these efforts. The company will continue to monitor the timing and the costs associated with carbon legislation and analyze the impacts on the company's overall portfolio costs. As specific carbon legislation is passed, the company will update its avoided cost calculations, conservation potential and make modifications to its DSM incentive programs as necessary.
5. The company will continue to monitor the cost effectiveness of existing conservation measures and emerging technologies to ensure that the current mix of measures included in the Washington Conservation program is appropriate. Areas for further analysis include the impacts associated with modifications to building codes along with the cost effectiveness of newer technologies such as the next generation of high efficiency water heaters (. 70 EF) and high-efficiency hybrid heat pumps. The applicability of these measures within Cascade's service territory will be analyzed and the company's Conservation Incentive Program will be modified as necessary.
6. The Company will continue to monitor the potential reporting, administrative and potential financial impacts of long term resources as a result of concerns surrounding fracking. In particular we are awaiting the EPA to reveal the results of their current study in alleged water contamination found in Wyoming as result of fracking actiivies.
7. Cascade will continue to evaluate gas supply resources on an ongoing basis including supplies of varying lengths (base, swing, peaking) and pricing alternatives. We will continue to analyze the uncertainties associated with supply and demand relationships.
8. The Company will continue to monitor the proposed pipeline expansion projects to access more supplies out of the Rockies. As cost estimates change, the company will analyze those resources under consideration to determine if modifications to the preferred portfolio are necessary.
9. Continue to refine our specific peak day resource acquisition action plans to address anticipated capacity shortfalls. Possible solutions may be Satellite LNG, peak shaving facilities or pipeline looping to meet the growing requirements of the firm core load. Specifically, the Company will further analyze issues such as determination of project location issues and risks, project cost estimates, and construction/acquisition lead times.
10. The Company will continue to explore options to incorporate biogas into its portfolio, as specific projects are identified in our service territory. Price, location and gas quality considerations of the biogas supply will be evaluated.
11. The Company will continue to monitor proposed LNG import facilities as information becomes available and will evaluate the various options that, if built, could result. Issues to monitor include specific cost, the availability of pipeline capacity and project timing.
12. The Company will continue to monitor the futures market for price trends and will evaluate the effectiveness of its risk management policy. Implementation of DoddFrank in the coming year raises potential administrative challenges from a reporting
standpoint; additionally it is unknown how the costs associated with the use of clearinghouses might impact price of natural gas in the future.

Appendix A

IRP Process

From: Barnard, Kathie [mailto:Kathie.Barnard@cngc.com]
Sent: Tuesday, January 04, 2011 5:31 PM
To: 'bob@oregoncub.org'; Dan Kirschner; GORSUCH Lisa; KOHO Lori G.; megan clark;
ppyron@nwigu.org; Saldivar, Marty; SOBHY Moshrek M.; ZIMMERMAN Ken; gordon@oregoncub.org
Cc: Sellers-Vaughn, Mark; Duggirala, Srinivas; Robbins, Chris; Archer, Pamela
Subject: Cascade Natural Gas 2011 IRP Technical Advisory Group meetings
It's time to start our public process for Cascade's IRP that will be filed by August $9^{\text {th }}$ 2011. We are looking at having 3 Technical Advisory Group (TAG) meetings that will cover the major areas of the IRP. A preliminary schedule is as follow:

TAG 1: Key Assumptions (Price Forecast \& Economic Indicators) /preliminary Demand Forecast ResultsEarly February 2011
TAG 2: Supply Resource Alternatives, preliminary Modeling of Conservation Curves - Mid March 2011
TAG 3: Integration/2 year Action Plan - Mid April 2011

I know how busy everyone's schedules are and therefore I would like to get the meeting dates firmed up in the next week so that we can get them on our calendars. Meetings will be held at the PDX meeting facility unless there is interest in holding one of the meetings at Cascade's new headquarters in the Kennewick.

TAG 1 February 2, 3, or 4 10am to 3pm

TAG 2 March 9, 10 or 11 10am to 3pm

TAG 3 April $12,13,14^{\text {th }}, 19,20$ or $21^{\text {st }} 10$ to 3 pm time

Please respond by Friday January 7 so we can finalize the schedule. Thank you

Kathie

Katherine Barnard
Manager--Gas Supply \& Regulatory Affairs
Cascade Natural Gas \& Intermountain Gas Company
Subsidiaries of MDU Resources Group, Inc.

2011 Integrated Resource Plan

Technical Advisory Group Meeting

February 2, 2011

Agenda

- Introductions
- Key Assumptions \& Demand Forecast
- Peak Day Forecasting
- Load/Resource Balancing--Capacity Analysis

In the Community to Serve ${ }^{\circ}$
2011 IRP Demand Forecast Presentation

Vas Duggirala
Regulatory Analyst
Cascade Natural Gas
srinivas.duggirala@cngc.com

Current Events

Residential Customer Growth

2008 IRP Revisited

Growth has been far lower than expectations:

	Forecasted	Actual
2008	2.68%	1.64%
2009	2.62%	0.62%
2010	2.85%	1.09%

2008 IRP Revisited

Customer counts have been low, partially due to the economy:
Performance of Underlying Economic Indicators

2008 IRP Revisited

2008 IRP Customer Count Overestimation

 (Discrepancy as a \% of Estimate)

2008 IRP Revisited

Bend:

	Forecast	Actual	Difference
2008	38,362	37,079	$-1,283$
2009	40,470	37,318	$-3,152$
2010	42,616	37,366	$-5,250$

Forecasting Process

Forecasting Process

Gas Needs

Key Assumptions

CNGC Service Area Households

Key Assumptions

Cascade
NATURALGAS

CNGC Service Area Employment

Key Assumptions

Cascade
NATURALGAS

CNGC Service Area Economic Output

Key Assumptions

Bank Prime Rate

Key Assumptions

CASCADE
NATURAL GAS

30-Year Fixed Mortgage Rate

Key Assumptions

Key Assumptions

Cascade
NATURALGAS

Monthly Weights

1980
1981
1982
1983
1984 1985
1986
1987
1988
1990
1991 1992 1993 1995 1996 1997 1998 1999 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Employment	Growth	Ratio
763.494		
766.32	0.37\%	18\%
748.74	-2.29\%	-109\%
766.806	2.41\%	115\%
777.186	1.35\%	64\%
Growth rates are 123% of average. Use 123% of W\&P as the high for employment.		
849.854	5.31\%	252\%
893.829	5.17\%	246\%
934.287	4.53\%	215\%
983.888	5.31\%	252\%
1003.965	2.04\%	97\%
1018.779	1.48\%	70\%
1043.075	2.38\%	113\%
1090.431	4.54\%	216\%
1105.847	1.41\%	67\%
1136.601	2.78\%	132\%
1169.881	2.93\%	139\%
1186.301	1.40\%	67\%
1201.144	1.25\%	59\%
1219.753	1.55\%	74\%
1229.271	0.78\%	37\%
1230.672	0.11\%	5\%
1249.478	1.53\%	73\%
1275.832	2.11\%	100\%
Growth rates are 73% of average. Use 73% of W\&P as the low for employment.		
1404.663	3.54\%	168\%
1432.405	1.97\%	94\%
1412.57	-1.38\%	-66\%
1420.577	0.57\%	27\%

Households
620.777
633.085
636.603
641.215
652.585
660.843
669.767
681.077
699.89
718.214
740.361
759.492
782.415
800.051
816.887
Growth

1.98%
0.56%
0.72%
1.77%
1.27%
1.35%
1.69%
2.76%
2.62%
3.08%
2.58%
3.02%
2.25%
2.10%

CNGC MHI	Growth	Ratio
$\$ 57,577.56$		
$\$ 56,812.30$	-1.33%	-107%
$\$ 56,076.17$	-1.30%	-104%
$\$ 57,200.87$	2.01%	161%
$\$ 57,531.66$	0.58%	46%
$\$ 57,346.87$	-0.32%	-26%
$\$ 58,739.48$	2.43%	195%
$\$ 58,838.29$	0.17%	14%
$\$ 59,118.72$	0.48%	38%
$\$ 61,257.39$	3.62%	291%
$\$ 62,660.22$	2.29%	184%
$\$ 64,025.95$	2.18%	175%
$\$ 64,851.94$	1.29%	104%
$\$ 65,911.67$	1.63%	131%
$\$ 67,031.68$	1.70%	137%
Growth rates are 174% of average. Use	$\%$	
174% of W\&P as the high for MHI.	$\%$	

Growth rates are 118% of average. Use
118% of W\&P as the high for households.
-
 Growth rates are 174% of average.
174% of W\&P as the high for MHI.

\$71,210.06	3.16\%	254\%
\$73,806.57	3.65\%	293\%
\$74,810.66	1.36\%	109\%
\$77,637.13	3.78\%	304\%
\$79,378.68	2.24\%	180\%
\$79,180.84	-0.25\%	-20\%
\$79,644.59	0.59\%	47\%
\$79,940.44	0.37\%	30\%
$\$ 80,5^{\sim}$ Growth rates are 56% of average. $\$ 83,0$ Use 56% of W\&P as the low for MHI.		
\$85,7 J.ǔ	J.とJ)	<uד/u
\$84,879.45	-1.02\%	-82\%
\$83,579.10	-1.53\%	-123\%
\$83,143.24	-0.52\%	-42\%

Employment

Income

Gas Prices
Sensitivity Analysis

High \& Low Scenarios

Scenario	Area	Annual Growth $1998-2008$
Lowest Growth:	Michigan Public Service Commission	0.284%
Highest Growth:	Utah - Questar Gas	3.02%
Alternate Highest:	Cascade	3.09%

RESULTS

Forecasted Demand 2008 IRP (Purple) vs. 2011 IRP (Blue)

RESULTS

RESULTS

Forecasted Annual Throughput					
		Therms		Growth	
Above／Below System Average		2010	2030	30－Year	Annualized
$\sqrt{7}$	Aberdeen	9，389，358	10，817，668	15．2\％	0．71\％
个	Bellingham	41，198，725	68，514，030	66．3\％	2．58\％
个	Bremerton	28，055，900	46，896，186	67．2\％	2．60\％
个	Kennewick	24，120，207	46，698，954	93．6\％	3．36\％
\Rightarrow	Longview	6，572，097	8，415，721	28．1\％	1．24\％
\Rightarrow	Moses Lake	3，953，220	5，031，219	27．3\％	1．21\％
个	Mount Vernon	38，248，971	60，895，203	59．2\％	2．35\％
$\sqrt{3}$	Sunnyside	8，740，643	9，073，321	3．8\％	0．19\％
\Rightarrow	Walla Walla	9，998，512	12，052，935	20．5\％	0．94\％
$\sqrt{8}$	Wenatchee	5，620，656	4，666，050	－17．0\％	－0．93\％
$\sqrt{ } \sqrt{ }$	Yakima	26，834，510	31，315，289	16．7\％	0．78\％
$\sqrt{3}$	Baker	3，710，991	4，273，384	15．2\％	0．71\％
个	Bend	46，653，466	75，924，356	62．7\％	2．46\％
$\sqrt{3}$	Ontario	4，536，805	5，243，507	15．6\％	0．73\％
\Rightarrow	Pendleton	12，225，408	16，923，826	38．4\％	1．64\％
	Washington	202，732，799	304，679，137	50．3\％	2．06\％
	Oregon	67，126，670	102，365，074	52．5\％	2．13\％
	System	269，859，469	407，044，211	50．8\％	2．08\％

RESULTS

Forecasted Demand
2008 IRP (Purple) vs. 2011 IRP (Blue)

Peak Day Forecast

- Peak day forecast based on a 61degree day (0 degrees Fahrenheit average temperature) for design weather conditions

System Average Degree Days	Date / Year
65	1968
63	1950
61	1964, 1957, 1983,1990
60	1950, 1957, 1968, 1990
59	1950, 1972, 1979, 1983, 1989, 1990
58	1950, 1979
57	1957,1964, 1972, 1990
56	1963, 1982, 1983, 2004

Peak Day Forecast (cont.)

- Gas use on January 5, 2004 represent Cascade's best peak day demand approximation in recent history (56 degree day).
- Therm consumption was adjusted to reflect estimated consumption during a System wide 61 degree day.
- Peak day therm consumption developed for each area and escalated each year by the customer growth rate.

Peak Day Forecast

Capacity Analysis

- Overall Pipeline Receipt Capabilities vs Peak Day Demand
- Delivery Capabilities at the Gate (MDDO's)
- Distribution System Needs

SYSTEM Peak Day Demand \& Existing Capacity Resources

ZONE 10 Peak Day Demand \& Existing Capacity Resources
Medium Load Forecast

$$
\longleftarrow \text { Zone Capacity } \quad-\text {-2008 IRP Forecasted Requirements } \quad \square \text { 2011 IRP Forecast }
$$

Note: WGPW Capacity is net of Non-Core primary term capacity requirements

ZONE 11 Peak Day Demand \& Existing Capacity Resources
Medium Load Forecast

Note: WGPW Capacity is net of Non-Core primary term capacity requirements

ZONE 20 Peak Day Demand \& Existing Capacity Resources Medium Load Forecast

\square Zone Capacity -2008 IRP Forecasted Requirements -2011 IRP Forecast

Note: WGPW Capacity is net of Non-Core primary term capacity requirements

ZONE 24 Peak Day Demand \& Existing Capacity Resources
Medium Load Forecast

\square Zone Capacity - - 2008 IRP Forecasted Requirements $\quad-2011$ IRP Forecast

Note: WGPW Capacity is net of Non-Core primary term capacity requirements

ZONE 26 Peak Day Demand \& Existing Capacity Resources
Medium Load Forecast

Note: WGPW Capacity is net of Non-Core primary term capacity requirements

ZONE ME Peak Day Demand \& Existing Capacity Resources
Medium Load Forecast

Note: WGPW Capacity is net of Non-Core primary term capacity requirements

ZONE 30 Peak Day Demand \& Existing Capacity Resources
Medium Load Forecast

Note: WGPW Capacity is net of Non-Core primary term capacity requirements

ZONE GTN Peak Day Demand \& Existing Capacity Resources Medium Load Forecast

Note: WGPW Capacity is net of Non-Core primary term capacity requirements

Peak Day \& Capacity Shortfall Analysis

- Identify Capacity Shortfalls
- Overall Pipeline Receipt Capabilities vs Peak Day Demand
- Delivery Capabilities at the Gate (MDDO's)
- Distribution System Needs
- Identify/Evaluate solutions
- Determining magnitude of shortfall (degree day coverage)

ZONE 11 Peak Day Demand \& Existing Capacity Resources
Medium Load Forecast

Note: WGPW Capacity is net of Non-Core primary term capacity requirements

Zone 11-Winter Weather Frequency

ZONE 30 Peak Day Demand \& Existing Capacity Resources
Medium Load Forecast

Note: WGPW Capacity is net of Non-Core primary term capacity requirements

Zone 30-W Winter Weather Frequency
 (Nov-Mar)

ZONE ME Peak Day Demand \& Existing Capacity Resources
Medium Load Forecast

Note: WGPW Capacity is net of Non-Core primary term capacity requirements

DD

ZONE GTN Peak Day Demand \& Existing Capacity Resources Medium Load Forecast

Note: WGPW Capacity is net of Non-Core primary term capacity requirements

Zone GTN-Winter Weather Frequency

(Nov-Mar)

Adjourn

	year	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	203
Zone 10	Zone Capacity	148	148	152	155	157	158	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167
	2008 Forecast	98	98	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119
	2011 IRP Forecasted Requirements	98	99	99	99	99	100	100	100	101	101	101	102	102	102	102	103	103	103	103	104	104	104
Zone 11	Zone Capacity	349	350	393	393	393	393	393	393	393	393	393	393	393	393	393	393	393	393	393	393	393	393
	2008 Forecast	355	358	361	365	368	372	375	379	382	386	389	393	396	399	403	406	410	413	416	420	423	426
	2011 IRP Forecasted Requirements	366	368	370	373	376	378	381	384	387	390	392	395	397	400	402	404	407	409	411	413	415	417
Zone 20	Zone Capacity	577	578	592	603	610	616	649	649	649	649	649	649	649	649	649	649	649	649	649	649	649	649
	2008 Forecast	410	425	441	457	473	489	505	521	537	553	569	585	601	617	631	646	661	675	690	705	721	736
	2011 IRP Forecasted Requirements	431	450	471	488	505	523	542	561	580	600	620	640	661	683	705	727	750	773	797	821	846	871
Zone 24	Zone Capacity	135	135	138	141	142	144	152	152	152	152	152	152	152	152	152	152	152	152	152	152	152	152
	2008 Forecast	64	65	66	66	67	68	68	69	70	70	71	72	72	73	74	74	75	76	76	77	78	78
	2011 IRP Forecasted Requirements	56	57	58	57	57	57	58	58	58	58	58	58	58	58	58	59	59	59	59	60	60	60
Zone 26	Zone Capacity	465	466	476	484	489	494	518	518	518	518	518	518	518	518	518	518	518	518	518	518	518	518
	2008 Forecast	82	83	84	86	87	88	90	91	93	94	96	97	99	100	101	103	104	105	107	108	109	111
	2011 IRP Forecasted Requirements	82	82	82	83	83	84	85	86	86	87	88	89	90	90	91	92	93	94	95	96	97	98
Zone GTN	Zone Capacity	512	512	512	512	512	512	512	512	512	512	512	512	512	512	512	512	512	512	512	512	512	512
	2008 Forecast	575	592	612	634	658	684	709	734	760	785	811	836	861	887	912	938	964	989	1,015	1,041	1,066	1,091
	2011 IRP Forecasted Requirements	564	569	584	598	613	628	643	658	673	688	703	718	733	748	764	779	794	810	825	841	856	872
Zone ME	Zone Capacity	362	362	371	378	383	387	408	408	408	408	408	408	408	408	408	408	408	408	408	408	408	408
	2008 Forecast	360	361	363	366	370	374	378	381	385	388	391	395	397	401	404	408	411	415	419	422	426	429
	2011 IRP Forecasted Requirements	356	359	364	371	377	384	391	397	404	410	416	422	428	434	439	445	450	455	459	464	468	472
Zone 30	Zone Capacity	1,524	1,527	1,560	1,585	1,600	1,615	1,691	1,691	1,691	1,691	1,691	1,691	1,691	1,691	1,691	1,691	1,691	1,691	1,691	1,691	1,691	1,691
	2008 Forecast	1,449	1,479	1,511	1,544	1,579	1,614	1,649	1,684	1,719	1,755	1,791	1,828	1,864	1,901	1,938	1,975	2,012	2,049	2,086	2,124	2,161	2,199
	2011 IRP Forecasted Requirements	1,594	1,613	1,657	1,696	1,735	1,775	1,815	1,856	1,897	1,938	1,979	2,021	2,063	2,105	2,148	2,191	2,234	2,277	2,321	2,365	2,409	2,454

Cascade Natural Gas 2010 IRP Demand Forecast Economic Indicators

PROJECTED EMPLOYMENT GROWTH

 \begin{tabular}{lllllllllllllllllllllll}
2011 \& 2.93% \& 2.54% \& 3.79% \& 3.51% \& 0.97% \& 3.13% \& 2.25% \& 3.03% \& 2.86% \& 3.22% \& 2.78% \& 2.34% \& 3.54% \& 2.91% \& 1.96% \& 3.29% \& 2.98% \& 1.78% \& 3.59% \& 2.95% \& 2.28% \& 3.71%

2012 \& 1.11% \& 0.79% \& 2.13% \& 1.74% \& 0.97% \& 1.71% \& 2.25% \& 1.27% \& 1.18% \& 1.47% \& 1.04% \& 0.86% \& 1.79% \& 1.22% \& 0.41% \& 1.53% \& 1.28% \& 1.78% \& 1.84% \& 1.20% \& 0.65% \& 1.96%

\hline 0.548% \& 0.88%

\hline

2013 \& 1.15% \& 0.80% \& 2.13% \& 1.74% \& 0.97% \& 1.73% \& 2.25% \& 1.25% \& 1.19% \& 1.46% \& 1.03% \& 0.82% \& 1.78% \& 1.24% \& 0.38% \& 1.54% \& 1.19% \& 1.78% \& 1.84% \& 1.20% \& 0.65% \& 1.95% \& 0.87%

2014 \& 1.15% \& 0.78% \& 2.12% \& 1.72% \& 0.94% \& 1.71% \& 2.25% \& 1.28% \& 1.18% \& 1.46% \& 1.03% \& 0.83% \& 1.78% \& 1.24% \& 0.41% \& 1.52% \& 1.17% \& 1.77% \& 1.84% \& 1.19% \& 0.64% \& 1.95% \& 0.86%

\hline

2015 \& 1.10% \& 0.77% \& 2.11% \& 1.72% \& 0.94% \& 1.76% \& 2.25% \& 1.21% \& 1.20% \& 1.46% \& 1.02% \& 0.74% \& 1.77% \& 1.25% \& 0.39% \& 1.50% \& 1.22% \& 1.77% \& 1.84% \& 1.18% \& 0.66% \& 1.94% \& 0.86%

\hline
\end{tabular}

2017	1.13%	0.78%	2.11%	1.71%	0.92%	1.73%	2.24%	1.24%	1.17%	1.45%	1.01%	0.76%	1.76%	1.26%	0.37%	1.50%	1.12%	1.75%	1.84%	1.17%	0.64%

 \begin{tabular}{llllllllllllllllllllll}
\& 2.15% \&

2020 \& 1.11% \& 0.71% \& 2.09% \& 1.68% \& 0.88% \& 1.77% \& 2.24% \& 1.21% \& 1.17% \& 1.44% \& 0.98% \& 0.79% \& 1.74% \& 1.26% \& 0.39% \& 1.47% \& 1.15% \& 1.74% \& 1.83% \& 1.13% \& 0.61%

\hline

\& 1.11% \& 0.71% \& 2.09% \& 1.68% \& 0.88% \& 1.77% \& 2.24% \& 1.21% \& 1.17% \& 1.44% \& 0.98% \& 0.79% \& 1.74% \& 1.26% \& 0.39% \& 1.47% \& 1.15% \& 1.74% \& 1.83% \& 1.13% \& 0.62% \& 1.80% \& 0.83%

2021 \& 1.15% \& 0.74% \& 2.08% \& 1.67% \& 0.86% \& 1.80% \& 2.23% \& 1.23% \& 1.15% \& 1.44% \& 0.97% \& 0.78% \& 1.74% \& 1.27% \& 0.36% \& 1.47% \& 1.21% \& 1.74% \& 1.83% \&

\hline
\end{tabular}

 | |
| :--- |
| 2031 | 1.09% | 0.68% | 2.03% | 1.58% | 0.74% | 1.88% | 2.22% | 1.14% | 1.09% | 1.39% | 0.89% | 0.71% | 1.69% | 1.33% | 0.38% | 1.38% | 1.07% | 1.69% | 1.80% | 1.04% | 0.58% | 1.82% | 0.76% |

2033	1.13%	0.58%	2.01%	1.57%	0.72%	1.87%	2.21%	1.15%	1.09%	1.39%	0.87%	0.74%	1.67%	1.33%	0.33%	1.37%	1.15%	1.67%	1.79%	1.03%	0.57%	1.80%	0.75%	
2034	1.15	0.65%	201%	1.56%	0.71%	1.92%	22%	1.14%	1.07%	1.38%	0.86%	0.71%	1.67%	1.35%	0.33%	1.36%	1.04%	1.67%	1.79%	1.03%	0.57%	1.80%	0.74%	

| 2011 | 2.32% | 2.02% | 2.98% | 2.77% | 0.78% | 2.48% | 1.79% | 2.40% | 2.27% | 2.55% | 2.21% | 1.86% | 2.79% | 2.30% | 1.57% | 2.60% | 2.36% | 1.42% | 2.83% | 2.34% | 1.81% |
| :--- | | | | | | | | | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2012 | 0.89% | 0.63% | 1.70% | 1.39% | 0.78% | 1.36% | 1.79% | 1.02% | 0.95% | 1.18% | 0.84% | 0.69% | 1.43% | 0.98% | 0.33% | 1.22% | 1.03% | 1.42% |
| 2013 | 0.92% | 0.64% | 1.70% | 1.39% | 0.96% | 0.53% | 1.57% | 0.71% | | | | | | | | | | |

 | 2015 | 0.89% | 0.62% | 1.69% | 1.38% | 0.76% | 1.41% | 1.79% | 0.97% | 0.96% | 1.17% | 0.82% | 0.60% | 1.41% | 1.00% | 0.32% | 1.20% | 0.98% | 1.41% | 1.47% | 0.95% | 0.53% | 1.55% | 0.69% |
| :--- |
| 2016 | 0.94% | 0.59% | 1.69% | 1.36% | 0.74% | 1.40% | 1.79% | 1.02% | 0.93% | 1.16% | 0.81% | 0.69% | 1.41% | 1.01% | 0.32% | 1.21% | 1.02% | 1.41% | 1.47% | 0.94% | 0.51% | 1.54% | 0.69% |

2017	0.91%	0.63%	1.68%	1.37%	0.74%	1.39%	1.79%	1.00%	0.94%	1.16%	0.81%	0.61%	1.41%	1.01%	0.30%	1.20%	0.90%	1.40%	1.47%	0.94%	0.51%	1.53%
0.69%																						

2019	0.91%	0.61%	1.67%	1.35%	0.72%	1.42%	1.79%	0.97%	0.92%	1.15%	0.79%	0.63%	1.40%	1.02%	0.30%	1.18%	0.94%	1.40%	1.46%	0.93%	0.51%	1.53%	0.67%
2020	0.89%	0.57%	1.67%	1.34%	0.71%	1.42%	1.78%	0.97%	0.94%	1.16%	0.79%	0.63%	1.39%	1.01%	0.32%	1.18%	0.92%	1.39%	1.46%	0.91%	0.50%	1.52%	0.67%

 | | |
| :--- |

 | 2029 | 0.91% | 0.56% | 1.63% | 1.28% | 0.62% | 1.47% | 1.77% | 0.93% | 0.88% | 1.13% | 0.73% | 0.60% | 1.36% | 1.06% | 0.28% | 1.12% | 0.89% | 1.36% | 1.44% | 0.86% | 0.46% | 1.47% | 0.62% |
| :--- |

 | 2231 | 0.88% | 0.55% | 1.62% | 1.27% | 0.60% | 1.50% | 1.77% | 0.91% | 0.88% | 1.12% | 0.72% | 0.57% | 1.35% | 1.07% | 0.31% | 1.11% | 0.86% | 1.35% | 1.44% | 0.84% | 0.47% | 1.45% | 0.61% |
| :--- |
| 2032 | 0.91% | 0.54% | 1.61% | 1.26% | 0.59% | 1.54% | 1.77% | 0.93% | 0.87% | 1.12% | 0.70% | 0.61% | 1.35% | 1.07% | 0.28% | 1.10% | 0.85% | 1.35% | 1.44% | 0.84% | 0.47% | 1.45% | 0.61% |

[^1]Cascade Natural Gas 2010 IRP Demand Forecast Economic Indicators

PROJECTED HOUSEHOLDS GROWTH

 \begin{tabular}{llllllllllllllllllllll}
2011 \& 0.90% \& 0.02% \& 2.56% \& 1.54% \& -99.90% \& 2.12% \& 3.14% \& 1.67% \& 2.25% \& 1.75% \& 0.59% \& 1.23% \& 2.14% \& 1.14% \& -0.05% \& 2.18% \& 0.93% \& 2.26% \& 2.45% \& 0.70% \& 0.58%

2012 \& 1.04% \& 0.33% \& 2.41% \& 1.59% \& 0.88% \& 2.07% \& 2.87% \& 1.69% \& 2.15% \& 1.76% \& 0.79% \& 1.34% \& 2.07% \& 1.25% \& 0.19% \& 2.11% \& 1.07% \& 2.16% \& 2.32% \& 0.89% \& 0.80%

20.79% \& 0.79% \& 0.84%

\hline

2013 \& 0.98% \& 0.26% \& 2.30% \& 1.51% \& 0.92% \& 1.96% \& 2.75% \& 1.60% \& 2.06% \& 1.67% \& 0.72% \& 1.24% \& 1.98% \& 1.17% \& 0.16% \& 2.01% \& 1.01% \& 2.07% \& 2.21% \& 0.81% \& 0.72% \& 2.67% \& 0.77%

\hline 2014 \& 0.95% \& 0.23% \& 2.24% \& 1.47% \& 0.95% \& 1.91% \& 2.67% \& 1.57% \& 2.01% \& 1.63% \& 0.70% \& 1.23% \& 1.93% \& 1.15% \& 0.17% \& 1.96% \& 0.97% \& 2.02% \& 2.16% \& 0.79% \& 0.71% \& 2.59% \& 0.75%

\hline
\end{tabular}

 \begin{tabular}{|llllllllllllllllllllllllll}
2023 \& 0.72% \& 0.05% \& 1.78% \& 1.19% \& 1.18% \& 1.52% \& 2.11% \& 1.29% \& 1.62% \& 1.31% \& 0.49% \& 1.01% \& 1.54% \& 0.93% \& 0.00% \& 1.55% \& 0.77% \& 1.62% \& 1.72% \& 0.52% \& 0.48% \& 2.04% \& 0.57%

2024 \& 0.71% \& 0.02% \& 1.74% \& 1.17% \& 1.20% \& 1.48% \& 2.05% \& 1.26% \& 1.58% \& 1.27% \& 0.48% \& 0.98% \& 1.51% \& 0.91% \& 0.02% \& 1.52% \& 0.74% \& 1.58% \& 1.67% \& 0.49% \& 0.45% \& 1.99% \& 0.55%

\hline

\&

2024 \& 0.71% \& 0.02% \& 1.74% \& 1.17% \& 1.20% \& 1.48% \& 2.05% \& 1.26% \& 1.58% \& 1.27% \& 0.48% \& 0.98% \& 1.51% \& 0.91% \& 0.02% \& 1.52% \& 0.74% \& 1.58% \& 1.67% \& 0.49% \& 0.45% \& 1.99% \& 0.55%

\hline 2025 \& 0.67% \& 0.01% \& 1.70% \& 1.14% \& 1.22% \& 1.44% \& 2.00% \& 1.24% \& 1.54% \& 1.24% \& 0.45% \& 0.96% \& 1.46% \& 0.88% \& 0.03% \& 1.47% \& 0.74% \& 1.54% \& 1.63% \& 0.44% \& 0.42% \& 1.93% \& 0.53%

\hline
\end{tabular}

 \begin{tabular}{llllllllllllllllllllllll}
2033 \& 0.49% \& -0.14% \& 1.40% \& 0.94% \& 1.33% \& 1.16% \& 1.65% \& 1.03% \& 1.27% \& 1.01% \& 0.31% \& 0.80% \& 1.20% \& 0.72% \& -0.10% \& 1.20% \& 0.57% \& 1.27% \& 1.33% \& 0.21% \& 0.25% \& 1.59% \& 0.40%

\hline

\&

2034 \& 0.48% \& -0.15% \& 1.37% \& 0.92% \& 1.34% \& 1.14% \& 1.61% \& 1.01% \& 1.24% \& 0.98% \& 0.30% \& 0.78% \& 1.18% \& 0.71% \& -0.11% \& 1.17% \& 0.55% \& 1.24% \& 1.30% \& 0.18% \& 0.23% \& 1.55% \& 0.38%

2035 \& 0.44% \& -0.17% \& 1.33% \& 0.89% \& 1.36% \& 1.11% \& 1.56% \& 0.98% \& 1.21% \& 0.95% \& 0.28% \& 0.75% \& 1.14% \& 0.68% \& -0.11% \& 1.13% \& 0.53% \& 1.21% \& 1.26% \& 0.15% \& 0.21% \& 1.51% \& 0.36%

\hline
\end{tabular}

| 2011 | 0.75% | 0.01% | 2.11% | 1.28% | 0.88% | 1.76% | 2.58% | 1.39% | 1.86% | 1.46% | 0.50% | 1.02% | 1.77% | 0.95% | -0.06% | 1.81% | 0.78% | 1.87% | 2.02% | 0.59% | 0.49% | 2.49% |
| :--- | | 2012 | 0.98% | 0.28% | 2.31% | 1.52% | 0.88% | 1.99% | 2.76% | 1.62% | 2.07% | 1.69% | 0.74% | 1.28% | 1.99% | 1.19% | 0.17% | 2.03% | 1.01% | 2.08% | 2.23% | 0.84% | 0.74% | 2.68% | 0.78% |
| :--- |
| 2013 | 0.97% | 0.27% | 2.26% | 1.49% | 0.91% | 1.93% | 2.69% | 1.58% | 2.03% | 1.65% | 0.72% | 1.24% | 1.95% | 1.17% | 0.16% | 1.98% | 1.00% | 2.03% | 2.18% | 0.81% | 0.72% | 2.61% | 0.76% | $\begin{array}{llllllllllllllllllllllllll} & \end{array}$ | 2015 | 0.92% | 0.22% | 2.14% | 1.42% | 0.97% | 1.84% | 2.54% | 1.52% | 1.93% | 1.57% | 0.67% | 1.19% | 1.86% | 1.11% | 0.10% | 1.88% | 0.96% | 1.94% | 2.07% | 0.76% | 0.68% |
| :--- |

2019	0.81%	0.13%	1.93%	1.29%	1.08%	1.66%	2.28%	1.38%	1.75%	1.42%	0.57%	1.08%	1.68%	1.01%	0.07%	1.70%	0.86%	1.75%	1.86%	0.64%	0.58%	2.22%	0.63%

 | 2021 | 0.77% | 0.10% | 1.85% | 1.24% | 1.12% | 1.58% | 2.18% | 1.33% | 1.67% | 1.36% | 0.54% | 1.04% | 1.60% | 0.97% | 0.05% | 1.62% | 0.80% | 1.68% | 1.78% | 0.59% | 0.54% | 2.11% | 0.60% | |
| :--- |

 \begin{tabular}{|lllllllllllllllllllllllll}
2023 \& 0.73% \& 0.06% \& 1.76% \& 1.18% \& 1.16% \& 1.50% \& 2.07% \& 1.28% \& 1.60% \& 1.30% \& 0.49% \& 1.00% \& 1.53% \& 0.93% \& 0.01% \& 1.54% \& 0.77% \& 1.60% \& 1.70% \& 0.52% \& 0.48% \& 2.01% \& 0.57%

2024 \& 0.71% \& 0.03% \& 1.72% \& 1.16% \& 1.18% \& 1.46% \& 2.02% \& 1.25% \& 1.56% \& 1.26% \& 0.48% \& 0.98% \& 1.49% \& 0.90% \& 0.02% \& 1.50% \& 0.74% \& 1.56% \& 1.65% \& 0.49% \& 0.45% \& 1.96% \& 0.55%

\hline

2025 \& 0.67% \& 0.01% \& 1.68% \& 1.13% \& 1.20% \& 1.43% \& 1.97% \& 1.23% \& 1.52% \& 1.23% \& 0.45% \& 0.96% \& 1.45% \& 0.88% \& 0.03% \& 1.46% \& 0.73% \& 1.52% \& 1.61% \& 0.45% \& 0.43% \& 1.91% \& 0.53%

\hline
\end{tabular}

 | 2027 | 0.63% | -0.03% | 1.60% | 1.07% | 1.24% | 1.35% | 1.87% | 1.16% | 1.45% | 1.17% | 0.41% | 0.91% | 1.38% | 0.83% | -0.05% | 1.38% | 0.68% | 1.45% | 1.53% | 0.39% | 0.38% | 1.81% | 0.49% |
| :--- |

 $\left.\begin{array}{lllllllllllllllllllllllll}20.32 .25 \%\end{array}\right)$

2011	0.65\%	0.01\%	1.84\%	1.11\%	-99.90\%	1.52\%	2.25\%	1.20\%	1.62\%	1.26\%	0.42\%	0.88\%	1.54\%	0.82\%	-0.11\%	1.57\%	0.67\%	1.62\%	1.76\%	0.51\%	0.42\%	2.17\%	0.46\%
012	0.96	0.2	2.3	1.5	0.88\%	1.9	2.81\%	1.6	2.08\%	1.68\%	0.71\%	1.26\%	2.00\%	1.17\%	0.20\%	2.04\%	0.99\%	2.09\%	2.25\%	0.8	0.71\%	2.	0.75\%
2013	0.99\%	0.27\%	2.32\%	1.52\%	0.91\%	1.98\%	2.77\%	1.61\%	2.08\%	1.68\%	0.73\%	1.26\%	1.99\%	1.18\%	0.16\%	2.03\%	1.01\%	2.08\%	2.23\%	0.82\%	0.73\%	2.69\%	0.77\%
2014	0.96	0.24	2.26\%	1.48\%	0.94\%	93\%	2.70\%	1.58\%	2.03\%	.64\%	0.71\%	1.24\%	1.95	1.16\%	17%	1.98\%	0.98	2.03\%	2.1	0.8	0.7	2.62\%	0.75\%
2015	0.94\%	0.22\%	2.20\%	1.45\%	0.97\%	1.88\%	2.62\%	1.55\%	1.98\%	1.60\%	0.68\%	1.21\%	1.90\%	1.13\%	0.11\%	1.93\%	0.97\%	1.98\%	2.12\%	0.77\%	0.69\%	2.54\%	0.73\%
2016	0.90\%	0.21\%	2.14\%	1.41\%	1.00\%	1.83\%	2.55	1.50\%	1.92	1.56\%	0.65	1.18\%	1.85\%	1.10	0.12\%	1.88	0.92\%	1.93\%	2.06\%	0.74\%	. 67	2.47	0.71\%
2017	0.88\%	8\%	2.08	1.38\%	1.03\%	1.78\%	2.48\%	1.47\%	1.88\%	1.52\%	0.63\%	1.16\%	1.80\%	1.08\%	13	1.83\%	0.91\%	1.88\%	2.01\%	0.71\%	0.64	.40\%	0.68\%
2018	0.85\%	0.15\%	2.03\%	1.34\%	1.06\%	1.72\%	2.41\%	1.44\%	1.83\%	1.48\%	0.60\%	1.12\%	1.75\%	1.05\%	.07\%	1.78\%	0.88\%	1.83\%	1.96\%	0.68\%	0.61\%	2.34\%	0.66\%
2019	0.82\%	0.13\%	1.98\%	1.31\%	1.09\%	1.69\%	2.35\%	1.41\%	1.78\%	1.44\%	0.58\%	1.09\%	1.71\%	1.02\%	0.07\%	1.73\%	0.87\%	1.79\%	1.91\%	0.65\%	0.59\%	2.28\%	0.64\%
2020	0.80\%	0.12\%	$1.93{ }^{\circ}$	1.28\%	1.11\%	1.65\%	2.29\%	1.38\%	1.74	1.4	0.56\%	1.08\%	1.67\%	1.00	. 07	1.69\%	0.84	1.75\%	1.86\%	0.62\%	0.57	2.22\%	.62\%
2021	0.78\%	0.10\%	1.89\%	1.26\%	1.13\%	1.61\%	2.23\%	1.36\%	1.70\%	1.38\%	0.54\%	1.06\%	1.64\%	0.98\%	0.05\%	1.65\%	0.81\%	1.71\%	1.82\%	0.59\%	0.55\%	2.17\%	0.61
2022	0.77\%	0.09\%	1.85\%	1.24\%	1.15\%	1.57\%	2.18\%	1.33\%	1.6	1.35	0.53\%	1.04\%	1.60\%	6\%	0.05\%	1.61\%	0.80\%	1.67\%	1.78\%	0.56\%	0.52\%	2.11\%	0.59\%
2023	0.74\%	06\%	1.80\%	1.20%	1.17\%	1.53\%	2.12\%	1.30\%	1.63\%	1.32\%	. 50%	1.01\%	1.56\%	0.94\%	.02\%	1.57\%	0.78\%	1.63\%	1.73\%	0.53\%	0.49\%	2.06\%	0.57\%
2024	0.71\%	0.03\%	1.76\%	1.18\%	1.19\%	1.49\%	2.07\%	1.27\%	1.59\%	1.28\%	0.48\%	0.99\%	1.52\%	0.92\%	0.02\%	1.53\%	0.75\%	1.59\%	1.69\%	0.50\%	0.46\%	2.00\%	0.56\%
2025	0.68	0.02\%	1.71%	1.1	1.21\%	1.4	2.02\%	1.25\%	1.55	1.2	0.46\%	0.97	1.48\%	0.89\%	0.03\%	1.48	0.74\%	1.55	1.6	0.4	0.43\%	1.95\%	0.54\%
2026	0.66\%	0.00\%	1.67\%	1.12\%	1.24\%	1.41\%	1.96\%	1.21\%	1.51\%	1.22\%	0.44\%	0.95\%	1.44\%	0.87\%	-0.01\%	1.44\%	0.72\%	1.51\%	1.60\%	0.42\%	0.40\%	1.90\%	0.51
2027	0.64	-0.05	1.6	1.09\%	1.25\%	1.3	1.92\%	1.18\%	1.47\%	1.19\%	0.42\%	.92\%	1.40\%	0.84\%	. 08	1.41\%	0.69\%	1.48\%	1.56	0.39	0.38\%		0.50\%
2028	0.62\%	-0.08\%	1.59\%	1.06\%	1.27\%	1.34\%	1.87\%	1.16\%	1.44\%	1.15\%	0.40\%	0.91\%	1.37\%	0.82\%	0.02\%	1.37\%	0.66\%	1.44\%	1.52\%	0.36\%	0.35	1.80\%	. 48
2029	0.59\%	-0.06\%	1.55\%	1.04\%	29\%	1.30\%	1.82\%	1.14\%	1.41\%	1.13	.38	0.88\%	1.33\%	0.80	-0.07\%	1.33	0.66	1.41\%	1.48\%	0.33\%	0.33	. 76	0.46\%
2030	0.57\%	-0.11\%	1.52\%	1.02\%	1.30\%	1.27\%	1.78\%	1.11\%	1.37\%	1.10\%	0.37\%	0.86\%	1.30\%	0.78\%	-0.13\%	1.30\%	0.63\%	1.38\%	1.45\%	0.30\%	0.31\%	1.72\%	0.45\%
2031	0.54\%	-0.11\%	1.48\%	99\%	1.31\%	1.24\%	1.74\%	1.09\%	1.34\%	1.07\%	0.35\%	0.85\%	1.27\%	0.77\%	0.00\%	1.27\%	0.61\%	1.35\%	1.41\%	0.27\%	0.29\%	1.68\%	0.43\%
2032	0.53\%	-0.13\%	1.45\%	0.97\%	1.32\%	1.21\%	1.70\%	1.07\%	1.31\%	1.05\%	0.34\%	0.82\%	1.24\%	0.75\%	-0.11\%	1.24\%	0.60\%	1.31\%	1.38\%	0.24\%	0.27\%	1.64\%	0.42
2033	0.50\%	-0.17\%	1.41\%	0.95\%	1.33\%	1.17\%	1.66\%	1.04\%	1.28\%	1.02\%	0.32\%	0.81\%	1.21\%	0.73\%	-0.14\%	1.21\%	0.58\%	1.28\%	1.34\%	0.22\%	0.26\%	1.60\%	0.40\%
2034	0.48\%	-0.15\%	1.38\%	0.93\%	1.34\%	1.14\%	1.62\%	1.02\%	1.25\%	0.99\%	0.30\%	0.79\%	1.18\%	0.71\%	-0.11\%	1.18\%	.56\%	1.25\%	1.31\%	0.19\%	0.24\%	. 56%	. 39
2035	0.45\%	-0.20\%	1.34\%	0.90\%	1.35\%	1.12\%	1.58\%	0.99\%	1.22\%	0.96\%	0.29\%	0.76\%	1.15\%	0.69\%	-0.11\%	1.14\%	0.53\%	1.22\%	1.27\%	0.16\%	0.22\%	1.52\%	0.37

Cascade Natural Gas
2010 IRP Demand Forecast
Economic Indicators

PROJECTED INCOME GROWTH

 \begin{tabular}{lllllllllllllllllllllllll}
\&

2013 \& 1.45% \& 2.10% \& 1.01% \& 1.38% \& 1.60% \& 2.10% \& 1.51% \& 0.94% \& 0.20% \& 0.87% \& 1.82% \& 1.93% \& 1.48% \& 1.44% \& 2.25% \& 1.07% \& 1.25% \& 1.09% \& 0.30% \& 1.79% \& 1.22% \& 1.75% \& 1.51%

2014 \& 1.53% \& 2.18% \& 1.11% \& 1.46% \& 1.65% \& 2.21% \& 1.63% \& 0.96% \& 0.30% \& 0.95% \& 1.87% \& 1.96% \& 1.55% \& 1.51% \& 2.29% \& 1.12% \& 1.33% \& 1.17% \& 0.37% \& 1.84% \& 1.28% \& 1.81% \& 1.56%

\hline

2015 \& 1.60% \& 2.21% \& 1.21% \& 1.54% \& 1.70% \& 2.29% \& 1.75% \& 1.02% \& 0.39% \& 1.04% \& 1.93% \& 2.03% \& 1.61% \& 1.58% \& 2.46% \& 1.19% \& 1.35% \& 1.26% \& 0.45% \& 1.91% \& 1.34% \& 1.88% \& 1.61%

\hline
\end{tabular}

2024	2.11%	2.62%	1.90%	2.02%	2.08%	3.04%	2.58%	1.54%	1.09%	1.65%	2.36%	2.53%	2.10%	2.10%	2.85%	1.78%	1.85%	1.91%	1.22%	2.33%	1.77%	2.35%	2.01%

 | |
| :--- |
| 2027 | 2.27% | 2.72% | 2.09% | 2.16% | 2.19% | 3.25% | 2.81% | 1.69% | 1.29% | 1.82% | 2.49% | 2.69% | 2.24% | 2.27% | 3.04% | 1.96% | 1.96% | 2.10% | 1.44% | 2.47% | 1.89% | 2.48% | 2.13% |

 \begin{tabular}{|lllllllllllllllllllllllll}
\& 2029 \& 2.36% \& 2.76% \& 2.19% \& 2.24% \& 2.25% \& 3.38% \& 2.93% \& 1.76% \& 1.39% \& 1.92% \& 2.55% \& 2.76% \& 2.32% \& 2.35% \& 3.05% \& 2.05% \& 2.02% \& 2.21% \& 1.57% \& 2.54% \& 1.96% \& 2.56% \& 2.19%

2030 \& 2.39% \& 2.79% \& 2.24% \& 2.27% \& 2.27% \& 3.42% \& 2.99% \& 1.81% \& 1.45% \& 1.96% \& 2.58% \& 2.80% \& 2.35% \& 2.38% \& 3.14% \& 2.09% \& 2.06% \& 2.25% \& 1.62% \& 2.57% \& 1.99% \& 2.60% \& 2.21%

\hline

\& 2.230 \& 2.34% \& 2.81% \& 2.28% \& 2.30% \& 2.29% \& 3.46% \& 3.04% \& 1.83% \& 1.49% \& 2.00% \& 2.60% \& 2.81% \& 2.38% \& 2.42% \& 3.06% \& 2.13% \& 2.10% \& 2.30% \& 1.67% \& 2.59% \& 2.01% \& 2.62% \& 2.23%

\hline
\end{tabular}

 | 2033 | 2.49% | 2.86% | 2.36% | 2.36% | 2.32% | 3.57% | 3.14% | 1.90% | 1.57% | 2.07% | 2.64% | 2.88% | 2.45% | 2.47% | 3.19% | 2.19% | 2.14% | 2.38% | 1.78% | 2.64% | 2.05% | 2.68% | 2.27% |
| :--- |
| 2034 | 2.54 | |

2011	-0.92%	3.32%	-0.57%	1.24%	1.12%	4.92%	0.25%	0.86%	0.05%	0.58%	3.57%	0.32%	1.23%	-0.13%	1.60%	1.62%	3.42%	2.42%	1.17%	-0.17%	2.55%	1.41%

2023	1.17%	1.44%	1.04%	1.12%	1.16%	1.67%	1.41%	0.84%	0.58%	0.90%	1.32%	1.40%	1.16%	1.17%	1.61%	0.98%	1.01%	1.05%	0.65%	1.30%	0.98%	1.30%	1.12%

 \begin{tabular}{llllllllllllllllllllllllllll}

2033 \& 1.40% \& 1.61% \& 1.33% \& 1.33% \& 1.31% \& 2.00% \& 1.77% \& 1.08% \& 0.89% \& 1.17% \& 1.49% \& 1.62% \& 1.38% \& 1.40% \& 1.80% \& 1.24% \& 1.21% \& 1.34% \& 1.01% \& 1.49% \& 1.16% \& 1.51% \& 1.28%

\hline

2034 \& 1.41% \& 1.61% \& 1.36% \& 1.34% \& 1.32% \& 2.02% \& 1.79% \& 1.09% \& 0.91% \& 1.19% \& 1.50% \& 1.64% \& 1.40% \& 1.41% \& 1.80% \& 1.26% \& 1.23% \& 1.37% \& 1.04% \& 1.51% \& 1.18% \& 1.53% \& 1.30%

2035 \& 1.44% \& 1.63% \& 1.38% \& 1.36% \& 1.33% \& 2.05% \& 1.82% \& 1.12% \& 0.94% \& 1.21% \& 1.51% \& 1.66% \& 1.42% \& 1.44% \& 1.80% \& 1.28% \& 1.25% \& 1.39% \& 1.07% \& 1.53% \& 1.20% \& 1.55% \& 1.31%

\hline
\end{tabular}

[^2]Cascal Nataral Gas
2010 Rep emend
Mefium Sconaraicasio

	10，135	82\％	，188	0285	，393\％	484	0．51\％	0.45	0，488	0.475	0，480	0．438	048	O4，	5ss	0，485	0，48	，408	48	，as	428
	coich		com	come	cosis		（tase						cos								
	510，	20，		tent	，		，	coin	${ }^{13} 8$	边 13172	12， 210	，11，	${ }_{\text {coseme }}$	120，te9	${ }^{12}$	\％	\％，18	SSLes	y，	erzo	，at5
		$\xrightarrow{\text { c，sezase }}$	，				（1，				cose	（13，288	（19238	，	（13，288		10，00， 58	cisem	（19328		
${ }^{8243}$	82,79	®．，54	8.112	8，688	${ }_{6227}$	${ }_{8,508}$	${ }_{6}^{18,389}$	¢，${ }^{\text {a }}$	88,50	${ }_{\text {\％r，as8 }}$	x，381	sam2	29，32	m，088	o．s．s	n．102	13.38	2068	10	508	33518
480	448	${ }_{432}$	${ }_{4}^{438}$	${ }_{4}^{4} 46$	${ }_{4,48}^{142}$	${ }_{4}^{1428}$	${ }_{4}^{148}$	${ }_{4}^{1465}$	${ }_{4,48}^{45}$	${ }^{108}$	${ }_{4}^{46}$	${ }_{4}^{462}$	${ }_{4507}^{42}$	${ }_{4519}$	${ }_{4,58}^{488}$	${ }_{\substack{758 \\ 4,357}}$	${ }_{4,51}^{408}$			${ }_{\text {cose }}$	ciem
20，	2，	S		为			${ }^{1228}$	\％		旡		边				退		\％ 6.50	20	Sise	
11.22	${ }_{1,19}$	${ }_{1}^{1,162}$	${ }^{1,58}$	1.16	1.10	\％176	${ }^{\text {1，} 1,12}$	（10）	（1，94	120	${ }^{1207}$	${ }^{124}$	1220	122	${ }_{123}$	，	（126）	\％	，	1200	${ }^{1273}$
${ }^{14}$	${ }^{13}$	${ }^{14}$	${ }^{14}$	4	${ }^{14}$	${ }^{14}$	${ }^{14}$	${ }^{14}$	${ }^{14}$	${ }^{14}$	${ }^{14}$	${ }^{14}$	${ }^{14}$	${ }^{14}$	${ }^{14}$	${ }^{18}$	14	${ }^{15}$		${ }^{15}$	
¢48	6，39	${ }_{6} 6.5$	6，50	${ }_{6} 6.5$	6，${ }^{2}$	${ }_{6} 6$	${ }_{672}$	6，788	6090	$\stackrel{681}{ }$	，	$\underline{804}$	（2955	${ }^{1,0,9}$	，	\％	$\xrightarrow{2}$	${ }_{\text {2，120 }}$	208	${ }_{12}^{126}$	

Commexial thems

\qquad

	－795\％	10298	${ }^{\text {3775 }}$	${ }^{3585}$	${ }^{3} 4.45$	${ }^{3} 9.95$	${ }^{3385}$	${ }^{338 \%}$	${ }^{3,285}$	327%	${ }^{3804}$	${ }^{2989}$	${ }^{228 \%}$	${ }^{2988}$	397\％	${ }^{202 \%}$	${ }^{2585}$	${ }^{2714}$	${ }^{249 \%}$	${ }^{2335}$	${ }^{2258}$
		come				cin	ceme				come		，							（2，	
${ }^{3123216}$	${ }^{272748}$	${ }_{50220} 5$	${ }^{\text {470384 }}$	${ }^{28280}$	412，${ }^{\text {am }}$	${ }^{20330}$	${ }_{4}^{47323}$	${ }^{46588}$	${ }^{\text {cisitar }}$			cex			（ear						
	${ }^{2,120227}$	26，002935	${ }^{2,4,4547}$	${ }^{2,302085}$	2，0，	${ }^{3}$	${ }^{3,515}$	${ }_{\text {2 }}$	3,	${ }^{26,7,138}$		${ }_{36,87274}$	3，382，	3，4，472	（0222，	4.36	$12.20,182$	43.5	4.65	4560939	，
${ }_{32047}$	${ }^{30} 885$	${ }^{\text {30，76 }}$	${ }^{207868}$	${ }^{22,54}$	42.18	${ }^{460,79}$	\％7856	${ }^{67883}$	51680	${ }^{\text {se，}}$ ， 46	556.42	spras	${ }^{58,70}$	${ }^{61995}$	\％1．50	copas	${ }^{\text {\％xams }}$	${ }^{70,183}$	${ }^{\text {т3996 }}$	${ }_{\text {rs，} 21}$	12764
${ }_{\substack{687 \\ 4685}}^{681}$	（1500	${ }_{\substack{485 \\ 4288}}$	${ }_{\substack{561 \\ 423}}^{\text {420 }}$	${ }_{4}^{488}$				cisis	（104	${ }_{\text {ction }}^{\text {4，}}$	${ }_{\substack{592 \\ 3988}}^{\text {asi }}$	（500			${ }_{\substack{\text { cis } \\ 3.87}}$	cisit	${ }_{\substack{565 \\ 375}}$		${ }_{\substack{\text { s．} \\ 388}}$	${ }_{\substack{541 \\ 358}}^{\text {and }}$	${ }_{\substack{\text { ase } \\ 3.500}}^{\text {as }}$
trase	14 es	32275	28712	2231	25097	25370	27.15	2asm	2837	2898	2798	${ }^{2} 745$	28，40	2995	3072	m，at1	2024	31282	3130	mam	起
${ }_{298}$	${ }_{3,0 \times 3}$	${ }_{3219}$	${ }_{3,361}$	${ }_{3,56}$	${ }_{3,58}$	${ }_{3}{ }_{3,095}^{5}$	${ }_{\text {a }}$	4.17	${ }_{4}{ }^{427}$	$4{ }^{40}$	468	476	49	${ }_{5}^{515}$	${ }_{5} 5.4$	${ }_{5}^{545}$	5680	${ }_{\text {cise }}$	（ax	${ }_{614}$	\％${ }^{488}$
2ess	2	2ent	159		23	20as	mes	130	12	\％	Sose	S， 68	\％es	\％es	mas	12	（1）	msa	429	（175	， 838

	－1099\％	1338 x	2，44\％	．095\％	034\％	$0^{\text {osis\％}}$	1018	0 0es\％	${ }^{\text {0．585 }}$	oss\％	O94\％	0.068	$0^{0.585}$	08985	1.888	0，6\％	0．87\％	0 0885	022\％	0.658	068\％
，	cose		cose	cos	cos	coick	cosk	cosm		cose	cos	cos	cosk	cosititisem	$1,761,085$ $5,584,879$	$1,774,133$ $5,641,725$	$1,787,100$ $5,697,83$	$1,801,108$ $5,747,827$	cit		come
			${ }_{\text {che }}^{\text {crices }}$	$\underset{\substack{\text { ceazei } \\ 11754}}{ }$		${ }_{\substack{\text { siliza } \\ 11754}}$			50，789	Stiser	sires		sin		（10，799	Son	Sisme		Stich		（sss）
$7.20,80$	6，5207	${ }^{1 / 4.458}$	${ }^{1,1 / 2 \times 8 \times 2}$		1，4．4535	${ }^{1,9,685}$	${ }_{1752200}$	7，00，795	${ }_{1,4 \times 2 \times 290}$		${ }^{7,9,938}$	${ }^{1,4,6,67}$	${ }_{7,88,49}$	${ }_{7}^{7,98265}$	80，	8，2，3，541	B，rasaz	825，0，4	830，44	${ }^{\text {B，}, 4128}$	（14531
88.124	8159	1222	8281	${ }^{3 \times 45}$	Q，13	8182	${ }^{\text {w5 } 586}$	¢，34	87887	trase	\％17s	83851	poas	937	${ }^{2225}$	0,138	9，08	ss，06	\％9，94	mess	9，393
$\underset{\substack{600 \\ 4.47}}{ }$	（3．00	${ }_{4}^{628}$	${ }_{4}^{1824}$	${ }_{4}^{628}$	${ }_{4}^{69}$	${ }_{\substack{618 \\ 4,38}}^{\text {4，}}$		$\underset{\substack{815 \\ 438}}{818}$	${ }_{4}^{6139}$	${ }^{\text {cisem }}$	${ }_{\text {\％}}$	（807\％	${ }_{432}$	（	${ }_{\text {con }}^{\text {and }}$	4,48	$\underset{\substack{\text { 59\％} \\ 4 \times 43}}{ }$		（18）	${ }^{591}$	（esm
17,39	${ }_{18,38}$	2228	2298	2.58	1931	13， 32	2227	198	（1398	1838	19275	113s0	1748	1730	19.45	1880	1228	18,28	17987	17315	${ }_{6}^{658}$
${ }_{\text {l }}^{1,38}$		${ }_{1}^{27.151}$			${ }_{\text {con }}$			${ }_{1}^{2124}$	${ }_{1213}^{2218}$		－	${ }^{21212}$	${ }_{122}^{2,26}$	${ }_{122}^{2120}$	${ }_{121}^{2127}$	${ }_{1}^{2209}$	${ }_{121}^{290}$	${ }^{3.200}$	${ }^{3.130}$		
n	29	2	${ }_{3}$	${ }_{30}$	${ }_{30}$	${ }_{30}$	${ }_{30}$	n	${ }_{3}$	${ }_{30}$	3	3	3	3	3	3	3	3	32	2	
37.3	3，44	3,73	， 7,9	3.89	，389	，, ， 2	， 2,95	3，960	${ }^{3.96}$	409	，01	4，09	2，	4，00	［231	423	4，36	， 39	asa	449	4 498

$2017 \quad 2018$

209	S20\％	2011	${ }^{2012}$	${ }^{2013}$	1.008	${ }_{\text {20085 }}^{2015}$	${ }^{2016}$
							${ }_{194 \%}$
${ }^{1,20294}$		${ }^{1.58594}$	${ }^{1,20097}$		${ }^{1,187729}$	${ }^{1.108783}$	
2066en							
4，8，400	3s5320	4 4，50808	4080，${ }^{\text {a }}$	418， 101	4.4829	4218.39	428,159
${ }^{3.668}$	${ }^{3,462}$	3.580	${ }^{3.881}$	${ }_{3,067}$	${ }^{364}$	${ }^{369}$	
					（1288		$\underset{\substack{22128 \\ \text { sis }}}{\substack{\text { a }}}$
${ }_{4} 4178$	${ }_{3} 312$	3 l	${ }_{3689}$	${ }_{3,68}$	${ }^{368}$	${ }^{3} 6$	${ }_{3}^{36,4}$
	$\frac{3837}{1284}$	$\frac{1257}{183}$	$\frac{3266}{1.460}$	$\frac{12388}{1808}$	$\frac{3226}{124}$	$\frac{32183}{12180}$	$\frac{\text { kipem }}{12080}$
${ }^{69}$	${ }^{11}$	${ }^{68}$		${ }^{62}$	${ }^{19}$	${ }^{681}$	${ }_{\text {482 }}^{48}$
${ }^{18}$	\％	\％	19	${ }^{20}$	20	，	${ }^{\circ}$
		${ }_{238}$	2085	2.39	3s	288	2382

	${ }^{112485}$	13755	${ }_{1,59}$	${ }_{1 / 89}$	1180	1989	${ }^{2685}$		${ }_{1090}$	199\％	${ }_{\text {198\％}}$		${ }_{1 \times 8 \times}$	${ }_{1 \times 2 \times 8}$	2128	${ }^{100 \%}$	1.675	${ }_{\text {1，785 }}$	1 1s5\％	${ }_{159}$	${ }_{1585}$
					cismer				cimes			cisk	（13，	cismex	come	$\begin{aligned} & \hline 34,918,517 \\ & 20,403,314 \end{aligned}$	cismisit			come	
${ }^{1929734}$	${ }^{12878.488}$	${ }^{1585680}$	${ }_{1}^{122,3,59}$	${ }_{1}^{123235}$	128023	${ }^{1,18,18,83}$	1.1085	${ }^{1,098580}$	${ }^{90128}$	gr7，102	saxam	${ }^{821,160}$	${ }^{75854}$	${ }_{78888}$	${ }^{7065}$	${ }^{\text {bri，sm }}$	${ }^{\text {esamas }}$	${ }^{60} 1020$	${ }^{52225}$	${ }^{557} 70$	
（2anema	\％	\％	4	\ldots	\％	cemem	\％	\％	\％ex		\％ex	\％esme	（2，2els	\％	\％	\％esem	\％		H2，		（12， 5
	3\％，90																				
43837	${ }^{49} 885$	soses	s1273	${ }^{21 / 39}$	${ }_{3328}$		se234	${ }^{3}$	587，96	somest	${ }^{64,198}$			ess， 30							
$\xrightarrow[\substack{208 \\ 3.50}]{ }$		${ }_{3}^{738}$	$\underset{\substack{\text { n28 } \\ 329}}{ }$	${ }_{\substack{724 \\ 328}}$	$\underset{\substack{722 \\ 328}}{ }$	${ }_{\substack{721 \\ 3286}}$	${ }_{\substack{200 \\ 327}}$	${ }_{\substack{718 \\ 325}}^{\text {jes }}$	${ }_{\substack{168 \\ 3288}}$	$\underset{\substack{74 \\ 327}}{ }$	－	$\underset{\substack{710 \\ 325}}{ }$	$\xrightarrow[\substack{780 \\ 320}]{70}$	${ }_{3}^{768}$	${ }_{\substack{725 \\ 3235}}$	$\underset{\substack{721 \\ 3226}}{ }$	${ }_{\substack{\text { 200 } \\ 3208}}$	¢	${ }_{308}{ }^{628}$	${ }_{\substack{620 \\ 3225}}^{\text {\％}}$	${ }_{\substack{620 \\ 326}}$
${ }^{200782}$	${ }_{\text {cose }}$	${ }_{7}^{1738}$	${ }_{17201}$		${ }_{1783}$	${ }_{1}$	12,87	${ }_{17888}$	1， 2 ，	${ }_{17898}$	${ }_{72,58}$	${ }_{172}$		${ }_{7} 504$	${ }_{17380}$	${ }^{1724}$	tron	1278	2712	\％	
${ }^{35,14}$	${ }_{3683}$		${ }^{37304}$				\％093		12099		Mro				48311						
${ }_{4,48}$	4.581	467	427	48	431	5．96	16	${ }_{628}$	47	${ }_{653}$	568	5.78	95	8091	157	${ }^{266}$	14	${ }^{45}$	\％86		${ }^{23}$
8			∞			${ }_{0}$			${ }^{5}$	52				4							

	Sast	3785	0．585	O，065	0.75	0，175	0，00\％								65s	Sas	Sast	，158	14s	as	200
	，	4，54，180	ctis	，6ax	4，			comer	cose	cex		，	，					cixame	（iskefo	${ }_{\text {a }}$	comes
${ }_{1}^{130,8080}$	${ }^{1337589}$	12 zase	${ }^{1204,461}$	1，1冖arı	1，12，192	${ }^{1121257}$	${ }^{1.987736}$	${ }_{1}^{1,74235}$		${ }^{1.093746}$	1.1081888	293900	seat5	${ }^{302850}$	${ }^{82128}$	${ }^{\text {ge276 }}$	94200	801220		30681	Mens
\％ 3 Stem	8，706es	\％oz299	，	Bemose	8，07se	Bmeses	Sorate	S0，	Someso	20，	，m，73735	mosme				s，omess	，om，	（2，0．s．81	\％，05．39	，	，
gate	¢	mab	9894	${ }_{\text {max }}$	${ }_{\text {max }}^{\text {max }}$	come	coicle	$\underset{\substack{10898 \\ 598}}{ }$	come	（10128	${ }_{\text {cosem }}^{\substack{19.508}}$	cos	边	（1248）	星	（12937	，	，	\％	cise	\％08
${ }_{3,105}$	${ }_{3,30}^{2010}$	${ }_{3,38}$	330	${ }_{\text {a }}^{\text {3，38 }}$	${ }_{3,365}$	${ }_{3} 3,3$	${ }_{339}{ }^{39}$	，	${ }_{3}{ }^{3,23}$	330	$\underset{3}{368}$	，	${ }^{3}$	－	${ }_{\text {cose }}$	${ }_{3}^{1230}$	${ }_{\text {cose }}$		${ }_{\substack{186 \\ 3,39}}$	${ }^{\text {axs }}$	${ }_{3}^{1031}$
${ }^{233616}$	${ }^{2} 284$	${ }^{2} 228$	${ }_{2}^{25861}$	23，4er	${ }^{2} 8811$	${ }^{2}$	28.68	${ }^{2} 442$	24，27	${ }_{2097}^{293}$	${ }^{2389}$	23，58	2320	2008	${ }^{23225}$	${ }^{2946}$	${ }^{2664}$	${ }^{22386}$	22276	${ }_{2,198}$	2，83
${ }_{1}^{1230}$	${ }_{1}^{1,39}$	${ }_{1 / 38}$	${ }_{1 / 34}$	${ }_{\text {1，30 }}$	${ }_{136}$	131	137	${ }^{3}$	${ }_{138}$	132	${ }_{39} 9$	${ }_{1,42}$	${ }_{1,46}$	1.40	${ }_{\text {lat }}^{1 / 4}$	${ }_{14}^{14}$	${ }_{142}$	1.285	1488	${ }_{1,31}$	${ }_{1,24}$
${ }^{\prime \prime}$	4	${ }^{6}$	＂	${ }^{6}$	4	${ }^{5}$	${ }^{4}$	＂	4	${ }^{3}$	4	12	4	${ }^{\prime \prime}$	＂	${ }^{1}$	${ }^{0}$	＊	40	${ }^{8}$	
6 64	6.67	6.6	697	，721	6，7，5	6，768	6，70	，	6×3	6s8	， 34	6，94	693	6，91	（sa0	6997	，	200	O6	，	，

[^3]| | 12936 | 9，958 | 0，408 | 0.458 | oamm | Oast | 09\％5 | 0.085 | Osasm | 0．es\％ | 0ris | 0.48 | 0，4\％ | 0．51\％ | arme | 0，3\％ | 030\％ | 0.48 | 0275 | 0.185 | 0.188 |
| :---: |
| | （tiores | | | | | | cien | | （702598 | cipes | | | | | | | | | citiseme | | cisin |
| ${ }^{4} 147.78$ | ciseme | 4．12，725 | 4．14，944 | 4ex | ${ }^{\text {4，}}$ | ${ }^{\text {a }}$ | 487， | ${ }^{4}$ | ， | ${ }^{\text {a }}$ | cose | | ${ }_{4}^{4.39238}$ | ， | | | ${ }^{4} 8$ | | ${ }_{\text {cosem }}$ | 7， 7 \％ | |
| | S．903 512 | 19.94158 | 10，90996 | \％，Masso | 1，10，4，42 | | 1120.689 | ${ }^{1,3,5656}$ | $1.202,40$ | ${ }^{1.50693}$ | 1.5013 | M， $1,1,31$ | ${ }^{1.8,1,178}$ | 1，74，1，189 | 1 msas ， 6 | M，9，420 | ${ }^{1,2927272}$ | | 120154.33 | 120.656 | 20，2955 |
| ${ }_{\substack{17.938 \\ 16,138}}^{7}$ | | | | | （isk | | 17320 | ${ }^{71823}$ | $\xrightarrow{7 \text { mpix }}$ | | | | | | | | | | | （ix | |
| ${ }_{608}$ | ${ }_{58}$ | ${ }_{60}$ | ${ }^{81}$ | ${ }^{24}$ | ${ }_{80} 8$ | ${ }^{619}$ | 80 | ${ }_{68}$ | ${ }_{615}$ | ${ }_{64}$ | ${ }_{614}$ | ${ }_{60}$ | ${ }^{86}$ | ${ }^{60}$ | ${ }_{60}$ | ${ }^{\text {ar }}$ | ${ }^{64}$ | ${ }^{63}$ | 80 | ${ }^{597}$ | 5 |
| ${ }^{3,455}$ | ${ }^{3,1,5}$ | ${ }^{325}$ | ${ }^{3} \mathbf{3} 27$ | ${ }^{3368}$ | ${ }^{3319}$ | ${ }_{3}^{3313}$ | ${ }^{3338}$ | ${ }^{330}$ | ${ }^{3300}$ | ${ }^{324}$ | ${ }_{3}^{325}$ | ${ }^{3284}$ | ${ }_{3}^{325}$ | 3278 | ${ }^{3239}$ | ${ }^{3228}$ | ${ }^{3285}$ | ${ }_{3}^{3245}$ | ${ }^{3224}$ | ${ }^{328}$ | ${ }^{3285}$ |
| 退 | | | ${ }_{\text {losem }}$ | | 0， | Hex | ， | （1，30 | He， | U1583 | （1， 68 | 1180 | 1988 | ${ }^{2,291}$ | ${ }^{12250}$ | ${ }^{22284}$ | | ${ }^{12,450}$ | ${ }^{212582}$ | | ${ }^{1274}$ |
| ${ }_{3}^{121}$ | 128 | ${ }^{284}$ | ${ }^{281}$ | 129 | | | ${ }^{29}$ | ${ }_{2}^{12 \pi}$ | ${ }_{3}^{332}$ | | $\stackrel{315}{3}$ | $\stackrel{221}{2}$ | 1,327 2 | $\stackrel{138}{23}$ | 1，339 | ${ }^{134}$ | ${ }^{138}$ | $\underset{2}{1,35}$ | ${ }^{131}$ | ${ }^{136}$ | |
| 1. | n， 162 | ${ }_{1}^{1,23}$ | 11.36 | ${ }_{12055}$ | 12，14 | ${ }_{1230}$ | ${ }_{124}$ | ${ }_{12,05}$ | ${ }_{12,41}$ | ${ }_{12,54}$ | $\stackrel{13,05}{\text { in }}$ | ${ }_{13,13}$ | 1327 | ${ }_{\text {\％}}^{13,36}$ | 13,9 | 1， 3 ¢ | ${ }^{13,05}$ | ${ }_{13,07}$ | ${ }^{13094}$ | \％，998 | 14067 |

	${ }^{10858}$	083\％	${ }^{-5.95 \%}$	．entis	－0，085	－998\％	．1098	－98\％	${ }^{\text {ass\％}}$	－1075		$\underline{\text { come }}$	${ }^{0.885}$	11148	－13985	－1075	$\underline{1098}$	－1．988	．1225	$\underline{1095}$	
	coicle	come	come	con	con	come	cos			cosis		come		cis	cos	come	cose	come	ciele	come	
	${ }^{127839}$	${ }^{20} 8$ ent	${ }^{\text {mosege }}$	${ }^{2}$	57	${ }_{50} 81.127$	${ }^{588}$	50	70	（8，	，	204	，	ciock		ci，	tione		cosm		
cose	Sempise	cosis	Sememe		S．50，95	，	S．	S．e．tse	，	S20，		S．	S，	Somber	\％	${ }_{\text {cosem }}^{\text {cosis }}$	${ }^{4.808768}$	\％	4，6，	，	（emose
${ }^{4.959}$	${ }^{\text {s．0．}}$	5，0］		${ }^{\text {s，mem }}$	\％es	${ }^{194}$	${ }^{\text {a }}$	${ }_{4}^{4,46}$	4，76	\％，7，	\％en		4，5id	\％	\％，460	${ }^{4.438}$	${ }^{4.365}$	${ }^{4313}$	${ }^{424}$	${ }^{4218}$	
${ }_{\text {coren }}$	${ }^{\text {coinc }}$	${ }^{6019}$	${ }^{60298}$	${ }_{\text {cosem }}^{6,48}$	emes	${ }_{\text {coraz }}^{10}$	${ }_{\text {cides }}$	gitas	coile	（1278	，	cisk	${ }_{\text {cosem }}$				$\underset{\substack { 6129 \\ \begin{subarray}{c}{2{ 6 1 2 9 \\ \begin{subarray} { c } { 2 } }\end{subarray}}{ }$		（2，488	${ }^{6,545}$	$\underbrace{}_{\substack { 1268 \\ \begin{subarray}{c}{69{ 1 2 6 8 \\ \begin{subarray} { c } { 6 9 } }\end{subarray}}$
${ }_{5 \times 37}$	$4{ }_{4} 712$	5.008	5018	493	${ }_{488}$	$4{ }_{4}^{4} 4$	${ }_{4}^{4,74}$		458	45	442	4355	4279	4,197	4,04	4084	${ }^{394}$	3，300	a，700	3701	\％
${ }^{174}$	${ }^{700}$	${ }^{700}$	${ }^{59}$	${ }^{78}$	${ }^{78}$	${ }^{156}$	${ }^{75}$	${ }^{76}$	${ }^{784}$	${ }^{73}$	${ }^{78}$	${ }^{783}$	${ }^{738}$	${ }^{788}$	${ }^{738}$	${ }^{73}$	${ }^{78}$	${ }^{154}$	${ }^{54}$	${ }^{584}$	
228	2 m	23	210	235	121	22	210		212		210	23	210	230	213	2ve	210	218	2ma	2109	200

 cind

	S638	7 \％ex	Oarce	，1888	， 6 W	${ }_{2385}$		2115									2235		35\％	2214	2198
cosm	$27,584,941$ $17,303,858$	$29,192,054$ $18,816,696$	$29,584,595$ $19,034,560$	$30,019,483$ $19,339,623$	$30,522,224$ $19,796,333$ $1,778,376$	$\begin{array}{r} 31,128,048 \\ 20,490,787 \\ 1,716.585 \end{array}$	$31,782,738$ $21,302,587$ $1,673,769$	$\begin{array}{r} 32,367,103 \\ 21,936,497 \\ 1,609.277 \end{array}$	$\begin{array}{r} 32,941,903 \\ 22,540,051 \\ 1,545,070 \end{array}$	$33,591,377$ $23,323,180$ $1,504,832$	$34,275,079$ $24,189,133$ $1,474,523$	$34,888,821$ $24,871,616$	$35,485,748$ $25,494,221$ $1,374,225$	$36,174,311$ $26,356,509$ $1,346,533$	$37,066,412$ $27,761,775$ $1,365,335$	$\begin{array}{r} 37,742,158 \\ 28,581,923 \\ 1332,069 \end{array}$	$\begin{array}{r} 38,437,114 \\ 29,440,146 \\ 1,305,172 \end{array}$	$\begin{array}{r} 39,211,500 \\ 30,516,829 \\ \hline 1202,046 \end{array}$	$\begin{array}{r} \hline 39,946,044 \\ 31,472,634 \\ 1272770 \end{array}$	$\begin{array}{r} 40,668,160 \\ 32,381,705 \\ 1750620 \end{array}$	
20，5394		S20n95	S0，	${ }_{5122388}$	${ }^{8209694}$	S3， 5 S． 20	S．75894	\＄592788	5，072，04	Sa／4，30	598875	${ }_{\text {61，18285 }}$	${ }^{\text {L234，} 194}$	${ }^{\text {anemins }}$		6，68， 1.0	（1，12422	${ }^{2102725}$	${ }^{12623288}$	${ }^{7} 4.30693$	${ }^{\text {ara，36 }}$
se7，	51.204	${ }_{58158}$	s2776	cex．125	${ }^{615} 71$	${ }^{2784} 87$	63,450	es．5m	6838	G\％\％47	\％8829	\％2．19	${ }_{71529}$	Trast	${ }_{72} \mathbf{2}, 98$	T858921	${ }_{\text {\％6993 }}$	${ }_{\text {ratau }}$	${ }_{\text {\％osic }}$	${ }^{831,158}$	grase
（188	${ }_{\text {278 }}^{\text {278 }}$	（18）	$\xrightarrow{781}$		${ }^{\text {200 }}$	${ }_{\text {cher }}^{\substack{796}}$	$\xrightarrow[\substack{783 \\ 2 \times 81}]{ }$	$\xrightarrow{788}$	$\xrightarrow{788}$	（104	（7ex	$\xrightarrow{706}$	${ }_{\substack{765 \\ 3020}}^{70}$	，	$\xrightarrow{711}$	${ }_{32}^{724}$	$\underset{3200}{720}$	${ }_{\substack{74 \\ 3.88}}$	${ }_{\substack{n 4 \\ 3,30}}$	$\underset{\substack{775 \\ 3,36}}{ }$	${ }^{3,300}$
速		${ }^{2}$	${ }_{\text {che }}^{23}$	${ }_{\text {cosem }}$			${ }^{28912}$	2301	${ }_{\text {cose }}^{2688}$			边		3，7ex		边	边	旡	为	边	
边	，	，	cosk	cose	cose	边		$\xrightarrow{1230}$	${ }^{\text {che }}$	，	，				边						cos
5	5	5	5	${ }^{4}$	4	S	4	12	40	${ }_{39}$	${ }^{3}$	${ }_{3}$	${ }_{36}$	${ }_{8}$	${ }_{3}$	${ }_{3}$	${ }_{3}$	${ }_{3}{ }^{3}$	${ }_{3}$	${ }_{3}$	
4.381	a， 87	M， 4	${ }_{\text {ancos }}$	\％， 17	8，${ }^{\text {ase }}$	， 1,3	887	\％ex	s，78	s，707	${ }^{2681}$	3867	S684	Smen	\％670	5，780	s， 9	5，984	6，088	${ }^{62125}$	

	1275	20328	2298	108	明	0.128	${ }_{\text {osas }}$	．0．85	0548		63\％	0．47\％	0785		2，38	27\％	H\％	as	2938	0285	．ons
									${ }_{2}^{26858.911}$												
${ }^{27050}$	${ }^{20,106}$			\％sis	${ }_{48 \text { an }}$	${ }_{\text {cks }}$		${ }^{2053858}$	40，10	，	${ }_{\text {20，}}$	，	${ }_{3775}$	${ }_{\text {24320 }}$		${ }^{28182020}$	${ }^{20}$	${ }^{200980}$	${ }_{\text {227ras }}$	${ }_{20}^{20,5080}$	
520858	4586	Scsess	S．3， 0^{2}	S23530	S．17，477	S．10，087	5206888	s，17，39	5，12，2， 5	s．18472	s．mm	5，15，5．58	S．113， 9	5，124．12	520，3，59	b221，90	52213,59	5220,76	S280，96	S24462	［20， 0^{2}
3，	， 3,30	${ }^{4} 9$	${ }^{3.368}$	3ex	${ }^{\text {3／4m }}$	920	3888	${ }^{388}$			， 3 ane	边	$\underbrace{3,2780}$		${ }_{\text {cex }}^{198}$				mom		
$\substack { 30.48 \\ \begin{subarray}{c}{81{ 3 0 . 4 8 \\ \begin{subarray} { c } { 8 1 } } \end{subarray}$	cis	cone			$\substack { \text { 20，} \\ \begin{subarray}{c}{56 \\ 50{ \text { 20，} \\ \begin{subarray} { c } { 5 6 \\ 5 0 } } \end{subarray}$	（1022		cisise	${ }_{\substack{\text { ajose } \\ 53}}$	（1209	cose		${ }_{58}$			（1000	${ }_{57} 7$		（ix	（1，	，
${ }^{3321}$	274	${ }^{3,161}$	${ }^{3} \times 100$	${ }^{3.004}$	${ }^{298}$	${ }^{292}$	${ }^{3935}$	${ }^{302}$	${ }^{3017}$	${ }_{3}^{3087}$	3088	${ }_{3}^{3.468}$	3.08	3，093	${ }^{3.51}$	${ }^{3,45}$	3.414	\％e9	3，171	1	
																					退
${ }_{7}^{882}$	¢ ${ }_{\text {80 }}^{10}$				${ }_{\substack{81 \\ 10}}$	x_{10}		${ }^{812}$	en	${ }_{\text {er }}^{11}$	11	${ }^{2 x}$		曈	${ }_{10}^{2015}$	${ }^{87}$	on	sex	\％11	${ }^{911}$	
4.48	4.48	453	4.45	459	4.50	4，502	450	4.47	454	459	4.54	4.29	459	4， 42	ass	458	459	401	468	4.68	4

	12925	${ }^{13975}$	${ }^{\text {Os4\％}}$		$1{ }^{1095}$		${ }_{19 \text { 9\％}}$						075\％		${ }_{\text {198\％}}$		0．75\％	${ }^{10.05 \%}$	0．75\％	Oens	0．53\％
	$\begin{array}{r} \hline 5,560,032 \\ 5,980,426 \\ 684,950 \end{array}$	$\begin{aligned} & \hline 6,434,515 \\ & 6,219,332 \\ & 1,278,935 \end{aligned}$		$\begin{aligned} & \hline 6,615,538 \\ & 6,282,728 \\ & 1,230,852 \end{aligned}$	$\begin{aligned} & \hline 6,751,254 \\ & 6,323,844 \\ & 1,199,911 \end{aligned}$	$\begin{aligned} & \hline 6,942,211 \\ & 6,376,672 \\ & 1,161,355 \end{aligned}$	$\begin{aligned} & 7,157,153 \\ & 6,433,361 \\ & 1,120,383 \end{aligned}$	$\begin{aligned} & \hline 7,318,943 \\ & 6,477,043 \\ & 1,085,536 \end{aligned}$	$\begin{aligned} & \hline 7,465,722 \\ & 6,516,196 \\ & 1,052,172 \end{aligned}$	$\begin{aligned} & \hline 7,649,940 \\ & 6,562,750 \\ & 1,014,954 \end{aligned}$		$\begin{array}{r} \hline 7,990,577 \\ 6,646,021 \\ 944,528 \end{array}$	$\begin{array}{r} \hline 8,109,653 \\ 6,675,702 \\ 913,879 \end{array}$	$\begin{array}{r} \hline 8,277,561 \\ 6,714,765 \\ 879,369 \end{array}$	$\begin{array}{r} \hline 8,563,679 \\ 6,776,393 \\ 837,019 \end{array}$	$\begin{array}{r} \hline 8,696,925 \\ 6,806,244 \\ 805,783 \end{array}$	$\begin{array}{r} \hline 8,827,409 \\ 6,834,751 \\ 774,959 \end{array}$	$\begin{array}{r} \hline 8,996,349 \\ 6,870,441 \\ 742,184 \end{array}$	$\begin{array}{r} \hline 9,124,790 \\ 6,897,120 \\ 712,246 \end{array}$		cose
14.483838	${ }_{1223548}$	13.827878	14.422121	$14.129,18$	12275009	14.46288		14.85153	1509.401	1537154	${ }_{15,4 \times 33}$	${ }_{15 \text { S／，} 1,15}$	${ }_{1}^{15,5923}$				${ }_{16,67.19}$	1680939			${ }_{16832368}$
			，	$\underbrace{}_{\substack{4.586 \\ 212020}}$						${ }_{\substack{15685 \\ 22720}}^{15}$							cole				
810 3711	（ 326		（380	（ $\begin{gathered}\text { s33 } \\ 3 \\ 3\end{gathered}$	$\underset{\substack{\text { asi } \\ 3311}}{ }$	（138）	${ }_{\substack{\text { seg } \\ 3 \text { 393 }}}$		${ }_{\substack{\text { sma } \\ 3 \times 3}}$	${ }_{\substack{\text { s22 } \\ 327}}$	${ }_{\substack{\text { S22 } \\ \text { 321 }}}$	${ }_{\substack{\text { ax } \\ 380}}$	${ }_{\substack{\text { s24 } \\ 324}}$	${ }_{\substack{\text { S27 } \\ 3220}}$		${ }_{\substack{\text { and } \\ 382}}$	${ }_{3}{ }^{620}$	${ }_{\substack{613 \\ 3215}}$			cis
4270	2，700	$\mathrm{ss}_{5,48}$	stac	${ }_{\text {si29 }}$	${ }_{5}^{1,88}$	Stas	1822	4，682	45,182	6353	4，3，	40，33	30，	37.55	35850	3,38	2，891	31.51	3237	2008	27，${ }^{2}$
		（178）		（en	${ }_{\text {che }}^{1190}$		cinc	\％				${ }_{\substack{3243 \\ 208}}$		，		${ }^{2116}$	2n	${ }^{14888}$	，		
${ }_{21}^{182}$	${ }^{1,23}$	${ }^{851}$	${ }_{23}$	${ }^{80}$	${ }_{23}^{90}$	${ }^{198}$	${ }_{23}^{298}$	\％	195	$\underset{23}{208}$	$\underset{\substack{201 \\ 202}}{ }$	${ }_{23}^{2080}$	${ }_{23}^{2080}$	20，	${ }_{23}^{208}$	$\underset{\substack{\text { 2，1．66 } \\ 23}}{ }$	${ }_{24}^{212}$	${ }_{24}^{138}$	${ }_{\substack{2122 \\ 24}}$	（124	${ }_{24}^{2182}$
1228	${ }_{12412}$	1268	12388	1325	13.35	${ }_{13}^{1384}$	14,19	14.401	4.47	19.98	15273	${ }_{154} 145$	$1{ }^{15727}$	，5991	12025	6，49	16.682	1845	r，0，9	${ }_{17218}$	${ }_{17,38}$

Cascade Natural Gas
2010 RRD Demand forcast
Medium Scenario
Nackin
Nackin
\
\
\
\
M
M

M
M
M
M

\
\

Comeneial hems

		（18）	Oas	1，35	${ }_{1}^{1,98}$	$\tan ^{\text {a }}$	22085	1688	，158	1785	1288	1.50×3	12085		${ }_{2} 258$	，288	1488	172\％	1，90\％	1393\％	
		12092369	（124，	${ }_{\text {cosem }}$	$170,297,928$ $128,058,869$	$173,732,955$ $130,684,770$		，	$183,609,333$ $138,222,246$		（1）			$200,087,379$ $150,983,017$	$204,818,399$ $154,907,365$	208，000，440 $157,404,613$	cin	$214,874,964$ $162,926,542$			come
							（1122］190													${ }^{388938}$	
30，020．095	20，85，49	${ }^{31,10,5853}$	30，7，7，7，75	30， 18.0087	${ }^{3125,58,195}$	31，3，9，968	${ }^{32,484.155}$	${ }^{30,122329}$	35，517，9565	34，171，3／2	${ }_{\text {37／62728 }}$	S266027		Skicher	37283579		${ }_{3} 38.382414$	\％esmes	3585993	60，123：59	Lexticso
citiseme							边	，	（19）		退 ${ }^{238}$	coin	cisisise	， 1188				（isksel	Stis		5 50364
${ }_{71}$		${ }^{170}$	${ }^{101}$	${ }^{60}$	${ }^{68}$	${ }^{80}$	\％	${ }_{62}$	＋	${ }_{80}$	${ }^{68}$	${ }_{88} 8$		${ }_{68}$	${ }_{60}$	${ }^{4}$		$8{ }_{8}$			${ }_{65}$
${ }_{\text {cose }}^{3}$			cose		， 3 ang								（inco	$\underbrace{\substack{3,47 \\ 7298}}_{\text {3，}}$				${ }_{\text {a }}^{3,292}$			（ent
	$2{ }^{25323}$	${ }^{20383}$				S0，62			边						，						
${ }^{3320}$	4，088	${ }^{2} 68$	${ }_{53,20}$	${ }_{3}^{3091}$	8，	${ }^{9,4}$	${ }^{324}$	3，914	33.884	\％ 4	${ }^{\text {min }}$	544	${ }^{726}$	3，512		5000			\％	208	\％
，${ }_{15}$	${ }_{4}^{46}$	${ }_{14}^{41}$	${ }_{14}^{131}$	${ }_{14}^{12}$	${ }_{14}^{41 / 4}$	，	，		，	${ }_{\substack{38 \\ 14}}$	${ }_{14}^{31}$	${ }_{14}^{317}$	${ }_{14}^{374}$	， 31	${ }_{14}$	${ }^{281}$	${ }_{\substack{36 \\ 14}}$	${ }_{14}^{364}$	${ }_{14}^{30}$	${ }_{14}^{32}$	
${ }^{25654}$	259，96	265，	${ }_{\text {21，} 4,65}$	${ }_{\text {27，07 }}$	${ }^{22,2000}$	${ }^{23} 5.56$	28.4 .45	3020	50，63		31223	${ }_{\text {che }}$	j0．50	3067\％	20088	3，3，32	35972	$\stackrel{3}{324}$	\％ech	35，690	8，172

Cascade Natural Gas
20111 Rep omenar Forecast

Total Therms Pct．Growth Residential Therms Industrial Therms Ind．，Inst．，\＆Cmcl．Interrup．T Daily Baseload Therm Peak Day Therms Therms Per Residential Cust Therms Per Industrial Custom Residential CustomersCommercial Customers Industrial Customers

			258		0285		2075		0298	0298	028\％	0318	0315	039\％	285	2315\％	2304，	29\％	20\％	，393\％	
，	${ }^{35188.89}$	3，	${ }^{3,51.1 .33}$	${ }^{\text {ases，} 5 \text { es }}$	${ }^{4}$	4，	${ }^{4014.591}$	${ }^{4.85820}$	${ }^{407322}$	4	4.	${ }^{\text {42，1，107 }}$	${ }^{4123,188}$	${ }^{4} 4.878 .82$	4	${ }^{4120,589}$	4.419 .58	${ }^{4053520]}$	5，	\％at	
${ }_{\text {cosem }}$	cosm	${ }^{4}$	${ }^{2}$	${ }^{25577}$	${ }^{23590}$	，	${ }_{212088}$		cosm	cosm	${ }^{\text {aram}}$		${ }^{1215652}$	Seme	5ex	come	cose	cose	，5xaus	cose	cose
	${ }^{7928}$			79298																	
10，44， 12	9，30，388	2，956，62	9，982717	10，0：374	10，0321	1，0．0．0．s4	10，08， 60	10，117206	10，4，496	10，7， ass $^{\text {a }}$	${ }_{12202029}$	10.278 .83	${ }^{10202004}$	12029819	${ }_{\text {10，282，26 }}$	1，359929	10，99223	10，2，2，44	10.45396	10，4430	598
${ }_{\text {¢ms }}$	${ }_{7} 9.9$	8，45	8.68	${ }^{8,590}$	${ }^{8,58}$																
${ }^{2243}$	12.179		${ }_{8} 8,44$	8998	a，302	4，022	85822	¢5961	86，${ }^{\text {a }}$	${ }_{8}^{6,49}$	${ }^{\text {\％88 }}$	stas	8r，700	anam	Bear	eas	${ }_{828}{ }^{238}$	88.322	1	\％a38	999
${ }_{4,40}^{40}$	\％，488	${ }_{4}$	${ }_{4}^{4} 32$	${ }_{4}^{4,31}$	${ }_{478}$	4,380	${ }_{4}^{730}$	${ }_{4,38}^{738}$	${ }_{4}^{1380}$	${ }_{4}^{438}$	${ }_{4}^{438}$	（1001	${ }^{148}$	$4{ }^{18}$	${ }_{4}^{1088}$	${ }_{4}^{43}$	\％	${ }_{4}^{18,21}$	${ }_{4}^{407}$	${ }^{183}$	cos
88668	2，18	1999	18,50	1789	1720	tirne	8822		6，33	\％	1400	（012	3358	13，6	析	${ }^{12487}$	209	${ }^{11703}$	1，368	）	
${ }^{51,120}$	， 1.37	1.145	${ }^{1,1,4}$	${ }_{1,152}$	1.15	${ }_{1}^{1,59}$	${ }_{1,118}$	${ }^{1,168}$	${ }_{1}^{1,171}$	${ }_{175}$	${ }_{1,179}$	${ }^{1,183}$	\％	191	1195	${ }_{1}^{1,198}$		${ }^{127}$	${ }_{1212}$	1218	（120
14	${ }^{13}$	${ }^{14}$	${ }^{14}$	${ }^{14}$	${ }^{14}$	${ }^{13}$	${ }^{13}$	${ }^{13}$	${ }^{13}$	1	1	12	12	12	12	12	12	12	12	1	
¢48	6， 39	6.40	6，50	6， 6	6，59	${ }_{6}^{6603}$	6，67	6.60	${ }_{6}^{6,73}$	${ }_{6}^{6,75}$	6，7er	6778	2	6，39	（189		（2，	（1920	年边	102	

	${ }^{22958}$	19975	${ }^{1.148}$	1414	${ }_{1,78 \%}$	${ }^{2314}$	${ }^{2,985}$	${ }_{1919}$	${ }_{1785}^{1085}$	20075	${ }^{2,445}$	${ }^{18085}$	1.414	${ }^{1845}$	${ }^{2853}$	128\％	${ }_{1515}$	${ }_{1815}$	15098	${ }^{13,36}$	1275
					cin		come					come									
7 \％Rem	${ }^{\text {81，}}$ 84		${ }_{1}^{1088939}$	1，09395	${ }^{20} 58$	${ }^{95012}$	\＄645	${ }_{\text {gabas }}$	\％1700	${ }^{85} 579$	${ }^{87998}$	${ }^{80} 89$	${ }^{\text {se0．39 }}$		${ }^{23323}$	${ }^{810,72}$	72047	78.808	${ }^{7527}$	17.222	${ }_{73859}$
，	\％ex	，	\％	\％	（16，23			Re．s			（10， 29		\％							2s	
，	，	，		，			，		\％	，		，				\％			\％		${ }^{6,5981789}$
	\％oser	${ }_{7}^{71037}$	${ }^{\text {rasmos }}$	ravz	\％ose	$\underset{\pi x, 199}{ }$		ภ1376	Skieas	${ }_{\text {cta }}^{\text {cex }}$	\％ox	cosem		\％exs	${ }_{\text {gex }}^{\text {gex } 25}$	cisk	${ }_{\text {chen }}^{\text {gras }}$	comes		，	
$\xrightarrow{788}$				${ }^{324}$		${ }_{\substack{731 \\ 329}}$	3280	${ }^{3212}$	${ }_{\substack{729 \\ 329}}$	322	${ }^{327}$	${ }^{727}$	${ }^{173}$	${ }_{\text {273 }}^{723}$	${ }^{730}$	320	${ }^{766}$	${ }^{76}$	${ }^{74}$		$\xrightarrow[\substack{73 \\ 3195}]{\substack{\text { and }}}$
cose	${ }^{2}$	${ }_{2089}$	${ }_{\text {che }}^{2 \times 36}$	${ }_{2}^{26,26}$	${ }_{2}{ }^{2} 88$	${ }_{2}{ }_{2083}$	2509		${ }^{2} 8912$	${ }_{2}^{24685}$	${ }_{2}$	${ }^{32} 2 \times 20$	${ }^{32}$	${ }^{22788}$	${ }_{2}^{3,588}$	${ }_{2}{ }_{2,385}$	${ }^{3}$	${ }^{22686}$	${ }^{3268}$	${ }^{3264}$	220
${ }^{10.159}$	${ }_{0}^{10.511}$	\％1365	${ }^{1234}$	${ }^{1337}$	4.44	${ }^{45,54}$	\％，408	${ }_{7} 7.35$	${ }^{18537}$	9，680	D， 5	（170）	22789	\％eas	Stase	\％9，96	Sess	semo	same	\％	
4	\％as	${ }_{38}$	，	sar	\％	${ }^{227}$	${ }_{3}^{546}$	${ }^{\text {3，} 24}$	${ }_{5}^{51}$	${ }_{\substack{56 \\ 38}}^{518}$		${ }_{5}^{599}$	${ }_{\text {a }}^{\text {b．1．6 }}$	${ }^{627}$	${ }_{\substack{635 \\ 35}}$	${ }_{6}^{6449} 3$	${ }_{\substack{6.561 \\ 35}}$	${ }_{3}^{689}$	${ }_{\substack{8,783 \\ 34}}$	$\stackrel{48}{68}$	${ }_{\substack{7,02 \\ 34}}$

	－1098	${ }^{1285 \%}$	${ }^{02785}$	023\％	0.75	0.145	${ }^{\text {0．93\％}}$	${ }^{0215}$	0^{0248}	020\％	020\％	0285	${ }^{0.35 \%}$	${ }^{\text {025\％}}$	0096\％	${ }^{0.35 \%}$	${ }^{\text {033\％}}$	${ }^{0275}$	${ }^{0.395}$	${ }^{0.385}$	$0^{0.385}$
	，	cismeme	cose	，	，			cose													${ }_{5} 58.858$
${ }^{30} 818$	${ }^{82} 235$	$\pi 7,100$	${ }_{7539}$	${ }^{77}$	${ }_{75,173}$	${ }^{23,385}$	${ }^{721298}$	12．40	${ }^{10201}$	${ }^{\text {ar232 }}$	өт7as	Exas	－s5090	¢6．351	677．92	${ }^{682789}$	881,79	вияаия	¢¢，${ }^{\text {ar }}$	smom	S1790
${ }^{17205050}$		${ }_{\text {cosem }}$		${ }_{\text {che }}$	${ }_{\text {cose }}$	${ }^{7} / 4585$	${ }^{12646.156}$	${ }^{1818989}$	\％ement	${ }_{7}{ }^{5154296}$	，	${ }_{7}^{75,50767}$	${ }_{7}^{1,5 / 484}$			${ }_{20,0242}$	${ }_{2}^{2,858323}$	${ }_{\text {cose }}$	${ }^{7}$	$\xrightarrow{12723}$	
${ }_{8}^{1,294}$	${ }^{81,57}$	${ }^{1 / 54}$	${ }_{8,1910}$	${ }^{81738}$	${ }^{81,911}$	82711	${ }_{21232}$	1239	${ }^{82500}$	${ }^{30.161}$	${ }^{8,483}$	${ }_{83,93}$	${ }^{8,145}$	«．56	${ }^{8,968}$	${ }_{5}^{13,37}$	${ }^{8,782}$	86.17	${ }_{6} 684$	7，0\％	88,53
${ }_{\text {ckin }}$	${ }_{3}^{300}$	${ }_{4}^{428}$	${ }_{4}^{4288}$	${ }_{4}^{630}$	${ }_{4}^{624}$	${ }_{4}^{6318}$	${ }_{4}^{123}$	${ }_{4}$	${ }_{4}^{624}$	${ }_{4}^{438}$	${ }_{4}^{428}$	4	${ }_{4}^{638}$	${ }_{\text {c／is }}^{6,30}$	${ }_{4}^{619}$	${ }_{4}^{6,38}$	438	4，388	438	${ }_{4}^{63}$	${ }_{4}^{6135}$
tres	${ }_{18,38}$	28.44	28975	25.58	2，19	27702	2228	2388	2,49	2,101	278	2230	21.89	21.84	21246	2088	20．s6	22024	989	1939	
$\underbrace{}_{\substack{2500 \\ 1,158}}$		，	cind	，	${ }_{1}^{2,515}$		cose		cose	${ }_{\substack{2007 \\ 1.78}}^{\substack{200}}$							${ }_{121}^{212}$		${ }_{120}^{2723}$	${ }_{125}^{2729}$	${ }_{\substack{2725 \\ 1208}}$
${ }_{3}$	2	${ }^{2}$	29	28	2	${ }^{20}$	29	29	28	30	n	30	${ }^{30}$	3	3.	${ }^{30}$	${ }^{30}$	30	31	31	
3789	3，74	3.74	${ }^{3}, 74$	3,74	2，78	3，78	3，78	3,70	， 3,2	3.46	， 20	， 2,4	3680	，389	， 818	1996	3，96	， 3.84	， 9,9	， 9	，

Cascade Natural Gas
20111 RPR Demand Forecast Low Scenario

$2017 \quad 2018$

	．11885	${ }_{\text {3asax }}$	${ }^{1234}$	14.45	${ }_{153 \%}$	${ }_{1774}$	${ }_{1785}$	${ }_{1080}$	1588	${ }_{1085}$	${ }^{109 \%}$	${ }_{\text {1535\％}}$		${ }^{10085}$	${ }^{1898}$	${ }^{1080 \%}$	${ }^{1,485}$	${ }^{1575}$	14978	1_{1415}	${ }^{1395}$
										come		cince			come				come		
${ }^{195654}$	1287，	${ }^{1,80,717}$	1 180．500	1 101009	${ }^{130} 1318$	127.909	${ }^{15151.168}$	1，9819808	${ }^{\text {ITouas }}$	59879		${ }^{\text {s53710 }}$	eses	${ }^{1098}$	${ }^{27,46}$	50xes	657，06	cesse	5s\％29	ssour	${ }^{13} 380$
	（2，9，900	12，900	， 2.4500	12，500	Lis．am	12，590	H2，900	Hesma		\％2，30	H2，98	12，50	，	12，59	， 2.4 .508	，					
，		，	，	${ }^{2}$													，				
${ }^{\text {cheser }}$	${ }_{\text {chen }}$	\％esa	cose	simis	52,281	${ }^{41489}$	S4，	ssess	\％sise		cisk	cism	cosme		cex	cke	cose	ctise	crex		cex
$\underset{\substack{720 \\ 3,87}}{ }$	${ }_{\substack{4 \\ 3084}}^{\text {a }}$	${ }_{\substack{322 \\ 3,32}}$	${ }_{\substack{230 \\ 3,001}}$	${ }_{324}^{729}$	${ }_{\substack{727 \\ 3275}}$	${ }_{327}^{727}$	${ }_{327}{ }^{727}$	${ }_{327}^{720}$	${ }_{\substack{724 \\ 324}}$	${ }_{\substack{725 \\ 326}}$	${ }^{327}$	${ }_{373}$	3235	324	${ }_{323}$	${ }_{328}^{728}$	${ }_{321}$	$\underset{\substack{\text { 220 } \\ 3276}}{ }$	$\underset{\substack{119 \\ 323}}{ }$	${ }_{328}$	
20,91	1394	17951	17985	1729	1，994	1789	${ }_{178} 83$	${ }_{1288}$	${ }_{17}^{12,42}$	${ }_{17}^{12} 8$	trait	${ }_{173} 178$	\％ras	17，	17，	${ }_{17} 173$	${ }_{17,78}$	17302	${ }_{17}^{18,88}$	18，82	${ }_{\text {dise }}$
S	cos					cosis	cose	coicle	${ }_{\text {col }}$	，	（12，		$\underset{\substack{4.200 \\ 4.50}}{ }$	4，	cism	cise	$\xrightarrow{1234}$	81，39	边	，	
${ }_{4}$	9	${ }^{58}$	\％	4，50	，	S1	${ }_{4}$	5	${ }_{5}^{5232}$	（tar	${ }_{5}^{5}$	${ }_{\substack{582 \\ 48}}$	5.6	5，	${ }_{5}^{5,52}$	s，	${ }_{3}$	${ }_{\substack{6.189 \\ 35}}$	${ }_{3}^{621}$	\％	8，60

[^4]| | 9735 | 37 x | ${ }^{0.385}$ | 2．19\％ | ．ass | 0.785 | 0as\％ | oors | omas | 0.188 | 0 020x | 0as\％ | ${ }^{\text {gass }}$ | $0.13 x^{\circ}$ | 0.514 | omas | oams | 0.785 | 0.068 | ouns | 0018 |
| :---: |
| $\underbrace{}_{\substack{3271297 \\ 496.385}}$ | | | cince | | | cin | | | cin | cince | | | | | | | cin | $\underbrace{}_{\substack{3283,30 \\ 48080}}$ | cisme | | |
| | | ， 1238585 | ${ }^{1280}$ | ， 12723826 | 4，1085e | （1，68591 | | （127）509 | 1，0，8329 | ，1，maxas | ${ }_{1}^{1,202487}$ | 1，058580 | （108320 | 1．1027212 | ，10， 1723 | ， | Sex | | ， | ${ }^{212545}$ | come |
| 9est 12. | ${ }^{8,72643}$ | 900，${ }^{\text {a }}$ | 900， 18 | 9023se | 90， | 904099 | 9087．58 | ameses | 905s．36 | 90， 9 Stio | 9，07885 | 9，1020 20 | 908667 | 9，0，541 | 9，5，299 | 9，18，39 | 9.12320 | 9，7746 | ， 14823 | 9，23907 | 边 |
| |
| geso | ${ }_{\text {\％} 538}$ | s， 88 | geso | | | | | | | ${ }^{10120}$ | ${ }^{101.592}$ | ${ }^{101424}$ | 12，15 | ${ }^{12.488}$ | 102718 | ${ }^{10298}$ | ${ }^{10288}$ | ${ }^{103515}$ | ¢0744 | mans | ${ }_{0} 0.20$ |
| ${ }^{6}$ | ${ }^{59}$ | ${ }^{80}$ | ${ }^{59}$ | ${ }^{\text {sem }}$ | ${ }^{\text {sw }}$ | ${ }^{58}$ | ${ }^{50}$ | ${ }^{50}$ | ${ }^{58}$ | ${ }^{59}$ | ${ }^{59}$ | ${ }^{50}$ | ${ }^{\text {sis }}$ | ${ }^{58}$ | ${ }^{958}$ | ${ }^{55}$ | ${ }^{5 \%}$ | ${ }^{56}$ | ${ }^{956}$ | ${ }^{54}$ | ， |
| | | | | cose | | | cose | | $\underbrace{\substack{3}}_{\substack{3.388 \\ 2.50}}$ | | | | | | ${ }^{3,387}$ | | ${ }_{\text {a }}^{3,398}$ | ${ }^{3337}$ | ${ }_{23,36}$ | ${ }^{3,315}$ | （193 |
| ${ }^{5856}$ | ${ }_{5229}$ | |
| ${ }_{1} 130$ | ${ }^{139}$ | ${ }_{136} 36$ | ${ }^{1351}$ | ${ }_{1}^{1,38}$ | 138 | 1371 | 137 | 138 | 139 | 134 | ， 20 | ${ }_{1 / 45}$ | 40 | 1415 | 1420 | 1.24 | \％88 | 143 | 187 | ${ }^{41}$ | ，${ }^{4}$ |
| \square | ${ }^{48}$ | ${ }^{48}$ | ${ }^{4}$ | ${ }^{6}$ | 4 | ${ }^{4}$ | 4 | 4 | ${ }_{3}$ | ${ }^{3}$ | 12 | 12 | 4 | 4 | ${ }^{4}$ | 4 | ${ }^{0}$ | 8 | ${ }^{39}$ | 8 | |
| $6{ }^{6} 8$ | 6.67 | 6， 6 | 6， 6 | 6，70 | ${ }_{6} 675$ | 6，39 | 6，72 | 6，095 | ${ }_{638}$ | 649 | 680 | 689 | 691 | 6991 | 6s50 | 698 | 696 | ${ }_{7}$ | ， 1,01 | ${ }_{7}, 007$ | ${ }^{7}$ |

	．12945	9，288	0235	Osis	Oas\％	0.085	11058	0，7es	0．6es	020\％	Oess	0．95\％	0．478	Oerm	1，7\％	0，as\％	0．488	Oats	04\％	0，45	0，008
		cose			cisk		（ixices							cinemen						（7ness	
${ }^{41818080}$		1	115812	114，	12.238	（103714	\％eat	10，	106，51	${ }^{\text {cosem }}$	ceme	ceme	${ }_{\text {cosem }}$				${ }_{\text {d }}^{4}$	\％ 3 Sex		9，500	
n，as，	S．9msia	1，900， 32	10，8\％，988	${ }^{11,20413}$	1.09093	${ }_{12120545}$	${ }^{1.2,2,34}$	$1.40,179$	1.14 .5 s．so			M，7，7231	${ }^{1.3,205951}$	1,132900	$12.21,108$	1208949	${ }^{12,12522}$	1220,587	12283,37	${ }^{12,3,926}$	2，4，6
					（18，																cien
${ }_{\text {bex }}$	${ }_{56}$	${ }^{63}$	${ }^{85}$	${ }^{68}$	${ }_{6} 5$	${ }_{60} 6$	${ }^{188}$	\％2	${ }^{624}$	${ }^{25}$	${ }_{60}$	${ }^{162}$	120	60	${ }^{108}$	${ }^{265}$	${ }^{63}$	${ }^{623}$	${ }^{122}$	${ }^{60}$	\％
			，					${ }_{\substack{3.278 \\ k, 278}}$			（3781	$\underbrace{}_{\substack{3290 \\ 129}}$		（332				（209	${ }_{\substack{3.391 \\ 1424}}$	旡	${ }^{3,394}$
${ }^{10,381}$	${ }^{10,468}$	10，41	${ }^{10.288}$	10，60	0.80		H，12es	${ }^{1219}$	1129	${ }^{1,487}$	1.50	${ }_{1}^{11221}$	${ }^{11888}$	1 1，sa	${ }^{121202}$	2，187	\％		2．45	${ }^{1253}$	${ }^{12}$
${ }^{122}$	${ }^{128}$	${ }^{1230}$	${ }^{236}$	${ }^{120}$	${ }^{128}$	1274 3		1285 3	${ }^{129}$		$\frac{1301}{2}$		${ }^{1312}$	$\frac{337}{2}$		$\frac{1327}{127}$	$\begin{array}{r}1.31 \\ 2 \\ \hline\end{array}$	1336 2	${ }^{130}$		
${ }^{11.05}$	n， 1.62	n， 1.8	11．76	n，94	12，${ }^{2}$	1225	${ }_{12,38}$	${ }^{12.507}$	${ }^{1242}$	k274	${ }^{12,93}$	1300	${ }_{3}^{13,58}$	${ }^{1322}$	${ }_{13,36}$	${ }_{\text {13，}}$	B， 1 \％	13,30	13，78	（1389	${ }_{13,98}$

	${ }_{1085}$	${ }_{15 \text { SMK }}$	${ }^{0.345}$	${ }^{20254}$	－2085	${ }^{02985}$	．2085		${ }^{0318}$	－2345	－0318	－235\％	${ }^{-1234}$	．034\％	－02064	${ }^{-2054}$	．0375	${ }^{\text {a }}$ 2085	－2，368	－0，085	－0，46
		cis		cosme				comex	cose				cill		cisme				cex		
	${ }^{127839}$	${ }^{\text {ans }}$	${ }^{2124072}$	${ }^{202028}$	${ }_{\text {grems }}$	${ }_{\text {Sterse }}$	${ }_{\text {P20，}}^{20} 5$	2ess，	${ }_{5}^{54500}$	${ }^{827}$		（2998	\％ 737	5238		\％179	Stas	1．00．12，	1．002998	1007809	，
cose	，	，	Smest	Smeme	Smitas	Sememe	，		S．	（s，	S．	S．			，		，	，			，
${ }^{4.465}$	s，0e	5，00	smed	，	bus	5eal	边	6，02	\％es	，	\％ea	\％	\％ex	\％981	\％	\％eas	${ }^{4}$	r	${ }^{489}$		
	（10，	${ }^{\text {sase }}$		${ }^{6024}$				casil												${ }^{\text {2．4．48 }}$	$\substack{82588 \\ 598}$
${ }_{5 \times 37}$		5，18	$5: 131$	5.20	$\underset{\substack{5116 \\ 5102}}{ }$			s，	${ }_{\text {cose }}$	（10）	${ }^{5688}$	4001		4，${ }_{4}$	4788	${ }_{4}^{4}$,	437	401	4 4，88	468	${ }_{4}^{4606}$
2847	6998	\％619	46,58	46881	4895	87，189	4，4，45	47,78	47，52	1822	Nase	A37	napl	1927	，945	（1983	smos	so，35	S0，68	se9a	（1，80
	\％	，	$\underset{ }{125}$	${ }^{132}$	129	${ }^{151}$	，	速	速	，	\％	\％	${ }^{132}$	${ }^{\text {a }}$	，	，	\％		，		${ }_{172}^{164}$
${ }_{21}$	${ }_{20} 20$	∞	${ }_{20}$	${ }_{20}^{20}$	${ }_{20}^{102}$	${ }_{20}$	${ }_{20}^{20}$	${ }_{20}$	${ }_{20}$	${ }_{20} 2$	${ }_{2}$	${ }_{20}$	${ }_{20} 2$	${ }^{2}$	${ }_{20}$	${ }_{20}$	${ }_{20}$	20	${ }_{20} 2$	${ }_{2}$	${ }_{20}$
${ }_{236}$	2,202	${ }^{229}$	2.01	2.07	${ }_{2,12}$	${ }_{218}$	${ }^{2} 234$	230	${ }_{235}$	2.31	${ }_{236}$	${ }_{2} 23$	${ }^{238}$	${ }_{2} / 32$	238	238	${ }_{2} 23$	${ }_{23} 23$	238	2.32	${ }^{239}$

Cascad Natura Gas
2011 RRD Demand foreast
Low

Sotem	
come	

		，	，	边	dest			Stem			边			（ase	$\frac{105}{}$	（ins	Soms	为	\％		
，		come	$\xrightarrow{\text { lizase }}$	，	，	$\substack{\text { traes } \\ \text { tert }}$		$\substack{\text { Unamen } \\ \text { sem }}$	cosk	cos	，		cos	cosk		，	，	cos		come	cis
，	s．mem	（2xesim	4amp	42ase	Lemsi	（empe	Lemerit	，mam	Comem	Leatas	（tanis	（mant	corss	Lemer	Lussin	，	Cumb	，	Crizam	Cimb	mam
$\xrightarrow{\text { andem }}$	${ }_{\text {cemem }}^{\substack{\text { amem }}}$	，inem	，	退	，		${ }_{\text {comem }}^{\text {axem }}$		，	，	${ }_{\text {a }}$	，			，			，	$\xrightarrow{\text { and }}$		，
cos	，				込		cos						，								，
边		\％	\％		边		边	边				Stict		Sed	Sex	为	\％	\％em	边		\％
							2														

 coll Thempene esiand casume

		6am	${ }^{0348}$	0．ts）	，ass	ces	192\％		， 1304			305		169\％			am			（1）	
					cin	cosm		$31,190,729$ $20,677,222$			con						ctis				
1.878 .103		2280.16	$2.12,5.24$	${ }^{1285933}$	1,882712	${ }_{178} / 18.45$	1.897751	1.15789	1475.52	1407104	1.38 .6888	${ }^{127,4.42}$	${ }_{12777,12}$	1，16660	${ }^{1,20,518}$	$1.07,827$	1,180355	1,102881	980.150	stose	91245
20，	4.65	50，80，157	S0，002291	5		$5_{5126269}$	S2．63s38	5 Sa／2504	s．antise	Smocem	Scomar ${ }^{\text {ar }}$	Sems．so		seman7e	$\operatorname{cosem}_{132}$	mag2，${ }^{\text {a }}$		${ }^{222040} 98$	¢9，0073	camerne	${ }^{\text {S5meman }}$
	3，399																				
sprsm	51.108	s7，	${ }_{\text {ckeme }}$		\％80，37	${ }_{81283}$	${ }^{821.174}$	${ }^{\text {cxam }}$	${ }^{689273}$	${ }^{\text {ckid7 }}$	${ }^{\text {bin }}$	687，51	${ }^{8188878}$	${ }^{18 \times 20}$	（isis	，		cosise		\％	cisem
${ }_{\text {amb }}$	${ }_{2}^{278}$	${ }_{298}{ }^{268}$	${ }_{208}^{2087}$	${ }_{2680}$	${ }_{268}^{188}$	${ }_{\text {cose }}$	${ }_{2}{ }^{2684}$	${ }_{238}{ }^{268}$	${ }_{2689}$	${ }^{209}$	${ }_{298}^{1298}$	${ }_{202}^{120}$	${ }_{200}^{290}$	${ }_{29}^{293}$		${ }_{2091}$	${ }_{298}$	${ }_{\substack{100 \\ 3005}}$	${ }_{\substack{105 \\ 3020}}$	${ }_{3}^{1001}$	${ }_{3019}$
	z2095	41,42	${ }^{41220}$	4108	1097	40756	20．56	（0，48	2027	20，19	2992	sems	2989	39，48	saxs	29，185	ano	38876	28724	2，52	200
Comb	${ }_{\text {cose }}$	${ }_{627}$	${ }_{\text {dat }}$	${ }_{6}$		\％	${ }_{6} 9$	${ }_{7}, 1,18$	1721		，	${ }_{\text {ckin }}$					cis		cise		，
\％	${ }^{35}$	${ }_{6}^{5}$	\％	${ }_{0}$	45	\％	4	${ }^{3}$	${ }^{3}$	${ }^{35}$	${ }_{8}^{3}$	${ }^{3}$	3	${ }^{3}$	${ }^{28}$	${ }^{27}$	${ }_{0}^{7}$	${ }^{2}$	${ }^{25}$	${ }^{24}$	
${ }_{0}^{13.31}$	3，407	m，188	4，78	S5，8	6，15	6，79	退	8，19	Asabe	， 1.56	bers	soms	， 12	s245	S1，97	Ses				7，200	边

Toul ox inems

cosm		coicle	（ex	coicle				$\begin{aligned} & 7,112,957 \\ & 6,437,834 \\ & 1,199,937 \end{aligned}$	$\begin{aligned} & 7,240,541 \\ & 6,478,505 \\ & 1187562 \end{aligned}$	$\begin{aligned} & \hline 7,403,745 \\ & 6,526,871 \end{aligned}$	cisin	$\begin{aligned} & \hline 7,698,479 \\ & 6,614,542 \\ & 1150042 \end{aligned}$	$\begin{aligned} & \hline 7,796,448 \\ & 6,647,158 \\ & 1129894 \end{aligned}$	7，940，395 6，689，3	8，195，996 6，754，33	$\begin{aligned} & \hline 8,305,425 \\ & 6,788,299 \\ & 1.102,982 \end{aligned}$	$\begin{aligned} & 8,410,386 \\ & 6,821,083 \\ & 1091054 \end{aligned}$	$8,550,92$ $6,861,19$ 6，861，193	$\begin{aligned} & \hline 8,652,117 \\ & 6,892,757 \end{aligned}$ $\begin{aligned} & 6,892,75 \\ & 1.067 .31 \end{aligned}$	$\begin{aligned} & 8,731,526 \\ & 6,920,124 \\ & 1,055,510 \end{aligned}$	cose
									－	0			0	\bigcirc	\bigcirc		0			0	${ }^{16589895}$
$\frac{14.023,35}{14,47}$	$\frac{1225458}{12598}$		$\frac{13.36,487}{1,257}$		（1420995		$\frac{12,55237}{1,985}$		H．9．6as	（1，10，		${ }_{\text {ckem }}$							，		${ }^{167898975}$
12，891	189\％2	1818.74	22858	26.854	214,48	${ }^{215890}$	20221	22.585	${ }_{2888}{ }^{288}$	22.986	${ }^{278,85}$	24.100	24.928	${ }^{214896}$	35238	${ }^{258531}$	28.892	${ }_{6}^{62087}$	$2{ }^{2} 5024$	6，7，	270， 2 20
（1010		${ }_{3}^{5360}$	${ }_{\substack{\text { sig } \\ \\ 3 \times 5}}$	${ }_{\substack{881 \\ 3,38}}$		${ }_{\substack{\text { sen } \\ \text { 3，28 }}}$		${ }_{\substack{383 \\ 332}}$		${ }_{\substack{838 \\ 3315}}^{\text {8，}}$	${ }_{\substack{\text { \％} 58 \\ 335}}$	${ }^{\text {8385 }}$	${ }_{\substack{\text { a } \\ 3,322}}^{\text {and }}$	（ ${ }_{\substack{\text { sem } \\ 3,30}}$			${ }_{\substack{529 \\ 329}}$		（3934		3322
4270	${ }^{29780}$	s，584	Stas	${ }_{6,318}$	sam	${ }_{50,02}$	58.74	5188	51729	（0082	80，12	4，858	8981		$4{ }_{4}$	4738	退				
	－		，	${ }^{1,885}$	${ }_{\text {cose }}$	$\xrightarrow{1.1060}$	，		${ }^{83}$	边	${ }_{1}^{1984}$	1.158	2013	2027	2041	${ }^{2058}$	208	280	202		（1200
${ }^{21}$	${ }^{23}$	23	${ }^{23}$	2	${ }^{23}$	${ }^{23}$	23	${ }^{23}$	23	${ }^{23}$	${ }_{23}$	${ }^{23}$	${ }_{23}$	${ }_{23}$	${ }_{23}$	${ }^{23}$	${ }_{23}$	${ }_{23}$	${ }_{23}$	${ }_{23}$	${ }_{23}$

		Hese																			
					${ }_{\text {cosem }}$		cin				$185,437,255$ $140,089,397$		$190,516,726$ $144,018,298$	ciser	$197,729,513$ $149,897,115$	200，449，633 $152,040,503$	$203,185,413$ $154,203,243$	206，361，964	209，176，754		
	12.158 .38	${ }^{1412828085}$	${ }^{\text {a }}$		${ }^{1308388}$	，		$12776.6{ }^{\text {a }}$											Bexe		
3， 21585	20，5s	20，4，	30，7，19，	50， 1.689	8		（19，0， 1.56	22，0，216	230．71216	123，50232	23， 2,148	20，57，50	27，72．50	S209238	50，4，7，99	desmens	\％		Smas，	135．123／17	me．72，50
20，	退		${ }^{238719}$																速		
${ }^{3.51,194}$		${ }^{3,141420}$	3，70．511	3，72729	）	390．5io	299994	acasan	4，1082	4,18275	${ }^{12203085}$	${ }^{1,329293}$	4 abse	${ }^{238}$	4 ＂Staraz	388	（12，	边			
${ }_{3278}$	${ }^{3224}$	${ }_{3,588}$	${ }_{3}{ }^{31.34}$	${ }^{3,501}$	\％ex		${ }_{\text {a }}^{\text {cism }}$	\％	${ }_{\text {a }}$	${ }^{\text {ances }}$		${ }^{2}$	${ }^{3,461}$	，	cos	${ }_{\text {cosem }}$	（10）		${ }_{\text {cosem }}$		
44,182	2728	31，68	31：97	21，51	，1，42	31,30	1134	3123	31，47	31087	mase	Soms	anes	mase	moss	mas6	2030	30201	mors	2985	
\％	边	边	2029		，	退	2923			退	边		，	，	退	迷	边	为	源	，	
${ }_{4}^{46}$	，	${ }_{48}^{48}$	${ }^{15}$	${ }^{24}$	${ }^{14}$	${ }_{15}^{45}$	${ }^{89}$	${ }_{30}$	\％	37	${ }_{3}^{312}$	${ }^{80}$	${ }_{3}{ }_{1}$	${ }_{38}^{38}$	${ }^{134}$	${ }^{31}$	${ }^{38}$	${ }_{4}^{15}$	${ }^{23}$	${ }^{34}$	
2564	23,97	20，091	$\underline{26,5]}$	22.45	2720	22.45	27.89	220208	26，91	smat	mespr	31299	317，13	${ }^{32205}$	22，31	${ }^{12243}$		м27\％	37.81	ss， 200	38220

Cascade Natural Gas
2011 RPD Demand Forecas

Rosisumaid Thems
Commerait Thems

		come		cisme																	$\underbrace{2}$
${ }^{302128}$	${ }^{27774}$	${ }_{\text {creme }}$	${ }^{\text {spreme }}$		${ }^{\text {seasese }}$	${ }^{557353}$	${ }_{5}^{56889}$	stes	${ }_{\text {s7243 }}$	${ }^{\text {sex, }}$	(1039	${ }^{\text {E2, } 21255}$	${ }^{10,346}$	${ }^{127318}$	cens	${ }_{6}^{67,93}$	${ }^{\text {enesu }}$	${ }^{\text {puphs }}$	${ }^{20256}$	${ }^{76857}$	785
${ }^{26,72939}$	2,420207	${ }^{2,3,3,095}$	${ }^{2} 23,3150$	${ }^{2265317}$	${ }^{3222354}$	${ }^{312122909}$	${ }^{3232009}$	${ }_{\text {a }}$		${ }^{153493}$	8373877	${ }^{13242987}$	${ }^{3} 23030$	${ }^{3205504}$	\%ens 50	${ }_{4}^{4125814}$	121659	20259	4 mosin	$4{ }^{482397}$	里
${ }^{21,07}$	19,2	${ }^{22,013}$	2883	${ }^{2,3,56}$	22.35	2,987	28.68	26,89	27.64	${ }^{29,42}$	${ }^{2220}$		30,76	${ }^{11,58}$							
358297	37851	42281	${ }^{219192}$	41.126		\%88	50,18	${ }^{23,35}$					30385	66401				${ }^{1 / 2, s e 8}$			${ }^{102}$
	${ }^{50}$		${ }^{\text {s }} 0$		${ }^{588}$	${ }_{5}^{53}$		${ }^{\text {spo }}$	${ }^{57}$	${ }^{565}$	${ }^{\text {stu }}$	${ }^{54}$	${ }^{588}$	${ }^{35}$							${ }_{56}{ }^{68}$
\%	,	\%	2580	\%	\%	${ }_{3}$	边	2374	\%	415	\%es	20,	Ster		S	${ }_{\substack{3 \\ 3.359}}^{\substack{3.59}}$	cose		${ }^{3}$	3,	(2038
1224																					
283	$\underset{\substack{3,48 \\ 18}}{ }$	${ }_{3}^{3.37}$	${ }^{16}$	${ }_{3}^{3,68}$	${ }^{3,304}$	\%	${ }^{41,188}$	${ }^{4.312}$	${ }^{488}$		${ }^{484}$	${ }_{\text {sas }}^{518}$	${ }^{127}$	${ }_{5}^{5,4}$	${ }_{19}^{168}$	${ }^{581}$	\%	${ }^{324}$	(190)	${ }^{8020}$	¢108
2 2,155	${ }_{23} 3$	${ }^{2539}$	2259	${ }^{27,79}$	${ }^{2094}$	${ }^{3} 3$	3150	${ }^{32} 20$	${ }_{3,38}$	${ }_{3} 5$	${ }_{3251}$	${ }_{\text {317, }}$	${ }^{20.35}$	a, 4 ses	${ }^{1654}$	${ }_{6517}$	4.5	mas8	S047	${ }_{5} 2238$	4,121

	4,50075			,				,	cosisisize	cosis									cosk		
cest			$\xrightarrow{71374}$	${ }^{72329}$		${ }^{\text {rasem }}$		${ }^{\text {ren }}$			${ }^{78,797}$	${ }^{88} 848$	${ }^{713,24}$	${ }^{84} 280$	${ }^{72723}$		saxas	${ }^{810,74}$	${ }_{\text {sinese }}$	${ }^{81479}$	${ }^{\text {817,as }}$
${ }^{\text {cosem }}$,	${ }^{114524}$	${ }_{\text {chem }}$	${ }_{\text {che }}$	Hest	,	Sters	cosme	, 115	,	\%	,	Sterseme	ceme	\%	,					$\xrightarrow{\text { ata }}$
B, 20																					
81,24	${ }_{8} 1,97$	${ }^{12380}$	8397	s,19	\%8221	88,25	g8588	gees		${ }^{32} 451$		96121				moras					${ }_{18,38}$
${ }^{60}$	(300	${ }^{625}$	$\underset{\substack{60 \\ 439}}{\text { 4, }}$	${ }^{666}$	${ }_{\text {en }}^{612}$	${ }^{\text {cin }}$	$\xrightarrow[\substack{66 \\ 4.300}]{\text { a }}$	cin	, sex	${ }_{\substack{568 \\ 4.27}}$	599	(188)		599	536	${ }_{4515}^{515}$				${ }_{\substack{458 \\ 450}}$	${ }_{\substack{561 \\ 4612}}^{\text {4, }}$
1298	12,36	2,597	2585	2525	2855	2545	2385	23,25	2226	${ }_{268}$	209	25011	2493	${ }_{2 / 85}$	24,48		2454	24,87	2tan	24,	24,20
${ }^{2590}$	${ }^{2581}$	${ }^{2022}$	${ }^{2688}$	${ }^{2684}$		${ }^{2773}$															
${ }_{30}^{188}$	1.43	${ }_{\substack{1.58 \\ 30}}$	${ }_{\text {1, }}^{1.188}$	${ }_{\text {120 }}^{120}$	${ }^{1.108}$	$\underset{\substack{120 \\ 80}}{ }$	-121	$\begin{gathered} 1225 \\ \substack{125} \\ \hline \end{gathered}$	${ }_{\substack{129 \\ 31 \\ 31}}$	1,263 31	$\underset{\substack{128 \\ 34}}{ }$	${ }_{32}^{1292}$	$\begin{array}{r} 1,307 \\ 32 \end{array}$	${ }_{1}^{1,29}$	${ }_{\substack{1335 \\ 122}}$	1,350 32 1.2	$\underset{\substack{138 \\{ }_{3} \\ \hline}}{ }$	1378 38 18	$\begin{aligned} & 1394 \\ & 33 \\ & \hline \end{aligned}$	1.498 ${ }_{3}$	${ }^{143}$

$\begin{array}{llllllll}2009 & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 & 2016\end{array}$
empibice csisonss

	Sex	2618	5ex	n\％	迆	1375	51\％	， 1.45	1205%	129\％	${ }_{135}$	， 1.85		23\％	1285	1095	，ox	${ }^{1258}$	， 1 \％	\％	，
																					2983.48
22，47		messo	\％	${ }_{61202}$		${ }^{201393}$		${ }_{\square}^{25313}$	，	\％	${ }^{202058}$	cose		che	，		\％	${ }_{1}^{2212138}$	，	${ }_{1}^{2000202}$	，
4.88840	${ }_{3}, 58$	4.9608	4，2，4，99	4.158 .561	4.19832	423,164	4.35625	4.355 .6	4041,407	4464	453295	457，1，98	4，68，94	4.656 .56	4，7，5s8	边	$4.856,73$	${ }^{\text {427，793 }}$	T	503780	souse
${ }^{3.688}$	Te3s	${ }^{3.887}$	${ }^{36812}$	${ }^{3689}$		${ }^{3724}$	230			${ }^{399}$		${ }^{4098}$									
${ }_{738}^{783}$	${ }^{\text {72385 }}$	80.12	${ }^{\text {Baxase }}$	${ }^{8,1,128}$	$\xrightarrow{818,001}$	${ }^{82088}$	${ }^{82880}$	${ }^{82888}$	${ }^{\text {Baxam }}$	${ }^{83,39}$	${ }^{2,388}$	${ }^{\text {a，788 }}$	${ }_{\text {825 }}^{525}$	${ }_{8}^{85,682}$	cosm		\％98	（ex	\％	（1820	（tay
${ }_{4}^{6178}$	${ }_{\substack{382}}^{3382}$			cosis			${ }_{3}^{563}$					（en				sin	${ }_{\substack{487 \\ 3727}}^{4}$	$\underset{\substack{3 \\ 3 \\ 387}}{ }$	${ }^{\text {4．85 }}$	${ }_{\substack{478 \\ 3,780}}$	${ }_{\substack{4 \\ 3,78}}^{48}$
${ }_{238}$	2391	${ }^{22,488}$	${ }^{2,19}$	31.90	31.8	${ }_{3137}$	311，13		ense	2333	20991090	${ }^{2,981}$	${ }^{2959}$	23，47	29，15	${ }^{2889}$	2882	23，394	28.48	27.94	2 zrea
${ }_{81} 81$	${ }^{41}$		${ }_{62}$	\％0	${ }_{87}$	${ }_{\text {¢08 }}^{68}$				${ }_{\text {T11 }}^{\text {T10 }}$	${ }_{\text {T17 }}$	${ }_{\text {re }}$	${ }_{70}$	${ }_{17}{ }^{3}$	${ }_{73} 7$	${ }^{79}$				${ }_{74}$	
${ }^{18}$	1	19	${ }^{20}$	21	2	${ }^{23}$	${ }^{24}$	${ }^{25}$	${ }^{26}$	${ }^{28}$	${ }^{8}$	30	32	${ }^{3}$	${ }^{35}$	${ }^{6}$	8	40	4	4	
${ }_{2065}$	${ }_{2} 254$	${ }_{259}^{259}$	2.56	${ }_{2}^{259}$	256	\％90	${ }^{205}$	269	204	268	26	266	200	${ }^{204}$	2	31	${ }^{274}$	278	${ }_{271}^{271}$	2784	

		，																碞	ouse	0015	ames
					$\begin{aligned} & 3,160,110 \\ & 4,627,732 \end{aligned}$	$\begin{aligned} & \hline 3,184,163 \\ & 4,636,166 \end{aligned}$	（	$\begin{aligned} & \hline 3,230,671 \\ & 4,650,017 \end{aligned}$		ciseme	$\begin{aligned} & \hline 3,291,537 \\ & 4,664,116 \end{aligned}$	$\begin{aligned} & \hline 3,302,817 \\ & 4,667,607 \end{aligned}$	$\begin{aligned} & \hline 3,307,924 \\ & 4,670,444 \end{aligned}$		$\begin{aligned} & \hline 3,386,624 \\ & 4,672,980 \end{aligned}$	$\begin{aligned} & \hline 3,398,953 \\ & 4,672,911 \end{aligned}$					
（184	$\underset{\substack{1387889}}{\substack{73139}}$	${ }^{1224.360}$		－1．10019	1．17．4．59	${ }^{1.150089}$	1，148580	1，122a0	1，108747	1，105989	，109738	${ }^{1.8181985}$	${ }^{1.008589}$	${ }^{1.80} 1780$	1，098938	${ }^{1.902921}$	1.30119	${ }_{102385}$	10.40486	1.10808	¢，\％
\％ess．19	${ }^{\text {Brataces }}$	${ }^{\text {grobes3 }}$	Soment	，0，4．24	gouthe	${ }_{\text {arsems }}$	9，03237	s．onoser	，	${ }_{\text {g，} 0,0,57}$	（1，2s71	（1，2，59	\％，2，6，47	O，	9，	O，		\％ris．em	${ }^{2 \times 26}$		${ }_{\text {cher }}^{0.2728}$
cex	¢	$\underbrace{\substack{\text { eng }}}_{\text {gex }}$	$\substack { \text { marb } \\ \begin{subarray}{c}{58{ \text { marb } \\ \begin{subarray} { c } { 5 8 } } \end{subarray}$	${ }_{\substack{\text { max } \\ 508}}$	¢9989	cosm	（iose	cos		（10．488				$\substack{12050 \\ \text { cer }}$	cise	（ix	$\underset{\substack{1028 \\ 608}}{(0)}$			${ }_{\substack{193838 \\ 038}}$	（14．600
	${ }_{\substack{3 \\ 23804 \\ 2824}}$				${ }_{\substack{\text { a } \\ 2398 \\ 2398}}$							${ }^{3380}$	${ }_{\substack{3 \\ 3.230}}^{3.20}$		${ }^{3,388}$		${ }^{3228}$	${ }_{\substack{387 \\ 3285}}^{23}$		${ }^{322}$	${ }_{32265}$
${ }^{5238}$	5230	${ }^{5224}$	5，39	6.27	${ }^{5345}$	5，36］	5300	5.97	${ }^{8,413}$	5，29	s，4	5，69	${ }_{5,44}$	¢，49		6516	5，52	5，512			
${ }_{4}^{130}$	${ }_{4}^{129}$		${ }_{\substack{1381 \\ 46}}$	${ }^{136}$	${ }_{4}^{132}$	$\underbrace{1376}_{45}$	$\underset{4}{1381}$	${ }_{\substack{136 \\ 4}}^{4}$	${ }_{\substack{330 \\ 48}}$	${ }^{1384}$	${ }_{4}^{38}$	${ }_{1202}^{102}$	${ }^{1205}$	${ }_{6}^{108}$	（14214	4	${ }_{4}^{414}$	${ }_{40}^{121}$	${ }_{10}^{103}$	${ }_{40}^{120}$	128
6， 6	6，67	6ess	6，77	，720	6，7e	6，75	606	687	（897	\％e6	6as	\％as	6，92	\％	，997	（93）	999	，	2，99	，	\％

Cascade Natural Gas
2011 RPD Demand Forecas

	9，008	， 2 Ses	2138	1014	0．65	2045	0.518	Orrs	norrs	0．39\％	0.518	cass	2．188	0.008	，2025	0．185	0.75	orx	2045	2025	atas
	${ }^{20.6827}$	${ }^{2382382202}$	${ }^{2383063}$		${ }^{2012009}$		${ }^{2386655}$			${ }^{236}$			${ }^{2.3882214}$	${ }^{2}$	${ }^{2}$		${ }^{2686097}$	${ }^{25122 a s e}$	${ }^{25827,40}$	2020	
			，				${ }_{\text {chen }}$			，	${ }_{\text {che }}$			cosm	cose	coick	${ }_{\text {cosem }}$	（1，4．4．15	${ }_{\substack{1,12228 \\ 12284}}$	，	ctick
	370，991	$4{ }^{422} 231$	$4.47,1,60$	4,4238	4.10 .40	4.20283	4.442127	4.40356	4.412127	4， 4,732	$4.178,47$	$4.180,61$	$4.473,32$	4.15004	$427,7{ }^{\text {4，}}$	4265	427292	$4{ }^{40,1298}$	S31，	432， 1 ¢	${ }_{4}^{425256}$
2390	${ }^{28288}$	${ }_{20,50}$	28.91	${ }^{28881}$	2898	27.897	27.162	2732	${ }_{2,488}$	27.58	27.75	${ }^{27880}$	20.018	${ }^{23,190}$	${ }^{23,36}$	${ }_{2058}^{2088}$	${ }_{27,75}$	2380	2，17		${ }_{23897}$
			${ }^{337}$	${ }^{63}$	${ }^{\text {¢ }}$	${ }^{\text {er }}$	${ }^{175}$	${ }^{674}$	${ }^{611}$	${ }^{\text {\％}}$	${ }^{675}$	${ }^{673}$	${ }^{\text {m }}$	${ }^{60}$	${ }^{81}$	9	28	m	${ }^{78}$	${ }_{8}$	${ }_{65}$
				${ }_{\substack{3 \\ 3624}}$						${ }_{5}$		${ }^{3}$	3503		\％	${ }^{3,122}$	3，108		，	${ }^{\text {and }}$	速
${ }^{3.38}$	3.34	${ }^{3,48}$	3.42	${ }^{\text {3，400 }}$	3.41	3,62	${ }_{3}, 42$	3,47		3.511	${ }^{3,58}$	${ }^{3,47}$	${ }^{3,587}$	3.89	38.6	${ }^{3,641}$	${ }^{3.668}$	${ }^{369}$	3720	${ }^{3,51}$	3，700
2	4		3	2	2	2	2	2	1		＋		1	1		1			，	，	

	sam	8488	120\％		2445	3n18	3448	2945	${ }^{2035}$	3775	3.45	${ }^{2985}$	${ }_{2085}$	$3{ }^{3} 75$	4.55%	3，99\％	${ }_{3205}$	3 ase	${ }^{3,000}$	${ }_{3285}$	${ }^{3727}$
					cincle								$\underbrace{3}$	$\underbrace{3 \times 2}$							
	，	，		${ }_{\text {a }}$	cince				coin	come	cosm	come	cosm	come			come	come	comer	come	
4205384	46.553 .46	$5_{50,54.155}$	5.1453 .5	S284，6，97	S3，750．022		55，30，79	S\％99，989	6， 06.65	${ }^{2.8285515}$		6，72．204	\％6．12397		${ }^{2,4,4,6,51}$	78.544 .19		$8.19,595$	8，70，	8874959	${ }^{20,3,3,123}$
，	，					（1ation			Sity			（ixso	，	cos		${ }_{\text {cosem }}^{\text {saxas }}$	cis	（10020	cteme	，	
，	${ }_{\substack{788 \\ 279}}$	${ }_{\substack{768 \\ 2888}}$		（108	${ }_{\substack{702 \\ 2981}}$	，	，			$\substack{\text { mo } \\ 3213}^{\text {a }}$	$\underset{\substack{\text { max } \\ 328}}{ }$	$\underset{\substack{73 \\ 336}}{ }$	T3 337	，			，	，	cis	$\underset{\substack{700 \\ 3.93}}{ }$	${ }_{\substack{791 \\ 4020}}$
\％648	${ }_{3205}$	${ }_{4}^{4}, 28$	41,38	41,34	41380	4128	4	4122	4127			，	\％1，	4，ta00	4	Atam	${ }_{\text {d，}}$	maso	，	ene	Stand
退	${ }^{3,3868}$	${ }_{\text {cosem }}$			，	${ }^{41290}$	${ }^{12} 2740$				${ }^{\text {abere }}$	${ }_{4}^{47589}$	Reze	${ }^{\text {angex }}$	退	${ }^{525} 5$	a，1e8		${ }^{85} 5$	8，7\％	
	${ }_{\substack{628 \\ 85}}^{68}$	${ }_{\substack{6,45 \\ 50}}$	${ }_{\substack{6,97 \\ 68}}^{68}$	${ }_{\substack{685 \\ 46}}$	$\underset{\substack{7088 \\ 48}}{ }$	$\underset{\substack{1218 \\ 4}}{ }$	${ }_{4}^{74.4}$		${ }^{7818}$	${ }_{\substack{1020}}^{12}$	${ }_{41}^{828}$	${ }^{814}$	${ }_{60}{ }_{6} 6$	$\substack{885 \\ 40}$	${ }^{1090}$	${ }_{40}{ }_{4}{ }^{3} 20$	${ }_{\text {c，}}^{10}$	（1020	（100n	（1036	（10，48
（1381	${ }_{3}^{2} \times 8$	4．7．${ }^{\text {\％}}$	S527	6，${ }^{\text {as3 }}$	${ }_{\text {c，}, \text { es }}$	a，022	6，198	${ }_{51,37}$	${ }^{1259}$	S376	－997	stio	，143	se．is	a00	， 0	（2， 28	4，18	${ }_{6568}$	criof	as．591

	1288\％	15354	${ }_{128 \%}$	097\％	${ }_{1.38 \%}$	${ }_{\text {1，as }}$	1986	14.48	${ }_{129 \%}$	${ }_{1088}$	${ }^{1080}$	${ }_{1226}$	${ }^{1000}$		${ }^{2255}$			${ }_{\text {13，}}^{13 \%}$	1008	0.85	
cosis	（ismex	（ex	（ex			cos	$7,437,743$ $6,448,382$ $1,24,139$	$7,626,879$ $6,483,417$	$\begin{aligned} & \hline 7,801,926 \\ & 6,513,361 \end{aligned}$	$\begin{aligned} & \hline 8,017,207 \\ & 6,550,067 \end{aligned}$		$\begin{aligned} & \hline 8,426,856 \\ & 6,612,605 \end{aligned}$		$8,781,921$ $6,658,051$	$9,114,545$ $6,707,191$	$9,284,220$ $6,723,812$	$\begin{aligned} & \hline 9,454,258 \\ & 6,738,903 \\ & \hline 1175,017 \end{aligned}$	$9,667,365$ $6,760,742$	$\begin{aligned} & \hline 9,838,627 \\ & 6.773,143 \end{aligned}$	$9,989,052$ $6,781,249$	（enem
	${ }^{81}$	${ }^{12200017}$	${ }_{6}^{34}$	${ }^{1282201}$	${ }^{1200217}$						${ }^{21810108}$										
$14.023,38$	12 25s，48	$14.080,42$	${ }_{12288,5 \times 2}$	${ }^{14.46,505}$	14.5409	${ }^{13887238}$	15.512284	15，30，49	15857.124	15，723．36		12350， 9	（1542es	IG65899		7，1，0．400	${ }^{17,58,174}$	${ }_{1}^{1,5,5,788}$	${ }_{1,7,1937}$	${ }^{1,929,93}$	Sospe
12， 2 se	${ }_{\text {cosem }}^{12085}$		${ }^{2}$			${ }_{\text {chem }}$			${ }_{2687}$				${ }_{26}{ }_{2585}$	\％ex		${ }^{2}$	${ }^{2}$	${ }^{\text {kn }}$			${ }^{\text {che }}$
（6010	（106		（1393	${ }_{\substack{\text { s77 } \\ 3 \times 80}}$	${ }_{\substack{\text { seb } \\ 3200}}$	（187	（est	（800	${ }_{3} 821$	${ }_{\substack{\text { bib } \\ 32616}}$		$\underset{\substack{6.14 \\ \text { a，} \\ \hline 18}}{ }$	$\substack{6,4 \\ 3,162}$				cose	cis	$\underset{\substack{499 \\ 368}}{ }$	cosy	cis
4270	${ }^{29880}$	${ }_{\text {ckis }}$	ss，	S4， 513	5 St， 16	8378	53,32	${ }^{52974}$	8289	5287	5138	51,51	5107	s0，78	s， 37	69971	A998	12288	Amen	6，54	
10.41	10，5e	${ }^{10.42}$	11.35	${ }_{11,28}$	1.129	${ }^{12178}$	1249	${ }^{12715}$	${ }^{129518}$	${ }^{1320}$	${ }^{1,42}$	${ }^{13720}$	${ }^{13,35}$	${ }^{14,99}$	14.41	14.84	\％80	19，980	15，10	15，97	919
${ }_{21}^{102}$	${ }^{1820}$	${ }_{1 \times 3}^{188}$	${ }_{23}^{138}$	${ }_{123}^{190}$	${ }^{32}$	${ }^{1983}$	${ }^{1974}$	195	$\underset{\substack{2016 \\ 23}}{\substack{\text { a }}}$	${ }^{2097}$	${ }^{2087}$	${ }_{20}^{207}$	${ }_{24}^{2087}$	$\underset{\substack{2.116 \\ 24}}{ }$	${ }_{2}^{27.75}$	$\underset{24}{2184}$	$\underset{24}{212}$	${ }_{2}^{2198}$	2488	${ }_{2}^{228} \times$	${ }^{2213}$
${ }_{1224}$	${ }_{124}$	${ }_{12,88}$	1328	${ }_{1,585}$	1，3，9101	41.18	14.47	\％，7，34	15006	15820	${ }_{15}^{15,5}$	IS800	（605s	16，31	15.50	（6，722	17，06	${ }_{17210}$	${ }_{17,42}$	${ }^{1,9,87}$	7r，

Cascade Natural Gas
2011 RPP Demand Forecas

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

Cascade Natural Gas

2011 IRP Demand Forecast Summary Tables

Baker

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

2011 IRP Demand Forecast Summary Tables

Bend

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

Cascade Natural Gas

2011 IRP Demand Forecast Summary Tables

Ontario

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

OR

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

Cascade Natural Gas

2011 IRP Demand Forecast Summary Tables

Pendleton

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

SYSTEM TOTAL																		
	Annual Requirements (Therms)									Annual Change								
	Low			Medium			High			Low			Medium			High		
	Heating	Baseload	Total															
2011	200,370,396	99,067,886	299,438,282	201,978,648	99,907,175	301,885,823	204,019,930	100,972,453	304,992,382	10.77\%	11.34\%	10.96\%	11.66\%	12.28\%	11.87\%	12.79\%	13.48\%	13.02\%
2012	201,854,461	99,907,498	301,761,959	203,797,435	100,919,740	304,717,175	206,754,395	102,444,119	309,198,514	0.74\%	0.85\%	0.78\%	0.90\%	1.01\%	0.94\%	1.34\%	1.46\%	1.38\%
2013	203,831,309	100,983,512	304,814,821	206,025,016	102,125,041	308,150,057	209,546,286	103,929,019	313,475,305	0.98\%	1.08\%	1.01\%	1.09\%	1.19\%	1.13\%	1.35\%	1.45\%	1.38\%
2014	206,361,362	102,314,925	308,676,287	208,913,551	103,639,644	312,553,195	212,911,912	105,679,391	318,591,302	1.24\%	1.32\%	1.27\%	1.40\%	1.48\%	1.43\%	1.61\%	1.68\%	1.63\%
2015	209,734,223	104,035,861	313,770,084	212,786,012	105,612,914	318,398,926	217,163,327	107,837,287	325,000,613	1.63\%	1.68\%	1.65\%	1.85\%	1.90\%	1.87\%	2.00\%	2.04\%	2.01\%
2016	213,474,542	105,927,094	319,401,636	217,080,056	107,784,109	324,864,165	221,798,257	110,174,451	331,972,707	1.78\%	1.82\%	1.79\%	2.02\%	2.06\%	2.03\%	2.13\%	2.17\%	2.15\%
2017	216,510,634	107,493,682	324,004,316	220,557,609	109,574,720	330,132,329	225,718,950	112,182,036	337,900,986	1.42\%	1.48\%	1.44\%	1.60\%	1.66\%	1.62\%	1.77\%	1.82\%	1.79\%
2018	219,385,598	108,985,678	328,371,276	223,856,637	111,281,328	335,137,965	229,496,182	114,121,434	343,617,616	1.33\%	1.39\%	1.35\%	1.50\%	1.56\%	1.52\%	1.67\%	1.73\%	1.69\%
2019	222,829,248	110,741,004	333,570,252	227,818,834	113,298,528	341,117,362	233,891,302	116,348,320	350,239,622	1.57\%	1.61\%	1.58\%	1.77\%	1.81\%	1.78\%	1.92\%	1.95\%	1.93\%
2020	226,478,881	112,592,168	339,071,048	232,029,926	115,432,321	347,462,248	238,542,294	118,693,503	357,235,797	1.64\%	1.67\%	1.65\%	1.85\%	1.88\%	1.86\%	1.99\%	2.02\%	2.00\%
2021	229,448,852	114,128,678	343,577,530	235,465,759	117,203,961	352,669,721	242,508,426	120,722,139	363,230,566	1.31\%	1.36\%	1.33\%	1.48\%	1.53\%	1.50\%	1.66\%	1.71\%	1.68\%
2022	232,165,043	115,547,477	347,712,520	238,614,711	118,841,525	357,456,236	246,217,767	122,631,560	368,849,327	1.18\%	1.24\%	1.20\%	1.34\%	1.40\%	1.36\%	1.53\%	1.58\%	1.55\%
2023	235,602,471	117,300,767	352,903,238	242,604,449	120,871,766	363,476,215	250,733,654	124,912,794	375,646,448	1.48\%	1.52\%	1.49\%	1.67\%	1.71\%	1.68\%	1.83\%	1.86\%	1.84\%
2024	240,674,153	119,813,038	360,487,191	248,500,980	123,794,779	372,295,759	257,081,124	128,042,602	385,123,727	2.15\%	2.14\%	2.15\%	2.43\%	2.42\%	2.43\%	2.53\%	2.51\%	2.52\%
2025	243,791,149	121,417,715	365,208,865	252,139,072	125,660,514	377,799,586	261,326,837	130,198,461	391,525,298	1.30\%	1.34\%	1.31\%	1.46\%	1.51\%	1.48	1.65	1.68	1.66\%
2026	246,939,567	123,035,974	369,975,542	255,831,826	127,550,586	383,382,411	265,661,129	132,393,161	398,054,290	1.29\%	1.33\%	1.31\%	1.46\%	1.50\%	1.48	1.66	1.69	1.67\%
2027	250,675,250	124,926,120	375,601,370	260,219,703	129,765,227	389,984,931	270,694,223	134,910,358	405,604,580	1.51\%	1.54\%	1.52\%	1.72\%	1.74\%	1.72\%	1.89\%	1.90\%	1.90\%
2028	253,944,068	126,599,719	380,543,787	264,084,745	131,735,198	395,819,943	275,269,941	137,215,013	412,484,954	1.30\%	1.34\%	1.32\%	1.49\%	1.52\%	1.50\%	1.69\%	1.71\%	1.70\%
2029	256,999,472	128,172,845	385,172,317	267,717,206	133,595,382	401,312,589	279,660,844	139,433,254	419,094,098	1.20\%	1.24\%	1.22\%	1.38\%	1.41\%	1.39\%	1.60\%	1.62\%	1.60\%
2030	260,005,028	129,721,543	389,726,570	271,307,129	135,434,521	406,741,650	284,049,857	141,648,874	425,698,731	1.17\%	1.21\%	1.18\%	1.34\%	1.38\%	1.35\%	1.57\%	1.59\%	1.58\%
	Peak Day - Baseload									Annual Change								
	Low			Medium			High			Low			Medium			High		
	Dally	Peak	otal Core Peak	Dally	Peak	Core	Daly	Peak	TotalCorePeak			Total	Base	Peak	Total	Base	Peak	Total
	Baseload			Baseload		Peak	Baseload			Base	Peak							
2011	271,419	3,370,001	3,641,420	273,718	3,407,381	3,681,099	276,637	3,457,425	3,734,062	11.34\%	0.48\%	1.22\%	12.28\%	1.60\%	2.32\%	13.48\%	3.09\%	3.80\%
2012	273,719	3,430,821	3,704,541	276,492	3,482,668	3,759,160	280,669	3,548,015	3,828,684	0.85\%	1.80\%	1.73\%	1.01\%	2.21\%	2.12\%	1.46\%	2.62\%	2.53\%
2013	276,667	3,496,041	3,772,709	279,795	3,558,507	3,838,302	284,737	3,633,051	3,917,789	1.08\%	1.90\%	1.84\%	.19\%	.18\%	2.11\%	1.45\%	2.40\%	2.33\%
2014	280,315	3,561,054	3,841,369	283,944	3,634,447	3,918,392	289,533	3,718,803	4,008,336	1.32\%	1.86\%	1.82\%	1.48\%	2.13\%	2.09\%	1.68\%	2.36\%	2.31\%
2015	285,030	3,625,480	3,910,510	289,350	3,709,965	3,999,316	295,445	3,804,591	4,100,035	8\%	1.81\%	1.80\%	1.90\%	. 08%	2.07\%	. 04%	2.31\%	2.29\%
2016	290,211	3,689,783	3,979,994	295,299	3,785,690	4,080,989	301,848	3,891,046	4,192,894	1.82\%	1.77\%	1.78\%	2.06\%	2.04\%	2.04\%	2.17\%	2.27\%	2.26\%
2017	294,503	3,755,298	4,049,801	300,205	3,863,238	4,163,443	307,348	3,979,669	4,287,017	1.48\%	1.78\%	1.75\%	1.66\%	2.05\%	2.02\%	1.82\%	2.28\%	2.24\%
2018	298,591	3,821,281	4,119,872	304,880	3,941,739	4,246,619	312,661	4,069,697	4,382,359	1.39\%	1.76\%	1.73\%	1.56\%	2.03\%	2.00\%	1.73\%	2.26\%	2.22\%
2019	303,400	3,886,875	4,190,275	310,407	4,020,207	4,330,614	318,763	4,160,283	4,479,046	1.61\%	1.72\%	1.71\%	1.81\%	1.99\%	1.98\%	1.95\%	2.23\%	2.21\%
2020	308,472	3,952,491	4,260,962	316,253	4,099,159	4,415,412	325,188	4,251,946	4,577,134	1.67\%	1.69\%	1.69\%	1.88\%	1.96\%	1.96\%	2.02\%	2.20\%	2.19\%
2021	312,681	4,019,362	4,332,043	321,107	4,180,043	4,501,149	330,746	4,346,051	4,676,797	1.36\%	1.69\%	1.67\%	1.53\%	1.97\%	1.94\%	1.71\%	2.21\%	2.18\%
2022	316,568	4,087,001	4,403,569	325,593	4,262,136	4,587,729	335,977	4,441,696	4,777,673	1.24\%	1.68\%	1.65\%	1.40\%	1.96\%	1.92\%	1.58\%	2.20\%	2.16\%
2023	321,372	4,153,909	4,475,281	331,156	4,343,744	4,674,899	342,227	4,537,327	4,879,554	1.52\%	1.64\%	1.63\%	1.71\%	1.91\%	1.90\%	1.86\%	2.15\%	2.13\%
2024	328,255	4,218,947	4,547,202	339,164	4,423,678	4,762,842	350,802	4,632,064	4,982,866	2.14\%	1.57\%	1.61\%	2.42\%	1.84\%	1.88\%	2.51\%	2.09\%	2.12\%
2025	332,651	4,286,658	4,619,309	344,275	4,507,080	4,851,356	356,708	4,730,402	5,087,110	. 34%	60\%	1.59\%	1.51\%	1.89\%	1.86\%	1.68\%	2.12\%	2.09\%
2026	337,085	4,354,371	4,691,456	349,454	4,591,007	4,940,461	362,721	4,829,884	5,192,605	1.33	1.58\%	1.56\%	1.50\%	1.86\%	1.84\%	1.69\%	2.10\%	2.07\%
2027	342,263	4,421,564	4,763,828	355,521	4,674,804	5,030,325	369,617	4,929,852	5,299,469	1.54\%	1.54\%	1.54\%	1.74\%	1.83\%	1.82	1.90\%	. 07%	. 06%
2028	346,849	4,489,396	4,836,244	360,918	4,759,839	5,120,758	375,932	5,031,578	5,407,510	1.34\%	1.53\%	1.52\%	1.52\%	.82\%	1.80\%	.71\%	2.06%	2.04\%
2029	351,158	4,557,706	4,908,864	366,015	4,845,941	5,211,955	382,009	5,134,967	5,516,976	1.24\%	1.5	1.50\%	1.41\%	1.81\%	1.78\%	1.62\%	2.05\%	2.02\%
2030	355,401	4,626,278	4,981,679	371,053	4,932,800	5,303,854	388,079	5,239,651	5,627,730	1.21\%	1.50\%	1.48\%	1.38\%	1.79\%	1.76\%	1.59\%	2.04\%	2.01\%
	Therm Usage by Class									Annual Change								
	Low			Medium			High			Low			Medium					
	RES	COM/IND	Total	RES ${ }^{\text {High }}$ High		Total												
2011	161,593,454	137,844,827	299,438,282	163,007,592	138,878,231	301,885,823	164,762,631	140,229,752	304,992,382	12.34\%	9.39\%	10.96\%	13.32\%	10.21\%	11.87\%	14.54\%	11.28\%	13.02\%
2012	163,181,635	138,580,324	301,761,959	165,140,812	139,576,363	304,717,175	167,411,639	141,786,875	309,198,514	0.98\%	0.53\%	0.78\%	1.31\%	0.50\%	0.94\%	1.61\%	1.11\%	1.38\%
2013	165,171,419	139,643,402	304,814,821	167,509,827	140,640,229	308,150,057	170,023,365	143,451,940	313,475,305	1.22\%	0.77\%	1.01\%	1.43\%	0.76\%	1.13\%	1.56\%	1.17\%	1.38\%
2014	167,568,441	141,107,846	308,676,287	170,297,928	142,255,267	312,553,195	173,061,588	145,529,714	318,591,302	1.45\%	1.05\%	1.27\%	1.66\%	1.15\%	1.43\%	1.79\%	1.45\%	1.63\%
2015	170,598,985	143,171,100	313,770,084	173,732,955	144,665,972	318,398,926	176,752,848	148,247,766	325,000,613	1.81\%	1.46\%	1.65\%	.02\%	.69\%	1.87\%	138	878	2.01\%
2016	173,896,131	145,505,505	319,401,636	177,442,906	147,421,259	324,864,165	180,718,292	151,254,415	331,972,707	1.93\%	1.63\%	1.79\%	2.14\%	1.90\%	2.03\%	.24\%	2.03	2.15
2017	176,634,534	147,369,782	324,004,316	180,592,402	149,539,927	330,132,329	184,114,274	153,786,712	337,900,986	1.57\%	1.28\%	1.44\%	1.77\%	1.44\%	1.62\%	1.88\%	1.67%	1.79
2018	179,235,621	149,135,654	328,371,276	183,609,333	151,528,632	335,137,965	187,376,612	156,241,005	343,617,616	1.47\%	1.20\%	1.35\%	1.67\%	1.33\%	1.52\%	1.778	1.60\%	1.69\%
2019	182,262,780	151,307,473	333,570,252	187,067,094	154,050,268	341,117,362	191,086,748	159,152,874	350,239,622	1.69\%	1.46\%	1.58\%	1.88\%	1.66\%	1.78\%	1.98\%	1.86	1.93
2020	185,437,255	153,633,794	339,071,048	190,685,159	156,777,089	347,462,248	194,964,894	162,270,903	357,235,797	1.74\%	1.54\%	1.65\%	1.93\%	1.77\%	1.86\%	2.03\%	1.96\%	2.00\%
2021	188,079,305	155,498,225	343,577,530	193,769,389	158,900,332	352,669,721	198,304,556	164,926,010	363,230,566	1.42\%	1.21\%	1.33\%	1.62\%	1.35\%	1.50\%	1.71\%	1.64\%	1.68\%
2022	190,516,726	157,195,794	347,712,520	196,646,334	160,809,902	357,456,236	201,426,155	167,423,172	368,849,327	1.30\%	1.09\%	1.20\%	1.48\%	1.20\%	1.36\%	1.57\%	1.51\%	1.55
2023	193,500,478	159,402,760	352,903,238	200,087,379	163,388,836	363,476,215	205,120,377	170,526,071	375,646,448	1.57\%	1.40\%	1.49\%	1.75\%	1.60\%	1.68\%	1.83\%	1.85\%	1.84\%
2024	197,729,513	162,757,678	360,487,191	204,818,389	167,477,370	372,295,759	210,138,207	174,985,519	385,123,727	2.19\%	2.10\%	2.15\%	2.36\%	2.50\%	2.43\%	2.45\%	2.62\%	2.52\%
2025	200,449,633	164,759,231	365,208,865	208,000,440	169,799,146	377,799,586	213,563,491	177,961,806	391,525,298	1.38\%	1.23\%	1.31\%	1.55\%	1.39\%	1.48\%	1.63\%	1.70\%	1.66\%
2026	203,185,413	166,790,129	369,975,542	211,207,260	172,175,151	383,382,411	217,018,856	181,035,434	398,054,290	1.36\%	1.23\%	1.31\%	1.54\%	1.40\%	1.48\%	1.62\%	1.73\%	1.67\%
2027	206,361,964	169,239,406	375,601,370	214,874,964	175,109,966	389,984,931	220,946,159	184,658,422	405,604,580	1.56\%	1.47\%	1.52\%	1.74\%	1.70\%	1.72\%	1.81\%	2.00\%	1.90\%
2028	209,176,754	171,367,033	380,543,787	218,177,340	177,642,604	395,819,943	224,501,993	187,982,961	412,484,954	1.36\%	1.26\%	1.32\%	1.54\%	1.45\%	1.50\%	1.61\%	1.80	1.70\%
2029	211,820,324	173,351,994	385,172,317	221,310,738	180,001,851	401,312,589	227,888,130	191,205,968	419,094,098	1.26\%	1.16\%	1.22\%	1.44\%	1.33\%	1.39\%	1.51\%	1.71\%	1.60\%
2030	214,420,241	175,306,329	389,726,570	224,404,551	182,337,099	406,741,650	231,234,493	194,464,238	425,698,731	1.23\%	1.13\%	1.18\%	1.40\%	1.30\%	1.35\%	1.47\%	1.70\%	1.58
	Customer Count Forecast									Annual Change								
	Low			Medium			High			Low			Medium			High		
	RES	COM/IND	Total	RES	COM/IND	Total	RES	COM/IND	Total	RES ${ }^{\text {COM }}$		Total	RES	COM/IND	Total	RES	COM/IND	Total
2011	228,379	34,712	263,091	230,833	35,073	265,907	234,051	35,581	269,632	1.31\%	0.57\%	1.21\%	2.40\%	1.62\%	2.30\%	3.83\%	3.09\%	3.73\%
2012	232,284	35,294	267,578	235,698	35,765	271,463	239,959	36,398	276,357	1.71\%	1.68\%	1.71\%	2.11\%	1.97\%	2.09\%	2.52\%	2.29\%	2.49\%
2013	236,484	35,919	272,403	240,631	36,467	277,097	245,556	37,169	282,725	1.81\%	1.77\%	1.80\%	2.09\%	1.96\%	2.08\%	2.33\%	2.12\%	2.30\%
2014	240,715	36,549	277,263	245,624	37,176	282,800	251,245	37,951	289,196	1.79\%	1.75\%	1.78\%	2.08\%	1.94\%	2.06\%	2.32\%	2.10\%	2.29\%
2015	244,974	37,184	282,159	250,672	37,894	288,566	257,016	38,746	295,761	1.77\%	1.74\%	1.77\%	2.06\%	1.93\%	2.04\%	2.30\%	2.10\%	2.27\%
2016	249,257	37,825	287,081	255,767	38,618	294,385	262,854	39,547	302,401	1.75\%	1.72\%	1.74\%	2.03\%	1.91\%	2.02\%	2.27\%	2.07%	2.24\%
2017	253,557	38,469	292,026	260,911	39,349	300,260	268,775	40,358	309,133	1.73\%	1.70\%	1.72\%	2.01\%	1.89\%	2.00\%	2.25\%	2.05\%	2.23\%
2018	257,876	39,116	296,991	266,105	40,088	306,193	274,785	41,181	315,966	1.70\%	1.68\%	1.70\%	1.99\%	1.88\%	1.98\%	2.24\%	2.04\%	2.21\%
2019	262,217	39,768	301,984	271,351	40,833	312,184	280,876	42,013	322,889	1.68\%	1.67\%	1.68\%	1.97\%	1.86\%	1.96\%	2.22\%	2.02\%	2.19\%
2020	266,574	40,423	306,997	276,648	41,585	318,233	287,056	42,856	329,912	1.66\%	1.65\%	1.66\%	1.95\%	1.84\%	1.94\%	2.20\%	2.01\%	2.18\%
2021	270,957	41,082	312,039	282,006	42,345	324,351	293,341	43,712	337,053	1.64\%	1.63\%	1.64\%	1.94\%	1.83\%	1.92\%	2.19\%	2.00\%	2.16\%
2022	275,367	41,746	317,113	287,416	43,113	330,530	299,702	44,577	344,280	1.63\%	1.62\%	1.63\%	1.92\%	1.81\%	1.90\%	2.17\%	1.98\%	2.14\%
2023	279,790	42,413	322,203	292,869	43,887	336,756	306,137	45,451	351,588	1.61\%	1.60\%	1.61\%	1.90\%	1.79\%	1.88\%	2.15\%	1.96\%	2.12\%
2024	284,228	43,083	327,311	298,372	44,666	343,038	312,663	46,334	358,997	1.59\%	1.58\%	1.59\%	1.88\%	1.78\%	1.87\%	2.13\%	1.94\%	2.11\%
2025	288,677	43,755	332,433	303,912	45,450	349,362	319,249	47,224	366,473	1.57\%	1.56\%	1.56\%	1.86\%	1.76\%	1.84\%	2.11\%	1.92\%	2.08\%
2026	293,130	44,429	337,559	309,492	46,240	355,732	325,921	48,124	374,045	1.54\%	1.54\%	1.54\%	1.84\%	1.74\%	1.82\%	2.09\%	1.91\%	2.07\%
2027	297,604	45,106	342,711	315,126	47,037	362,163	332,684	49,034	381,718	1.53\%	1.52\%	1.53\%	1.82\%	1.72\%	1.81\%	2.07\%	1.89\%	2.05\%
2028	302,078	45,783	347,861	320,795	47,837	368,632	339,523	49,953	389,476	1.50\%	1.50\%	1.50\%	1.80\%	1.70\%	1.79\%	2.06\%	1.87\%	2.03\%
2029	306,567	46,463	353,030	326,516	48,643	375,159	346,456	50,881	397,337	1.49\%	1.49\%	1.49\%	1.78\%	1.69\%	1.77\%	2.04\%	1.86\%	2.02\%
2030	311,073	47,147	358,220	332,286	49,456	381,742	353,477	51,819	405,296	1.47\%	1.47\%	1.47\%	1.77\%	1.67\%	1.75\%	2.03\%	1.84\%	2.00\%

SYSTEM TOTAL

Cascade Natural Gas 2010 IRP Demand Forecast Economic Indicators

PROJECTED EMPLOYMENT GROWTH

 \begin{tabular}{lllllllllllllllllllllll}
2011 \& 2.93% \& 2.54% \& 3.79% \& 3.51% \& 0.97% \& 3.13% \& 2.25% \& 3.03% \& 2.86% \& 3.22% \& 2.78% \& 2.34% \& 3.54% \& 2.91% \& 1.96% \& 3.29% \& 2.98% \& 1.78% \& 3.59% \& 2.95% \& 2.28% \& 3.71%

2012 \& 1.11% \& 0.79% \& 2.13% \& 1.74% \& 0.97% \& 1.71% \& 2.25% \& 1.27% \& 1.18% \& 1.47% \& 1.04% \& 0.86% \& 1.79% \& 1.22% \& 0.41% \& 1.53% \& 1.28% \& 1.78% \& 1.84% \& 1.20% \& 0.65% \& 1.96%

\hline 0.548% \& 0.88%

\hline

2013 \& 1.15% \& 0.80% \& 2.13% \& 1.74% \& 0.97% \& 1.73% \& 2.25% \& 1.25% \& 1.19% \& 1.46% \& 1.03% \& 0.82% \& 1.78% \& 1.24% \& 0.38% \& 1.54% \& 1.19% \& 1.78% \& 1.84% \& 1.20% \& 0.65% \& 1.95% \& 0.87%

2014 \& 1.15% \& 0.78% \& 2.12% \& 1.72% \& 0.94% \& 1.71% \& 2.25% \& 1.28% \& 1.18% \& 1.46% \& 1.03% \& 0.83% \& 1.78% \& 1.24% \& 0.41% \& 1.52% \& 1.17% \& 1.77% \& 1.84% \& 1.19% \& 0.64% \& 1.95% \& 0.86%

\hline

2015 \& 1.10% \& 0.77% \& 2.11% \& 1.72% \& 0.94% \& 1.76% \& 2.25% \& 1.21% \& 1.20% \& 1.46% \& 1.02% \& 0.74% \& 1.77% \& 1.25% \& 0.39% \& 1.50% \& 1.22% \& 1.77% \& 1.84% \& 1.18% \& 0.66% \& 1.94% \& 0.86%

\hline
\end{tabular}

2017	1.13%	0.78%	2.11%	1.71%	0.92%	1.73%	2.24%	1.24%	1.17%	1.45%	1.01%	0.76%	1.76%	1.26%	0.37%	1.50%	1.12%	1.75%	1.84%	1.15%	0.64%	1.92%
	1.25%	0.85%																				

	2.13%																				
2020	1.11%	0.71%	2.09%	1.68%	0.88%	1.77%	2.24%	1.21%	1.17%	1.44%	0.98%	0.79%	1.74%	1.26%	0.39%	1.47%	1.15%	1.74%	1.83%	1.13%	0.61%

	2031	1.09%	0.68%	2.03%	1.58%	0.74%	1.88%	2.22%	1.14%	1.09%	1.39%	0.89%	0.71%	1.69%	1.33%	0.38%	1.38%	1.07%	1.69%	1.80%	1.04%	0.58%	1.82%	0.76%

 \begin{tabular}{|lllllllllllllllllllllllll}
2033 \& 1.13% \& 0.58% \& 2.01% \& 1.57% \& 0.72% \& 1.87% \& 2.21% \& 1.15% \& 1.09% \& 1.39% \& 0.87% \& 0.74% \& 1.67% \& 1.33% \& 0.33% \& 1.37% \& 1.15% \& 1.67% \& 1.79% \& 1.03% \& 0.57% \& 1.80% \& 0.75%

\hline 2034 \& 1.15 \& 0.65% \& 201% \& 1.56% \& 0.71% \& 1.92% \& 22% \& 1.14% \& 1.07% \& 1.38% \& 0.86% \& 0.71% \& 1.67% \& 1.35% \& 0.33% \& 1.36% \& 1.04% \& 1.67% \& 1.79% \& 1.03% \& 0.57% \& 1.80% \& 0.74% \&

\hline

2034 \& 1.11% \& 0.65% \& 2.01% \& 1.56% \& 0.71% \& 1.92% \& 2.22% \& 1.14% \& 1.07% \& 1.38% \& 0.86% \& 0.71% \& 1.67% \& 1.35% \& 0.33% \& 1.36% \& 1.04% \& 1.67% \& 1.79% \& 1.03% \& 0.57% \& 1.80% \& 0.74%

2035 \& 1.08% \& 0.66% \& 1.99% \& 1.55% \& 0.69% \& 1.91% \& 2.21% \& 1.13% \& 1.07% \& 1.38% \& 0.86% \& 0.73% \& 1.66% \& 1.35% \& 0.35% \& 1.32% \& 1.02% \& 1.66% \& 1.79% \& 1.01% \& 0.56% \& 1.79% \& 0.74%

\hline
\end{tabular}

| 2011 | 2.32% | 2.02% | 2.98% | 2.77% | 0.78% | 2.48% | 1.79% | 2.40% | 2.27% | 2.55% | 2.21% | 1.86% | 2.79% | 2.30% | 1.57% | 2.60% | 2.36% | 1.42% | 2.83% | 2.34% | 1.81% |
| :--- | | | | | | | | | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2012 | 0.89% | 0.63% | 1.70% | 1.39% | 0.78% | 1.36% | 1.79% | 1.02% | 0.95% | 1.18% | 0.84% | 0.69% | 1.43% | 0.98% | 0.33% | 1.22% | 1.03% | 1.42% |
| 2013 | 0.92% | 0.64% | 1.70% | 1.39% | 0.96% | 0.53% | 1.57% | 0.71% | | | | | | | | | | |

 | 2015 | 0.89% | 0.62% | 1.69% | 1.38% | 0.76% | 1.41% | 1.79% | 0.97% | 0.96% | 1.17% | 0.82% | 0.60% | 1.41% | 1.00% | 0.32% | 1.20% | 0.98% | 1.41% | 1.47% | 0.95% | 0.53% | 1.55% | 0.69% |
| :--- |
| 2016 | 0.94% | 0.59% | 1.69% | 1.36% | 0.74% | 1.40% | 1.79% | 1.02% | 0.93% | 1.16% | 0.81% | 0.69% | 1.41% | 1.01% | 0.32% | 1.21% | 1.02% | 1.41% | 1.47% | 0.94% | 0.51% | 1.54% | 0.69% |

2017	0.91%	0.63%	1.68%	1.37%	0.74%	1.39%	1.79%	1.00%	0.94%	1.16%	0.81%	0.61%	1.41%	1.01%	0.30%	1.20%	0.90%	1.40%	1.47%	0.94%	0.51%	1.53%
0.69%																						

2019	0.91%	0.61%	1.67%	1.35%	0.72%	1.42%	1.79%	0.97%	0.92%	1.15%	0.79%	0.63%	1.40%	1.02%	0.30%	1.18%	0.94%	1.40%	1.46%	0.93%	0.51%	1.53%	0.67%
2020	0.89%	0.57%	1.67%	1.34%	0.71%	1.42%	1.78%	0.97%	0.94%	1.16%	0.79%	0.63%	1.39%	1.01%	0.32%	1.18%	0.92%	1.39%	1.46%	0.91%	0.50%	1.52%	0.67%

 | | |
| :--- |

 | 2029 | 0.91% | 0.56% | 1.63% | 1.28% | 0.62% | 1.47% | 1.77% | 0.93% | 0.88% | 1.13% | 0.73% | 0.60% | 1.36% | 1.06% | 0.28% | 1.12% | 0.89% | 1.36% | 1.44% | 0.86% | 0.46% | 1.47% | 0.62% |
| :--- |

 \begin{tabular}{|lllllllllllllllllllllllllll}
2031 \& 0.88% \& 0.55% \& 1.62% \& 1.27% \& 0.60% \& 1.50% \& 1.77% \& 0.91% \& 0.88% \& 1.12% \& 0.72% \& 0.57% \& 1.35% \& 1.07% \& 0.31% \& 1.11% \& 0.86% \& 1.35% \& 1.44% \& 0.84% \& 0.47% \& 1.45% \& 0.61%

2032 \& 0.91% \& 0.54% \& 1.61% \& 1.26% \& 0.59% \& 1.54% \& 1.77% \& 0.93% \& 0.87% \& 1.12% \& 0.70% \& 0.61% \& 1.35% \& 1.07% \& 0.28% \& 1.10% \& 0.85% \& 1.35% \& 1.44% \& 0.84% \& 0.47% \& 1.45% \& 0.61%

\hline

2033 \& 0.91% \& 0.47% \& 1.60% \& 1.26% \& 0.58% \& 1.50% \& 1.76% \& 0.92% \& 0.87% \& 1.11% \& 0.70% \& 0.60% \& 1.34% \& 1.06% \& 0.27% \& 1.10% \& 0.92% \& 1.34% \& 1.43% \& 0.83% \& 0.46% \& 1.44% \& 0.60%

\hline

\&

2034 \& 0.90% \& 0.52% \& 1.60% \& 1.25% \& 0.57% \& 1.53% \& 1.77% \& 0.92% \& 0.86% \& 1.11% \& 0.70% \& 0.57% \& 1.34% \& 1.08% \& 0.27% \& 1.09% \& 0.84% \& 1.34% \& 1.43% \& 0.83% \& 0.46% \& 1.44% \& 0.60%

2035 \& 0.87% \& 0.53% \& 1.59% \& 1.25% \& 0.56% \& 1.52% \& 1.76% \& 0.91% \& 0.86% \& 1.11% \& 0.70% \& 0.59% \& 1.33% \& 1.09% \& 0.29% \& 1.06% \& 0.82% \& 1.33% \& 1.43% \& 0.82% \& 0.45% \& 1.43% \& 0.59%

\hline
\end{tabular}

[^5]Cascade Natural Gas 2010 IRP Demand Forecast Economic Indicators

PROJECTED HOUSEHOLDS GROWTH

 \begin{tabular}{llllllllllllllllllllll}
2011 \& 0.90% \& 0.02% \& 2.56% \& 1.54% \& -99.90% \& 2.12% \& 3.14% \& 1.67% \& 2.25% \& 1.75% \& 0.59% \& 1.23% \& 2.14% \& 1.14% \& -0.05% \& 2.18% \& 0.93% \& 2.26% \& 2.45% \& 0.70% \& 0.58%

2012 \& 1.04% \& 0.33% \& 2.41% \& 1.59% \& 0.88% \& 2.07% \& 2.87% \& 1.69% \& 2.15% \& 1.76% \& 0.79% \& 1.34% \& 2.07% \& 1.25% \& 0.19% \& 2.11% \& 1.07% \& 2.16% \& 2.32% \& 0.89% \& 0.80%

20.79% \& 0.79% \& 0.84%

\hline

2013 \& 0.98% \& 0.26% \& 2.30% \& 1.51% \& 0.92% \& 1.96% \& 2.75% \& 1.60% \& 2.06% \& 1.67% \& 0.72% \& 1.24% \& 1.98% \& 1.17% \& 0.16% \& 2.01% \& 1.01% \& 2.07% \& 2.21% \& 0.81% \& 0.72% \& 2.67% \& 0.77%

2014 \& 0.95% \& 0.23% \& 2.24% \& 1.47% \& 0.95% \& 1.91% \& 2.67% \& 1.57% \& 2.01% \& 1.63% \& 0.70% \& 1.23% \& 1.93% \& 1.15% \& 0.17% \& 1.96% \& 0.97% \& 2.02% \& 2.16% \& 0.79% \& 0.71% \& 2.59% \& 0.75%

\hline
\end{tabular}

 | 2017 | 0.88% | 0.17% | 2.07% | 1.37% | 1.04% | 1.77% | 2.45% | 1.46% | 1.86% | 1.51% | 0.62% | 1.15% | 1.79% | 1.07% | 0.13% | 1.81% | 0.90% | 1.86% | 1.99% | 0.70% | 0.63% | 2.38% | 0.68% |
| :--- |

2019	0.81%	0.13%	1.96%	1.30%	1.10%	1.68%	2.32%	1.40%	1.77%	1.43%	0.57%	1.09%	1.70%	1.01%	0.07%	1.72%	0.86%	1.77%	1.89%	0.63%	0.58%

 \begin{tabular}{|llllllllllllllllllllllllll}
2023 \& 0.72% \& 0.05% \& 1.78% \& 1.19% \& 1.18% \& 1.52% \& 2.11% \& 1.29% \& 1.62% \& 1.31% \& 0.49% \& 1.01% \& 1.54% \& 0.93% \& 0.00% \& 1.55% \& 0.77% \& 1.62% \& 1.72% \& 0.52% \& 0.48% \& 2.04% \& 0.57%

2024 \& 0.71% \& 0.02% \& 1.74% \& 1.17% \& 1.20% \& 1.48% \& 2.05% \& 1.26% \& 1.58% \& 1.27% \& 0.48% \& 0.98% \& 1.51% \& 0.91% \& 0.02% \& 1.52% \& 0.74% \& 1.58% \& 1.67% \& 0.49% \& 0.45% \& 1.99% \& 0.55%

\hline

2025 \& 0.67% \& 0.01% \& 1.70% \& 1.14% \& 1.22% \& 1.44% \& 2.00% \& 1.24% \& 1.54% \& 1.24% \& 0.45% \& 0.96% \& 1.46% \& 0.88% \& 0.03% \& 1.47% \& 0.74% \& 1.54% \& 1.63% \& 0.44% \& 0.42% \& 1.93% \& 0.53% \&

\hline
\end{tabular}

 | 2030 | 0.56% | -0.08% | 1.50% | 1.01% | 1.30% | 1.27 | 1.7% | 1.10% | 1.36% | 1.09% | 0.36% | 0.85% | 1.29% | 0.78% | -0.08% | 1.29% | 0.63% | 1.37% | 1.44% | 0.29% | 0.30% | 1.71% | 0.44% |
| :--- |
| 2031 | 0.53% | 1.23% | 1.73% | 1.08% | 1.33% | 1.06% | 0.35% | 0.85% | 1.260 | 0.76% | 0.05% | 1.26% | 0.60% | 1.33% | 1.40% | 0.276 | 0.28% | 1.67% | 0.43% | | | | |

 | |
| :--- |
| 2034 | 0.48% | -0.15% | 1.37% | 0.92% | 1.34% | 1.14% | 1.61% | 1.01% | 1.24% | 0.98% | 0.30% | 0.78% | 1.18% | 0.71% | -0.11% | 1.17% | 0.55% | 1.24% | 1.30% | 0.18% | 0.23% | 1.55% | 0.38% |
| 2035 | 0.44% | -0.17% | 1.33% | 0.89% | 1.36% | 1.11% | 1.56% | 0.98% | 1.21% | 0.95% | 0.28% | 0.75% | 1.14% | 0.68% | -0.11% | 1.13% | 0.53% | 1.21% | 1.26% | 0.15% | 0.21% | 1.51% | 0.36% |

| 2011 | 0.75% | 0.01% | 2.11% | 1.28% | 0.88% | 1.76% | 2.58% | 1.39% | 1.86% | 1.46% | 0.50% | 1.02% | 1.77% | 0.95% | -0.06% | 1.81% | 0.78% | 1.87% | 2.02% | 0.59% | 0.49% | 2.49% |
| :--- | | 2012 | 0.98% | 0.28% | 2.31% | 1.52% | 0.88% | 1.99% | 2.76% | 1.62% | 2.07% | 1.69% | 0.74% | 1.28% | 1.99% | 1.19% | 0.17% | 2.03% | 1.01% | 2.08% | 2.23% | 0.84% | 0.74% | 2.68% | 0.78% |
| :--- |
| 2013 | 0.97% | 0.27% | 2.26% | 1.49% | 0.91% | 1.93% | 2.69% | 1.58% | 2.03% | 1.65% | 0.72% | 1.24% | 1.95% | 1.17% | 0.16% | 1.98% | 1.00% | 2.03% | 2.18% | 0.81% | 0.72% | 2.61% | 0.76% | $\begin{array}{llllllllllllllllllllllllll} & \end{array}$ | 2015 | 0.92% | 0.22% | 2.14% | 1.42% | 0.97% | 1.84% | 2.54% | 1.52% | 1.93% | 1.57% | 0.67% | 1.19% | 1.86% | 1.11% | 0.10% | 1.88% | 0.96% | 1.94% | 2.07% | 0.76% | 0.68% |
| :--- |

 | 2019 | 0.81% | 0.13% | 1.93% | 1.29% | 1.08% | 1.66% | 2.28% | 1.38% | 1.75% | 1.42% | 0.57% | 1.08% | 1.68% | 1.01% | 0.07% | 1.70% | 0.86% | 1.75% | 1.86% | 0.64% | 0.58% | 2.22% | 0.63% |
| :--- |

 | 2021 | 0.77% | 0.10% | 1.85% | 1.24% | 1.12% | 1.58% | 2.18% | 1.33% | 1.67% | 1.36% | 0.54% | 1.04% | 1.60% | 0.97% | 0.05% | 1.62% | 0.80% | 1.68% | 1.78% | 0.59% | 0.54% | 2.11% | 0.60% | |
| :--- |

 \begin{tabular}{|lllllllllllllllllllllllll}
2023 \& 0.73% \& 0.06% \& 1.76% \& 1.18% \& 1.16% \& 1.50% \& 2.07% \& 1.28% \& 1.60% \& 1.30% \& 0.49% \& 1.00% \& 1.53% \& 0.93% \& 0.01% \& 1.54% \& 0.77% \& 1.60% \& 1.70% \& 0.52% \& 0.48% \& 2.01% \& 0.57%

2024 \& 0.71% \& 0.03% \& 1.72% \& 1.16% \& 1.18% \& 1.46% \& 2.02% \& 1.25% \& 1.56% \& 1.26% \& 0.48% \& 0.98% \& 1.49% \& 0.90% \& 0.02% \& 1.50% \& 0.74% \& 1.56% \& 1.65% \& 0.49% \& 0.45% \& 1.96% \& 0.55%

\hline

2025 \& 0.67% \& 0.01% \& 1.68% \& 1.13% \& 1.20% \& 1.43% \& 1.97% \& 1.23% \& 1.52% \& 1.23% \& 0.45% \& 0.96% \& 1.45% \& 0.88% \& 0.03% \& 1.46% \& 0.73% \& 1.52% \& 1.61% \& 0.45% \& 0.43% \& 1.91% \& 0.53%

\hline
\end{tabular}

 | 2027 | 0.63% | -0.03% | 1.60% | 1.07% | 1.24% | 1.35% | 1.87% | 1.16% | 1.45% | 1.17% | 0.41% | 0.91% | 1.38% | 0.83% | -0.05% | 1.38% | 0.68% | 1.45% | 1.53% | 0.39% | 0.38% | 1.81% | 0.49% |
| :--- |

 $\left.\begin{array}{lllllllllllllllllllllllll}20.32 .25 \%\end{array}\right)$

2011	65\%	.01\%	84\%	.11\%	90\%	1.52\%	2.25\%	20\%	1.62\%	26\%	0.42\%	0.88\%	1.54\%	. 82	-0.11\%	1.57\%	0.67\%	1.62%	$1.76{ }^{\circ}$	0.51\%	0.42\%	2.17\%	
2012	0.96\%	24\%	2.34\%	1.51\%	0.88\%	1.99	2.81\%	1.6	2.08	1.6	0.71\%	1.26\%	2.00\%	1.1	0.20\%	2.0	0.99\%	2.0	2.25	0.81\%	0.71\%	2.72\%	0.75\%
2013	0.99\%	7\%	2.32\%	\%	0.91\%	1.98\%	2.77\%	1.61\%	2.08\%	1.68\%	0.73\%	1.2	1.99\%	1.18\%	16\%	2.03\%	1.01\%	.08\%	2.23\%	0.82\%	73\%	2.69\%	0.77\%
2014	0.96\%	0.24\%	2.26\%	1.48\%	0.94\%	1.93	2.70\%	1.58\%	2.03\%	1.64\%	0.71\%	1.24\%	1.95\%	1.16\%	0.17\%	1.98\%	0.98\%	2.03\%	2.18\%	0.80\%	0.71\%	2.62\%	0.75\%
2015	0.94\%	0.22\%	2.20\%	1.45\%	0.97\%	1.88\%	2.62\%	1.55\%	1.98\%	1.60\%	0.68\%	1.21\%	1.90\%	1.13\%	0.11\%	1.93\%	0.97\%	1.98\%	2.12\%	0.77\%	0.69\%	2.54\%	0.73\%
2016	0.90\%	0.21\%	2.14\%	1.41\%	1.00\%	1.8	2.5	1.50\%	1.92\%	1.56\%	0.65\%	1.18\%	\%	0\%	.12\%	.88\%	0.92\%	1.93\%	2.06\%	.74\%	. 67%	2.47\%	0.71\%
2017	0.88\%	18\%	2.0	1.3	1.03\%	1.7	2.	1.47\%	\%	1.52\%	\%	\%	1.80\%	\%	3\%	1.83\%	0.91\%	\%\%	2.01\%	\%	.64\%	0\%	0.68\%
2018	0.85\%	15\%	2.03\%	1.34\%	1.06\%	1.72\%	2.41\%	1.44\%	1.83\%	1.48\%	0.60\%	1.12\%	1.75\%	1.05\%	0.07\%	1.78\%	0.88\%	1.83\%	1.96\%	. 68	0.61\%	2.34\%	0.66
2019	0.82\%	13\%	1.98\%	31\%	.09\%	1.69\%	2.3	1.4	1.78\%	1.44\%	0.58\%	1.09\%	1\%	\%	\%	1.73\%	. 7%	\%	1.91\%	0.65\%	9\%	2.28\%	0.64\%
2020	80°	.12\%	1.93\%	1.28\%	1.11\%	1.65\%	2.29\%	1.38\%	1.74\%	1.41\%	0.56\%	1.08\%	1.67\%	1.00\%	0.07\%	1.69\%	0.84\%	1.75\%	1.86\%	.62\%	57\%	2.22\%	0.62
2021	0.78\%	0.10\%	1.89\%	1.26\%	1.13\%	1.6	2.23\%	1.36\%	1.70\%	1.38\%	0.54\%	\%	\%	8\%	.05\%	1.65\%	0.81\%	1.71\%	1.82\%	. 59	.55\%	2.17\%	0.61
20	0.77\%	0.	1.85	1.24\%	1.15	1.57\%	2.18	1.33\%	1.67\%	1.35\%	0.53\%	1.04\%	1.60\%	0.96	0.05	1.61\%	0.80\%	1.67\%	1.78\%	0.56\%	0.52\%	2.11\%	
2023	0.74\%	0.06\%	1.80\%	1.20\%	1.17\%	1.53%	2.12\%	1.30\%	1.63\%	1.32\%	0.50\%	1.01	1.56	0.94\%	0.02\%	1.57\%	0.78\%	1.63\%	1.73\%	0.53\%	0.49\%	2.06\%	0.57
202	0.71\%	0.03\%	1.7	1.1	1.1	1.4	2.07\%	1.27\%	1.59\%	1.28\%	0.48\%	0.99\%	\%	\%	0.02\%	1.53\%	0.75\%	1.59\%	1.69\%	0.50\%	0.46\%	2.00\%	0.56
2025	0.68\%	0.02\%	1.71\%	1.15\%	1.21\%	1.45\%	2.02\%	1.25\%	1.55\%	1.25\%	0.46\%	0.97\%	1.48\%	0.89\%	0.03\%	1.48\%	0.74\%	1.55\%	1.64\%	0.46\%	0.43\%	1.95\%	0.54
20	0.66\%	0.00\%	1.67\%	1.12\%	1.24\%	1.41\%	1.96\%	1.21\%	1.51\%	1.22\%	0.44\%	0.95\%	1.44\%	0.87\%	-0.0.0000000	1.44\%	0.72\%	1.51\%	1.60\%	0.42\%	。	1.90\%	0.51
2027	0.64\%	-0.05\%	1.63\%	1.09\%	1.25\%	1.38\%	1.92\%	1.18\%	1.47\%	1.19\%	0.42\%	0.92\%	1.40\%	0.84\%	-0.08\%	1.41\%	0.69\%	1.48\%	1.56\%	0.39\%	0.38\%	1.85\%	0.50\%
2028	0.62\%	-0.08	1.59\%	1.06\%	1.27\%	1.3	1.87\%	1.16\%	1.44\%	1.15\%	0.40\%	0.91\%	1.37\%	2\%	0.02	1.37\%	0.66\%	1.44\%	1.52\%	0.36\%	5\%	. 8	0.48
2029	0.59\%	-0.06\%	1.55\%	, 4%	1.29\%	1.30\%	1.82\%	1.14\%	1.41\%	1.13\%	0.38\%	0.88\%	1.33\%	0.80\%	-0.07\%	1.33\%	0.66\%	1.41\%	1.48\%	0.33	0.33\%	1.76	0.46
2030	0.57\%	-0.11\%	1.52\%	1.02\%	1.30\%	1.27\%	1.78\%	1.11\%	1.37\%	1.10\%	0.37\%	0.86\%	1.30\%	0.78\%	-0.13\%	1.30\%	0.63\%	1.38\%	1.45\%	0.30\%	0.31\%	1.72	0.45
2031	0.54\%	-0.11\%	1.48\%	0.99\%	1.31\%	1.24\%	1.74\%	1.09\%	1.34\%	1.07\%	0.35\%	0.85\%	1.27\%	0.77\%	0.00\%	1.27\%	0.61\%	1.35\%	1.41\%	0.27\%	0.29\%	1.68\%	0.43
2032	0.53\%	-0.13\%	1.45\%	0.97\%	1.32\%	1.21\%	1.70\%	1.07\%	1.31\%	1.05\%	0.34\%	0.82\%	1.24\%	0.75\%	-0.11\%	1.24\%	0.60\%	1.31\%	1.38\%	0.24\%	0.27\%	1.64	0.42\%
2033	0.50\%	-0.17\%	1.41\%	0.95\%	1.33\%	1.17\%	1.66\%	1.04\%	1.28\%	1.02\%	0.32\%	0.81\%	1.21\%	0.73\%	-0.14\%	1.21\%	0.58\%	1.28\%	1.34\%	0.22\%	0.26\%	1.60\%	0.40
2034	0.48\%	-0.15\%	1.38\%	0.93\%	1.34\%	1.14\%	1.62\%	1.02\%	1.25\%	0.99\%	0.30\%	0.79\%	1.18\%	0.71\%	-0.11\%	1.18\%	0.56\%	1.25\%	1.31\%	0.19\%	0.24\%	1.56\%	0.39\%
20	0.45	-0.20%	1.34\%	0.90\%	1.35\%	1.12\%	1.58\%	0.99\%	1.22\%	0.96\%	0.29\%	0.76\%	1.15\%	0.69\%	-0.11	1.14\%	0.53\%	1.22	. 27	0.16\%	0.22\%	1.52\%	0.37\%

Cascade Natural Gas
2010 IRP Demand Forecast
Economic Indicators

PROJECTED INCOME GROWTH

 \begin{tabular}{lllllllllllllllllllllllll}
\&

2013 \& 1.45% \& 2.10% \& 1.01% \& 1.38% \& 1.60% \& 2.10% \& 1.51% \& 0.94% \& 0.20% \& 0.87% \& 1.82% \& 1.93% \& 1.48% \& 1.44% \& 2.25% \& 1.07% \& 1.25% \& 1.09% \& 0.30% \& 1.79% \& 1.22% \& 1.75% \& 1.51%

2014 \& 1.53% \& 2.18% \& 1.11% \& 1.46% \& 1.65% \& 2.21% \& 1.63% \& 0.96% \& 0.30% \& 0.95% \& 1.87% \& 1.96% \& 1.55% \& 1.51% \& 2.29% \& 1.12% \& 1.33% \& 1.17% \& 0.37% \& 1.84% \& 1.28% \& 1.81% \& 1.56%

\hline

2015 \& 1.60% \& 2.21% \& 1.21% \& 1.54% \& 1.70% \& 2.29% \& 1.75% \& 1.02% \& 0.39% \& 1.04% \& 1.93% \& 2.03% \& 1.61% \& 1.58% \& 2.46% \& 1.19% \& 1.35% \& 1.26% \& 0.45% \& 1.91% \& 1.34% \& 1.88% \& 1.61%

\hline
\end{tabular}

2024	2.11%	2.62%	1.90%	2.02%	2.08%	3.04%	2.58%	1.54%	1.09%	1.65%	2.36%	2.53%	2.10%	2.10%	2.85%	1.78%	1.85%	1.91%	1.22%	2.33%	1.77%	2.35%	2.01%

 | |
| :--- |
| 2027 | 2.27% | 2.72% | 2.09% | 2.16% | 2.19% | 3.25% | 2.81% | 1.69% | 1.29% | 1.82% | 2.49% | 2.69% | 2.24% | 2.27% | 3.04% | 1.96% | 1.96% | 2.10% | 1.44% | 2.47% | 1.89% | 2.48% | 2.13% |

 \begin{tabular}{|lllllllllllllllllllllllll}
\& 2029 \& 2.36% \& 2.76% \& 2.19% \& 2.24% \& 2.25% \& 3.38% \& 2.93% \& 1.76% \& 1.39% \& 1.92% \& 2.55% \& 2.76% \& 2.32% \& 2.35% \& 3.05% \& 2.05% \& 2.02% \& 2.21% \& 1.57% \& 2.54% \& 1.96% \& 2.56% \& 2.19%

2030 \& 2.39% \& 2.79% \& 2.24% \& 2.27% \& 2.27% \& 3.42% \& 2.99% \& 1.81% \& 1.45% \& 1.96% \& 2.58% \& 2.80% \& 2.35% \& 2.38% \& 3.14% \& 2.09% \& 2.06% \& 2.25% \& 1.62% \& 2.57% \& 1.99% \& 2.60% \& 2.21%

\hline

\& 2.230 \& 2.34% \& 2.81% \& 2.28% \& 2.30% \& 2.29% \& 3.46% \& 3.04% \& 1.83% \& 1.49% \& 2.00% \& 2.60% \& 2.81% \& 2.38% \& 2.42% \& 3.06% \& 2.13% \& 2.10% \& 2.30% \& 1.67% \& 2.59% \& 2.01% \& 2.62% \& 2.23%

\hline
\end{tabular}

 | 2033 | 2.49% | 2.86% | 2.36% | 2.36% | 2.32% | 3.57% | 3.14% | 1.90% | 1.57% | 2.07% | 2.64% | 2.88% | 2.45% | 2.47% | 3.19% | 2.19% | 2.14% | 2.38% | 1.78% | 2.64% | 2.05% | 2.68% | 2.27% |
| :--- |
| 2034 | 2.54 | |

2011	-0.92%	3.32%	-0.57%	1.24%	1.12%	4.92%	0.25%	0.86%	0.05%	0.58%	3.57%	0.32%	1.23%	-0.13%	1.60%	1.62%	3.42%	2.42%	1.17%	-0.17%	2.55%	1.41%

2023	1.17%	1.44%	1.04%	1.12%	1.16%	1.67%	1.41%	0.84%	0.58%	0.90%	1.32%	1.40%	1.16%	1.17%	1.61%	0.98%	1.01%	1.05%	0.65%	1.30%	0.98%	1.30%	1.12%

 | 2029 | 1.33% | 1.55% | 1.24% | 1.26% | 1.27% | 1.90% | 1.65% | 1.00% | 0.79% | 1.09% | 1.44% | 1.56% | 1.31% | 1.33% | 1.72% | 1.16% | 1.15% | 1.25% | 0.89% | 1.43% | 1.11% | 1.45% | 1.24% |
| :--- |

 \begin{tabular}{lllllllllllllllllllllllllllll}

2033 \& 1.40% \& 1.61% \& 1.33% \& 1.33% \& 1.31% \& 2.00% \& 1.77% \& 1.08% \& 0.89% \& 1.17% \& 1.49% \& 1.62% \& 1.38% \& 1.40% \& 1.80% \& 1.24% \& 1.21% \& 1.34% \& 1.01% \& 1.49% \& 1.16% \& 1.51% \& 1.28%

\hline

2034 \& 1.41% \& 1.61% \& 1.36% \& 1.34% \& 1.32% \& 2.02% \& 1.79% \& 1.09% \& 0.91% \& 1.19% \& 1.50% \& 1.64% \& 1.40% \& 1.41% \& 1.80% \& 1.26% \& 1.23% \& 1.37% \& 1.04% \& 1.51% \& 1.18% \& 1.53% \& 1.30%

2035 \& 1.44% \& 1.63% \& 1.38% \& 1.36% \& 1.33% \& 2.05% \& 1.82% \& 1.12% \& 0.94% \& 1.21% \& 1.51% \& 1.66% \& 1.42% \& 1.44% \& 1.80% \& 1.28% \& 1.25% \& 1.39% \& 1.07% \& 1.53% \& 1.20% \& 1.55% \& 1.31%

\hline
\end{tabular}

[^6]CASCADE NATURAL GAS

2011 Integrated Resource

 PlanTechnical Advisory Group Meeting March 10, 2011

Agenda

- Introductions
- Supply Side Resources
- Existing
- Challenges and Alternatives
- Production
- Price Forecast
- Proposed Scenarios and Model Elements for Supply Resources
- Closing Discussion
- Future meeting dates/Other Comments

Supply Side Resource Overview

Mark Sellers-Vaughn
Manager, Supply Resource Planning

SUPPLY

Firm, Diversified Supply Contracts Based on Warmer-than-Normal Weather
-Annual Supplies (some of these are previously entered contracts expiring over the next few years)
-Traditional Seasonal Supplies (November - March)
-Off-Seasonal Supplies (Spring, Summer, etc)
-First of Month (Spot, Just-in-time, Day Gas)
-City gate Deliveries
-Peaking Supplies
-Storage

EXAMPLE OF CORE SUPPLY PORTFOLIO ALLOCATION

STORAGE FACILITIES

- Jackson Prairie \#ı
- Seasonal Qty of 604,351 dths
- Withdrawal capability 16,789 dths
- Expires 10/31/2019
- Jackson Prairie \#2
- Seasonal Qty of 350,000 dths (2012)
- Withdrawal capability 30,000 dths
- Expires 10/31/2060
- Plymouth LNG
- Seasonal Qty of 562,000 dths
- Withdrawal capability of 60,000 dths
- Expires 10/31/2019

Storage Management

- We weigh storage usage versus Spot/Daily Supply Costs and operational conditions
- Typically CNG uses storage withdrawals in the winter and inject in the summer
- CNG allows others to manage our risk for a profit to the bottom line

CAPACITY RESOURCES

 INTERSTATE PIPELINE TRANSPORTATION-NORTHWEST PIPELINE
-SPECTRA ENERGY (WESTCOAST)
-GAS TRANSMISSION NORTHWEST (GTN)
-FOOTHILLS PIPELINE (ANG)
-NOVA (NGTL)

CAPACITY RELEASE ELECTRONIC BULLETIN BOARDS (EBB)

20K 2583 - B \$0. 386
Cascade Natural Gas Corporation

Illustrative Constraint Points

SUPPPLY SIDE RESOURCE OPTIONS and UNCERTAINTIES

STORAGE OPTIONS

Short Range Possibilities

NWN MIST

- ON-SITE LIQUIFIED NATURAL GAS (SATELLITE LNG)
- TRUCKED-IN LNG

POST ID2 EXCHANGES ABOVE THE BORDER

CLAY BASIN

STORAGE OPTIONS

Longer Range Possibilities:

- ACQUISTION OF AECO STORAGE
- PACIEIC NORTHWEST LNG
© CALIFORNIA STORAGE
- JACKSON PRAIRIE EXPANSION
- PARTNERING WITH OTHERS TO BUILD STORAGE FACILITY

PROPOSED LNG TERMINALS AND PIPELINES

KITIMAT LNG--EXPORT

The 291-mile Pacific Trail Pipeline would connect natural gas from
Spectra Energy Transmission's pipeline at Summit Lake, north of Prince George, BC, to the proposed Kitimat LNG export terminal in BC's Bish Cove.

OREGON LNG
117-mile pipeline would connect a terminal in Warrenton, Ore., to the existing NW Natural and Northwest Pipeline systems near Molalla, Ore.

JORDAN COVE

231-mile Pacific Connector Gas Pipeline would extend from the proposed terminal in Coos Bay, Ore., across southwest Oregon to the California border at Malin, Ore., to serve the Pacific Northwest and California markets.

BUT WILL LNG EVER ARRIVE IN THE PACIFIC NORTHWEST?

Alberta System Update

North Central Corridor

- 300 km of 42-inch pipe
- 26 MW of compression
- Approximately $\$ 925$ million
- In-service 2010

Groundbirch Pipeline Project

- Commitments for $1.1 \mathrm{Bcf} / \mathrm{d}$ by 2014
- $77 \mathrm{~km}, 36$-inch pipe
- Approximately $\$ 250$ million
- Expected in-service Q4 2010

Horn River Pipeline Project

- Commitments for 378 MMcf/d in 2013
- 155 km combination of NPS 30 and existing pipe
- Approximately $\$ 340$ million
- Expected in-service Q2 2012

AB Jurisdiction Application Approved

- Extend Alberta system across provincial borders
- Integrated service to $A B$ and $B C$ customers, and Northern gas producers

CAPACITY OPTIONS

EXTENSION OF TERM FOR CITYGATE PURCHASES

- CONTINUE TO RECALL X85 CAPACITY, SPECIFICALLY ALONG THE WENATCHEE LATERAL WHICH ENSURES CORE WILL HAVE SUFFICIENT FIRM RIGHTS

EVEN AS GROWTH HAS TAPERED OFF THE LATERAL IS CONSTRAINED ON AN OVERALL BASIS, SO WE CONTINUE TO ENGAGE PARTIES

TCPL-NOVA ADDITIONAL CAPACITY
2. NWP RELINQUISHED CAPACIHY OR EXPANSION

PROPOSED PIPELINES

CAPACITY OPTIONS

Long Range Possibilities

2 EXPAND CNG SYSTEM TO INTERCONNECT WITH OTHER NEAR-BY PIPELINES
. ACQUIRING CAPACITY ON OTHER ROCKIES PIPELINES (OVERTHRUST, CIG, ETC) TO ACCESS SUPPLIES
2. POSSIBLE GTN EXPANSIONS ACROSS WASHINGTON (MOSES LAKE LINE), OREGON, OR BC (TCPL-GTN)
2. EXTEND DIRECT CONNECT LINE FROM SPECTRA

SOUTHERN CROSSING PIPELINE EXTENSION

- Terasen Gas is developing
- Extend Southern Crossing from Oliver to Kingsvale BC
-200 MMcf/d, possible expansion to $400 \mathrm{MMcf} / \mathrm{d}$
-Bi-directional; new production from northern BC could flow to east via GTN or move AB gas into I-5 via Westcoast Spectra

RUBY PIPELINE PROJECT

- Development by El Paso Natural Gas
- Approximately 675 miles of 42-inch diameter pipe
-From Opal Hub to Malin OR
-Initially 1.5 Bcf/day
-May have possible backhaul into GTN
-Construction is expected pending financial and final regulatory and environmental approval

PALOMAR PIPELINE PROJECT

- Joint development between TransCanada and Northwest

Natural

- Approximately 217 miles of 36-inch diameter pipe
-GTN Mainline near Madras to Columbia River
-Interconnect with proposed Bradwood Landing LNG facility
-Pipeline planned irrespective of LNG facility online
-Bi-directional capacity of up to 1 Bcf/day
-Connects to Mist underground storage

Original Blue Bridge Expansion proposed in early-2008

"New" Blue Bridge Expansion

Project Reset - Regional Solution

> Northwest Pipeline entered into an MOU with Northwest Natural and TransCanada to explore the development of a new project

- Applying the Blue Bridge concept using GTN and Palomar as the east-west leg
> The integrated project accomplishes several objectives:
- Combines Oregon and Washington incremental gas demand in a single project
- Later project timing is designed to meet the new growth forecasts
- Replacement of coal-fired generation with gas-fired is a major wildcard
- Ensures potential NW Natural turn-back capacity is utilized as part of the project to improve economics

The Integrated Project Concept

- Initiate Open Season in Spring 2011
- Approval of Precedent Agreements
- Revise FERC application and resume NEPA process
- Re-evaluate timing based on revised demand forecasts and better information on siting of new generation
- Adjust schedule below as needed

Schedule (based on earliest in-service date)

Spring 2011 - Open Season
2011/2012 - Revise FERC Application; Resume NEPA Process; DEIS; Comment Period and Public Meetings

2012/2013 - FERC Final EIS issued; FERC Certificate
2013/2014 - Obtain other required federal/state/local approvals
2013/2014 - ROW acquisition
2015/2016 - Construction
November 2016 - Earliest In-service date

CAPACITY ISSUES

TCPL-GTN

-Cannot file another rate filing before June 30, 2011 for a January 1, 2012 effective date
-De-contracting continues to be an on-going concern, particularly if Ruby Pipeline happens or there is no firm backhaul capability

TCPL-NOVA
-Mainline rate design will have an impact
-Concerns regarding extraction rights
-Significant issues Ft Nelson and McMahon expansions may impact rates and liquidity

NWP
Must file a rate filing no later than July 1, 2012
SPECTRA PIPELINE
Impacts to Station 2 as a result of TransCanada activities in BC

OTHER SUPPLY SIDE RESOURCE OPTIONS

- NEGOTIATE ALTERNATE FUEL CONTRACTS WITH NON-CORE CUSTOMERS
- PROPANE AIR PLANTS
- ALASKAN GAS VIA SPECTRA AND/OR TCPL
- BIO-FUELS

Bio-fuels

-Biofuels meet most of the growth in liquid fuels supply
-Biofuels grow, but fall short of the $\mathbf{3 6}$ billion gallon renewable fuels standards target in 2022, exceed it in 2035
-New light duty vehicle efficiency reaches 40 mpg by 2035
-As of today, we have yet to see a viable proposal for our service territory, however we continue to monitor activities in the area

CARBON AND ENERGY POLICES

Policy makers continue to address climate change
Designed to change how we produce and use energy

Reduction greenhouse gas emissions, via technology, consumer grants, tax credits

Natural gas, as cleanest fossil fuel will be critical

CARBON AND ENERGY POLICES

Non-fossil energy use grows rapidly, but fossil fuels still provide the vast majority of total energy use in 2035

Demand increase
Pressure on supplies
To achieve emission goals there is the potential for increased prices via fees and taxes, or as a result of increased gas demand and competition for the resource

PRICING FORECAST

Natural Gas Price Drivers

Price Pressures

Natural Gas

- Episodes of cold weather (upward price pressure)
 Increased demand for space heating.
- Coal-to-gas switching in power generation (upward price pressure) If natural gas prices are sufficiently competitive to displace more coal as fuel for power generation; in some cases, gas units are moving from peaking service to baseload generation.
- High levels of natural gas in storage (downward price pressure)
- Steady production levels of natural gas (downward price pressure)
- Larger than anticipated imports of LNG (downward price pressure) Should European and Asian markets be unable to absorb available global LNG volumes, North America may become a market of last resort for some excess LNG cargoes).

ECRI Weekly Leading Index (1992=100)

Source: Hawer, Morgan Stanley Research

NYMEX Long Range Forecast as of 02/28/2011

—— Current Market NYMEX o2-28-11 (Jan24-Dec3o IS PROJECTED)
\longrightarrow WM RECENT NYMEX FORECAST
\square EIA RECENT NYMEX FORECAST

- - Cascade NYMEX Forecast FORECAST

PERIOD

2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030

1%	0%	10%
1%	0%	15%
1%	0%	24%
0%	0%	33%
0%	0%	35%
0%	0%	39%
0%	0%	39%
0%	0%	39%
0%	0%	39%
0%	0%	39%
0%	0%	39%
0%	0%	39%
0%	0%	40%
0%	0%	40%
0%	0%	40%
0%	0%	40%
0%	0%	40%
0%	0%	40%
0%	0%	40%
0%	0%	40%

LONG-TERM FORECAST

	2010	2011	2012	2013	2014	2015	2020	2025	2030
US gas demand (bcfd)	65.3	65.1	64.4	63.7	65.0	66.5	76.2	80.4	88.1
US power sector gas demand (bcfd)	20.4	20.1	19.5	18.9	20.0	21.3	28.9	31.0	35.9
US gas supply (bcfd)	57.8	58.5	57.0	57.6	58.5	60.5	70.7	75.3	84.8
US shale gas supply (bcfd)	11.6	15.3	17.3	18.7	20.2	22.1	29.0	32.4	38.6
Canada exports to the US (bcfd)	6.9	6.1	5.5	4.9	5.0	5.2	6.3	7.0	6.6
Mexico imports from the US (bcfd)	0.6	0.5	0.7	0.5	0.6	0.9	1.9	2.3	3.1
US LNG imports (bcfd)	1.2	1.7	1.5	1.4	1.4	1.4	0.9	0.5	0.3
Henry Hub price (2010 \$/mmbtu)		$\$ 4.56$	$\$ 5.32$	$\$ 5.97$	$\$ 6.47$	$\$ 6.83$	$\$ 6.75$	$\$ 7.32$	$\$ 6.99$
Henry Hub price (nominal $\$ / m m b t u)$		$\$ 4.75$	$\$ 5.75$	$\$ 6.78$	$\$ 7.79$	$\$ 8.38$	$\$ 9.16$	$\$ 10.96$	$\$ 11.56$
AECO price (2010 $\$ /$ /mmbtu)		$\$ 4.17$	$\$ 4.92$	$\$ 5.55$	$\$ 6.03$	$\$ 6.36$	$\$ 6.04$	$\$ 6.61$	$\$ 6.03$

Source: Wood Mackenzie

North American Supply Growth (Relative to 2010) by Region

PRODUCTION

The Alaska pipeline project, designed to deliver 4.5 bcfd from Alaska's North Slope into Alberta and/or the US Lower-48, is still not dead, with two competing projects still officially in the works.

Lower-48 shale development has called into question the ultimate need for this project but indicators are that eventually it will get done around 2026Despite increased shale production, current pricing cannot sustain growth.

Shale gas production, which accounts for about 14% of the US production this year, some sources believe shale is set to comprise more than a third of US production by the mid 2020's-but not if the current modest pricing continues

PORTFOLIO PURCHASING STRATEGY

Ensure All Core Customers' Natural Gas Needs are Met -
-Through Disciplined Market Analysis and Supply Contracting

Effectively Manage Wholesale and Retail Gas Prices -
-Through Cost-Effective Spot Purchases When Available
Participating in pipeline regulatory proceedings to Ensure Lowest Pipeline Rates

Mitigate Price Volatility for Customers -

- Through Multi-Year Hedging and a Diversified Portfolio, including both index and fixed price physical products

Minimize Corporate Risk-
-Through the Use of Financial Derivatives

Optimize Pipeline Capacity, Storage, and Other Core Resources -
-Through Available Release Mechanisms

PROBABLE SCENARIOS

Reference case	Existing supply contracts, incremental supplies (peaking, annual, seasonal and citygate) from various receipt points (AECO, Rockies, Sumas, Station 2, as well as behind the citygate. Incremental supplies also include satellite LNG (behind citygate), imported LNG, current upstream pipeline transport capacity, as well as proposed pipelines and extensions (Blue Bridge, Ruby, Palomar, Southern Crossing, etc.). We also include Cascade's current Jackson Prairie storage accounts and our Plymouth LNG account.
All Resources	Existing supply contracts, incremental supplies (peaking, annual, seasonal and citygate) from various receipt points (AECO, Rockies, Sumas, Station 2, as well as behind the citygate (satellite LNG). Incremental supplies also include satellite LNG (behind citygate), Imported LNG (Kitimat, Jordan Cove, Bradwood Landing), current upstream pipeline transport capacity, as well as proposed pipelines and extensions (Blue Bridge, Ruby, Palomar, etc). We also include Cascade's current Jackson Prairie storage accounts, our Plymouth
Basecase Limited Canadian Imports	
LNG account, as well as the potential to obtain AECO and Mist	
storage.	

PROBABLE SCENARIOS

Basecase No Rockies price advantage	Model contains all the elements of the Basecase; however, all potential incremental resources were priced at NYMEX with no basis adder. In other words, incremental AECO, Sumas and Rockies all have the same price. Incremental resources at Station 2 were not available to the model. Transportation rates were not modified from their basecase levels.
Basecase AECO Storage	Model contains all the elements of the Basecase; however, AECO storage is added as a resource. The inventory is set at 300,000 dths, with daily withdrawal rights of 10,000 dths a day. This storage was setup like the existing Jackson Prairie to be 100% full at the start of each heating season. The model is set up so that Canadian withdrawals can use incremental GTN capacity.

IN ADDITION, WE WILL CREATE OTHER SCENARIOS

-The proposed pipelines at various discount pricing
-MIST storage
-Run each proposed pipeline separately
-Run various backhaul scenario
-Run pipeline stacking
-Give a price advantage to Sumas
-Look at a 20 year supply
-Create a short-term supply curtailment event for limited discussion

EXISTING SUPPLY RESOURCES

MODEL NAME	CATEGORY	OTHER CAT	RECEIPT	DELIVERY	PRICE INDEX	COMMODITY	DEMAND	BASE/SWII	DEALSTAR	DEALENDDAT	MDQ IN DTHS	INDEX	FIXED
FIRM IFSUM	ANNUAL	EXISTING	SUMAS	NWP, GTN	IFERC SUMAS	YES		BASE	Pre-2011	3/31/2014	VARIABLE	\$ 0.0400	
FIRMIF RM	ANNUAL	EXISTING	ROCKIES	NWP, GTN	IFERCROCKIES	YES		BASE	Pre-2011	3/31/2014	VARIABLE	\$ 0.0300	
FIRM NYM NIT	ANNUAL	EXISTING	AECO	NWP, GTN	NYMEX HH	YES		BASE	Pre-2011	212812014	VARIABLE	\$ 0.0150	
FIRM CGP NIT	ANNUAL	EXISTING	AECO	NWP, GTN	AECO (CGPR)	YES		BASE	Pre-2011	3/31/2014	VARIABLE	\$ 0.0100	
FIRM FXNIT1	SEASONAL	EXISTING	AECO	NWP, GTN	FIXED			BASE	Pre-2011	2/28/2013	VARIABLE		\$ 5.4900
FIRM CGP ST2	SEASONAL	EXISTING	STATION2	NWP, GTN	AECO (CGPR)	YES		BASE	Pre-2011	4/1/2012	VARIABLE	\$ 0.0467	
	SEASONAL	EXISTING	SUMAS	NWP, GTN	FIXED			BASE	Pre-2011	10/31/2013	VARIABLE		\$ 5.9800
PEAK 1	PEAKING	EXISTING	CITYGATE	NWP	GD SUMAS	YES	0.05	5 SWING	Pre-2011	3/1/2012	15000	\$ 0.1800	
PEAK2	PEAKING	EXISTING	CITYGATE	NWP	GD SUMAS			SWING	Pre-2011	4/1/2012	15000	FLAT	
PEAK 4	PEAKING	EXISTING	SUMAS	NWP	GD SUMAS	YES	0.03	3 SWING	Pre-2011	4/1/2012	5000	\$ 0.0300	
FIRMISTAN	SEASONAL	EXISTING	STANIFIEL	NNWP, GTN	IFERC SUMAS	YES		SWING	Pre-2011	3/31/2014	VARIABLE	\$ (0.4700)	
PEAK5	PEAKING	EXISTING	AECO	NWP, GTN	AECO (CGPR)	YES		1 SWING	Pre-2011	3/1/2011	5000	\$ 0.0200	
FIRM FXNIT2	SEASONAL	EXISTING	AECO	NWP, GTN	FIXED			SWING	Pre-2011	2/29/2012	VARIABLE		\$ 4.7800
FIRM FX ST2	SEASONAL	EXISTING	FIXED	NWP, GTN	FIXED			SWING	Pre-2011	1211/2011	VARIABLE		\$ 6.0800
FIRM GD ST2	SEASONAL	EXISTING	STATION 2	NWP, GTN	GD SUMAS	YES		SWING	Pre-2011	4/1/2012	10000	\$ 0.0500	
FIRM FXRM2	SEASONAL	EXISTING	ROCKIES	NWP, GTN	FIXED			SWING	Pre-2011	3/31/2013	VARIABLE		\$ 5.5000
FIRM STR RM	ANNUAL	EXISTING	ROCKIES	NWP, GTN	FIXED IF IF RM<\$			BASE	Pre-2011	11/1/2014	1000-2500		
FIRM STR SUM	SEASONAL	EXISTING	SUMAS	NWP, GTN	IFSUM - 25 WFFLR			SWING	Pre-2011	3/1/2012	5000		
FIRM CG NIT	ANNUAL	EXISTING	CITYGATE	GTN	AECO (CGPR)	YES		BASE	Pre-2011	11/1/2014	VARIABLE	\$ 0.3000	
FIRM GD SUM	SEASONAL	EXISTING	SUMAS	NWP, GTN	GD SUMAS	YES		SWING	Pre-2011	10/31/2012	VARIABLE	\$ 0.0250	
FIRM CG SUM	SEASONAL	EXISTING	CITYGATE	NWP	IFERC SUMAS	YES		SWING	Pre-2011	3/1/2012	VARIABLE	\$ 0.4200	

ALTERNATTVE SUPPLY RESOURCES
2011 Integrated Resource Plan

L NAME	CATEGORY	OTHER CAT	RECEIPT	DELIVERY	PRICE INDEX	COMMODITY	DEMAND	BASE/SWII	DEALSTAR DEALENDDAT	DQ IN DTHS	INDEX	FIXED
SPT SUM	SEASONAL	RMIX	SUMAS	NWP, GTN	IFERC SUMAS	YES		SWING	11/1/2011 INCREMENTAL	VARIABLE		
SPTNT	SEASONAL	RMIX	AECO	GTN	AECO (CGPR)	YES		SWING	11/1/2011 INCREMENTAL	VARIABLE		
SPT RM	SEASONAL	RMIX	ROCKIES	NWP, GTN	IFERCROCKIES	YES		SWING	11/1/2011 INCREMENTAL	VARIABLE		
SUM A	ANNUAL	RMIX	SUMAS	NWP, GTN	IFERC SUMAS	YES		BASE	11/1/2011 INCREMENTAL	VARIABLE	VARIABLE	
RMA	ANNUAL	RMIX	ROCKIES	NWP, GTN	IFERC ROCKIES	YES		BASE	11/1/2011 INCREMENTAL	VARIABLE	VARIABLE	
NIT A	ANNUAL	RMIX	AECO	GTN	AECO (CGPR)	YES		BASE	11/1/2011 INCREMENTAL	VARIABLE	VARIABLE	
SUM S	SEASONAL	RIMX	SUMAS	NWP, GTN	IFERC SUMAS	YES		SWING	11/1/2011 INCREMENTAL	VARIABLE	VARIABLE	
RMS	SEASONAL	RMIX	ROCKIES	NWP, GTN	IFERC ROCKIES	YES		SWING	11/1/2011 INCREMENTAL	VARIABLE	VARIABLE	
NITS	SEASONAL	RMIX	AECO	GTN	AECO (CGPR)	YES		SWING	11/1/2011 INCREMENTAL	VARIABLE	VARIABLE	
ST2	SEASONAL	RMIX	STATION 2	NWP, GTN	GD SUMAS	YES		SWING	11/1/2011 INCREMENTAL	VARIABLE	VARIABLE	
STRUSU	ANNUAL	RIMX	SUMAS	NWP, GTN	STRUCTURED			SWING	11/1/2011 INCREMENTAL	VARIABLE	VARIABLE	
STRURM	ANNUAL	RMIX	ROCKIES	NWP, GTN	STRUCTURED			SWING	11/1/2011 INCREMENTAL	VARIABLE	VARIABLE	
STRU AE	ANNUAL	RMIX	AECO	GTN	STRUCTURED			SWING	11/1/2011 INCREMENTAL	VARIABLE	VARIABLE	
SUM FX	ANNUAL	RMIX	SUMAS	NWP, GTN	FIXED			BASE	11/1/2011 INCREMENTAL	VARIABLE		
RM FX	ANNUAL	RMIX	ROCKIES	NWP, GTN	FIXED			BASE	11/1/2011 INCREMENTAL	VARIABLE		
NIT FX	ANNUAL	RIMX	AECO	GTN	FIXED			BASE	11/1/2011 INCREMENTAL	VARIABLE		
MAL	SEASONAL	RIMX	MALIN	BACKHAULS	SMALIN	YES		SWING	11/1/2012 INCREMENTAL	Variable	VARIABLE	
.NG	SEASONAL	RIMX	ZONAL	ZONAL	NYMEX HH	YES		SWING	11/1/2012 INCREMENTAL	VARIABLE	VARIABLE	
NG NOR	SEASONAL	RMIX	PALOMAR	BACKHAULS	SNYMEXHH	YES		SWING	11/1/2015 INCREMENTAL	VARIABLE	VARIABLE	
NG SOR	SEASONAL	RMIX	PACIFIC CO	BACKHAULS	SNYMEXHH	YES		SWING	11/1/2016 INCREMENTAL	VARIABLE	VARIABLE	
'ROP	SEASONAL	RIMX	ZONAL	ZONAL	NYMEX HH	YES		SWING	11/1/2011 INCREMENTAL	VARIABLE	VARIABLE	
CGNWP	SEASONAL	RIMX	CITYGATE	NWP	NYMEX HH	YES		SWING	11/1/2011 INCREMENTAL	VARIABLE	VARIABLE	
	SEASONAL	RIMX	CITYGATE	GTN	NYMEX HH	YES		SWING	11/1/2011 INCREMENTAL	VARIABLE	VARIABLE	

EXISTIIG AND POTENTIAL ADDITIONAL STORAGE RESOURCES

STORAGE	Model Name	Type	Location	Pipeline Transport Required	Evergreen	Start	Contract Expiration	Lead Time	Max Cap	WD MDO	Fuel Inj < \|3\%	SVDD	$\begin{array}{\|r\|} \hline \text { D2 RATE }> \\ \$ 0.05< \\ \$ 0.15 \\ \hline \end{array}$
§TORAGE 1	JP-1	Undergou nd	Jackson Prairie	Yes	Yes	Pre-2011	2014	NA	604,351	16,789	YES	\$69	YES
\$TORAGE 2	JP-EXP	Undergou nd	Jackson Prairie	Yes	Yes	Partial access until 2012 when 350,000 is avail	2060	NA	300,000	30,000	YES	S6S	YES
STORAGE 3	LING	LING	Plymouth	Yes	Yes	Pre-2011	2014	NA	562,207	60,000	YES	\$69	YES
STORAGE 4	$\begin{array}{\|l\|} \hline \text { AECO } \\ \text { STORAGE } \end{array}$	Undergou nd	AECO	Yes	NA	2013	2030	NA	300,000	10,000	YES	$\begin{aligned} & \text { AECOC } \\ & \text { STRG } \end{aligned}$	YES
STORAGE 5	MIST STORAGE	Undergou nd	Mist	Yes	NA	2013	2030	NA	300,000	10,000	YES	MIST	YES
\$TORAGE 6	JP- SURPLUS	Undergou nd	Jackson Prairie	Yes	Yes	2012	2030	NA	300,000	5,000	YES	SGS	YES

POTENTIAL ACOSfag

Model Name	Start Date	End Date	Daily MDQ	$\begin{aligned} & \text { Descriptio } \\ & \mathrm{n} \end{aligned}$	Cost Dths	Lead Time	Pipeline	RMIX MAX	RMIX MIN	$\begin{array}{r\|} \hline \text { VARIABLE } \\ <\$.10 \\ \hline \end{array}$	FUEL < 3\%
INCR-GTN	Nov-10	Oct-24	TBD	AECO NIT, Foothills to Kingsgate	NOVA, Foothills, GTN		NOVA, Foothills, GTN	$\begin{aligned} & \hline \text { UP TO } \\ & 50,000 \end{aligned}$		YES	YES
INCR-NWP	Nov-10	Oct-24	TBD	Sumas to WA and OR citygates	$\begin{aligned} & \text { NWP Rate } \\ & \text { X } 3 \end{aligned}$		NWP	$\begin{aligned} & \hline \text { UP TO } \\ & 200,000 \end{aligned}$		YES	YES
INCR-MAL	Oct-11	Dec-30	TBD	Malin backhaul to Central OR and Stanfield Interconne ct	GTN Rate	2 years?	GTN	$\begin{array}{\|l\|} \hline \text { UP TO } \\ 50,000 \end{array}$		YES	YES
BLUEBRDIGE	Nov-11	Dec-30	TBD	Stanfield and/or Stanfield Interconne ct to l-5 Corridor	$\begin{aligned} & \text { NWP Rate } \\ & \text { X } 3 \end{aligned}$	2 years	$\begin{array}{r} \text { NWP, } \\ \text { PALOMAR } \\ ? \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { UP TO } \\ 50,000 \end{array}$		YES	YES
$\begin{aligned} & \hline \text { RUBY } \\ & \text { XPORT } \end{aligned}$	Nov-12	Dec-30	TBD	Opal Hub to Mailin	0.95	<2 years	RUBY	$\begin{array}{\|l\|} \hline \text { UP TO } \\ 50,000 \end{array}$		YES	YES
PALOMAR XPORT	Nov-15	Dec-30		Madras OR to Molalla OR (bidirectional)	$\begin{aligned} & \text { NWP Rate } \\ & \text { X } 3 \end{aligned}$	> 3years	PALOMAR	$\begin{array}{\|l\|} \hline \text { UP TO } \\ 50,000 \end{array}$		YES	YES
PAC CONNECT	Nov-15	Dec-30	TBD	Jordona Cove OR to Malin	$\begin{aligned} & \text { NWP Rate } \\ & \text { X } 3 \end{aligned}$	> 4 years	$\begin{array}{r} \text { PAC } \\ \text { CONNECT } \end{array}$	$\begin{array}{\|l\|} \hline \text { UP TO } \\ 50,000 \end{array}$		YES	YES

Other thoughts, questions, concerns...

Are there other ideas or concerns that you feel need to be addressed?

Are there other alternatives we should consider?

2011 Integrated Resource Plan

MODEL NAME	CATEGORY	OTHER CAT	RECEIPT	DELIVERY	PRICE INDEX	COMMODITY	DEMAND	BASE/SWIN	DEALSTART	DEALENDDAT	MDQ IN DTHS	INDEX	FIXED
FIRM IFSUM	ANNUAL	EXISTING	SUMAS	NWP, GTN	IFERC SUMAS	YES		BASE	Pre-2011	3/31/2014	VARIABLE	\$ 0.0400	
FIRM IF RM	ANNUAL	EXISTING	ROCKIES	NWP, GTN	IFERC ROCKIES	YES		BASE	Pre-2011	3/31/2014	VARIABLE	\$ 0.0300	
FIRM NYM NIT	ANNUAL	EXISTING	AECO	NWP, GTN	NYMEX HH	YES		BASE	Pre-2011	2/28/2014	VARIABLE	\$ 0.0150	
FIRM CGP NIT	ANNUAL	EXISTING	AECO	NWP, GTN	AECO (CGPR)	YES		BASE	Pre-2011	3/31/2014	VARIABLE	\$ 0.0100	
FIRM FX NIT1	SEASONAL	EXISTING	AECO	NWP, GTN	FIXED			BASE	Pre-2011	2/28/2013	VARIABLE		\$ 5.4900
FIRM CGP ST2	SEASONAL	EXISTING	STATION 2	NWP, GTN	AECO (CGPR)	YES		BASE	Pre-2011	4/1/2012	VARIABLE	\$ 0.0467	
	SEASONAL	EXISTING	SUMAS	NWP, GTN	FIXED			BASE	Pre-2011	10/31/2013	VARIABLE		\$ 5.9800
PEAK 1	PEAKING	EXISTING	CITYGATE	NWP	GD SUMAS	YES	0.05	SWING	Pre-2011	3/1/2012	15000	\$ 0.1800	
PEAK 2	PEAKING	EXISTING	CITYGATE	NWP	GD SUMAS			SWING	Pre-2011	4/1/2012	15000	FLAT	
PEAK 4	PEAKING	EXISTING	SUMAS	NWP	GD SUMAS	YES	0.03	SWING	Pre-2011	4/1/2012	5000	\$ 0.0300	
FIRM I STAN	SEASONAL	EXISTING	STANIFIELD	NWP, GTN	IFERC SUMAS	YES		SWING	Pre-2011	3/31/2014	VARIABLE	\$ (0.4700)	
PEAK 5	PEAKING	EXISTING	AECO	NWP, GTN	AECO (CGPR)	YES	0.1	SWING	Pre-2011	3/1/2011	5000	\$ 0.0200	
FIRM FX NIT2	SEASONAL	EXISTING	AECO	NWP, GTN	FIXED			SWING	Pre-2011	2/29/2012	VARIABLE		\$ 4.7800
FIRM FX ST2	SEASONAL	EXISTING	FIXED	NWP, GTN	FIXED			SWING	Pre-2011	12/1/2011	VARIABLE		\$ 6.0800
FIRM GD ST2	SEASONAL	EXISTING	STATION 2	NWP, GTN	GD SUMAS	YES		SWING	Pre-2011	4/1/2012	10000	\$ 0.0500	
FIRM FX RM2	SEASONAL	EXISTING	ROCKIES	NWP, GTN	FIXED			SWING	Pre-2011	3/31/2013	VARIABLE		\$ 5.5000
FIRM STR RM	ANNUAL	EXISTING	ROCKIES	NWP, GTN	FIXED IF IF RM < \$			BASE	Pre-2011	11/1/2014	1000-2500		
FIRM STR SUM	SEASONAL	EXISTING	SUMAS	NWP, GTN	IFSUM -. 25 W/FLR			SWING	Pre-2011	3/1/2012	5000		
FIRM CG NIT	ANNUAL	EXISTING	CITYGATE	GTN	AECO (CGPR)	YES		BASE	Pre-2011	11/1/2014	VARIABLE	\$ 0.3000	
FIRM GD SUM	SEASONAL	EXISTING	SUMAS	NWP, GTN	GD SUMAS	YES		SWING	Pre-2011	10/31/2012	VARIABLE	\$ 0.0250	
FIRM CG SUM	SEASONAL	EXISTING	CITYGATE	NWP	IFERC SUMAS	YES		SWING	Pre-2011	3/1/2012	VARIABLE	\$ 0.4200	
FIRM SPT SUM	SEASONAL	RMIX	SUMAS	NWP, GTN	IFERC SUMAS	YES		SWING	11/1/2011	INCREMENTAL	VARIABLE		
FIRM SPT NIT	SEASONAL	RMIX	AECO	GTN	AECO (CGPR)	YES		SWING	11/1/2011	INCREMENTAL	VARIABLE		
FIRM SPT RM	SEASONAL	RMIX	ROCKIES	NWP, GTN	IFERC ROCKIES	YES		SWING	11/1/2011	INCREMENTAL	VARIABLE		
INCR SUM A	ANNUAL	RMIX	SUMAS	NWP, GTN	IFERC SUMAS	YES		BASE	11/1/2011	INCREMENTAL	VARIABLE	VARIABLE	
INCR RM A	ANNUAL	RMIX	ROCKIES	NWP, GTN	IFERC ROCKIES	YES		BASE	11/1/2011	INCREMENTAL	VARIABLE	VARIABLE	
INCR NIT A	ANNUAL	RMIX	AECO	GTN	AECO (CGPR)	YES		BASE	11/1/2011	INCREMENTAL	VARIABLE	VARIABLE	
INCR SUM S	SEASONAL	RMIX	SUMAS	NWP, GTN	IFERC SUMAS	YES		SWING	11/1/2011	INCREMENTAL	VARIABLE	VARIABLE	
INCR RM S	SEASONAL	RMIX	ROCKIES	NWP, GTN	IFERC ROCKIES	YES		SWING	11/1/2011	INCREMENTAL	VARIABLE	VARIABLE	
INCR NIT S	SEASONAL	RMIX	AECO	GTN	AECO (CGPR)	YES		SWING	11/1/2011	INCREMENTAL	VARIABLE	VARIABLE	
INCR ST2	SEASONAL	RMIX	STATION 2	NWP, GTN	GD SUMAS	YES		SWING	11/1/2011	INCREMENTAL	VARIABLE	VARIABLE	
INCR STRU SU	ANNUAL	RMIX	SUMAS	NWP, GTN	STRUCTURED			SWING	11/1/2011	INCREMENTAL	VARIABLE	VARIABLE	
INCR STRU RM	ANNUAL	RMIX	ROCKIES	NWP, GTN	STRUCTURED			SWING	11/1/2011	INCREMENTAL	VARIABLE	VARIABLE	
INCR STRU AE	ANNUAL	RMIX	AECO	GTN	STRUCTURED			SWING	11/1/2011	INCREMENTAL	VARIABLE	VARIABLE	
INCR SUM FX	ANNUAL	RMIX	SUMAS	NWP, GTN	FIXED			BASE	11/1/2011	INCREMENTAL	VARIABLE		
INCR RM FX	ANNUAL	RMIX	ROCKIES	NWP, GTN	FIXED			BASE	11/1/2011	INCREMENTAL	VARIABLE		
INCR NIT FX	ANNUAL	RMIX	AECO	GTN	FIXED			BASE	11/1/2011	INCREMENTAL	VARIABLE		
INCR MAL	SEASONAL	RMIX	MALIN	BACKHAULS	MALIN	YES		SWING	11/1/2012	INCREMENTAL	VARIABLE	VARIABLE	
SAT LNG	SEASONAL	RMIX	ZONAL	ZONAL	NYMEX HH	YES		SWING	11/1/2012	INCREMENTAL	VARIABLE	VARIABLE	
IMP LNG NOR	SEASONAL	RMIX	PALOMAR	BACKHAULS	NYMEX HH	YES		SWING	11/1/2015	INCREMENTAL	VARIABLE	VARIABLE	
IMP LNG SOR	SEASONAL	RMIX	PACIFIC CON	BACKHAULS	NYMEX HH	YES		SWING	11/1/2016	INCREMENTAL	VARIABLE	VARIABLE	
SAT PROP	SEASONAL	RMIX	ZONAL	ZONAL	NYMEX HH	YES		SWING	11/1/2011	INCREMENTAL	VARIABLE	VARIABLE	
INCR CG NWP	SEASONAL	RMIX	CITYGATE	NWP	NYMEX HH	YES		SWING	11/1/2011	INCREMENTAL	VARIABLE	VARIABLE	
INCR CG GTN	SEASONAL	RMIX	CITYGATE	GTN	NYMEX HH	YES		SWING	11/1/2011	INCREMENTAL	VARIABLE	VARIABLE	

STORAGE	Model Name	Type	Location	Pipeline Transport Required	Evergreen	Start	Contract Expiration	Lead Time	Max Cap	WD MDQ	$\begin{aligned} & \text { Fuel } \operatorname{lnj}< \\ & 3 \% \end{aligned}$	SVDD	$\begin{array}{r} \hline \text { D2 RATE > } \\ \$ 0.05< \\ \$ 0.15 \end{array}$
STORAGE 1	JP-1	Undergound	Jackson Prairie	Yes	Yes	Pre-2011	2014	NA	604,351	16,789	YES	SGS	YES
STORAGE 2	JP-EXP	Undergound	Jackson Prairie	Yes	Yes	Partial access until 2012 when 350,000 is avail	2060	NA	300,000	30,000	YES	SGS	YES
STORAGE 3	LNG	LNG	Plymouth	Yes	Yes	Pre-2011	2014	NA	562,207	60,000	YES	SGS	YES
STORAGE 4	$\begin{aligned} & \hline \text { AECO } \\ & \text { STORAGE } \end{aligned}$	Undergound	AECO	Yes	NA	2013	2030	NA	300,000	10,000	YES	$\begin{aligned} & \hline \text { AECO C } \\ & \text { STRG } \\ & \hline \end{aligned}$	YES
STORAGE 5	MIST STORAGE	Undergound	Mist	Yes	NA	2013	2030	NA	300,000	10,000	YES	MIST	YES
STORAGE 6	JPSURPLUS	Undergound	Jackson Prairie	Yes	Yes	2012	2030	NA	300,000	5,000	YES	SGS	YES

POTENTIAL ADDITIONAL PIPELINE TRANSPORT RESOURCES

Model Name	Start Date	End Date	Daily MDQ	Description	Cost Dths	Lead Time	Pipeline	RMIX MAX	RMIX MIN	VARIABLE $\mathbf{\$. ~} 10$	FUEL < 3\%
INCR-GTN	Nov-10	Oct-24	TBD	AECO NIT, Foothills to Kingsgate	NOVA, Foothills, GTN		$\begin{array}{r} \text { NOVA, } \\ \text { Foothills, } \\ \text { GTN } \end{array}$	$\begin{array}{\|l\|} \hline \text { UP TO } \\ 50,000 \end{array}$		YES	YES
INCR-NWP	Nov-10	Oct-24	TBD	Sumas to WA and OR citygates	$\begin{aligned} & \text { NWP Rate X } \\ & 3 \end{aligned}$		NWP	$\begin{aligned} & \hline \text { UP TO } \\ & 200,000 \end{aligned}$		YES	YES
INCR-MAL	Oct-11	Dec-30	TBD	Malin backhaul to Central OR and Stanfield Interconnect	GTN Rate	2 years?	GTN	$\begin{array}{\|l\|} \hline \text { UP TO } \\ 50,000 \end{array}$		YES	YES
BLUEBRDIGE	Nov-11	Dec-30	TBD	Stanfield and/or Stanfield Interconnect to l-5 Corridor	$\begin{aligned} & \text { NWP Rate X } \\ & 3 \end{aligned}$	2 years	$\begin{array}{r} \text { NWP, } \\ \text { PALOMAR? } \end{array}$	$\begin{array}{\|l\|} \hline \text { UP TO } \\ 50,000 \end{array}$		YES	YES
RUBY XPORT	Nov-12	Dec-30	TBD	Opal Hub to Mailin	0.95	< 2 years	RUBY	$\begin{array}{\|l\|} \hline \text { UP TO } \\ 50,000 \\ \hline \end{array}$		YES	YES
PALOMAR XPORT	Nov-15	Dec-30	TBD	Madras OR to Molalla OR (bidirectional)	$\begin{aligned} & \text { NWP Rate X } \\ & 3 \end{aligned}$	> 3years	PALOMAR	$\begin{aligned} & \text { UP TO } \\ & 50,000 \end{aligned}$		YES	YES
$\begin{array}{\|l} \hline \text { PAC } \\ \text { CONNECT } \end{array}$	Nov-15	Dec-30	TBD	Jordona Cove OR to Malin	$\begin{aligned} & \text { NWP Rate X } \\ & 3 \end{aligned}$	> 4 years	$\begin{array}{r} \text { PAC } \\ \text { CONNECT } \end{array}$	$\begin{array}{\|l\|} \hline \text { UP TO } \\ 50,000 \end{array}$		YES	YES

Table 5-3

RESIDENTIAL CONSERVATION MEASURES FEOMNICAL POTENHLAL BY 2030

OREGON			
Measure Code	Measure Description	Gas Savings Thems	Levelized Cost ($\$ /$ th)
R-GH115	AFUE 90 to hydrocoll combo, Z 1	308,136	\$0.09
R-GH118	AFUE 90 to hydrocoil combo, $\mathbf{Z 2}$	302,706	$\$ 0.09$
R-GH116	Boiler to Polaris Combo radiant, Z 1	715,671	\$0.55
R-GH119	Boiler to Polaris Comboradiant, Z 2	684,763	\$0.57
R-GH125	Duct Sealing and AFUE $90+$, Z 2	1,728,412	\$0.20
R-GH114	Duct Sealing, Z1	80,756	\$0.28
R-GH117	Duct Sealing, Z2	73,292	\$0.30
N-GH133	Ducts Indoor, DHW, Lights (Gas Z 1)	2,686,054	\$0.24
N-GH138	Ducts Indoor, DHW, Lights (Gas Z 2)	2,024,871	\$0.31
N-GH129	E* Insulation, Ducts, DHW, Lights (Gas Z 1)	2,130,840	\$0.40
N-GH134	E* Insulation, Ducts, DHW, Lights (Gas 22 2)	1,522,719	\$0.56
N-A103	Estar Dishwasher, New	886	\$0.63
R-A103	Estar Dishwasher, Replacement	65,592	\$0.63
N-GH130	Heating upgrade (AFUE 90) (Z 1)	198,215	\$0.16
N-GH135	Heating upgrade (AFUE 90) (Z2)	149,424	\$0.21
N-A105	Hi-eff Washer	2,033	-\$2.15
N-GH132	HRV, E* (Gas Z 1)	1,963,928	\$0.22
N-GH137	HRV, E* (Gas Z 2)	1,480,499	\$0.29
N-A102	MEF 2.0 Washer, New	4,611	-\$1.63
R-A102	MEF 2.0 Washer, Replacement	154,270	-\$1.63
R-GD113	Solar hot water heater (50 gal) - With gas backup.	134,556	\$0.93
N-GH139	Tank upgrade (50 gal gas)	390,983	\$0.63
N-GD106	Tank upgrade (50 gal gas) H1 Eff Atternative, New	223,054	\$0.02
R-GD111	Tank upgrade (50 gal gas) Hi Eff Attemative, Replacement	872,299	\$0.02
N-GD108	Tankless Gas heater	1,258,603	\$0.83
R-GD110	Tankless Gas heater replace	229,289	\$0.32
N-GD109	Upgrade to Navien Tankless Gas heater	182,129	\$0.39
N-GD109	Upgrade to Navien Tankless Gas heater	33,492	\$0.39
R-GW123	Wx insulation (add walls), Z 1	143,816	\$0.19
R-GW128	Wx insulation (add walls), $\mathbf{Z} 2$	952,980	\$0.18
R-GW122	Wx insulation (ceiling, floor), Z 1	156,318	\$0.24
R-GW127	Wx insulation (ceiling, floor), Z2	1,028,694	\$0.24

Oregon Residential Conservation Measures
 Technical Potential by 2030
 2011 Stellar Study

Measure Code	Measure Description		Level Cost, \$/th
R-GD116	Low Flow Shower	978	-\$21.406
N-A105	Gas Hi-eff Washer	4,283	-\$2.207
N-A102	Gas MEF 2.0 Washer	322	-\$2.095
R-A105	Gas Hi-eff Washer	48,769	-\$1.899
N-A103	Gas ETO Dishwasher	138	-\$1.505
R-A103	Gas ETO Dishwasher	8,459	-\$1.457
R-A102	Gas MEF 2.0 Washer	1,660	-\$1.272
N-GH137	Heating upgrade (AFUE 95) (Z C)	9,721	-\$0.715
N-GH131	Heating upgrade (AFUE 95) (Z B)	13,874	-\$0.501
N-GH142	MF Corridor Ventilation	6,460	\$0.000
N-GH145	AFUE 92 to condensing combo hydrocoil, Z C	24,026	\$0.043
N-GH144	AFUE 92 to condensing combo hydrocoil, Z B	21,650	\$0.048
R-GW124	Window, retro ($U=35$), Z B	694,784	\$0.050
R-GW129	Window, retro ($\mathrm{U}=.35$), Z C	499,806	\$0.071
R-GH122	AFUE 95 Furnace, Z B	984,463	\$0.098
R-GW125	Window, retro ($\mathrm{U}=.20$), Z B	387,586	\$0.104
R-GH124	AFUE 95 Furnace, Z C	704,387	\$0.135
R-GW130	Window, retro ($\mathrm{U}=.20$), Z C	233,490	\$0.191
R-GD113	Solar hot water heater (50 gal) - With gas backup.	71,316	\$0.242
R-GH114	Duct Sealing, Z B	57,164	\$0.266
N-GH130	E* Insulation, Ducts, DHW, Lights (Gas Z B)	2,384,201	\$0.278
R-GD114	Tankless Gas heater replace after 2015	330,041	\$0.285
N-GD111	Tankless Gas heater after 2015	288,598	\$0.289
N-GH136	E* Insulation, Ducts, DHW, Lights (Gas Z C)	1,747,428	\$0.290
R-GH117	Duct Sealing, Z C	52,961	\$0.299
N-GD106	Tankless Gas heater	95,322	\$0.338
R-GD110	Tankless Gas heater replace	338,676	\$0.339
R-GH126	Upgrade Gas Hearth	5,988	\$0.460
N-GH135	Near Net Zero (Gas Z B)	1,310,649	\$0.485
R-GW126	HRV, Z B	196,522	\$0.531
R-GD115	Solar hot water heater (60 gal) - With gas backup aft 2015	86,586	\$0.564
N-GD105	Tank upgrade (50 gal gas)	77,004	\$0.604
N-GH141	Near Net Zero (Gas Z C)	281,389	\$0.610

10,968,703

2011 Integrated Resource Plan

Technical Advisory Group Meeting April 13, 2011

Agenda

- Introductions
- Capacity vs Load Projections
- Distribution System Analysis
- Conservation
- Integrated Resource Scenario Runs
- Concerns regarding significant changes to proposed pipeline projects and events that may directly impact resource selection
- Closing Discussion
- Future meeting dates/Other Comments

Capacity vs Load Projections

Annual Supply \& Load Requirements

BASELOAD	\square DSM
JUST IN TIME (SPOT)	\square PEAKING/CITYGATE
SATL LNG/PK SHAVING	\square SEASONALWTR

EXAMPLE OF CORE SUPPLY PORTFOLIO ALLOCATION

ZONE 10 Peak Day Demand \& Existing Capacity Resources
Medium Load Forecast

Note: NWP Capacity is net of Non-Core primary term capacity requirements

ZONE 11 Peak Day Demand \& Existing Capacity Resources
Medium Load Forecast

ZONE 20 Peak Day Demand \& Existing Capacity Resources Medium Load Forecast

\square Zone Capacity $\quad-2011$ IRP Forecast

Note: NWP Capacity is net of Non-Core primary term capacity requirements

ZONE 24 Peak Day Demand \& Existing Capacity Resources
Medium Load Forecast

\square Zone Capacity \quad - 2011 IRP Forecast

Note: NWP Capacity is net of Non-Core primary term capacity requirements

ZONE 26 Peak Day Demand \& Existing Capacity Resources Medium Load Forecast

[^7]Note: NWP Capacity is net of Non-Core primary term capacity requirements

ZONE 30-S Peak Day Demand \& Existing Capacity Resources Medium Load Forecast

\square Zone Capacity 2011 IRP Forecast

Note: NWP Capacity is net of Non-Core primary term capacity requirements

ZONE 30-W Peak Day Demand \& Existing Capacity Resources Medium Load Forecast

Note: NWP Capacity is net of Non-Core primary term capacity requirements

ZONE GTN Peak Day Demand \& Existing Capacity Resources Medium Load Forecast

\square Zone Capacity $\quad-2011$ IRP Forecast

ZONE ME-Oregon Peak Day Demand \& Existing Capacity Resources Medium Load Forecast

Note: NWP Capacity is net of Non-Core primary term capacity requirements

ZONE ME-Washington Peak Day Demand \& Existing Capacity Resources Medium Load Forecast

Note: NWP Capacity is net of Non-Core primary term capacity requirements

Distribution System Planning to Support IRP Growth

Cascade Natural Gas Corp. 4/27/10

Distribution System Modelling

> CNG maintains two models of each distribution system

- Calibrated Model: Each model is calibrated annually to the peak hour which occurred over the past year
- Design Day Model: A second model is created by increasing the Calibrated Model loads to simulate the coldest day we plan for

Design Day Model Function

> Evaluate system for capability to support new customers
> Plan necessary reinforcements to support system on peak winter days
> IRP Planning

Modelling for the IRP

> Loads in Design Day models are increased per the IRP forecast (medium scenario)
> Model is examined for areas of low pressure
> Footage and diameter of pipe needed to correct low pressure areas are estimated
> Average total cost of pipe installation (by diameter) is used to predict total cost of reinforcements

System Model Examples

>Redmond Distribution System Model (Demonstration)

Reinforcement Planning

- Is the predicted pressure problem in a small localized area?
- Is the predicted pressure problem related to problems with the high-pressure system?

QUESTIONS?

Conservation Materials

- DSM Objectives and Approach
- Oregon Conservation Technical Potential Scenarios
- Carbon Legislation \& Impact Scenarios
- Preliminary Conservation Curves

DSM Objectives and Approach

Partner with ETO to acquire cost-effective demand side resources that meet the needs of the Company's core customers.

Cost effectiveness based on both Total Resource Cost and Utility Cost Tests.

Energy Trust is the primary agent for determining appropriate portfolio of measures and program modifications.

ETO model focuses on both an incentive based approach involving "hard" therm savings measures and equipment and behavioral/market transformation.

Analysis Process

Assess Technical Potential and Associated Savings

Develop Portfolio of Potential Future DSM

Assess Economic Potential and Market Factors (Carbon Legislation, etc)

Baseline Development and Analysis of Potential-(ETO Resource Assessment)

- Technical Potential
- As of January 25, 2011 , ETO has developed update to Energy Efficiency and Conservation Measure Resource Assessment for the Years 2010-2030
- This has impacts on technical potential to be further discussed and analyzed between the Company and ETO
- Study quantifies the current energy used by sector and customer type; estimates energy consumption by end use for each customer type; and applies forecasted growth rate to estimate the customer base available in future years
- Cascade working closely with ETO to fully analyze changes and impacts on measures in the portfolio.
- Deemed energy savings and associated costs
- Study identifies deemed savings by climate zone, and offers technical and potential supply curve savings out to 2030

OR"Restđential Technical Pötentäl -Draft Result

- Potential Listed in initial OR Residential Assessment Screen at $\$.70$ or less for 2011 IRP was estimated to be 20,490,732 therms based on the Stellar Report dated February 2009
- Recent updates to the Stellar Report January 25, 2011) indicate potential therm savings at $10,968,703$ at the same screen level of $\$.70$ or less.
- See Handout for Comparison between prior recognized (2009) and 2011 IRP

Technical to Achievable

- Technical Potential: The estimate of all energy savings that could be accomplished without the influence of any market barriers such as costs and customer awareness
- Achievable Potential: "a realistic assessment of what can be expected taking into account not all consumers can be persuaded"

LET's Talk Carbon!

- Although momentum has slowed for these initiatives for the time being, Carbon Legislation could have the potential impacts on Avoided Costs
- Cap \& Trade or Carbon Tax, essentially the same for an LDC
- LDC's deliver Gas and every molecule has an Emission that would result in a cost (tax)
- Allowances under a Cap \& Trade just lower the amount of the credits that would need to be purchases
- LDC's do not have "carbon-free" alternatives for their portfolio (no wind/solar)

Legislation

- Federal Legislation appears to have lost momentum and may not have anticipated impacts (pending outcomes of 2012 elections).
- On September 23, 2008, the Western Climate Initiative (WCI) released its Greenhouse Gas Cap and Trade design recommendations.
- WCI participants including Oregon and Washington have a certain amount of flexibility in setting requirements for implementation, compliance, and enforcement.
- Outcomes for OR yet to be determined although there is a greater likelihood that such initiatives would be pursued at the state versus the national level.
- General WCI goals would include reductions to GHG emissions to 15% below 2005 levels by 2020
- No set date for allowance allocations, but they will be established prior to 2012 and the Company will continue to closely monitor these developments.

Issues to Consider

- Building Code Impacts:
- Should code changes be included in Potential and resulting targets?
- Market Transformation
- At what point should measures be discontinued from the portfolio commensurate with "market transformation findings"
- Are market transformation findings homogenous throughout our service territory and if not, how should they be treated?
- Carbon Scenarios
- At what point should gas utilities incorporate carbon costs into TRC screening
- Are the costs for carbon "known \& measurable"

Avoided Costs--Baseline

- With 10\% Conservation Credit
- 30 Year Avoided Costs $\$ 10.92$ vs $\$ 13.20$ from 2009
- Cost Effectiveness Limit \$. 64 vs \$.78/therm
- ETO 30 year Avoided Cost
- Includes Carbon Adder beginning at 2016
- 16/ton in $2010 \$$ for CO2
- . 012 for nox
- Adds total of 10.49 cents/therm to cost effectiveness limit
- ETO's 30 year Avoided costs
- $\$ 13.09$ which includes total of $\$ 1.42$ for Carbon

Avoided Costs-Carbon impact

- 6 scenarios ranging from $\$ 12 /$ ton to \$30/ton
- Assume starts in 2016 (consistent with WCI)
- Assumes 3.5\% annual increase in costs for inflation
- Assumes NO ALLOWANCES

Avoided Costs- Carbon Impact (cont)

- \$12/Ton Scenario
- 30 Year Avoided Costs increase by $\$.98$ to $\$ 11.90$
- Cost Effectiveness Limit increases by . 06 to $\$.70 /$ thm
- \$30/Ton Scenario
- 30 Year Avoided Costs increase by $\$ 1.86$ to $\$ 12.78$
- Cost Effectiveness Limit increases by . 11 to \$.75/thm
®

2011 Integrated Resource Plan

Scenario Runs

All Resources	Existing supply contracts, incremental supplies (peaking, annual, seasonal and citygate) from various receipt points (AECO, Rockies, Sumas, Station 2, Malin, as well as behind the citygate (satellite LNG). Incremental supplies also include propane, satellite LNG (behind citygate), imported LNG (Jordan Cove, Oregon LNG), current upstream pipeline transport capacity, as well as proposed pipelines and extensions ("New Blue Bridge", Ruby, Southern Crossing, Pacific Connector, and Palomar). We also included Cascade's current Jackson Prairie storage accounts, our Plymouth LNG account, as well as the potential to obtain a third party's Jackson Prairie account, as well as AECO and Mist storage.	The all resource run allows the company to determine the likely basecase although, the company still runs sensitivities on the various pipeline projects. Malin exchanges seem to be preferred to capacity acquisition due to rate stacking with the Palomar and Ruby options, based on their tariffed recourse rates and assumption of GTN backhaul capability flowing on secondary firm capacity at existing forward haul rates. Satellite LNG facilities located within Cascade's distribution system may also be an attractive alternative to incremental pipeline capacity in areas where physical limitations at the gate stations would result in even higher costs associated with a pipeline solution. There may be additional advantages to such a strategy to the extent a facility could be strategically located on a portion of the distribution system that will eliminate or reduce distribution system

Reference case	Existing supply contracts, incremental supplies (peaking, annual, seasonal and citygate) from various receipt points s AECO, Rockies, Sumas, Station 2, Malin (via backhaul for spot purchases only) as well as behind the citygate. Incremental supplies also include satellite LNG (behind citygate), imported LNG, current upstream pipeline transport capacity. We also include Cascade's current Jackson Prairie storage accounts and our Plymouth LNG account, and incremental storage at Mist and JP. As we will discuss later, at this time it seems imprudent to include Ruby, Palomar, Blue Bridge and GTN backhaul (for purposes other than spot). Palomar recently filed to withdraw their current project filing with FERCC; they anticipate filing a new proposal which involves Northwest Natural, Northwest Pipeline and TransCanada which could create something on an Oregon "loop" or "hub". This will directly impact Palomar east/west connection at Madras. Ultimately, secondary firm exists on GTN, but they plan to announce a new firm backhaul service in the next few months; additionally, GTN is expected to file a rate case that may have rate methodology implications that may shift the flow and pricing throughout the Pacific Northwest

Limited British Columbia	Model contains all the elements of the Basecase, but incremental supplies at Station 2 and Sumas include an adder between $\$ 1$ and $\$ 2$ to reflect the potential of competition for BC gas supplies being exported at Kitimatt or shipped to Alberta via Groundbirch. It should be noted there are some concerns about the steep decline in shale after it comes on line (in some cases 75\%).	- Most believe that while imports may lessen, they will be available (at a price). - Natural gas is expected to grow as a result of Horn River, but there are increasing options for markets as TransCanada and Kitimatt may increase competition for the resources, especially if Station 2 has limited access to Horn River production - The other storage options may provide some other sourcing possibilities. - More AECO gas flows to the distribution system. - At a low rate, the Southern Crossing option of moving gas from Kingsgate to Sumas is also an option. - This scenario also suggests that Sumas capacity should be turned back.

No Rockies price advantage	All potential incremental resources except Rockies are priced at NYMEX flat with no basis adder. In other words, incremental AECO, Sumas and Mailin all have the same price. Rockies is prices with a $\$ 0.25$ adder. This scenario is designed to look at the possibilities of significantly reduced drilling in the Rockies, coupled with increased competition to move gas on REX and head east. There are some concerns in the industry that despite the large amounts of shale, that due to its steep recovery decline supplies will tighten.	In this run, the model chose to slightly increase the incremental volumes from Canada. Ruby was made available to this scenario, but was not selected, unless steeply discounted. A small amount of Malin exchange was accepted by the model.

Ruby Pipeline

Ruby Pipeline is added as an additional
resource. For modeling purposes we
assume the $\$ 0.95$ rate (the max rate
identified in their tariff) The model is set
up so that Ruby becomes an option to
move Rockies gas to GTN, where it would
require incremental GTN capacity
(backhaul) to move to Cascade's
citygates, likely in Central Oregon,
although it is possible to move the gas to
Stanfield for transport on NWP

Ruby Pipeline is added as an additional resource. For modeling purposes we assume the $\$ 0.95$ rate (the max rate identified in their tariff) The model is set up so that Ruby becomes an option to move Rockies gas to GTN, where it would require incremental GTN capacity (backhaul) to move to Cascade's citygates, likely in Central Oregon, Stanfield for transport on NWP

- Rate stacking
- Basis parity would mean this provides transportation diversity as opposed to supply diversity
- It is unknown what GTN backhaul offering would be available. Currently, GTN does offer a secondary firm backhaul from Malin at a price comparable to the forward haul rate.
- At certain discount levels, some incremental GTN primary backhaul capacity was selected by the model.
- Potential bottleneck at Stanfield and/or Malin if there isn't sufficient displacement on GTN's system for the backhaul.

| Pacific | | |
| :---: | :--- | :--- | :--- |
| Connector | Pacific Connector is added as an
 additional resource. In addition, we
 will add incremental LNG (Jordan
 Cove) as a potential resource. For
 modeling purposes we started with
 Pacific Connector transport priced
 at approximately 3 times the
 current NWP rate. The model is set
 up so that Pacific Connector
 becomes an option to move
 imported LNG to GTN, where it
 would require incremental GTN
 capacity (backhaul) to move to
 Cascade's citygates. | •$.$Rate stacking
 GTN backhaul offering |
| Potential bottleneck at Stanfield
 and/or | | |
| At certain discount levels, some
 incremental GTN primary backhaul
 capacity was selected by the
 model. | | |

The Integrated Project Concept

AECO			
Storage	Model contains all the elements of the reference case; however, AECO storage is added as a resource. The inventory is set at 300,000 dths, with daily withdrawal rights of 10,000 dths a day. This storage will be setup like the existing Jackson Prairie to be 100\% full at the start of each heating season. The model is set up so that Canadian withdrawals can use incremental GTN capacity.	\quad	Competition with Alberta for re-fill
:---			
volumes	\quad	Rate stacking	
:---			
"mimic" this service			

Mist Storage	Model contains all the elements of the reference case; however, Mist storage is added as a resource. The inventory is set at 300,000 dths, with daily withdrawal rights of 10,000 dths a day. This storage will be setup like the existing Jackson Prairie to be 100% full at the start of each heating season. The model is set up receipts are available from both Canada and Rockies via Palomar.	NWP mainline needed to flow north; treated as incremental Palomar GTN backhaul Rate stacking Madras interconnect has not been agreed to by GTN and Palomar.

| Increment
 al JP
 storage | Model contains all the elements of
 the Basecase; however, JP
 expansion storage is added as a
 resource. The inventory is set at
 300,000 dths, with daily withdrawal
 rights of 10,000 dths a day. This
 storage will be setup likerane the
 existing Jackson Prairie Expansion
 to be 100\% full at the start of each
 heating season. The model is set
 up so that withdrawals can use
 incremental NWP capacity. |
| :---: | :--- | :--- | :--- |

CONCERNS WITH MULTIPLE UNCERTAINTIES OF PROJECTS and PIPELINE EVENTS THAT WILL DIRECTLY IMPACT THE INTEGRATED RESOURCE PLAN

As mentioned earlier, at this time it seems imprudent to include Ruby, Southern Crossing, Palomar, Blue Bridge and GTN backhaul (for purposes other than spot). Fortis' Southern Crossing is anticipating another open season utilize Spectra T-South capacity that would allow supplies to move between Kingsgate and Sumas at the TSouth rate. Palomar recently filed to withdraw their current project filing with FERC; they anticipate filing a new proposal which involves Northwest Natural, Northwest Pipeline and TransCanada which could create something of an Oregon "loop" or "hub". This will directly impact Palomar east/west connection at Madras. Ultimately, secondary firm exists on GTN, but they plan to announce a new firm backhaul service in the next few months; additionally, GTN is expected to file a rate case that may have rate methodology implications that may shift the flow and pricing throughout the Pacific Northwest.

Should Cascade postpone the draft IRP until later this summer when many of these items will be known and can be properly modeled and analyzed for their impact on the resource plan?

ABOUT"RESOURCE DECISIONS...mm

- SENDOUT relies on a series of inputs or assumptions and then solves for the least cost solution based on the information provided to the model. The results of each of these scenarios provide an answer or a least cost solution, which the optimization model has solved based on its' perfect knowledge.
- The Basecase scenario represents the scenario Cascade considers most likely to be experienced over the planning horizon. In addition to the 200 draws, the Company prepared several sensitivity scenarios to test the resource selections when the baseline conditions are changed.
- Analysis of optimization model results and other operational and contractual constraints allows Cascade to make more informed resource decisions.
- The IRP optimization model output and Monte-Carlo simulation analysis will provide the quantifiable output from numerous model inputs.
- The model does not prescribe the ultimate resource portfolio. It can only determine the least cost set of resources given their specific pricing and quantifiable constraint characteristics.
- However, there are many other combinations of resources that may be available over the planning horizon.
- Cascade must still make subjective risk judgments about unquantifiable and intangible issues related to resource selections. These will include future flexibility, supplier deliverability risk, pipeline(s) risk, financial risk to the utility and its ratepayers, operational constraints, regulatory risk, etc.
- The risk judgments are combined with the quantitative IRP analysis to form actual resource decisions.

Other thoughts, questions, concerns...

- Are there other ideas or concerns that you feel need to be addressed?
- Are there other alternatives we should consider?

Appendix A-3

IRP Guidelines \& Rules

Guideline 1: Substantive Requirements

a. All resources must be evaluated on a consistent and comparable basis.

- All known resources for meeting the utility's load should be considered, including supply-side options which focus on the generation, purchase and transmission of power - or gas purchases, transportation, and storage - and demand-side options which focus on conservation and demand response.

Explanation: Cascade made every effort to include all known supply and demand side options. Supply side options studied include not only the gas itself, but also the pipeline capacity required to transport the gas, the Company's gas storage options, and the system enhancements necessary to distribute the gas. The demand side study looked at all the potential energy savings potentially available within the Company's service territory. Section 6 focuses on supply side resources, while Sections 3 and 5 focused on demand side options including conservation and demand response options. The use of a resource integration model which allows the utility to compare resources on a consistent and comparable basis. The results of the integration modeling can be found in Section 7.

- Utilities should compare different resource fuel types, technologies, lead times, in-service dates, durations and locations in portfolio risk modeling.

Explanation: Sections 5 and 6 of the text focus on the demand side and supply side alternatives. Section 5 discusses Demand side resources available including an assessment of the conservation potential that would be available over the planning horizon. The complete list of measures available in Cascade's Oregon service territory is provided in Appendices D-1 and D-2.

On the supply side, Section 6 discusses the supply resources available over the planning horizon. The supply-side options range from existing and proposed interstate pipeline capacity options, various storage options, including leased underground storage alternatives, imported LNG, as well as Satellite LNG facilities located at various locations within the Company's service territory, and unconventional supplies such as Bio-gas. Appendix E clearly defines each resource's availability, pricing assumptions, location and assumed in-service date.

- Consistent assumptions and methods should be used for evaluation of all resources.

Explanation: To the best of its ability, Cascade evaluated all resources, both supply and demand side, on a consistent basis and objectively applied the same common assumptions, approaches and methodology to each option. The resource integration analysis was accomplished through the use of the SENDOUT model. Section 7 contains the specific descriptions of the resource evaluation methodology.

- The after-tax marginal weighted-average cost of capital (WACC) should be used to discount all future resource costs.

Explanation: In the 2011 IRP, the Company uses a real after-tax discount rate of 4.17 percent.
b. Risk and Uncertainty must be considered.

- At a minimum, utilities should address the following sources of risk and uncertainty:
Natural gas utilities: demand (peak, swing and baseload), commodity supply and price, transportation availability and price, and cost to comply with any regulation of greenhouse gas emissions.

Explanation: This Plan (study) is characterized by risk and uncertainty because the Company cannot perfectly predict the contributing data such as future customer counts, economic conditions, market changes and weather conditions. However, this study analyzes risk-related data such that the Company can make reasonable assumptions. Cascade utilized low, medium, and high demand scenarios with low, medium, and high supply cost and availability scenarios to evaluate a range of potential future environments. These scenarios were run through Monte Carlo analysis in the Sendout program to analyze variations in inputs and subsequent demand sensitivities, pricing, and resource timing and selection. Additionally, the company ran several scenarios that capture the range of costs associated with complying with potential greenhouse gas emissions. The company incorporated a range of scenarios that include varying implementation timelines, ranges of throughput subject to potential cap and trade legislation, along with a range of costs associated with purchasing carbon credits.

- Utilities should identify in their plans any additional sources of risk and uncertainty.

Explanation: Various sources of risk and uncertainty are explained in Sections 3 (with respect to the Demand Forecast), 5 (Demand Side Resources), and 6 (Supply Side Resources).
c. The primary goal must be the selection of a portfolio of resources with the best combination of expected costs and associated risks and uncertainties for the utility and its customers.

- The planning horizon for analyzing resource choices should be at least 20 years and account for end effects. Utilities should consider all costs with a reasonable likelihood of being included in rates over the long term, which extends beyond the planning horizon and the life of the resource.

Explanation: This IRP contains the Company's long-range analysis of load and resources spanning a 20-year horizon.

- Utilities should use present value of revenue requirement (PVRR) as the key cost metric. The plan should include analysis of current and estimated future costs for all long-lived resources such as power plants, gas storage facilities, and pipelines, as well as all short-lived resources such as gas supply and short-term power purchases.

Explanation: The Company's SENDOUT ${ }^{\circledR}$ modeling software uses a PVRR cost metric methodology, which provides resource portfolio costs in both nominal and real (present value) dollars that is applied to resources of varying expected lives.

- To address risk, the plan should include, at a minimum:

1. Two measures of PVRR risk: one that measures the variability of costs and one that measures the severity of bad outcomes.

Explanation: Through application of the SENDOUT® software, the Company modeled 200 scenarios around varying gas price and weather inputs via Monte Carlo iterations thereby developing a distribution of annual cost estimates utilizing SENDOUT®'s PVRR methodology. Section 7 further describes this analysis while Figure 7-J summarizes this analysis graphically. The variability of costs is plotted against the Basecase while the scenarios beyond the 95th percentile capture the severity of bad outcomes.
2. Discussion of the proposed use and impact on costs and risks of physical and financial hedging.

Explanation: Section 6 discusses Cascade's physical and financial hedging methodology.

- The utility should explain in its plan how its resource choices appropriately balance cost and risk.

Explanation: Section 7 discusses Cascade's cost/risk trade off analysis.
d. The plan must be consistent with the long-run public interest as expressed in Oregon and federal energy policies.

Explanation: In preparing this plan, Cascade considered the guidelines contained in OPUC Order No. 07-047 as evidenced in this appendix and discussed in greater detail throughout the Plan.

Cascade considered both current and expected state and federal energy policies in portfolio modeling. Section 2 describes the decision making process used to derive portfolios which are consistent with state resource policy directions.

Guideline 2: Procedural Requirements

a. The public, which includes other utilities, should be allowed significant involvement in the preparation of the IRP. Involvement includes opportunities to contribute information and ideas, as well as to receive information. Parties must have an opportunity to make relevant inquiries of the utility formulating the plan. Disputes about whether information requests are relevant or unreasonably burdensome, or whether a utility is being properly responsive, may be submitted to the Commission for resolution.

Explanation: The public has been given considerable opportunities to participate in the development of Cascade's 2011 IRP. Section 1 discusses an overview of the public process.
b. While confidential information must be protected, the utility should make public, in its plan, any non-confidential information that is relevant to its resource evaluation and action plan. Confidential information may be protected through use of a protective order, through aggregation or shielding of data, or through any other mechanism approved by the Commission.

Explanation: As evidenced by the material included throughout the plan, the Company has put forth all relevant non-confidential information necessary to produce a comprehensive Plan.
c. The utility must provide a draft IRP for public review and comment prior to filing a final plan with the Commission.

Explanation: On June 10, 2011, Cascade Natural Gas (Cascade or Company) filed a request with the Commission to extend its 2011 IRP filing date from August 9, 2011, to March 15, 2012. In July 2011 the Commission extended the deadline to December 30, 2011. In its extension request, Cascade stated that providing additional time would ensure that the supply resource analysis and preferred portfolio analyses would be better informed. The Company believed that the outcome of its IRP analysis would be significantly different once more information about several unknown factors (ranging from NWP and GTN rate cases as well as new pipeline projects) became clearer. While Cascade sincerely appreciated the extension-we were unfortunately, unable to produce a draft IRP that would allow us sufficient time to adequately address any comments prior to the December 30 deadline.

Guideline 3: Plan Filing, Review, and Updates

a. The utility must file an IRP for within two years of its previous IRP acknowledgement order.

Explanation: Cascade's most recent Integrated Resource Plan for Oregon was acknowledged by the OPUC in August 2009, which based on the 2 year filing requirement, another plan was not due to be filed until August 2010. On June 10, 2011, Cascade Natural Gas (Cascade or Company) filed a request with the Commission to extend its 2011 IRP filing date from August 9, 2011, to March 15, 2012. In July 2011 the Commission extended the deadline to December 30, 2011.
b. The utility must present the results of its filed plan to the Commission at a public meeting prior to the deadline for written public comment.

Explanation: Cascade will adhere to this guideline.
c. Commission Staff and parties should complete their comments and recommendations within six months of IRP filing.

Explanation: The Company looks forward to working with Staff and interested parties in their review of this Plan.

Guideline 4: Plan Components

At a minimum the plan must include the following elements:
a. An explanation of how the utility met each of the substantive and procedural requirements.

Explanation: This Appendix is intended to comply with this guideline by providing an itemized response to each of the substantive and procedural requirements.
b. Analysis of high and low load growth scenarios in addition to stochastic load risk analysis with an explanation of major assumptions.

Explanation: The Base Case demand forecast uses the Company's projected customer growth and projected prices. This IRP considers two departures from the Base Case demand forecast, including low, medium, and high demand growth forecasts, as well as stochastic risk analysis. Section 3 discusses the Demand Forecast scenarios and their assumptions and Section 7 provides the scenario and risk analysis results.
c. For electric utilities ... (Not applicable)
d. For natural gas utilities, a determination of the peaking, swing and base-load gas supply and associated transportation and storage expected for each year of the plan, given existing resources; and identification of gas supplies (peak, swing and base-load), transportation and storage needed to bridge the gap between expected loads and resources.

Explanation: Section 6 details determination of gas supply and associated transportation and storage options, while Section 7 incorporates the forecasted demand load and necessary options to meet that load.
e. Identification and estimated costs of all supply-side and demand-side resource options, taking into account anticipated advances in technology.

Explanation: Section 5 along with Appendix D 1 through 4 identifies the demand side resources options included in this plan. Section 6 along with Appendix E details all supply-side options included in this plan.
f. Analysis of measures the utility intends to take to provide reliable service, including cost-risk tradeoffs.

Explanation: Sections 3 and 4 discusses the modeling tools, customer growth forecasting and cost-risk considerations used to maintain and plan a reliable gas delivery system. Section 6 discusses the diversified infrastructure and multiple supply basin approach that acts to mitigate certain reliability risks.
g. Identification of key assumptions about the future (e.g., fuel prices and environmental compliance costs) and alternative scenarios considered.

Explanation: Section 7 details the key assumptions and alternative scenarios considered in the Plan.
h. Construction of a representative set of resource portfolios to test various operating characteristics, resource types, fuels and sources, technologies, lead times, in-service dates, durations and general locations - system-wide or delivered to a specific portion of the system.

Explanation: This Plan documents the development and results for resource options evaluated in this IRP. See also guideline 1c for further discussion on resource mix alternatives to portfolios.
i. Evaluation of the performance of the candidate portfolios over the range of identified risks and uncertainties.

Explanation: The Company evaluated its preferred portfolio by performing stochastic analysis using the Monte Carlo functionality within the SENDOUT model. The analysis allowed for varying price and weather scenarios under 200 different scenarios. Additionally the portfolio of options was reviewed under deterministic scenarios where demand and price vary. For resources selected, we considered other risk factors such as varying lead times required and potential changes in costs in order to test the Basecase scenario assumptions.
j. Results of testing and rank ordering of the portfolios by cost and risk metric, and interpretation of those results.

Explanation: Section 7 describes the resource options evaluated, including discussion on uncertainties in lead times and costs as well as viability and resource availability. Figures in Section 7 proved the testing and rank ordering of the portfolios and the interpretation of those results.
k. Analysis of the uncertainties associated with each portfolio evaluated.

Explanation: The See the responses to 1.b above.
I. Selection of a portfolio that represents the best combination of cost and risk for the utility and its customers.

Explanation: Cascade evaluated cost/risk tradeoffs for each of the risk analysis portfolios considered. Section 7 shows the company's portfolio risk analysis, as well as the process and determination of the preferred portfolio.
m . Identification and explanation of any inconsistencies of the selected portfolio with any state and federal energy policies that may affect a utility's plan and any barriers to implementation.

Explanation: This IRP has presumed no inconsistencies with existing policies. Potential barriers to implementation of the Plan relate to the ultimate availability and
timing of certain incremental resources selected (e.g. both Satellite and Import LNG, the Rockies pipeline expansion projects along with BNG alternatives within CNG's distribution system).
n . An action plan with resource activities the utility intends to undertake over the next two to four years to acquire the identified resources, regardless of whether the activity was acknowledged in a previous IRP, with the key attributes of each resource specified as in portfolio testing.

Explanation: Section 8 presents the Company's 2-year action plan, which identifies the short term actions the Company plans to pursue.

Guideline 5: Transmission

Portfolio analysis should include costs to the utility for the fuel transportation and electric transmission required for each resource being considered. In addition, utilities should consider fuel transportation and electric transmission facilities as resource options, taking into account their value for making additional purchases and sales, accessing less costly resources in remote locations, acquiring alternative fuel supplies, and improving reliability.

Explanation: Not applicable to Cascade's gas utility operations

Guideline 6: Conservation

a. Each utility should ensure that a conservation potential study is conducted periodically for its entire service territory.

Explanation: As discussed in Section 6, Cascade retained the services of Stellar Processes to analyze the potential energy savings it can cost-effectively procure within its Washington service territory for this IRP and continues to use this model. A similar study was prepared by Stellar Processes for the ETO, in consultation with Cascade, to assess the potential energy savings within Cascade's Oregon service territory. The ETO and Cascade continue to work with Stellar Processes (Stellar) to review existing demographic and energy efficiency measures data sources to identify and quantify technical and achievable resource potential.
b. To the extent that a utility controls the level of funding for conservation programs in its service territory, the utility should include in its action plan all best cost/risk portfolio conservation resources for meeting projected resource needs, specifying annual savings targets.

Explanation: Achievable potential DSM savings per customer class in Cascade's Oregon and Washington service territories with cost-effective screening at the Company's Base Case avoided cost is summarized in Section 6.
c. To the extent that an outside party administers conservation programs in a utility's service territory at a level of funding that is beyond the utility's control, the utility should: 1) determine the amount of conservation resources in the best cost/ risk portfolio without regard to any limits on funding of conservation programs; and 2) identify the preferred portfolio and action plan consistent with the outside party's projection of conservation acquisition.

Explanation: Because the Company believes funding options are available and understands Staff agrees with this assumption, this guideline is being treated as not applicable.

Guideline 7: Demand Response

Plans should evaluate demand response resources, including voluntary rate programs, on par with other options for meeting energy, capacity, and transmission needs (for electric utilities) or gas supply and transportation needs (for natural gas utilities).

Explanation: Cascade has addressed periodically evaluated conceptual approaches to meeting capacity constraints using demand-response and similar voluntary programs. Interruptible sales service is the most reliable method of achieving demand response (see discussion in Section 6).

Guideline 8: Environmental Costs (As revised in UM1302)

Utilities should include, in their base-case analyses, the regulatory compliance costs they expect for CO2, NOx, SO2, and Hg emissions.

Explanation: Unlike electric utilities, environmental costs rarely impact a gas utility's supply-side resource choices. Section 6 discusses Cascade's assumptions regarding expected environmental costs through a range of possibilities. In Section 7, the Company discusses the impact on system costs based on alternative implementation time lines, cost adders and varying levels of allowances.

Guideline 9: Direct Access Loads

Explanation: Not applicable to natural gas utility.
Guideline 10: Multi-state Utilities

Multi-state utilities should plan their generation and transmission systems, or gas supply and delivery, on an integrated-system basis that achieves a best cost/risk portfolio for all their retail customers.

Explanation: Cascade's 2011 IRP includes its Oregon and Washington service territories and utilizes an integrated approach in determination of demand, supply, and cost/risk portfolios.

Guideline 11: Reliability

Natural gas utilities should analyze, on an integrated basis, gas supply, transportation, and storage, along with demand-side resources, to reliably meet peak, swing, and base-load system requirements. Electric and natural gas utility plans should demonstrate that the utility's chosen portfolio achieves its stated reliability, cost and risk objectives.

Explanation: Cascade analyzes on an integrated basis, gas supply, transportation, and storage along with demand-side resources to reliably meet peak, swing and base-load system requirements. As discussed throughout the Plan, Cascade's strategy is to reliably serve our firm gas sales customers in a way that minimizes costs over the long term and the Company believes that its basecase portfolio meets these objectives.

Guideline 12: Distributed Generation

Explanation: Not applicable to natural gas utility.

Guideline 13: Resource Acquisition

a. Electric utilities ... (Not applicable)
b. Natural gas utilities should either describe in the IRP their bidding practices for gas supply and transportation, or provide a description of those practices following IRP acknowledgment.

Explanation: Cascade's gas procurement strategy is outlined in Section 5

Appendix B-1

Demand Forecast Model Escalation Rates

Appendix B-1

Demand Forecast Model Escalation Rates

Cascade Natural Gas
 2011 IRP Demand Forecast
 Economic Indicators

PROJECTED EMPLOYMENT GROWTH

2013	\#DIV/0!	0.05%	0.86%	0.60%	1.59%	1.30%	0.72%	1.30%	1.68%	0.94%	0.89%	0.77%	1.01%	0.62%	1.33%	0.93%	0.28%	1.15%	0.89%	1.33%	1.38%

2019	$\# D I V / 0!$	0.05%	1.13%	0.75%	2.09%	1.68%	0.89%	1.77%	2.24%	1.21%	1.14%	0.98%	1.32%	0.78%	1.75%	1.27%	0.36%	1.47%	1.17%	1.75%	1.83%	1.16%	0.63%

 | 2025 | \#DIV/0! | 0.05% | 1.16% | 0.70% | 2.06% | 1.64% | 0.82% | 1.81% | 2.22% | 1.23% | 1.13% | 0.94% | 1.32% | 0.78% | 1.72% | 1.29% | 0.37% | 1.42% | 1.11% | 1.72% | 1.81% | 1.09% | 0.60% |
| :--- |
| 2026 | |

 | 2031 | \#DIV/0! | 0.05% | 1.09% | 0.68% | 2.02% | 1.58% | 0.74% | 1.88% | 2.22% | 1.14% | 1.09% | 0.89% | 1.31% | 0.71% | 1.68% | 1.33% | 0.38% | 1.38% | 1.07% | 1.69% | 1.80% | 1.04% | 0.58% |
| :--- |

 | |
| :--- |
| 2034 | \#DIV/0! | 0.05% | 1.11% | 0.65% | 2.00% | 1.56% | 0.70% | 1.91% | 2.21% | 1.14% | 1.07% | 0.86% | 1.29% | 0.71% | 1.67% | 1.35% | 0.33% | 1.36% | 1.04% | 1.67% | 1.79% | 1.03% | 0.56% |
| 2035 | \#DIV/0! | 0.05% | 1.08% | 0.65% | 1.99% | 1.55% | 0.69% | 1.90% | 2.21% | 1.13% | 1.07% | 0.86% | 1.29% | 0.73% | 1.66% | 1.35% | 0.35% | 1.32% | 1.01% | 1.66% | 1.78% | 1.01% | 0.56% |

2011	0.24%	0.21%	0.31%	0.28%	0.08%	0.25%	0.18%	0.25%	0.23%	0.26%	0.23%	0.19%	0.29%	0.24%	0.16%	0.27%	0.24%	0.14%	0.29%	0.24%	0.18%
0.30%	0.20%																				

2015	0.89%	0.62%	1.69%	1.38%	0.76%	1.41%	1.79%	0.97%	0.96%	1.17%	0.82%	0.60%	1.41%	1.00%	0.32%	1.20%	0.98%	1.41%	1.47%	0.95%	0.53%	1.55%	0.69%

2017	0.91%	0.63%	1.68%	1.37%	0.74%	1.39%	1.79%	1.00%	0.94%	1.16%	0.81%	0.61%	1.41%	1.01%	0.30%	1.20%	0.90%	1.40%	1.47%	0.94%	0.51%	1.53%	0.69%	

2022	0.91%	0.58%	1.66%	1.33%	0.69%	1.42%	1.79%	0.96%	0.93%	1.14%	0.77%	0.63%	1.39%	1.02%	0.32%	1.16%	0.89%	1.39%	1.46%	0.90%	0.49%	1.51%	0.66%
2023	0.56%	1.65%	1.32%	0.67%	1.48%	1.78%	0.96%	0.90%	1.15%	0.77%	0.60%	1.38%	1.04%	0.29%	1.16%	0.92%	1.39%	1.46%	0.90%	0.49%	1.50%	0.65%	

 | | 2034 | 0.90% | 0.52% | 1.60% | 1.25% | 0.57% | 1.53% | 1.77% | 0.92% | 0.86% | 1.11% | 0.70% | 0.57% | 1.34% | 1.08% | 0.27% | 1.09% | 0.84% | 1.34% | 1.43% | 0.83% | 0.46% | 1.44% | 0.60% |
| :--- |
| 2035 | 0.87% | 0.53% | 1.59% | 1.25% | 0.56% | 1.52% | 1.76% | 0.91% | 0.86% | 1.11% | 0.70% | 0.59% | 1.33% | 1.09% | 0.29% | 1.06% | 0.82% | 1.33% | 1.43% | 0.82% | 0.45% | 1.43% | 0.59% | |

	2011	0.05\%	0.18\%	15\%	0.23\%	21\%	.06\%	0.19\%	0.13\%	18\%	0.17\%	19\%	19\%	0.14\%	0.21\%	0.17\%	.12\%	0.20\%	.18\%	0.11\%	0.21\%	.18\%	4\%	0.22\%
	2012	0.05\%	0.07\%	0.05\%	0.13\%	0.10\%	0.06\%	0.10\%	0.13\%	0.08\%	0.07\%	0.09\%	0.08\%	0.05\%	0.11\%	0.07\%	0.02\%	0.09\%	0.08\%	0.11\%	0.11\%	\%	0.04\%	0.12\%
	2013	0.05\%	0.52\%	0.36\%	0.96\%	0.78\%	0.43\%	0.78\%	1.01\%	0.56\%	0.53\%	0.66\%	0.60\%	0.37\%	0.80\%	0.56\%	0.17\%	0.69\%	0.53\%	0.80\%	0.83\%	.54\%	0.29\%	0.88\%
	2014	0.05\%	0.69\%	0.47\%	1.27\%	1.03\%	0.56\%	1.02\%	1.35\%	0.77\%	0.70\%	0.87\%	0.80\%	0.50\%	1.06\%	0.74\%	0.25\%	0.91\%	0.70\%	1.06\%	1.10\%	0.71\%	0.38\%	1.17\%
	2015	0.05\%	0.66\%	0.46\%	1.27\%	1.03\%	0.56\%	1.05\%	1.35\%	0.72\%	0.72\%	0.87\%	0.81\%	0.44\%	1.06\%	0.75\%	0.23\%	0.90\%	0.73\%	1.06\%	1.10\%	0.71\%	0.40\%	1.1
	2016	0.05\%	0.70\%	0.44\%	1.27\%	1.02\%	0.55\%	1.04\%	1.34\%	0.76\%	0.70\%	0.87\%	0.80\%	0.51\%	1.06\%	0.75\%	0.24\%	0.91\%	0.76\%	1.06\%	1.10\%	0.70\%	0.38\%	1.16\%
	2017	0.05\%	0.68\%	0.46\%	1.26\%	1.02\%	0.55\%	1.04\%	1.34\%	0.74\%	0.70\%	0.87\%	0.80\%	0.45\%	1.06\%	0.76\%	0.22\%	0.90\%	0.67\%	1.05\%	1.10\%	0.70\%	38\%	1.15\%
	2018	0.05\%	0.67%	0.44\%	1.26\%	1.02\%	0.54	1.06\%	1.34\%	0.74\%	0.70\%	0.86\%	0.80\%	0.49\%	1.05\%	0.76\%	0.23\%	0.88\%	0.70\%	1.05\%	1.10\%	0.69\%	0.37\%	1.15\%
	2019	0.05\%	0.68\%	0.	1.25\%	1.01\%	0.5	1.06\%	1.34\%	0.72\%	0.69\%	0.86\%	0.79\%	7\%	1.05\%	0.76\%	0.22\%	0.88\%	0.70\%	1.05\%	10\%	.69\%	38\%	1.14\%
	202	0.05\%	67\%	0.43\%	25\%	1.00\%	0.53	1.06\%	1.34\%	0.72\%	0.70\%	0.86\%	0.80\%	0.47	1.04\%	0.76\%	0.23\%	0.88\%	0.69\%	1.04\%	1.10\%	0.68\%	0.37\%	1.14\%
	2021	0.05\%	0.69\%	0.45\%	1.25\%	1.00\%	0.51\%	1.08\%	1.34\%	0.74\%	0.69\%	0.86\%	0.80\%	0.47\%	1.04\%	0.76\%	0.21\%	0.88\%	0.72\%	1.04\%	1.09\%	0.68\%	0.37\%	1.13\%
	202	0.0	0.6	0.4	1.2	1.00\%	0.	1.0	1.3	0.72\%	0.69\%	0.85\%	0.7	0.47\%	1.0	0.76\%	0.24\%	0.87\%	0.66\%	1.04\%	1.09\%	0.67\%	0.36\%	1.13\%
	2023	0.05\%	0.68\%	0.42\%	1.24\%	0.99\%	0.50\%	1.11\%	1.33\%	0.72\%	0.67\%	0.86\%	0.79\%	0.45\%	1.04\%	0.78\%	0.22\%	0.87\%	0.69\%	1.04\%	1.09\%	0.67\%	0.36\%	1.13
	202	0.0	0.6	0.43\%	1.24\%	0.98\%	0.	1.0	1.3	\%	0.68\%	0.84\%	0.	0.48\%	1.03	0.78\%	0.22	0.86	0.70	1.03	1.0	0.66\%	0.37\%	1.12\%
	2025	0.05\%	0.70\%	0.42\%	1.23\%	0.98\%	0.49\%	1.09\%	1.33\%	0.74\%	0.68\%	0.85\%	0.79\%	0.47\%	1.03\%	0.77\%	0.22\%	0.85\%	0.67\%	1.03\%	1.09\%	0.66\%	0.36\%	1.12
	202	0.0	0.66\%	0.39\%	1.2	0.97\%	0.48\%	1.09\%	1.34\%	0.70\%	0.67\%	848	0.79\%	0.45\%	1.0	0.78	0.22\%	0.85	0.67	1.02\%	1.09\%	0.65\%	0.3	1.11\%
	2027	0.05\%	0.66\%	0.45\%	1.23\%	0.97\%	0.47\%	1.11\%	1.33\%	0.70\%	0.67\%	0.85\%	0.79\%	0.46\%	1.02\%	0.78\%	0.22\%	0.85\%	0.66\%	1.02\%	1.08\%	0.66\%	0.36\%	1.11\%
	2028	0.0	0.68\%	0.3	1.22\%	0.97\%	0.47\%	1.	1.33	\%	.67\%	0.85	0.7	0.4	1.02\%	0.78\%	0.21	0.83	0.66	1.02	1.08\%	0.64	0.3	1.10\%
	2029	0.05\%	0.68\%	0.42\%	1.22\%	0.95\%	0.46\%	1.10\%	1.33\%	0.69\%	0.65\%	0.84\%	0.79\%	0.45\%	1.02\%	0.79\%	0.21\%	0.84\%	0.66\%	1.01\%	1.08\%	0.64\%	0.34\%	1.10\%
	2030	0.05\%	68\%	0.36\%	1.21\%	0.96\%	0.45\%	1.12\%	1.33\%	0.71\%	0.66\%	0.84\%	0.78\%	0.46\%	1.01\%	0.79\%	0.20\%	0.83\%	0.66\%	1.01\%	1.08\%	0.63\%	0.35\%	1.09\%
	2031	0.05\%	0.65\%	0.41\%	1.21\%	0.95\%	0.44\%	1.13\%	1.33\%	0.68\%	0.66\%	0.83\%	0.78\%	0.42\%	1.01\%	0.80\%	0.23\%	0.83\%	0.64\%	1.01\%	1.08\%	0.62\%	0.35\%	1.09
	2032	0.05\%	0.68\%	0.40\%	1.21\%	0.94\%	0.44\%	1.16\%	1.33\%	0.69\%	0.65\%	0.84\%	0.78\%	0.45\%	1.01\%	0.80\%	0.21\%	0.82\%	0.63\%	1.01\%	1.08\%	0.63\%	0.35\%	1.08\%
	2033	0.05\%	0.68\%	0.35\%	1.20\%	0.94\%	0.43\%	1.12\%	1.33\%	0.69\%	0.65\%	0.83\%	0.78\%	0.44\%	1.00\%	0.79\%	0.20\%	0.82\%	0.69\%	1.00\%	1.07\%	0.62\%	0.34\%	1.08
	2034	0.05\%	0.67\%	0.39\%	1.20\%	0.93\%	0.42\%	1.15\%	1.33\%	0.68\%	0.64\%	0.83\%	0.77\%	0.42\%	1.00\%	0.81\%	0.20\%	0.82\%	0.62\%	1.00\%	1.07\%	0.62\%	0.34\%	1.08
	2035	0.05\%	0.65\%	0.39\%	1.19\%	0.93\%	0.41\%	1.14\%	1.33\%	0.68\%	0.64	0.83\%	0.77%	0.44\%	1.00\%	0.81\%	0.21\%	0.79	0.61\%	1.00\%	1.07\%	0.61\%	0.33	1.07\%

Cascade Natural Gas
2011 IRP Demand Forecast
Economic Indicators

PROJECTED HOUSEHOLDS GROWTH

2017	\#DIV $/ 0!$	0.05%	0.88%	0.17%	2.07%	1.37%	1.04%	1.77%	2.45%	1.46%	1.86%	0.62%	1.47%	1.15%	1.79%	1.07%	0.13%	1.81%	0.90%	1.86%	1.99%	0.70%	0.63%

 | 2029 | \#DIV/0! | 0.05% | 0.58% | -0.06% | 1.54% | 1.03% | 1.29% | 1.29% | 1.81% | 1.13% | 1.40% | 0.38% | 1.10% | 0.87% | 1.32% | 0.80% | -0.04% | 1.32% | 0.65% | 1.40% | 1.47% | 0.32% | 0.32% |
| :--- |

| 2011 | 0.75% | 0.01% | 2.11% | 1.28% | 0.88% | 1.76% | 2.58% | 1.39% | 1.86% | 1.46% | 0.50% | 1.02% | 1.77% | 0.95% | -0.06% | 1.81% | 0.78% | 1.87% | 2.02% | 0.59% | 0.49% | 2.49% | 0.53% |
| :--- |

2015	0.92%	0.22%	2.14%	1.42%	0.97%	1.84%	2.54%	1.52%	1.93%	1.57%	0.67%	1.19%	1.86%	1.11%	0.10%	1.88%	0.96%	1.94%	2.07%	0.76%	0.68%	2.47%	0.72%

2019	0.81%	0.13%	1.93%	1.29%	1.08%	1.66%	2.28%	1.38%	1.75%	1.42%	0.57%	1.08%	1.68%	1.01%	0.07%	1.70%	0.86%	1.75%	1.86%	0.64%	0.58%	2.22%
	0.63%																					

2023	0.73%	0.06%	1.76%	1.18%	1.16%	1.50%	2.07%	1.28%	1.60%	1.30%	0.49%	1.00%	1.53%	0.93%	0.01%	1.54%	0.77%	1.60%	1.70%	0.52%	0.48%	2.01%	0.57%

2027	0.63%	-0.03%	1.60%	1.07%	1.24%	1.35%	1.87%	1.16%	1.45%	1.17%	0.41%	0.91%	1.38%	0.83%	-0.05%	1.38%	0.68%	1.45%	1.53%	0.39%	0.38%	1.81%	0.49%

	2034	0.48%	-0.15%	1.36%	0.91%	1.32%	1.13%	1.59%	1.01%	1.23%	0.98%	0.30%	0.78%	1.17%	0.70%	-0.11%	1.16%	0.55%	1.23%	1.29%	0.18%	0.23%	1.53%	0.38%
2035	0.45%	-0.18%	1.32%	0.89%	1.33%	1.10%	1.55%	0.98%	1.20%	0.95%	0.28%	0.75%	1.14%	0.68%	-0.11%	1.12%	0.53%	1.20%	1.25%	0.16%	0.21%	1.49%	0.37%	

	2011	0.05\%	0.65\%	0.01\%	1.84\%	1.11\%	-99.90\%	1.52\%	2.25\%	1.20\%	1.62\%	1.26\%	1.23\%	0.88\%	1.54\%	0.82\%	-0.11\%	1.57\%	0.67\%	1.62\%	1.76\%	0.51\%	0.42\%	\%
	2012	0.05\%	96\%	0.24	2.34\%	1.51\%	0.88\%	1.9	2.81\%	1.61\%	2.08\%	1.68	1.65\%	1.26\%	2.00\%	1.17	0.20	2.04	0.99	2.09	2.25\%	0.81\%	0.71\%	2.72\%
	2013	0.05\%	0.99\%	0.27\%	2.32\%	1.52\%	0.91\%	1.98\%	2.77\%	1.61\%	2.08\%	1.68%	1.65\%	1.26\%	1.99\%	1.18\%	0.16\%	2.03\%	1.01\%	2.08\%	2.23\%	0.82\%	0.73\%	.69\%
	2014	0.05\%	0.96\%	0.24\%	2.26	1.48\%	0.94\%	1.93\%	.70	1.58\%	.03	1.64\%	1.61\%	1.24\%	1.95\%	1.16\%	0.17\%	1.98\%	0.98\%	2.03	2.1	0.8	0.7	2.62\%
	2015	0.05\%	0.94\%	0.22\%	2.20\%	1.45\%	0.97\%	1.88\%	2.62\%	1.55\%	1.98\%	1.60\%	1.57\%	1.21\%	1.90\%	1.13\%	0.11\%	1.93\%	0.97\%	1.98\%	2.12\%	0.77\%	0.69\%	2.54\%
	2016	0.05\%	.90\%	0.21\%	2.14\%	1.41\%	1.00\%	1.83\%	2.55\%	1.50	1.92\%	1.56%	1.52	1.18\%	1.85\%	.10	0.12\%	1.88	0.92	1.93	2.06\%	0.74\%	0.67%	2.47\%
	2017	0.05\%	0.88\%	0.18\%	2.08	1.38	1.03\%	1.78\%	2.48\%	1.4	1.88	1.52\%	1.49	1.16	1.80\%	1.08\%	0.13\%	1.83\%	0.91\%	1.88	2.01\%	0.71\%	.64\%	2.40\%
	2018	.05\%	, 85%	0.15\%	2.03	1.34\%	1.06\%	1.72\%	2.41\%	1.44\%	3\%	.48\%	5\%	\%	1.75\%	1.05\%	0.07\%	.78\%	0.88\%	1.83\%	1.96\%	.68\%	.61\%	2.34\%
	2019	0.05\%	0.82\%	0.13	1.98\%	1.31\%	1.09	1.69\%	2.35\%	1.41	1.78\%	1.44	1.41	1.09	1.71\%	1.02\%	0.07\%	1.73\%	0.87\%	1.79\%	1.91\%	0.65\%	0.59\%	2.28\%
	2020	0.05\%	.80\%	0.12\%	1.93\%	28	1.11\%	1.6	2.29\%	1.38\%	1.74	1.41\%	1.38\%	1.0	1.67\%	1.00	.07\%	1.69	0.84	1.75\%	1.86\%	0.62	0.57	2.22\%
	2021	0.05\%	0.78\%	0.10\%	1.89\%	1.26\%	1.13\%	1.61\%	2.23\%	1.36\%	1.70\%	1.38\%	1.35\%	1.06\%	1.64\%	0.98\%	0.05\%	1.65\%	0.81\%	1.71\%	1.82\%	0.59\%	0.55\%	2.17
	2022	0.05\%	0.77\%	0.09\%	1.85\%	1.24\%	1.15\%	1.57\%	2.18\%	1.33\%	1.67\%	1.35\%	1.32\%	1.04\%	1.60\%	0.96\%	0.05\%	1.61\%	0.80\%	1.67\%	1.78\%	0.56\%	0.52\%	2.11\%
O	2023	0.05\%	0.74\%	06	1.80	1.20	1.17	1.53\%	2.12\%	1.30\%	1.63\%	1.32\%	1.29\%	1.01\%	1.56\%	0.94\%	0.02\%	1.57\%	0.78\%	1.63\%	1.73\%	0.53	0.49\%	2.06\%
	2024	0.05\%	0.71\%	0.03	1.76\%	1.18\%	1.19	1.49	2.076	1.27\%	1.59\%	1.28\%	1.26	0.99	1.52\%	0.92\%	0.02\%	1.53\%	0.75\%	1.59\%	1.69\%	0.50\%	0.46\%	2.00
	202	0.0	0.68\%	0.02\%	1.7	1.15\%	1.21\%	1.45\%	2.02\%	1.25\%	1.55\%	1.25\%	1.2	0.97\%	1.48\%	0.89\%	0.03\%	1.48\%	0.74\%	1.55\%	1.64\%	0.46\%	0.43\%	1.95\%
	2026	0.05\%	0.66\%	0.00\%	1.67\%	1.12\%	1.24\%	1.41\%	1.96\%	1.21\%	1.51\%	1.22\%	1.19\%	0.95\%	1.44\%	0.87\%	-0.01\%	1.44\%	0.72\%	1.51\%	1.60\%	0.42\%	0.40\%	1.90
	2027	0.0	0.64\%	-0.0	1.63\%	1.09\%	1.25\%	1.38\%	1.92\%	1.18\%	1.47\%	1.19\%	1.16\%	0.92\%	1.40\%	0.84\%	-0.08\%	1.41\%	0.69\%	1.48\%	1.5	0.39\%	0.38\%	1.85\%
	2028	0.05\%	0.62\%	-0.08\%	1.59\%	1.06	1.27\%	1.34\%	1.87\%	1.16\%	1.44\%	1.15\%	1.13\%	0.91\%	1.37\%	0.82\%	0.02\%	1.37\%	0.66\%	1.44\%	1.52\%	0.36\%	0.35\%	1.80\%
	2029	0.05\%	.59\%	.06	1.55\%	1.04\%	1.29	1.30\%	1.82	1.14\%	1.4	1.13	1.1	0.8	1.33\%	0.80	-0.0	1.3	0.6	1.4	1.4	0.3	0.33\%	1.76\%
	2030	0.05\%	0.57\%	-0.11	1.52\%	1.02\%	1.30\%	1.27\%	1.78\%	1.11\%	1.37\%	1.10\%	1.08\%	0.86\%	1.30\%	0.78\%	-0.13\%	1.30\%	0.63\%	1.38\%	1.45\%	0.30\%	0.31\%	1.72\%
	2031	0.05\%	0.54\%	-0.11\%	1.48\%	0.99\%	1.31\%	1.24\%	1.74\%	1.09\%	1.34\%	1.07\%	1.06\%	0.85\%	1.27\%	0.77\%	0.00\%	1.27\%	0.61\%	1.35\%	1.41\%	0.27\%	0.29\%	1.68\%
	2032	0.05\%	0.53\%	-0.13\%	1.45\%	0.97\%	1.32\%	1.21\%	1.70\%	1.07\%	1.31\%	1.05\%	1.03\%	0.82\%	1.24\%	0.75\%	-0.11\%	1.24\%	0.60\%	1.31\%	1.38\%	0.24\%	0.27\%	1.64\%
	2033	0.05\%	0.50\%	-0.17\%	1.41\%	95\%	1.33\%	1.17\%	1.66\%	1.04\%	1.28\%	1.02\%	1.01\%	0.81\%	1.21\%	0.73\%	-0.14\%	1.21\%	0.58\%	1.28\%	\%	0.22\%	0.26\%	1.60\%
	2034	0.05\%	0.48\%	-0.15\%	1.38\%	0.93\%	1.34\%	1.14\%	1.62\%	1.02\%	1.25\%	0.99\%	0.98\%	0.79\%	1.18\%	0.71\%	-0.11\%	1.18\%	0.56\%	1.25\%	1.31\%	0.19\%	0.24\%	1.5
	2035	0.05\%	0.45\%	-0.20\%	1.34\%	0.90\%	1.35\%	1.12\%	1.58\%	0.99\%	1.22\%	0.96\%	0.96\%	0.76\%	1.15\%	0.69\%	-0.11\%	1.14\%	0.53\%	1.22\%	1.27\%	0.16\%	0.22\%	1.52

Cascade Natural Gas

2011 IRP Demand Forecast

Economic Indicators

PROJECTED INCOME GROWTH

2013	\#DIV $/ 0!$	0.05%	0.14%	0.21%	0.10%	0.14%	0.16%	0.21%	0.16%	0.09%	0.02%	0.17%	0.10%	0.19%	0.14%	0.14%	0.23%	0.10%	0.12%	0.10%	0.03%	0.17%

 | |
| :--- |
| 2034 | \#DIV/0! | 0.05% | 2.50% | 2.85% | 2.40% | 2.38% | 2.33% | 3.60% | 3.19% | 1.92% | 1.61% | 2.66% | 2.21% | 2.90% | 2.48% | 2.50% | 3.20% | 2.23% | 2.18% | 2.42% | 1.83% | 2.68% | 2.09% |
| 2035 | \#DIV/0! | 0.05% | 2.55% | 2.90% | 2.45% | 2.41% | 2.36% | 3.65% | 3.24% | 1.97% | 1.66% | 2.68% | 2.24% | 2.95% | 2.51% | 2.54% | 3.20% | 2.27% | 2.21% | 2.47% | 1.89% | 2.71% | 2.11% |

 | 2019 | 1.06% | 1.36% | 0.89% | 1.02% | 1.08% | 1.50% | 1.23% | 0.72% | 0.42% | 0.76% | 1.22% | 1.29% | 1.05% | 1.05% | 1.49% | 0.84% | 0.90% | 0.90% | 0.47% | 1.20% | 0.89% | 1.20% | 1.03% |
| :--- |

 | |
| :--- |
| 2026 | 1.26% | 1.50% | 1.15% | 1.20% | 1.22% | 1.80% | 1.54% | 0.93% | 0.70% | 1.01% | 1.39% | 1.48% | 1.24% | 1.25% | 1.66% | 1.08% | 1.09% | 1.16% | 0.78% | 1.37% | 1.05% | 1.38% | 1.19% |
| 2027 | 1.28% | 1.53% | 1.18% | 1.22% | 1.24% | 1.83% | 1.58% | 0.96% | 0.73% | 1.03% | 1.41% | 1.52% | 1.27% | 1.28% | 1.71% | 1.11% | 1.11% | 1.19% | 0.82% | 1.40% | 1.07% | 1.40% | 1.20% |

 | | 2034 | 1.41% | 1.61% | 1.36% | 1.34% | 1.32% | 2.02% | 1.79% | 1.09% | 0.91% | 1.19% | 1.50% | 1.64% | 1.40% | 1.41% | 1.80% | 1.26% | 1.23% | 1.37% | 1.04% | 1.51% | 1.18% | 1.53% | 1.30% |
| :--- |
| 2035 | 1.44% | 1.63% | 1.38% | 1.36% | 1.33% | 2.05% | 1.82% | 1.12% | 0.94% | 1.21% | 1.51% | 1.66% | 1.42% | 1.44% | 1.80% | 1.28% | 1.25% | 1.39% | 1.07% | 1.53% | 1.20% | 1.55% | 1.31% | |

	2011	0.05\%	-2.81\%	9\%	-1.87\%	.07\%	6\%	0.29\%	.02\%	.05\%	0.01\%	.03\%	0.13\%	0.02\%	0.07\%	-0.31\%	.09\%	0.09\%	20\%	0.14\%	0.07\%	-0.62\%	.15\%	
	2012	0.05\%	0.04\%	0.07\%	0.03\%	0.04\%	0.05\%	0.06\%	0.04\%	0.03\%	0.01\%	0.02\%	0.03\%	0.06\%	0.04\%	0.04\%	0.07\%	0.03\%	0.04\%	0.03\%	\%	\%	0.04\%	0.06\%
	2013	0.05\%	0.04\%	0.07\%	0.03\%	0.04\%	0.05\%	0.07\%	0.05\%	0.03\%	0.01\%	0.03\%	0.03\%	0.06\%	0.04\%	0.04\%	0.07\%	0.03\%	0.04\%	0.03\%	0.01\%	0.06\%	0.04\%	0.0
	2014	0.05\%	0.49\%	0.70\%	0.36\%	0.47\%	0.53\%	0.71\%	0.53\%	0.31\%	0.10\%	0.31\%	0.38\%	0.63\%	0.50\%	0.49\%	0.74\%	0.36\%	0.43\%	0.38\%	0.12\%	0.59\%	0.41\%	0.58\%
	2015	0.05\%	0.51\%	0.71\%	0.39\%	0.50\%	0.55\%	0.74\%	0.56\%	0.33\%	0.13\%	0.33\%	0.40\%	0.65\%	0.52\%	0.51\%	0.79\%	0.38\%	0.43\%	0.41\%	0.15\%	0.61\%	0.43\%	0.60
	2016	0.05\%	0.54\%	0.73\%	0.42\%	0.52\%	0.57\%	0.77\%	0.60\%	0.35\%	0.16\%	0.36\%	0.42\%	0.67\%	0.54\%	0.53\%	0.79\%	0.41\%	0.47\%	0.43\%	0.18\%	0.63\%	0.45\%	0.63\%
	2017	0.05\%	0.55\%	0.75\%	0.45\%	0.54\%	0.58\%	0.80\%	0.64\%	0.37\%	0.18\%	0.38\%	0.44\%	0.69\%	0.56\%	0.55\%	0.80\%	0.43\%	0.48\%	0.46\%	0.21\%	0.65\%	0.47\%	.64\%
	2018	0.05%	0.58\%	0.77\%	0.48\%	0.56\%	0.60\%	0.84	0.67%	0.39\%	0.21\%	0.41\%	0.47\%	0.72\%	0.58\%	0.58\%	0.85\%	0.45\%	0.50\%	0.49\%	0.24\%	0.66\%	0.49\%	0.66\%
	2019	0.05\%	.60\%	0.78\%	50\%	0.58\%	0.61\%	0.85\%	. 70%	0.4	0.24\%	0.43\%	0.49\%	. 4%	0.60\%	0.60\%	.85\%	0.48\%	0.51\%	0.51\%	0.27\%	.68\%	50\%	0.68\%
	202	0.05\%	62\%	0.79\%	.53\%	0.59\%	0.62	0.89	0.73\%	0.43\%	0.26\%	0.45\%	0.50\%	0.75\%	0.61\%	0.61\%	0.86\%	0.50\%	0.53\%	0.53\%	0.29\%	0.70\%	0.51\%	0.70\%
	2021	0.05\%	0.64\%	0.80\%	0.55\%	0.61\%	0.64\%	0.91\%	0.75\%	0.44\%	0.29\%	0.47\%	0.52\%	0.77\%	0.63\%	0.63\%	0.88\%	0.52\%	0.55\%	0.55\%	0.32\%	0.71\%	0.53\%	0.71\%
	202	0.0	0.64\%	0.	0.	0.	0.6	0.9	0.	0.46\%	0.31\%	0.49\%	0.5	0.78\%	0.6	\%	0.89\%	0.53\%	0.56\%	0.58\%	0.34\%	0.72\%	0.54\%	0.72\%
	2023	0.05\%	0.67\%	0.82\%	0.59\%	0.64\%	0.66\%	0.95\%	0.81\%	0.47\%	0.33\%	0.51\%	0.56\%	0.80\%	0.66\%	0.66\%	0.92\%	0.56\%	0.58\%	0.60\%	0.37\%	0.74\%	0.56\%	0.7
	202	0.0	0.68\%	0.84\%	0.61\%	0.65\%	0.	0.	0.83\%	崖.	0.35\%	0.53\%	0.57\%		0.6	0.68	0.9	0.57	0.5	0.6	0.3	0.75	0.57\%	0.76\%
	2025	0.05\%	0.71\%	0.85\%	0.63\%	0.67\%	0.69\%	1.00\%	0.86\%	0.51\%	0.37\%	0.55\%	0.59\%	0.83\%	0.69\%	0.70\%	0.92\%	0.60\%	0.60\%	0.64\%	0.42\%	0.77\%	0.58\%	. 77
	202	0.0	0.72\%	0.86\%	0.65\%	0.68\%	0.70\%	1.03\%	0.88\%	0.53\%	0.39\%	57\%	0.61\%	0.85\%	0.71\%	0.71\%	0.95	0.61	0.62	0.6	0.44\%	0.78\%	0.6	0.79\%
	2027	0.05\%	0.73\%	0.88\%	0.67\%	0.70\%	0.71\%	1.05\%	0.90\%	0.55\%	0.41\%	0.59\%	0.62\%	0.87\%	0.72\%	0.73\%	0.98\%	0.63\%	0.63\%	0.68\%	0.46\%	0.80\%	0.61\%	80\%
	2028	0.0	0.74\%	0.89\%	0.69\%	0.71\%	0.	1.0	0.93\%	0.56\%	.43	.60\%	0.64	0.87	0.74\%	0.74	0.96	0.65	0.65	0.70	0.48\%	0.81\%	0.62	0.81\%
	2029	0.05\%	0.76\%	0.89\%	0.71\%	0.72\%	0.72\%	1.09\%	0.94\%	0.57\%	0.45\%	0.62\%	0.65\%	0.89\%	0.75\%	0.76\%	0.98\%	0.66\%	0.65\%	0.71\%	0.50\%	0.82\%	0.63\%	0.83\%
	2030	0.05\%	0.77\%	0.90\%	0.72\%	0.73\%	0.73\%	1.10\%	0.96\%	0.58\%	0.47\%	0.63\%	0.66\%	0.90\%	0.76\%	0.77\%	1.01\%	0.67\%	0.66\%	0.73\%	0.52\%	0.83\%	0.64\%	0.84\%
	2031	0.05\%	0.79\%	0.91\%	0.73\%	0.74\%	0.74\%	1.12\%	0.98\%	0.59\%	0.48\%	0.64\%	0.68\%	0.91\%	0.77\%	0.78\%	0.99\%	0.68\%	0.68\%	0.74\%	0.54\%	0.83\%	0.65\%	0.85
	2032	0.05\%	0.78\%	0.91\%	0.75\%	0.75\%	0.74\%	1.14\%	0.99\%	0.60\%	0.49\%	0.65\%	0.69\%	0.92\%	0.78\%	0.79\%	1.01\%	0.70\%	0.68\%	0.75\%	0.56\%	0.85\%	0.66\%	0.85\%
	2033	0.05\%	0.80\%	0.92\%	0.76\%	0.76\%	0.75\%	1.15\%	1.01\%	0.61\%	0.51\%	0.67\%	0.70\%	0.93\%	0.79\%	0.80\%	1.03\%	0.71\%	0.69\%	0.77\%	0.57\%	0.85\%	0.66\%	0.86
	2034	0.05\%	0.81\%	0.92\%	0.77\%	0.77\%	0.75\%	1.16\%	1.03\%	0.62\%	0.52\%	0.68\%	0.71\%	0.94\%	0.80\%	0.81\%	1.03\%	0.72\%	0.70\%	0.78\%	0.59\%	0.86\%	0.67\%	0.8
	2035	0.05\%	0.82\%	0.93\%	0.79\%	0.78\%	0.7	1.18\%	1.04	0.63\%	0.53	0.69%	0.72\%	0.95\%	0.81	0.82\%	1.03\%	0.73\%	0.71\%	0.79	0.61	0.87	0.68	0.89\%

Cascade Natural Gas
 2011 IRP Demand Forecast
 Economic Indicators

PROJECTED EMPLOYMENT GROWTH

2013	\#DIV/0!	0.05%	0.86%	0.60%	1.59%	1.30%	0.72%	1.30%	1.68%	0.94%	0.89%	0.77%	1.01%	0.62%	1.33%	0.93%	0.28%	1.15%	0.89%	1.33%	1.38%

2019	$\# D I V / 0!$	0.05%	1.13%	0.75%	2.09%	1.68%	0.89%	1.77%	2.24%	1.21%	1.14%	0.98%	1.32%	0.78%	1.75%	1.27%	0.36%	1.47%	1.17%	1.75%	1.83%	1.16%	0.63%

 | 2025 | \#DIV/0! | 0.05% | 1.16% | 0.70% | 2.06% | 1.64% | 0.82% | 1.81% | 2.22% | 1.23% | 1.13% | 0.94% | 1.32% | 0.78% | 1.72% | 1.29% | 0.37% | 1.42% | 1.11% | 1.72% | 1.81% | 1.09% | 0.60% |
| :--- |
| 2026 | |

 | |
| :--- |
| 2031 | \#DIV/0! | 0.05% | 1.09% | 0.68% | 2.02% | 1.58% | 0.74% | 1.88% | 2.22% | 1.14% | 1.09% | 0.89% | 1.31% | 0.71% | 1.68% | 1.33% | 0.38% | 1.38% | 1.07% | 1.69% | 1.80% | 1.04% | 0.58% |

 | |
| :--- |
| 2034 | \#DIV/0! | 0.05% | 1.11% | 0.65% | 2.00% | 1.56% | 0.70% | 1.91% | 2.21% | 1.14% | 1.07% | 0.86% | 1.29% | 0.71% | 1.67% | 1.35% | 0.33% | 1.36% | 1.04% | 1.67% | 1.79% | 1.03% | 0.56% |
| 2035 | \#DIV/0! | 0.05% | 1.08% | 0.65% | 1.99% | 1.55% | 0.69% | 1.90% | 2.21% | 1.13% | 1.07% | 0.86% | 1.29% | 0.73% | 1.66% | 1.35% | 0.35% | 1.32% | 1.01% | 1.66% | 1.78% | 1.01% | 0.56% |

2011	0.24%	0.21%	0.31%	0.28%	0.08%	0.25%	0.18%	0.25%	0.23%	0.26%	0.23%	0.19%	0.29%	0.24%	0.16%	0.27%	0.24%	0.14%	0.29%	0.24%	0.18%
0.30%	0.20%																				

2015	0.89%	0.62%	1.69%	1.38%	0.76%	1.41%	1.79%	0.97%	0.96%	1.17%	0.82%	0.60%	1.41%	1.00%	0.32%	1.20%	0.98%	1.41%	1.47%	0.95%	0.53%	1.55%	0.69%

2017	0.91%	0.63%	1.68%	1.37%	0.74%	1.39%	1.79%	1.00%	0.94%	1.16%	0.81%	0.61%	1.41%	1.01%	0.30%	1.20%	0.90%	1.40%	1.47%	0.94%	0.51%	1.53%	0.69%	

2022	0.91%	0.58%	1.66%	1.33%	0.69%	1.42%	1.79%	0.96%	0.93%	1.14%	0.77%	0.63%	1.39%	1.02%	0.32%	1.16%	0.89%	1.39%	1.46%	0.90%	0.49%	1.51%	0.66%
2023	0.56%	1.65%	1.32%	0.67%	1.48%	1.78%	0.96%	0.90%	1.15%	0.77%	0.60%	1.38%	1.04%	0.29%	1.16%	0.92%	1.39%	1.46%	0.90%	0.49%	1.50%	0.65%	

 | | 2034 | 0.90% | 0.52% | 1.60% | 1.25% | 0.57% | 1.53% | 1.77% | 0.92% | 0.86% | 1.11% | 0.70% | 0.57% | 1.34% | 1.08% | 0.27% | 1.09% | 0.84% | 1.34% | 1.43% | 0.83% | 0.46% | 1.44% | 0.60% |
| :--- |
| 2035 | 0.87% | 0.53% | 1.59% | 1.25% | 0.56% | 1.52% | 1.76% | 0.91% | 0.86% | 1.11% | 0.70% | 0.59% | 1.33% | 1.09% | 0.29% | 1.06% | 0.82% | 1.33% | 1.43% | 0.82% | 0.45% | 1.43% | 0.59% | |

	2011	0.05\%	0.18\%	15\%	0.23\%	21\%	.06\%	0.19\%	0.13\%	18\%	0.17\%	19\%	19\%	0.14\%	0.21\%	0.17\%	.12\%	0.20\%	.18\%	0.11\%	0.21\%	.18\%	4\%	0.22\%
	2012	0.05\%	0.07\%	0.05\%	0.13\%	0.10\%	0.06\%	0.10\%	0.13\%	0.08\%	0.07\%	0.09\%	0.08\%	0.05\%	0.11\%	0.07\%	0.02\%	0.09\%	0.08\%	0.11\%	0.11\%	\%	0.04\%	0.12\%
	2013	0.05\%	0.52\%	0.36\%	0.96\%	0.78\%	0.43\%	0.78\%	1.01\%	0.56\%	0.53\%	0.66\%	0.60\%	0.37\%	0.80\%	0.56\%	0.17\%	0.69\%	0.53\%	0.80\%	0.83\%	.54\%	0.29\%	0.88\%
	2014	0.05\%	0.69\%	0.47\%	1.27\%	1.03\%	0.56\%	1.02\%	1.35\%	0.77\%	0.70\%	0.87\%	0.80\%	0.50\%	1.06\%	0.74\%	0.25\%	0.91\%	0.70\%	1.06\%	1.10\%	0.71\%	0.38\%	1.17\%
	2015	0.05\%	0.66\%	0.46\%	1.27\%	1.03\%	0.56\%	1.05\%	1.35\%	0.72\%	0.72\%	0.87\%	0.81\%	0.44\%	1.06\%	0.75\%	0.23\%	0.90\%	0.73\%	1.06\%	1.10\%	0.71\%	0.40\%	1.1
	2016	0.05\%	0.70\%	0.44\%	1.27\%	1.02\%	0.55\%	1.04\%	1.34\%	0.76\%	0.70\%	0.87\%	0.80\%	0.51\%	1.06\%	0.75\%	0.24\%	0.91\%	0.76\%	1.06\%	1.10\%	0.70\%	0.38\%	1.16\%
	2017	0.05\%	0.68\%	0.46\%	1.26\%	1.02\%	0.55\%	1.04\%	1.34\%	0.74\%	0.70\%	0.87\%	0.80\%	0.45\%	1.06\%	0.76\%	0.22\%	0.90\%	0.67\%	1.05\%	1.10\%	0.70\%	38\%	1.15\%
	2018	0.05\%	0.67%	0.44\%	1.26\%	1.02\%	0.54	1.06\%	1.34\%	0.74\%	0.70\%	0.86\%	0.80\%	0.49\%	1.05\%	0.76\%	0.23\%	0.88\%	0.70\%	1.05\%	1.10\%	0.69\%	0.37\%	1.15\%
	2019	0.05\%	0.68\%	0.	1.25\%	1.01\%	0.5	1.06\%	1.34\%	0.72\%	0.69\%	0.86\%	0.79\%	7\%	1.05\%	0.76\%	0.22\%	0.88\%	0.70\%	1.05\%	10\%	.69\%	38\%	1.14\%
	202	0.05\%	67\%	0.43\%	25\%	1.00\%	0.53	1.06\%	1.34\%	0.72\%	0.70\%	0.86\%	0.80\%	0.47	1.04\%	0.76\%	0.23\%	0.88\%	0.69\%	1.04\%	1.10\%	0.68\%	0.37\%	1.14\%
	2021	0.05\%	0.69\%	0.45\%	1.25\%	1.00\%	0.51\%	1.08\%	1.34\%	0.74\%	0.69\%	0.86\%	0.80\%	0.47\%	1.04\%	0.76\%	0.21\%	0.88\%	0.72\%	1.04\%	1.09\%	0.68\%	0.37\%	1.13\%
	202	0.0	0.6	0.4	1.2	1.00\%	0.	1.0	1.3	0.72\%	0.69\%	0.85\%	0.7	0.47\%	1.0	0.76\%	0.24\%	0.87\%	0.66\%	1.04\%	1.09\%	0.67\%	0.36\%	1.13\%
	2023	0.05\%	0.68\%	0.42\%	1.24\%	0.99\%	0.50\%	1.11\%	1.33\%	0.72\%	0.67\%	0.86\%	0.79\%	0.45\%	1.04\%	0.78\%	0.22\%	0.87\%	0.69\%	1.04\%	1.09\%	0.67\%	0.36\%	1.13
	202	0.0	0.6	0.43\%	1.24\%	0.98\%	0.	1.0	1.3	\%	0.68\%	0.84\%	0.	0.48\%	1.03	0.78\%	0.22	0.86	0.70	1.03	1.0	0.66\%	0.37\%	1.12\%
	2025	0.05\%	0.70\%	0.42\%	1.23\%	0.98\%	0.49\%	1.09\%	1.33\%	0.74\%	0.68\%	0.85\%	0.79\%	0.47\%	1.03\%	0.77\%	0.22\%	0.85\%	0.67\%	1.03\%	1.09\%	0.66\%	0.36\%	1.12
	202	0.0	0.66\%	0.39\%	1.2	0.97\%	0.48\%	1.09\%	1.34\%	0.70\%	0.67\%	848	0.79\%	0.45\%	1.0	0.78	0.22\%	0.85	0.67	1.02\%	1.09\%	0.65\%	0.3	1.11\%
	2027	0.05\%	0.66\%	0.45\%	1.23\%	0.97\%	0.47\%	1.11\%	1.33\%	0.70\%	0.67\%	0.85\%	0.79\%	0.46\%	1.02\%	0.78\%	0.22\%	0.85\%	0.66\%	1.02\%	1.08\%	0.66\%	0.36\%	1.11\%
	2028	0.0	0.68\%	0.3	1.22\%	0.97\%	0.47\%	1.	1.33	\%	.67\%	0.85	0.7	0.4	1.02\%	0.78\%	0.21	0.83	0.66	1.02	1.08\%	0.64	0.3	1.10\%
	2029	0.05\%	0.68\%	0.42\%	1.22\%	0.95\%	0.46\%	1.10\%	1.33\%	0.69\%	0.65\%	0.84\%	0.79\%	0.45\%	1.02\%	0.79\%	0.21\%	0.84\%	0.66\%	1.01\%	1.08\%	0.64\%	0.34\%	1.10\%
	2030	0.05\%	68\%	0.36\%	1.21\%	0.96\%	0.45\%	1.12\%	1.33\%	0.71\%	0.66\%	0.84\%	0.78\%	0.46\%	1.01\%	0.79\%	0.20\%	0.83\%	0.66\%	1.01\%	1.08\%	0.63\%	0.35\%	1.09\%
	2031	0.05\%	0.65\%	0.41\%	1.21\%	0.95\%	0.44\%	1.13\%	1.33\%	0.68\%	0.66\%	0.83\%	0.78\%	0.42\%	1.01\%	0.80\%	0.23\%	0.83\%	0.64\%	1.01\%	1.08\%	0.62\%	0.35\%	1.09
	2032	0.05\%	0.68\%	0.40\%	1.21\%	0.94\%	0.44\%	1.16\%	1.33\%	0.69\%	0.65\%	0.84\%	0.78\%	0.45\%	1.01\%	0.80\%	0.21\%	0.82\%	0.63\%	1.01\%	1.08\%	0.63\%	0.35\%	1.08\%
	2033	0.05\%	0.68\%	0.35\%	1.20\%	0.94\%	0.43\%	1.12\%	1.33\%	0.69\%	0.65\%	0.83\%	0.78\%	0.44\%	1.00\%	0.79\%	0.20\%	0.82\%	0.69\%	1.00\%	1.07\%	0.62\%	0.34\%	1.08
	2034	0.05\%	0.67\%	0.39\%	1.20\%	0.93\%	0.42\%	1.15\%	1.33\%	0.68\%	0.64\%	0.83\%	0.77\%	0.42\%	1.00\%	0.81\%	0.20\%	0.82\%	0.62\%	1.00\%	1.07\%	0.62\%	0.34\%	1.08
	2035	0.05\%	0.65\%	0.39\%	1.19\%	0.93\%	0.41\%	1.14\%	1.33\%	0.68\%	0.64	0.83\%	0.77%	0.44\%	1.00\%	0.81\%	0.21\%	0.79	0.61\%	1.00\%	1.07\%	0.61\%	0.33	1.07\%

Cascade Natural Gas
2011 IRP Demand Forecast
Economic Indicators

PROJECTED HOUSEHOLDS GROWTH

2013	\#DIV $/ 0!$	0.05%	0.98%	0.26%	2.30%	1.51%	0.92%	1.96%	2.75%	1.60%	2.06%	0.72%	1.63%	1.24%	1.98%	1.17%	0.16%	2.01%	1.01%
2014	2.07%	2.21%	0.81%	0.72%															

 | 2018 | \#DIV/0! | 0.05% | 0.83% | 0.14% | 2.01% | 1.33% | 1.07% | 1.70% | 2.39% | 1.43% | 1.81% | 0.59% | 1.43% | 1.11% | 1.74% | 1.04% | 0.05% | 1.76% | 0.87% | 1.82% | 1.94% | 0.67% | 0.60% |
| :--- |
| 2019 | \#DIV $0!$ | 0.05% | 0.81% | 0.13% | 1.96% | 1.30% | 1.10% | 1.68% | 2.32% | 1.40% | 1.77% | 0.57% | 1.40% | 1.09% | 1.70% | 1.01% | 0.07% | 1.72% | 0.86% | 1.77% | 1.89% | 0.63% | 0.58% |

 | 2029 | \#DIV/0! | 0.05% | 0.58% | -0.06% | 1.54% | 1.03% | 1.29% | 1.29% | 1.81% | 1.13% | 1.40% | 0.38% | 1.10% | 0.87% | 1.32% | 0.80% | -0.04% | 1.32% | 0.65% | 1.40% | 1.47% | 0.32% | 0.32% |
| :--- |

| 2011 | 0.75% | 0.01% | 2.11% | 1.28% | 0.88% | 1.76% | 2.58% | 1.39% | 1.86% | 1.46% | 0.50% | 1.02% | 1.77% | 0.95% | -0.06% | 1.81% | 0.78% | 1.87% | 2.02% | 0.59% | 0.49% | 2.49% | 0.53% |
| :--- |

2015	0.92%	0.22%	2.14%	1.42%	0.97%	1.84%	2.54%	1.52%	1.93%	1.57%	0.67%	1.19%	1.86%	1.11%	0.10%	1.88%	0.96%	1.94%	2.07%	0.76%	0.68%	2.47%	0.72%

 | 2019 | 0.81% | 0.13% | 1.93% | 1.29% | 1.08% | 1.66% | 2.28% | 1.38% | 1.75% | 1.42% | 0.57% | 1.08% | 1.68% | 1.01% | 0.07% | 1.70% | 0.86% | 1.75% | 1.86% | 0.64% | 0.58% | 2.22% | 0.63% |
| :--- |

2023	0.73%	0.06%	1.76%	1.18%	1.16%	1.50%	2.07%	1.28%	1.60%	1.30%	0.49%	1.00%	1.53%	0.93%	0.01%	1.54%	0.77%	1.60%	1.70%	0.52%	0.48%	2.01%	0.57%

 $\begin{array}{llllllllllllllllllllllllll} & \end{array}$

2027	0.63%	-0.03%	1.60%	1.07%	1.24%	1.35%	1.87%	1.16%	1.45%	1.17%	0.41%	0.91%	1.38%	0.83%	-0.05%	1.38%	0.68%	1.45%	1.53%	0.39%	0.38%	1.81%	0.49%

2031	0.53%	-0.10%	1.46%	0.98%	1.29%	1.22%	1.71%	1.08%	1.32%	1.06%	0.35%	0.84%	1.25%	0.76%	-0.04%	1.25%	0.60%	1.32%	1.39%	0.27%	0.29%	1.65%	0.43%

	2034	0.48%	-0.15%	1.36%	0.91%	1.32%	1.13%	1.59%	1.01%	1.23%	0.98%	0.30%	0.78%	1.17%	0.70%	-0.11%	1.16%	0.55%	1.23%	1.29%	0.18%	0.23%	1.53%	0.38%
2035	0.45%	-0.18%	1.32%	0.89%	1.33%	1.10%	1.55%	0.98%	1.20%	0.95%	0.28%	0.75%	1.14%	0.68%	-0.11%	1.12%	0.53%	1.20%	1.25%	0.16%	0.21%	1.49%	0.37%	

	2011	0.05\%	0.65\%	0.01\%	1.84\%	1.11\%	-99.90\%	1.52\%	2.25\%	1.20\%	1.62\%	1.26\%	1.23\%	0.88\%	1.54\%	0.82\%	-0.11\%	1.57\%	0.67\%	1.62\%	1.76\%	0.51\%	0.42\%	\%
	2012	0.05\%	96\%	0.24	2.34\%	1.51\%	0.88\%	1.9	2.81\%	1.61\%	2.08\%	1.68	1.65\%	1.26\%	2.00\%	1.17	0.20	2.04	0.99	2.09	2.25\%	0.81\%	0.71\%	2.72\%
	2013	0.05\%	0.99\%	0.27\%	2.32\%	1.52\%	0.91\%	1.98\%	2.77\%	1.61\%	2.08\%	1.68%	1.65\%	1.26\%	1.99\%	1.18\%	0.16\%	2.03\%	1.01\%	2.08\%	2.23\%	0.82\%	0.73\%	.69\%
	2014	0.05\%	0.96\%	0.24\%	2.26	1.48\%	0.94\%	1.93\%	.70	1.58\%	.03	1.64\%	1.61\%	1.24\%	1.95\%	1.16\%	0.17\%	1.98\%	0.98\%	2.03	2.1	0.8	0.7	2.62\%
	2015	0.05\%	0.94\%	0.22\%	2.20\%	1.45\%	0.97\%	1.88\%	2.62\%	1.55\%	1.98\%	1.60\%	1.57\%	1.21\%	1.90\%	1.13\%	0.11\%	1.93\%	0.97\%	1.98\%	2.12\%	0.77\%	0.69\%	2.54\%
	2016	0.05\%	.90\%	0.21\%	2.14\%	1.41\%	1.00\%	1.83\%	2.55\%	1.50	1.92\%	1.56%	1.52	1.18\%	1.85\%	.10	0.12\%	1.88	0.92	1.93	2.06\%	0.74\%	0.67%	2.47\%
	2017	0.05\%	0.88\%	0.18\%	2.08	1.38	1.03\%	1.78\%	2.48\%	1.4	1.88	1.52\%	1.49	1.16	1.80\%	1.08\%	0.13\%	1.83\%	0.91\%	1.88	2.01\%	0.71\%	.64\%	2.40\%
	2018	.05\%	, 85%	0.15\%	2.03	1.34\%	1.06\%	1.72\%	2.41\%	1.44\%	3\%	.48\%	5\%	\%	1.75\%	1.05\%	0.07\%	.78\%	0.88\%	1.83\%	1.96\%	.68\%	.61\%	2.34\%
	2019	0.05\%	0.82\%	0.13	1.98\%	1.31\%	1.09	1.69\%	2.35\%	1.41	1.78\%	1.44	1.41	1.09	1.71\%	1.02\%	0.07\%	1.73\%	0.87\%	1.79\%	1.91\%	0.65\%	0.59\%	2.28\%
	2020	0.05\%	.80\%	0.12\%	1.93\%	28	1.11\%	1.6	2.29\%	1.38\%	1.74	1.41\%	1.38\%	1.0	1.67\%	1.00	.07\%	1.69	0.84	1.75\%	1.86\%	0.62	0.57	2.22\%
	2021	0.05\%	0.78\%	0.10\%	1.89\%	1.26\%	1.13\%	1.61\%	2.23\%	1.36\%	1.70\%	1.38\%	1.35\%	1.06\%	1.64\%	0.98\%	0.05\%	1.65\%	0.81\%	1.71\%	1.82\%	0.59\%	0.55\%	2.17
	2022	0.05\%	0.77\%	0.09\%	1.85\%	1.24\%	1.15\%	1.57\%	2.18\%	1.33\%	1.67\%	1.35\%	1.32\%	1.04\%	1.60\%	0.96\%	0.05\%	1.61\%	0.80\%	1.67\%	1.78\%	0.56\%	0.52\%	2.11\%
O	2023	0.05\%	0.74\%	06	1.80	1.20	1.17	1.53\%	2.12\%	1.30\%	1.63\%	1.32\%	1.29\%	1.01\%	1.56\%	0.94\%	0.02\%	1.57\%	0.78\%	1.63\%	1.73\%	0.53	0.49\%	2.06\%
	2024	0.05\%	0.71\%	0.03	1.76\%	1.18\%	1.19	1.49	2.076	1.27\%	1.59\%	1.28\%	1.26	0.99	1.52\%	0.92\%	0.02\%	1.53\%	0.75\%	1.59\%	1.69\%	0.50\%	0.46\%	2.00
	202	0.0	0.68\%	0.02\%	1.7	1.15\%	1.21\%	1.45\%	2.02\%	1.25\%	1.55\%	1.25\%	1.2	0.97\%	1.48\%	0.89\%	0.03\%	1.48\%	0.74\%	1.55\%	1.64\%	0.46\%	0.43\%	1.95\%
	2026	0.05\%	0.66\%	0.00\%	1.67\%	1.12\%	1.24\%	1.41\%	1.96\%	1.21\%	1.51\%	1.22\%	1.19\%	0.95\%	1.44\%	0.87\%	-0.01\%	1.44\%	0.72\%	1.51\%	1.60\%	0.42\%	0.40\%	1.90
	2027	0.0	0.64\%	-0.0	1.63\%	1.09\%	1.25\%	1.38\%	1.92\%	1.18\%	1.47\%	1.19\%	1.16\%	0.92\%	1.40\%	0.84\%	-0.08\%	1.41\%	0.69\%	1.48\%	1.5	0.39\%	0.38\%	1.85\%
	2028	0.05\%	0.62\%	-0.08\%	1.59\%	1.06	1.27\%	1.34\%	1.87\%	1.16\%	1.44\%	1.15\%	1.13\%	0.91\%	1.37\%	0.82\%	0.02\%	1.37\%	0.66\%	1.44\%	1.52\%	0.36\%	0.35\%	1.80\%
	2029	0.05\%	.59\%	.06	1.55\%	1.04\%	1.29	1.30\%	1.82	1.14\%	1.4	1.13	1.1	0.8	1.33\%	0.80	-0.0	1.3	0.6	1.4	1.4	0.3	0.33\%	1.76\%
	2030	0.05\%	0.57\%	-0.11	1.52\%	1.02\%	1.30\%	1.27\%	1.78\%	1.11\%	1.37\%	1.10\%	1.08\%	0.86\%	1.30\%	0.78\%	-0.13\%	1.30\%	0.63\%	1.38\%	1.45\%	0.30\%	0.31\%	1.72\%
	2031	0.05\%	0.54\%	-0.11\%	1.48\%	0.99\%	1.31\%	1.24\%	1.74\%	1.09\%	1.34\%	1.07\%	1.06\%	0.85\%	1.27\%	0.77\%	0.00\%	1.27\%	0.61\%	1.35\%	1.41\%	0.27\%	0.29\%	1.68\%
	2032	0.05\%	0.53\%	-0.13\%	1.45\%	0.97\%	1.32\%	1.21\%	1.70\%	1.07\%	1.31\%	1.05\%	1.03\%	0.82\%	1.24\%	0.75\%	-0.11\%	1.24\%	0.60\%	1.31\%	1.38\%	0.24\%	0.27\%	1.64\%
	2033	0.05\%	0.50\%	-0.17\%	1.41\%	95\%	1.33\%	1.17\%	1.66\%	1.04\%	1.28\%	1.02\%	1.01\%	0.81\%	1.21\%	0.73\%	-0.14\%	1.21\%	0.58\%	1.28\%	\%	0.22\%	0.26\%	1.60\%
	2034	0.05\%	0.48\%	-0.15\%	1.38\%	0.93\%	1.34\%	1.14\%	1.62\%	1.02\%	1.25\%	0.99\%	0.98\%	0.79\%	1.18\%	0.71\%	-0.11\%	1.18\%	0.56\%	1.25\%	1.31\%	0.19\%	0.24\%	1.5
	2035	0.05\%	0.45\%	-0.20\%	1.34\%	0.90\%	1.35\%	1.12\%	1.58\%	0.99\%	1.22\%	0.96\%	0.96\%	0.76\%	1.15\%	0.69\%	-0.11\%	1.14\%	0.53\%	1.22\%	1.27\%	0.16\%	0.22\%	1.52

Cascade Natural Gas

2011 IRP Demand Forecast

Economic Indicators

PROJECTED INCOME GROWTH

2013	\#DIV $/ 0!$	0.05%	0.14%	0.21%	0.10%	0.14%	0.16%	0.21%	0.16%	0.09%	0.02%	0.17%	0.10%	0.19%	0.14%	0.14%	0.23%	0.10%	0.12%	0.10%	0.03%	0.17%

 | |
| :--- |
| 2034 | \#DIV/0! | 0.05% | 2.50% | 2.85% | 2.40% | 2.38% | 2.33% | 3.60% | 3.19% | 1.92% | 1.61% | 2.66% | 2.21% | 2.90% | 2.48% | 2.50% | 3.20% | 2.23% | 2.18% | 2.42% | 1.83% | 2.68% | 2.09% |
| 2035 | \#DIV/0! | 0.05% | 2.55% | 2.90% | 2.45% | 2.41% | 2.36% | 3.65% | 3.24% | 1.97% | 1.66% | 2.68% | 2.24% | 2.95% | 2.51% | 2.54% | 3.20% | 2.27% | 2.21% | 2.47% | 1.89% | 2.71% | 2.11% |

 | 2019 | 1.06% | 1.36% | 0.89% | 1.02% | 1.08% | 1.50% | 1.23% | 0.72% | 0.42% | 0.76% | 1.22% | 1.29% | 1.05% | 1.05% | 1.49% | 0.84% | 0.90% | 0.90% | 0.47% | 1.20% | 0.89% | 1.20% | 1.03% |
| :--- |

 | |
| :--- |
| 2026 | 1.26% | 1.50% | 1.15% | 1.20% | 1.22% | 1.80% | 1.54% | 0.93% | 0.70% | 1.01% | 1.39% | 1.48% | 1.24% | 1.25% | 1.66% | 1.08% | 1.09% | 1.16% | 0.78% | 1.37% | 1.05% | 1.38% | 1.19% |
| 2027 | 1.28% | 1.53% | 1.18% | 1.22% | 1.24% | 1.83% | 1.58% | 0.96% | 0.73% | 1.03% | 1.41% | 1.52% | 1.27% | 1.28% | 1.71% | 1.11% | 1.11% | 1.19% | 0.82% | 1.40% | 1.07% | 1.40% | 1.20% |

2029	1.33%	1.55%	1.24%	1.26%	1.27%	1.90%	1.65%	1.00%	0.79%	1.09%	1.44%	1.56%	1.31%	1.33%	1.72%	1.16%	1.15%	1.25%	0.89%	1.43%	1.11%	1.45%	1.24%

 | | 2034 | 1.41% | 1.61% | 1.36% | 1.34% | 1.32% | 2.02% | 1.79% | 1.09% | 0.91% | 1.19% | 1.50% | 1.64% | 1.40% | 1.41% | 1.80% | 1.26% | 1.23% | 1.37% | 1.04% | 1.51% | 1.18% | 1.53% | 1.30% |
| :--- |
| 2035 | 1.44% | 1.63% | 1.38% | 1.36% | 1.33% | 2.05% | 1.82% | 1.12% | 0.94% | 1.21% | 1.51% | 1.66% | 1.42% | 1.44% | 1.80% | 1.28% | 1.25% | 1.39% | 1.07% | 1.53% | 1.20% | 1.55% | 1.31% | |

	2011	0.05\%	-2.81\%	9\%	-1.87\%	.07\%	6\%	0.29\%	.02\%	.05\%	0.01\%	.03\%	0.13\%	0.02\%	0.07\%	-0.31\%	.09\%	0.09\%	20\%	0.14\%	0.07\%	-0.62\%	.15\%	
	2012	0.05\%	0.04\%	0.07\%	0.03\%	0.04\%	0.05\%	0.06\%	0.04\%	0.03\%	0.01\%	0.02\%	0.03\%	0.06\%	0.04\%	0.04\%	0.07\%	0.03\%	0.04\%	0.03\%	\%	\%	0.04\%	0.06\%
	2013	0.05\%	0.04\%	0.07\%	0.03\%	0.04\%	0.05\%	0.07\%	0.05\%	0.03\%	0.01\%	0.03\%	0.03\%	0.06\%	0.04\%	0.04\%	0.07\%	0.03\%	0.04\%	0.03\%	0.01\%	0.06\%	0.04\%	0.0
	2014	0.05\%	0.49\%	0.70\%	0.36\%	0.47\%	0.53\%	0.71\%	0.53\%	0.31\%	0.10\%	0.31\%	0.38\%	0.63\%	0.50\%	0.49\%	0.74\%	0.36\%	0.43\%	0.38\%	0.12\%	0.59\%	0.41\%	0.58\%
	2015	0.05\%	0.51\%	0.71\%	0.39\%	0.50\%	0.55\%	0.74\%	0.56\%	0.33\%	0.13\%	0.33\%	0.40\%	0.65\%	0.52\%	0.51\%	0.79\%	0.38\%	0.43\%	0.41\%	0.15\%	0.61\%	0.43\%	0.60
	2016	0.05\%	0.54\%	0.73\%	0.42\%	0.52\%	0.57\%	0.77\%	0.60\%	0.35\%	0.16\%	0.36\%	0.42\%	0.67\%	0.54\%	0.53\%	0.79\%	0.41\%	0.47\%	0.43\%	0.18\%	0.63\%	0.45\%	0.63\%
	2017	0.05\%	0.55\%	0.75\%	0.45\%	0.54\%	0.58\%	0.80\%	0.64\%	0.37\%	0.18\%	0.38\%	0.44\%	0.69\%	0.56\%	0.55\%	0.80\%	0.43\%	0.48\%	0.46\%	0.21\%	0.65\%	0.47\%	.64\%
	2018	0.05%	0.58\%	0.77\%	0.48\%	0.56\%	0.60\%	0.84	0.67%	0.39\%	0.21\%	0.41\%	0.47\%	0.72\%	0.58\%	0.58\%	0.85\%	0.45\%	0.50\%	0.49\%	0.24\%	0.66\%	0.49\%	0.66\%
	2019	0.05\%	.60\%	0.78\%	50\%	0.58\%	0.61\%	0.85\%	. 70%	0.4	0.24\%	0.43\%	0.49\%	. 4%	0.60\%	0.60\%	.85\%	0.48\%	0.51\%	0.51\%	0.27\%	.68\%	50\%	0.68\%
	202	0.05\%	62\%	0.79\%	.53\%	0.59\%	0.62	0.89	0.73\%	0.43\%	0.26\%	0.45\%	0.50\%	0.75\%	0.61\%	0.61\%	0.86\%	0.50\%	0.53\%	0.53\%	0.29\%	0.70\%	0.51\%	0.70\%
	2021	0.05\%	0.64\%	0.80\%	0.55\%	0.61\%	0.64\%	0.91\%	0.75\%	0.44\%	0.29\%	0.47\%	0.52\%	0.77\%	0.63\%	0.63\%	0.88\%	0.52\%	0.55\%	0.55\%	0.32\%	0.71\%	0.53\%	0.71\%
	202	0.0	0.64\%	0.	0.	0.	0.6	0.9	0.	0.46\%	0.31\%	0.49\%	0.5	0.78\%	0.6	\%	0.89\%	0.53\%	0.56\%	0.58\%	0.34\%	0.72\%	0.54\%	0.72\%
	2023	0.05\%	0.67\%	0.82\%	0.59\%	0.64\%	0.66\%	0.95\%	0.81\%	0.47\%	0.33\%	0.51\%	0.56\%	0.80\%	0.66\%	0.66\%	0.92\%	0.56\%	0.58\%	0.60\%	0.37\%	0.74\%	0.56\%	0.7
	202	0.0	0.68\%	0.84\%	0.61\%	0.65\%	0.	0.	0.83\%	崖.	0.35\%	0.53\%	0.57\%		0.6	0.68	0.9	0.57	0.5	0.6	0.3	0.75	0.57\%	0.76\%
	2025	0.05\%	0.71\%	0.85\%	0.63\%	0.67\%	0.69\%	1.00\%	0.86\%	0.51\%	0.37\%	0.55\%	0.59\%	0.83\%	0.69\%	0.70\%	0.92\%	0.60\%	0.60\%	0.64\%	0.42\%	0.77\%	0.58\%	. 77
	202	0.0	0.72\%	0.86\%	0.65\%	0.68\%	0.70\%	1.03\%	0.88\%	0.53\%	0.39\%	57\%	0.61\%	0.85\%	0.71\%	0.71\%	0.95	0.61	0.62	0.6	0.44\%	0.78\%	0.6	0.79\%
	2027	0.05\%	0.73\%	0.88\%	0.67\%	0.70\%	0.71\%	1.05\%	0.90\%	0.55\%	0.41\%	0.59\%	0.62\%	0.87\%	0.72\%	0.73\%	0.98\%	0.63\%	0.63\%	0.68\%	0.46\%	0.80\%	0.61\%	80\%
	2028	0.0	0.74\%	0.89\%	0.69\%	0.71\%	0.	1.0	0.93\%	0.56\%	.43	.60\%	0.64	0.87	0.74\%	0.74	0.96	0.65	0.65	0.70	0.48\%	0.81\%	0.62	0.81\%
	2029	0.05\%	0.76\%	0.89\%	0.71\%	0.72\%	0.72\%	1.09\%	0.94\%	0.57\%	0.45\%	0.62\%	0.65\%	0.89\%	0.75\%	0.76\%	0.98\%	0.66\%	0.65\%	0.71\%	0.50\%	0.82\%	0.63\%	0.83\%
	2030	0.05\%	0.77\%	0.90\%	0.72\%	0.73\%	0.73\%	1.10\%	0.96\%	0.58\%	0.47\%	0.63\%	0.66\%	0.90\%	0.76\%	0.77\%	1.01\%	0.67\%	0.66\%	0.73\%	0.52\%	0.83\%	0.64\%	0.84\%
	2031	0.05\%	0.79\%	0.91\%	0.73\%	0.74\%	0.74\%	1.12\%	0.98\%	0.59\%	0.48\%	0.64\%	0.68\%	0.91\%	0.77\%	0.78\%	0.99\%	0.68\%	0.68\%	0.74\%	0.54\%	0.83\%	0.65\%	0.85
	2032	0.05\%	0.78\%	0.91\%	0.75\%	0.75\%	0.74\%	1.14\%	0.99\%	0.60\%	0.49\%	0.65\%	0.69\%	0.92\%	0.78\%	0.79\%	1.01\%	0.70\%	0.68\%	0.75\%	0.56\%	0.85\%	0.66\%	0.85\%
	2033	0.05\%	0.80\%	0.92\%	0.76\%	0.76\%	0.75\%	1.15\%	1.01\%	0.61\%	0.51\%	0.67\%	0.70\%	0.93\%	0.79\%	0.80\%	1.03\%	0.71\%	0.69\%	0.77\%	0.57\%	0.85\%	0.66\%	0.86
	2034	0.05\%	0.81\%	0.92\%	0.77\%	0.77\%	0.75\%	1.16\%	1.03\%	0.62\%	0.52\%	0.68\%	0.71\%	0.94\%	0.80\%	0.81\%	1.03\%	0.72\%	0.70\%	0.78\%	0.59\%	0.86\%	0.67\%	0.8
	2035	0.05\%	0.82\%	0.93\%	0.79\%	0.78\%	0.7	1.18\%	1.04	0.63\%	0.53	0.69%	0.72\%	0.95\%	0.81	0.82\%	1.03\%	0.73\%	0.71\%	0.79	0.61	0.87	0.68	0.89\%

	cin					cisise			(isme	cise				citise			$\begin{aligned} & \hline 1,685,850 \\ & 5,747,827 \end{aligned}$	$\begin{aligned} & \hline 1,699,43 \\ & 5,803,66 \end{aligned}$	1,712,67		
(12335	$\xrightarrow{713977}$		$\substack{80328 \\ 17356}$			$\substack{\text { anisisi } \\ 117545}$	(inctin	50,					cis		(190129						Sis
6.52, 288	${ }_{7,1,2544}$	${ }_{7,2,5,57}$		${ }_{123289}$	${ }_{7,38237}$	${ }^{7,468780}$	${ }^{2,513,987}$	$7.58,4,55$	${ }_{7.688298}$	${ }_{7}^{1,889291}$		l,78699	${ }_{7802988}$		800, 5 S5	80,465	8,3,356	8.15950	${ }_{828437}$	${ }_{8} 820.45$	313, 21
				${ }_{\text {a }}^{\substack{\text { a,as3 } \\ \text { gosi }}}$	${ }_{\text {cose }}^{\text {gisi2 }}$								${ }_{\text {coser }}^{\text {ginal }}$				(ence				
(${ }_{\substack{50 \\ 4285}}$	(((690	coic	${ }^{617}$	${ }_{\substack{615 \\ 4.59}}^{\text {a }}$	(13)	$\underbrace{\text { and }}_{\substack{611 \\ 4380}}$	${ }_{\substack{698 \\ 4370}}$			${ }_{\substack{638 \\ 4382}}^{\text {and }}$		$\underbrace{\text { and }}_{\substack{598 \\ 443}}$		(1085	(
${ }_{12,368}$	22826	22308	20.58	1231	${ }_{\text {desen }}$	22027	1298	1838	${ }_{12983}$	19275	18500	${ }^{12,63}$	1730	(1,95	${ }_{\text {ctise }}$	${ }_{18280}$	8, 8 288	(1,97	,	,	
cose	cister	${ }_{\substack{2901 \\ 1159}}^{\substack{\text { and }}}$			cince						${ }_{\substack{2065 \\ 1220}}^{120}$		$\underbrace{}_{\substack{2,1202 \\ 1202}}$	$\underbrace{2 \times 21}_{121}$		${ }_{\substack{2 \\ 12021 \\ 1202}}$		$\underbrace{\text { 130 }}_{\substack{2885 \\ 130}}$			230
${ }^{29}$	${ }^{29}$	${ }^{30}$	${ }_{30}$	30	${ }_{30}$	3	30	${ }^{30}$	${ }_{30}$	so	${ }^{3}$	${ }^{31}$	${ }_{31}$	3	31	32	32	32	${ }^{32}$	32	

Cascad N Natural Gas
2011 Rep Demand freast
Medium Scenaio

 comm
 rimememex

	arm	${ }^{535}$	0,4930	0236	20ats	0216	0199\%	.0936	0005	0.65	012\%	010\%	Oose	0285	0.35\%	auts	0.16	0106	Oase	O6es	.
${ }^{2209094}$	${ }^{2044688}$	${ }_{\text {a }}^{31212288}$		${ }_{\text {a }}$		${ }_{\text {a }}^{3}$,		${ }^{3202824}$	${ }^{\text {araseme }}$	${ }^{3250302020}$	${ }^{3256689}$	${ }^{3256560}$		${ }^{3322550}$				${ }^{33888494}$		
${ }^{17300}$	${ }^{713} 80$		${ }_{713}{ }^{\text {a }}$	530	${ }_{\text {trase }}$	${ }_{\text {rama }}$	${ }^{173} 36$	${ }^{713} 36$	${ }^{73} 30$	$\xrightarrow{71300}$	${ }^{713} 80$		${ }_{7}^{17330}$	${ }^{73} 80$	${ }^{73} 380$	${ }^{17360}$	${ }^{173} 8$	${ }^{713} 30$	${ }^{713} 30$	${ }^{1330}$	${ }_{\text {\% }}^{17360}$
边	\%,7,RT	,	,	,	\%sams	8,9,10	S0,	,	Sish	,	9,0.6.60	,	man	S,ases	Smazat	,	m,	,	Sosese	S.0.012	9.097388
		${ }_{\text {cosem }}^{\text {geas }}$,			,				cosm				cose
539	${ }^{59}$	${ }^{60}$	${ }_{56}$	50	${ }^{58}$	${ }^{50}$	${ }^{598}$	${ }^{59}$	${ }_{5} 52$	${ }^{54}$	${ }^{56}$	${ }^{56}$	${ }_{59} 5$	${ }_{558}$	${ }_{60}$	${ }^{60}$	${ }^{68}$	${ }_{65}$	${ }_{60} 0^{6}$	${ }_{05} 8$	${ }_{60}$
						$\underbrace{\substack{3,49 \\ 2365}}_{\substack{\text { a }}}$		$\underbrace{}_{\substack{3337 \\ 24.17}}$			${ }_{\substack{\text { a }}}^{3.388}$	${ }_{\substack{3380 \\ 2320}}$		${ }_{\substack{\text { and } \\ 2385}}^{3385}$	${ }_{\substack{3.30 \\ 2.360}}^{\text {and }}$			${ }_{\substack{3238 \\ 2029}}$		${ }_{\substack{395 \\ 2989}}$	
$5{ }^{529}$	5276	${ }_{5}^{5236}$	5,35	${ }_{5}^{533}$	${ }_{5}^{532}$	50,	${ }_{5}^{5,36}$	$5{ }^{\text {5433 }}$	549	58.35	5.651	5 5466	5881	5.45	${ }_{5}^{5599}$		${ }_{5}^{5566}$	5,59,			Ses
${ }_{48}$	${ }_{4}$	${ }_{47}$	${ }_{46}$	${ }_{\substack{1.368 \\ 46}}^{\substack{\text { a }}}$	${ }_{\substack{1.35 \\ 45}}^{\substack{\text { a }}}$	${ }_{4}^{1.37}$	${ }_{4}$		${ }_{4}^{1.302}$	${ }_{4}^{1.51}$	${ }_{4}^{1,402}$	${ }_{\substack{1.46 \\ 12}}$	(1400	${ }_{41}$		${ }^{1.292}$		${ }_{\substack{1298 \\ 40 \\ 40}}$		${ }_{1}^{1431}$	${ }^{1.148}$
6.68	${ }_{684} 6$	6.99	6,24	${ }_{6}^{6,74}$	${ }_{6} 67$	6,78	6895	${ }_{6}^{638}$	${ }_{6}^{6888}$	6,87	${ }_{6897}$	$\stackrel{\text { 6,96 }}{ }$	6,95	6,982	6970	(998)	7.03	2,09	${ }_{7}^{2,05}$, 2,97	${ }_{\text {2,082 }}$

[^8]

			.074\%	-086\%	${ }^{12126}$	${ }^{\text {4.33\% }}$	-094\%	.0926			.096\%				.0.78\%		1278	-1009\%	${ }^{10060}$.0076	
cisme	cis	ciol	coicle	coin	come	cosis	cose	cis	cose	coich	coicle	cien	coicle	cis		coin		cin	coin	coin	cin
${ }^{12783,9}$	O9897		${ }^{2989611}$	gex_{6857}				${ }_{96870}^{9620}$	9898	${ }_{\text {a }}$	${ }_{\text {coser }}$	${ }^{1.202024}$	${ }_{\text {1.0.2373 }}$		${ }_{\text {L }}^{1.012,299}$		${ }_{1}^{1.012221}$		${ }_{\text {1,0882 }}$		
	S5.76					S.esmbe		¢3726	S.	53,765	S.	S.	Somb	(entic	(entic	Sentic		¢,		Sentic	
					4927																
8018	${ }^{\text {c2029 }}$	${ }_{\text {coese }}$	${ }^{\text {cosen }}$	${ }^{\text {emab }}$	${ }^{\text {cosas }}$	${ }_{\text {ci, }}^{6}$	${ }_{6}^{1,24}$	${ }_{\text {c, }}^{\text {E,36 }}$	${ }^{6.515}$		${ }_{\text {c, }}^{6182}$	${ }^{\text {gisen }}$	${ }_{\text {areme }}$	${ }^{6219}$	${ }^{62235}$	${ }^{82,47}$		${ }^{20} 568$	${ }^{76}$	${ }^{12888}$	${ }^{82909}$
${ }_{47212}^{472}$	${ }_{\text {cose }}$	${ }_{\text {cose }}$	${ }_{4}^{548}$	${ }_{\text {cex }}^{60}$	${ }_{4}^{5124}$	4	${ }_{460}^{460}$	${ }_{4,586}$	${ }_{4}^{4515}$,	${ }_{\text {che }}^{\text {ens }}$	${ }_{4}^{469}$	${ }_{\text {che }}$	4.104	${ }_{\text {cose }}$	(eas	${ }_{3}^{530}$	3, 3 300	$\underset{3}{3,01}$	a	${ }_{3}^{2693}$
${ }^{6398}$	\% 659	4778	28980	as95	casa	soms	s084	${ }_{\text {c, }}^{5}$	sil75	5214	${ }_{5288}$	şas	stan	S,054	s.asio	6565	${ }_{56120}$	6spe	5	5	s900
	${ }_{\text {\% }}^{150}$	${ }_{\substack{189 \\ 790}}^{180}$	${ }_{157}^{159}$	${ }_{78}^{1582}$			${ }_{\substack{150 \\ 154}}^{150}$	${ }_{\text {ckis }}^{156}$	$\underset{\substack{1582 \\ 785}}{15}$		${ }_{758}^{593}$	${ }_{\substack{158 \\ 758}}^{150}$		${ }_{758}$		(188	$\underset{154}{1.68}$	${ }_{58}^{178}$	(184	(10,	$\underset{\substack{1.159 \\ 154}}{ }$
${ }_{203}$	230	2.37	${ }_{234}^{234}$	2230	235	230	22.5	${ }_{2}^{2,51}$	${ }_{2}^{2,36}$	2382	2387	2382	237	2382	${ }_{2,36}$	2,39	238	291	205	249	${ }^{2443}$

 Inenuribibe Cusioness
Totai core ustomers

	${ }^{15284}$	${ }^{21006}$	${ }^{1.985}$	${ }^{1255}$		${ }^{0.54}$						．0．74		${ }^{1.8989}$	0036		${ }^{\text {OSis\％}}$	${ }^{\text {OResem }}$	．0985		
	$\begin{array}{r} \hline 1,897,184 \\ 2,798,301 \\ 534,568 \end{array}$		$\begin{array}{r} \hline 2,090,114 \\ 2,649,463 \\ 496,539 \end{array}$					$\begin{array}{r} \hline 2,062,198 \\ 2,665,138 \\ 419,110 \end{array}$				$\begin{aligned} & \hline \text { 2,058,259 } \\ & \text { 2,693,606 } \end{aligned}$						$\begin{aligned} & \hline \text { 2,082,971 } \\ & 2,882,497 \end{aligned}$			
458885	520205	530000	5288146	510892	S．10943	5.12727	5，12251	5.14646	5.1486	5.158575	5.1488 .5	5．10， 500	5，14522	521250	522866	5296888	529886	${ }_{5}^{2232351}$	52898	524.35	$\stackrel{524232}{ }$
				${ }_{\substack{\text { a }}}^{\substack{3841 \\ 3041}}$						${ }^{30559}$		come	${ }^{\text {30778 }}$				${ }_{\substack{3.158}}^{\substack{3,158}}$	${ }_{\substack{\text { a }}}^{\substack{31285 \\ 3122}}$	$\underbrace{}_{\substack { \text { and } \\ \begin{subarray}{c}{3,302{ \text { and } \\ \begin{subarray} { c } { 3 , 3 0 2 } }\end{subarray}}$		$\underbrace{\substack{\text { and } \\ \text { ginf }}}$
${ }^{525}$	（est		（is	（ ${ }_{\substack{598 \\ 298}}$	${ }_{\substack{596 \\ 2992}}^{50}$	${ }_{\substack{575 \\ 3 \text { ans }}}$	${ }_{\substack{596 \\ 3082}}$	${ }_{\substack{578 \\ 307}}$	${ }_{\substack{538 \\ 308}}$	${ }_{\substack{518 \\ 3.688}}^{\text {and }}$	cis	（ind	$\underbrace{\text { and }}_{\substack{589 \\ 3,03}}$	${ }_{\substack{\text { s．88 } \\ 3.51}}^{\text {and }}$			${ }_{\substack{587 \\ 3.69}}^{\text {s．a }}$	${ }_{\substack{567 \\ 3.121}}^{\text {and }}$		${ }_{\substack{564 \\ 3.64}}^{564}$	$\underbrace{\substack{\text { and }}}_{\substack{562 \\ 3.48}}$
${ }_{2887}$	53387	S886	4853	${ }_{6}^{68,59}$	4468	${ }^{26396}$	4117	3828	38,38		边	32512	S0988	2982	28，	${ }_{28,83}$	2564	2438	20as	2309	21789
					边	边		边	\％		\％	边			，	，			\％	，	（ea
${ }_{10}$	${ }_{10}$	，	${ }_{10}$	${ }_{10}$	${ }_{10}$	${ }_{11}$	1	${ }_{11}$	${ }_{11}$	${ }_{11}$	${ }_{11}$	${ }_{11}$	${ }_{11}$	${ }_{11}$	${ }_{11}$	${ }_{11}$	${ }_{11}$	\％	${ }_{11}$	${ }_{11}$	12
484	4.588	498	488	440	4400	480	448	483	448	4.48	4.50	4.507	458	458	458	4.58	4.50	459	469	4.86	463

$\begin{array}{r} \hline 5,560,032 \\ 5,980,426 \\ 684,950 \end{array}$	$\begin{aligned} & \hline 6,072,614 \\ & 6,219,332 \\ & 1,278,935 \end{aligned}$		$\begin{aligned} & \hline 6,262,434 \\ & 6,282,728 \\ & 1,230,852 \end{aligned}$				$\begin{aligned} & \hline 6,831,016 \\ & 6,477,043 \end{aligned}$	$\begin{aligned} & \hline 6,960,255 \\ & 6,516,196 \\ & 1,052,172 \end{aligned}$				$\begin{array}{r} \hline 7,471,030 \\ 6,675,702 \\ 913,879 \end{array}$		$\begin{array}{r} \hline 7,756,756 \\ 6,776,393 \\ 837,019 \end{array}$	$\begin{array}{r} \hline 7,856,580 \\ 6,806,244 \\ 805,783 \end{array}$			$\begin{array}{r} \hline 8,164,050 \\ 6,897,120 \\ 712,246 \end{array}$			
1225	12508	13.64	13776	13,96	14.80	112322	14.38	14.58264	${ }_{1,966}$	1，8，56．21	1.4 .96007	${ }_{15 \text { S60，041 }}$	1522277	1530，188	${ }^{15,56,607}$	1557，390	15898.50	${ }_{1573,46}$	1589293	1594.405	15.57797
， 12.85	come				${ }_{27}^{2764}$		${ }_{26 \text { 2635 }}$	${ }_{\substack{10,977 \\ 20883}}$									cition	${ }_{\substack{1626 \\ 28088}}$	${ }_{\substack{16274 \\ 20804}}^{\substack{\text { 20，}}}$	${ }_{\substack{15362 \\ 27235}}^{2}$	${ }^{275685}$
${ }_{520}$	${ }_{5} 56$	${ }_{501}^{2020}$		${ }_{5}^{257}$	${ }_{5}^{257}$	${ }_{5} 57$	${ }_{508}^{2050}$		${ }_{\substack{\text { 25s }}}^{25120}$	${ }_{\substack{250 \\ 568}}$					${ }_{\substack{238045 \\ \text { sis }}}^{2}$				${ }_{\substack{20,489 \\ 538}}^{2}$	${ }^{27327}$	
	，	cosm		coile								（en			，	${ }_{\substack{3 \\ 32281}}^{3}$	${ }^{3}$	${ }_{\substack{3224 \\ 3224}}^{\substack{3 \\ \hline}}$	退	（ince	
（10．508	（10，		（1203	（1．909		（1006	$\substack{12,268 \\ 1.968}$	${ }_{\substack{12,59 \\ 1.95}}^{\substack{\text { a }}}$	（1209		旡	$\substack{1330 \\ 2080}$					，	${ }^{14720}$	$\substack { 14885 \\ \begin{subarray}{c}{1285{ 1 4 8 8 5 \\ \begin{subarray} { c } { 1 2 8 5 } } \end{subarray}$	（109	
${ }_{23}$	1301	${ }_{23}$	${ }_{\text {120 }}^{12}$	${ }_{23}$	${ }^{1.292}$	${ }_{23}$	${ }_{23}$	${ }_{23}^{12068}$	$\underset{\substack{203 \\ 23}}{ }$	${ }_{23}$	${ }_{23}^{2080}$	${ }_{23}^{2000}$	${ }_{23}$	20x	${ }_{23}^{2100}$	${ }_{24}$	2.15	${ }_{24}{ }^{142}$	${ }_{24}^{24}$	207	${ }_{24}$
${ }_{12,42}^{12}$	${ }^{12063}$	1281	${ }^{13,37}$	${ }_{13,38}^{18}$	${ }^{13,74}$	13,98	${ }_{12276}^{10}$	1.59		${ }_{\text {IStag }}$	L5，39	S，59	L580	16,64	1625	6，95	6， 68	${ }_{1}^{15,866}$	12，66	1220	${ }^{12,30}$

Cascade Natual Gas
2011 Rep emand
Medium Scenariocast

 dind

Stemem		，	come	cosm	$\xrightarrow{\substack{\text { amem } \\ \text { amemem }}}$	comm	$\xrightarrow{\text { comem }}$	，		，	comem	，	comm		cost	$\xrightarrow{\text { ciblemm }}$		coin	asmen		
maxim		边	，	，		，	，	边	2me	，mimen	mex	come			，	，	，	为	边	，	
			，	，	cosem	，mome	cineme	come	cose	，	，mame	，			come	，mexese	景	rase	${ }^{\text {T2329 }}$	2nas	
隹	nex	，	${ }_{\text {cosem }}^{\text {gex }}$	，	gind	${ }_{\text {cosem }}^{\text {amem }}$				，		，						，		，	cime
			，				，	（1）	，				，	，	${ }_{4}^{\text {Lesem }}$		（tan	creme	，	ctice	䞨
	，			边			为	为			，					起	边				${ }^{2 n}$
，									，											边	

${ }^{\text {zamamazem }}$		Smat			2mb	${ }_{\text {2nem }}$	$\xrightarrow{\text { nemem }}$	，	20ms	Lemem	，	，		${ }_{\text {a }}^{\text {a }}$	，	，			$\frac{15}{2 m e m m}$		䢒
come				cos		come	cose	cosm	Remas			cose	cosme	come		come		cosm			come
cosem	come		ceme	\％rsem	cememe	come	cose	，memed	cosem	Smat	Star	sestor	cme	Sex	ment	ememe	azues	，	ame		
\％ex	，mims	，	come	רemmem		\％	，	cinc	，	cosm	yuem	mima	com	sime	come		com	beme	，	comem	come
		${ }_{\text {cosem }}^{\substack{\text { amex }}}$	，		，	，			边	\％	${ }_{\text {cosem }}$	，		（ex	${ }^{\text {cosem }}$					，	，
		边	come				速		边												

 Sel

Theandibe coiesess

																			0 Osm	$0^{\text {0．94\％}}$	
			cise										cisin	cisis	1，595，160	$1,601,510$ $5,253,457$			$1,623,924$ $5,327,937$	$1,631,192$ $5,327,937$	
				（086					ciseme		退			cisem			旡				
		${ }^{\text {H2，}}$	${ }^{7} 70.585$		退	边			，				，		8	${ }_{\text {chem }}$	$\xrightarrow{\text { cherse }}$	$\xrightarrow{112859}$			而
${ }^{\text {chin }}$	${ }^{8224}$	${ }^{8.807}$	20	，	${ }^{8.852}$	${ }^{8030}$	\％emen	${ }^{\text {8，} 612}$	${ }^{8,700}$		870	${ }^{8185}$		${ }^{8.8068}$	${ }^{8.911}$		${ }^{\text {Baxa }}$	${ }^{\text {a，a }}$	\％omb	${ }^{\text {a，mem }}$	
		${ }^{1008}$	${ }_{60} 6$	25			\％			\％	6		${ }^{12497}$				\％iz		，	525	
		${ }_{\substack{4286 \\ 2484}}^{4}$		${ }_{\text {cose }}^{4.388}$			，		${ }_{\substack{4 \\ 2435 \\ 24.45}}^{4}$	${ }_{\substack{4.35 \\ 2.45}}^{4.45}$	4.380	${ }_{4}^{4.388}$	${ }_{4}^{4.300}$	${ }^{4.329}$	${ }_{4}^{433}$	${ }_{4}^{4.38]}$	${ }_{4}^{4389}$	${ }_{423}^{423}$	${ }_{4}{ }^{428}$	${ }_{4}^{4.388}$	${ }^{2355}$
251	253	299	240	2974	2979	$2{ }^{2465}$	${ }^{2,488}$	250	250	2530	2380	23.82	2585	2366	259	$2{ }^{293}$	$2{ }^{2068}$	${ }^{2038}$	269	2.56	$2{ }^{2611}$
${ }_{20}^{123}$	（146	（129	－ 1123	${ }_{29}{ }^{159}$	$\underset{\substack{1.148 \\ 29}}{ }$	（1．45	${ }_{20}^{1189}$	（1144	（178		$\underset{\substack{1.187 \\ 30}}{ }$	$\underset{3}{11.20}$	1.19	（201	（106	${ }_{30}^{211}$	2126 30		（125	$\underset{3}{1225}$	120
245	299	260	${ }_{3} 3.5$	362	361	3991	S64	375	372	374	379	376	372	379	397	386	${ }_{3} 238$	387	${ }^{398}$	393	3094

Cascad Natual Gas
2011 RRPDemand
Forecast

			S59\％	208\％				2026	156\％				206		2775			10en	Sasm	9146	
			$\begin{array}{r} 1,054,304 \\ 2,407,654 \end{array}$	$\begin{aligned} & 1,048,672 \\ & 2,424,183 \end{aligned}$	$1,046,492$ $2,451,147$ 677,565	$1,050,343$ $2,482,147$ 701，388	$\begin{array}{r} 1,057,075 \\ 2,503,342 \end{array}$	$\begin{array}{r} 1,057,738 \\ 2,521,934 \\ 750,267 \end{array}$	$\begin{array}{r} \hline 1,057,024 \\ 2,547,183 \\ 775328 \end{array}$	$1,060,120$ $2,574,549$	$1,063,835$ $2,592,810$ 826,941	$\begin{aligned} & 1,063,145 \\ & 2,607,401 \end{aligned}$	$1,060,551$ $2,630,648$ 880,334	$1,062,152$ $2,673,424$ 907,603	$\begin{array}{r} 1,074,814 \\ 2,691,735 \\ 935,562 \end{array}$	$\begin{array}{r} 1,073,845 \\ 2,710,077 \\ 963,800 \end{array}$	$1,073,014$ $2,734,984$ $\mathbf{9 9 2}$	$1,076,281$ $2,754,045$	$1,076,001$ $2,770,143$	$1,074,298$ $2,770,143$ $1,051,998$	（tar
385322	3 368680	4.4	402978		415325	423889	428680	432980	438958	485550	4.488 .587	453292	4515138	4868180	470212	484772	4800.58	48524.15	4888.12	4.85840	（98980
	${ }_{7986}$	80062		${ }^{20887}$	${ }_{\text {che }}^{\substack{3,597}}$	$\underbrace{\text { and }}_{\substack{3,08 \\ \text { gill }}}$	18221	${ }^{20} 204$	$\underbrace{\substack{\text { and }}}_{\substack{386 \\ 8384}}$	${ }^{83483}$	${ }_{83,99}$	4235	8889	${ }_{\text {g509 }}$		75	99			50	\％
边	cosm																				\％
${ }^{3,32}$	${ }^{3,276}$	${ }_{3 \times 207}$	${ }_{3} 366$	${ }^{3658}$		${ }_{\substack{\text { a }}}^{368}$	${ }_{\text {cosem }}$			${ }_{\substack{3.50 \\ 3,60}}^{\text {and }}$	${ }_{3,568}^{3,68}$		${ }_{3} 3.587$								${ }_{\substack{365 \\ 3682}}^{51}$
${ }_{3831}$	${ }^{32600}$	3280	22000	${ }^{3280}$	2360	32800	23600	32800	3200	2200	200	2800	32600	23600	${ }^{23200}$	3260	0	2200	20		
${ }_{601}$	迷	${ }_{650}$	${ }_{\text {coin }}$	cos	${ }_{60}$	\％	\％	${ }^{109}$	（ex	\％	\％	${ }_{13}$	${ }^{79}$	${ }^{275}$	退	${ }^{737}$	${ }_{42}$	${ }^{76}$		旡	（1060
17	18	19	19	20	${ }^{21}$	22	${ }^{2}$	23	${ }^{24}$	${ }^{25}$	${ }^{25}$	${ }^{26}$	${ }^{27}$	${ }^{28}$	${ }^{29}$	30	${ }^{2}$	${ }^{3}$	${ }_{32}$	${ }_{3}$	${ }_{38}$
${ }_{2055}$	${ }_{253}$	238	250	${ }_{255}$	${ }_{2}^{2588}$	${ }^{2} 581$	${ }^{2.55}$	200	202	${ }_{268}$	264	268	2，6n	${ }^{268}$	296	2707	279	${ }^{2,71}$	773	278	2，79

																	15，4\％				
										（in	cin				cose					cose	
${ }_{\text {cosem }}$	${ }_{\text {cosem }}$	${ }_{\text {con }}$		${ }_{\text {L }}$	${ }_{1}^{1223136}$	${ }_{1} 1.56 .6195$		${ }_{1}^{10202384}$	${ }^{36}$	${ }^{9212855}$	${ }_{83230}$	${ }_{817230}$	${ }_{75 \text { saom }}$	${ }^{738580}$	${ }_{\text {ema30 }}$	${ }_{6}^{655505}$			${ }^{\text {cosema }}$		退
38289892	3，722985	${ }_{4}^{4322485}$	4381888	44.43832	45200092	46056822	46，7858922	$48.850,08$	48.821637	49030300	49871188	Scarseap	${ }_{\text {Stamaze }}$	${ }^{2323845}$	S3，10，02	$5{ }^{\text {Smanas }}$	S480，997		5 S62088	5 S6atire	S，
${ }^{\text {sengeg }}$	${ }_{40856}$	48589	${ }_{56395}$	${ }_{\text {silas8 }}$	${ }_{52388}$	${ }_{538} 5898$		Ssala	${ }_{56 \text { cass }}$	${ }_{54} 5$	Stsoci	Sts 5	bricio	${ }_{\text {Gitise }}$	${ }_{6} 62725$	${ }_{678782}$	G6ess7	${ }_{659} 6939$	${ }_{6012} 6$	${ }_{697755}$	cis
${ }_{\substack{62 \\ 3084}}$	${ }^{632}$	732 3020		${ }_{3}^{129}$	${ }^{288}$		${ }^{127}$	${ }_{\text {che }}^{127}$	${ }_{\substack{726 \\ 3265}}$	${ }^{275}$		${ }_{\substack{124 \\ 3265}}$	（123	$\xrightarrow{722}$		$\xrightarrow{122}$	$\xrightarrow{721}$	$\xrightarrow{\text { n20 }}$	${ }_{\text {che }}^{178}$	${ }_{\text {che }}^{178}$	${ }_{\text {a }}^{17}$
${ }^{\text {che }}$	cind	${ }_{\text {che }}$		${ }_{\text {coser }}$	${ }_{\text {che }}$	${ }_{\text {che }}$			${ }_{\text {che }}^{12}$	cist	${ }_{\text {cose }}$				${ }_{\substack{\text { j2m } \\ 12951}}$	${ }_{\text {cose }}$				Stise	，
${ }_{3563}$	${ }_{56897}$	${ }_{39,95}$	${ }_{3653}$	${ }^{3327}$	somb	${ }_{88,20}$	${ }^{3949}$	${ }^{\text {60228 }}$	${ }^{\text {O2，}}$	1272	${ }^{22487}$	${ }^{13227}$	${ }^{13988}$	A，780	${ }_{\text {65，5s }}$	${ }^{16,39}$	${ }^{41288}$	${ }^{77898}$	8， 8 S		20，
${ }_{4}^{4,581}$	（tisf		（4，480	${ }_{4}^{4 \times 4}$				${ }_{5}^{5238}$	¢		${ }_{\substack{598 \\ 48 \\ 48}}$	568	${ }_{5}^{5,38}$	${ }_{58}^{58}$	${ }_{\substack{5989 \\ 39}}^{\text {c，}}$	${ }_{\text {cos }}$	${ }_{\substack{6189 \\ 35}}$	${ }_{6}^{6228}$	${ }_{6}^{63,46}$	${ }_{\substack{646 \\ 32 \\ 32}}$	${ }_{6,50}$

	Oasb	as	0214		014	0234	O216	012\％	Or76	02066	025%	0076	00964	0176	O．54\％	asem	Oex	0146	0，0\％	01148	
		cincin							3，184，66 $4,722,728$				$\begin{aligned} & 32 \pi 836 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline 3,230,693 \\ & 4,800,685 \end{aligned}$		$\underbrace{}_{\substack{328133 \\ 4827 \times 1}}$	$\begin{aligned} & \hline 3,285,411 \\ & 4,839,671 \end{aligned}$		cise		cise
${ }_{1257889}$	${ }^{1258989}$	${ }^{1228738}$	${ }^{1225055}$	${ }^{1207298}$	${ }^{1.103031}$		${ }^{1.1502126}$	${ }^{1.144720}$	${ }_{1213125}$	11172	${ }^{1.105689}$	${ }_{108}^{10345}$	${ }^{10101980}$		${ }^{1008069}$	1.80813		${ }_{\text {102366 }}$	${ }^{1024945}$	${ }^{1024.457}$	${ }^{10,5959}$
$8,870,04$	8.78804	genoce	9.982723	900，26	909088	govose	goserio	9，10，326	9115，57	9，12428	9，57，901	9，1，5855		9，18，985	9202968	9288977	${ }_{\text {g23，}}$	${ }_{9263538}$	${ }^{272239}$	${ }^{\text {272，597 }}$	${ }^{\text {grabas }}$
	，			\％			comb	cose	come							${ }^{13292}$	30		速	2	
	${ }_{\substack{985 \\ 589}}$		$\substack{98288 \\ 594}$	${ }_{\substack{\text { 995 } \\ 589}}$	cose	$\underbrace{\substack{\text { che }}}_{\substack{10276 \\ 588}}$	（ex			$\substack{\begin{subarray}{c}{10,50 \\ \text { sex }} }} \end{subarray}$				（1275	（ios	$\substack{13291 \\ 595}$			（104	cos	$\underset{\substack{1449 \\ 598}}{ }$
${ }^{330}$	${ }^{3} 384$	${ }^{3.394}$	${ }^{3,398}$	${ }_{3} 3,32$	${ }_{3} 3.98$	${ }^{3390}$	${ }^{3.399}$	${ }^{3,388}$	${ }^{3.387}$	${ }^{3.366}$	${ }^{3,385}$	${ }^{3,388}$	${ }_{3} 3.32$	${ }^{3,381}$	${ }^{3.380}$	${ }^{337}$	${ }^{337}$	${ }_{836} 3$	${ }_{3755}$	${ }_{3}^{3,35}$	${ }_{3}^{337}$
${ }_{5}^{28280}$									，						边						， 512
${ }^{12,29}$	${ }^{136}$	${ }^{1.351}$	${ }_{\text {1．38 }}^{1.38}$	（1385	1．37	$\substack { 137 \\ \begin{subarray}{c}{47{ 1 3 7 \\ \begin{subarray} { c } { 4 7 } } \\{\hline} \end{subarray}$	（1383		（1388		${ }_{4}^{14.4}$	1，400	1，45	（1420	（124	${ }^{1.29}$	1， 148	， 1.48	$\xrightarrow{1.141}$	${ }_{30}^{44}$	迷
${ }_{6668}$	666	$6{ }_{6} 6$	672	6737	${ }_{6}^{6,74}$	${ }_{6}^{6785}$	6897	（209	6，${ }_{6}$	，	${ }_{\text {cose }}$	${ }_{69} 6$	$\stackrel{693}{69}$	$\stackrel{6}{69}$	－912	689	${ }_{2} 205$	103	2a0	${ }_{7} 10.5$	${ }^{2,087}$

	41008	${ }^{24885}$	．0945	． 0.645	． 0.946	${ }^{\text {O2046 }}$	． 0284	．0．386	O，48\％	．044	．039	O，00\％	． 0.84	${ }^{0.0985}$	．0．996	． 2948	． 0.55	O， 0.38	O， 0 740	． 0.948	${ }^{\text {．} 0.535}$
	ceme		cien			come		cinct					cincis	cien			cos	cex	cosis	coick	
${ }_{12783,39}$	${ }_{\text {965 } 512}$	b0， 47	${ }^{20}$	912912	9153937	${ }^{965889}$	${ }_{901828}$	913，${ }^{\text {a }}$	980.16	goosis	${ }^{202082}$	${ }^{20,988}$	${ }^{20,595}$	${ }_{920118}$	919，37	918，29	972， 94	915760	94，458	94，158	${ }^{12,39}$
S576	S576	Smit	9536	Sthe	Sthe	S5760	S57．16	9，76	${ }_{65,76}$	S5．76				${ }_{\text {cher }}$		S5，					
5020．57	，	S，	5 S62997	San	56，226	Smsfeg	S．and．12	S5s， 5	5，	$5.50,92$	S，	5，6，	，	Sata	Smas	Smas	2		5212	2	28328
${ }_{\text {coin }}$	goms	${ }_{6} 61218$	${ }_{\text {gials }}$	cospe	${ }_{\text {cosis }}$	cene	$\operatorname{cosegs~}^{6}$	${ }_{\text {gios }}$	${ }_{\text {gi28 }}$				$\underbrace{\text { fiab }}_{6,180}$			${ }_{6}{ }_{\text {ciess }}$	${ }_{\text {che }}^{4.254}$			${ }_{\text {che }}^{4}$	${ }_{6 \text { gisi }}$
${ }_{4}^{477}$	$\underset{\substack{437 \\ 5138}}{4.8}$	${ }_{\substack{584 \\ 5181}}^{\text {cid }}$	${ }_{\substack{566 \\ 5120}}^{\substack{\text { che }}}$	¢			¢	$\underset{\substack{517 \\ 4820}}{ }$	（	${ }_{\substack{515 \\ 498}}^{\text {a }}$		${ }_{\substack{54 \\ 486}}^{4.85}$	¢ 50		${ }_{\substack{\text { sib } \\ 4780}}$	${ }_{\substack{516 \\ 4737}}^{\text {4，}}$	${ }_{\substack{514 \\ 4701}}$		（is		408
6398	${ }_{6}^{6129}$	${ }_{6617}$	${ }_{4617}$	${ }_{6}^{6}$	${ }_{6}^{6} 817$	4617	${ }_{6617}$	46	6617	6619	${ }_{4617}$	46179	46.17	6619	4	${ }_{6617}$	${ }_{66178}$	6，179	$4{ }_{46} 6$	${ }_{6,178}$	边
${ }^{1.521}$	－ 51.	，		${ }^{54}$	${ }^{\text {I } 515}$	${ }^{1.588}$	${ }^{1.565}$	迷	\％	${ }^{1.584}$	${ }^{150}$	${ }^{1565}$	1.02	${ }^{1.688}$	退	， 1.19	24	退	矿	${ }^{1.189}$	
${ }_{20}{ }_{20} 6$	${ }_{20}^{588}$	${ }^{180}$	${ }^{585}$	${ }_{20}^{5120}$	${ }_{20}^{51}$	${ }^{50}$	${ }^{179}$	${ }_{\substack{780 \\ 20}}$	${ }_{20}^{47}$	${ }_{20}^{46}$	${ }^{745}$	${ }_{20}^{74}$	${ }_{20}^{14}$	${ }^{174}$	${ }_{20}^{78}$	${ }^{73}$	${ }_{20}^{78}$	${ }^{78}$	${ }_{20}^{712}$	${ }_{20}^{720}$	${ }_{20}^{12}$
${ }_{203}^{203}$	${ }_{2} 200$	${ }_{2} 2.36$	${ }_{232}$	${ }_{238}$	${ }_{23} 2$	${ }_{2} 239$	${ }_{2} 235$	${ }_{2} 230$	${ }_{2}{ }^{237}$	${ }_{2}{ }_{2}$	${ }_{2}^{238}$	${ }_{223}$	${ }_{2}{ }_{268}$	${ }_{234}$	${ }_{238}$	${ }_{2}{ }_{234}$	${ }_{2}^{239}$	${ }_{2} 238$	${ }_{2}^{2388}$	${ }_{24}^{243}$	208

$$
\begin{gathered}
\text { Cascade Natual Gase } \\
\text { 2011 Rep Pemand Foreast } \\
\text { Low Senazio }
\end{gathered}
$$

\％umbem

2021

$\begin{array}{r} \hline 27,584,941 \\ 17,303,858 \end{array}$	$\begin{aligned} & \hline \text { 28,772,922 } \\ & 18,573,754 \end{aligned}$	$\begin{array}{r} \hline 28,817,644 \\ 18,646,671 \end{array}$	$\begin{array}{r} \hline 28,807,500 \\ 18,811,323 \\ 2,001,048 \end{array}$	$\begin{array}{r} \hline 29,042,526 \\ 19,113,577 \\ 1,882,300 \end{array}$	$\begin{aligned} & \hline 29,476,620 \\ & 19,632,103 \end{aligned}$	29，874，771 20，247，17	30，197，085 $20,677,2$	30，562，032 21，064，786	30，973，464 21，604，	31，389，360 22，203，9	31，680，714 22，619，0	32，062，720 $22.965,5$	32，577，510 23，512，82	$33,146,540$ $24,521,531$ 24，521，5	33，496，669 24，991，4	33，941，726 25，477，080	${ }^{3,3292984}$ ${ }_{26,122255}$	$34,753,641$		35，485，813 27，137，6	
4.658587	48.554×3	48.8590	2961982	Sosasas	${ }^{\text {Sosacha }}$	51，20229	${ }^{52468.697}$	S5，1843	${ }^{5,2,2683}$	59.86	556，2，34	5689	5，731387	sear700	Smegeser	6，50．5052	6．152278	，28	S284720		${ }_{6}^{6404082}$
30，90	4．1965	4，7，20				，		4.4 .37		46.32			${ }^{46291}$	3			\％	3	边		
${ }_{51,38}$	${ }_{59,468}$	${ }_{5}^{51.498}$	${ }^{\text {spasas }}$	${ }_{\text {s7\％} 26}$	${ }^{666422}$	${ }_{6}^{15592}$	${ }^{62429}$	${ }^{\text {63233 }}$	${ }^{62,45}$	${ }^{\text {6inlil3 }}$	${ }_{6} 61.47$	${ }^{\text {groses }}$			${ }^{\text {gexac }}$	\％03935	71937			74774	cisize
${ }_{278}^{278}$	${ }^{7888}$	${ }^{788}$	${ }_{288}^{588}$	${ }_{2682}^{246}$	${ }_{2687}$	${ }_{284}^{784}$		${ }_{269}{ }^{246}$	${ }^{2044}$	${ }_{292}$	${ }_{292}$	${ }^{200}$	${ }^{792}$	${ }_{2}^{7950}$	${ }_{2011}$	${ }^{173}$	${ }_{3,45}^{7395}$	${ }_{302}$	${ }_{302}^{302}$	${ }_{301}^{313}$	${ }^{\text {and }}$ 3，99
${ }^{2305}$	41，02	Anan	41.42	， 1,02	2，	起，	退，	${ }_{14,42}$	44	${ }_{\text {ALA }}$	1，422	，14，	， 1,42	200	40	A， 42	2	4，4，42	a， 140		
，	\％，989	80ar	8，40	边	\％a0		0，588	A，	退	2120	${ }^{12,38}$		Sess	，	\％	6，62	6620］	6，901	边	退	${ }^{\text {ER，} 8,5}$
$\underset{\substack{626 \\ 58}}{2}$	${ }_{6}^{627}$	${ }_{6}^{644}$	cisis	（03	（1）	\％	，	${ }^{729}$	${ }_{35}^{40}$	（is0	${ }^{1741}$	${ }_{\substack{198 \\ 18 \\ 18}}$	（e）	820 28 28	${ }^{8,385}$	${ }^{8.811}$		${ }_{\substack{8825 \\ 28}}$	（103	（193	
${ }_{4} 868$	men	，	星	${ }_{4}^{4} 560$	${ }_{4,53}$	71700	${ }^{4775}$	asar	a，907	${ }^{\text {a，9as }}$	56,58	${ }_{\text {S123s }}$	S192	2272	${ }_{5}^{3} 4.47$	420	， 192	$5{ }_{5}^{52}$	${ }_{65,59}$	5	${ }_{5}^{59,52}$

\square

																					\％88\％
$\begin{array}{r} \hline 5,560,032 \\ 5,980,426 \\ 684,950 \end{array}$			$\begin{aligned} & \hline \text { 5,881,356 } \\ & 6,241,301 \\ & 1,279,652 \end{aligned}$	$\begin{aligned} & \hline 5,999,389 \\ & 6,282,250 \\ & 1,281,167 \end{aligned}$			$\begin{aligned} & \hline 6,385,659 \\ & 6,437,834 \\ & 1,285,768 \end{aligned}$	$6,505,042$ $6,478,505$ $1,287,245$			$\begin{aligned} & \hline 6,857,588 \\ & 6,614,542 \\ & 1,291,399 \end{aligned}$	$\begin{aligned} & \hline 6,950,952 \\ & 6,647,158 \\ & 1,292,680 \end{aligned}$	$\begin{aligned} & \hline 7,093,388 \\ & 6,689,387 \\ & 1,293,864 \end{aligned}$	$\begin{aligned} & \hline 7,231,974 \\ & 6,754,334 \\ & 1,294,949 \end{aligned}$	$\begin{aligned} & \hline 7,324,800 \\ & 6,788,299 \\ & 1,295,920 \end{aligned}$	$\begin{aligned} & \hline 7,410,932 \\ & 6,821,083 \\ & 1,296,751 \end{aligned}$	7，506，30 6，861，19 1，297，48	$\begin{aligned} & \hline 7,596,428 \\ & 6,892,757 \\ & 1,298,093 \end{aligned}$	7，651，47 6，920，12 1，298，60	7，700，68 6，920，12 1，298，60	
12255	13288724	13293,32	${ }^{13,29230}$	${ }^{13,529206}$	1376， 31	${ }_{13,52272}$	${ }_{1}^{1,102921}$	1420,722	1.4 .49 .96	${ }_{1,462783}$	1778，500	$13.800,780$	15，V6，600	L5291257	15，509099	15，987，76	IS649922	L5，82728	${ }_{\text {Lispana }}$	15.92948	400
${ }^{123859}$		${ }^{13,688}$	${ }^{13779}$	${ }^{13,2944}$	20		${ }^{145656}$	${ }^{14,682}$		\％	${ }^{151218}$	${ }^{13,399}$		${ }^{15370}$			${ }^{\text {cosem }}$	1		退	citisi
${ }_{5}$	5sf		${ }_{5}^{2051}$	${ }_{529}$	529	${ }_{5} 5$	\％	${ }^{2260}$	${ }_{5}$	5	${ }_{524}$	${ }_{5}^{25}$	${ }_{524}$	${ }_{\substack{50}}^{50}$	${ }_{565}$	${ }^{524}$	${ }_{524}$	${ }_{5}$	${ }_{5}$	${ }_{5} 500$	${ }_{519}$
	${ }_{\text {cosem }}^{5}$	${ }^{3}$	${ }_{\text {cosem }}$		${ }_{\text {cosem }}$	${ }_{\text {a }}^{3}$	${ }_{\text {a }}^{3}$	，	\％	\％	${ }^{3}$	边	3，		S	S	cose	，	5280	${ }^{3} 228$	
0，589	0，8i7	${ }^{\text {P0，} 0 \text { ati }}$	11.06	${ }^{11,391}$	1.103	1.1882	1217	22387	2，${ }^{213}$	1288	8，987	${ }^{13365}$	${ }^{13,387}$	3，79	3，952	4，43	4，25	${ }_{1,4,47}$	退		
${ }^{1.120}$	${ }^{1.801}{ }_{23}$	${ }^{1.888}$	${ }_{23}^{183}$	${ }_{\text {a }}^{120}$	180	${ }^{1.929}$	$\underset{\substack{1.988 \\ 23}}{\text { a }}$	（1083	120	－	${ }_{\substack{198 \\ 29}}$	2013 28	1027	201		20872208	（200	$\underset{23}{202}$	－109 ${ }_{2}^{109}$	（204	（116
1242	1249	2095	292	1238	1332	1397	1408	423	4.65	退999	S109	${ }_{153}$	${ }_{1589}$	593	690	224	6， 68	6， 6	brac	${ }_{1697}$	12,01

Cascade Naural Gas
20111 RPD Demand forecast

Cascade Natual Gas
2011 RPD Demand forecast

$$
\begin{gathered}
\text { Cascade Natual Gas } \\
\text { 20111 RP epenand Forecas } \\
\text { Hith }
\end{gathered}
$$

	22740	200\％	002\％	O896	O4．45		0.736	O99\％	O66\％	Ofim	0.736	0714	Ofes	Oamb	0，7as	0．896\％	O67\％	0.276	0278	\％	anx
						come						cin	come		${ }^{3} \mathrm{3}$ ane			cien	cis		
					$\underset{\substack{5357238 \\ 21527}}{\substack{\text { 20，}}}$							${ }_{\substack{5824120 \\ 23295}}$									
139290	73329	2028	208		299	${ }^{132929}$				2029				退							
9，8，3，395	S．0，240	Le．a，6，60	（10，	10．64600	退	1028884	cos，		Leas，	Som，	（1，84245		（1，88829	（10．3528		Sens	110686	Satag	${ }^{124646000}$	${ }^{11244845}$	
${ }_{\text {ciele }}$			${ }_{\text {cosem }}^{\text {gise }}$	${ }_{2}$		${ }_{\text {grem }}^{\text {gisas }}$	${ }_{\text {cose }}^{\substack{\text { cised }}}$	${ }_{8}^{81277}$	cise	，	coma	gent	coin	${ }_{\text {cose }}$	${ }_{\text {cosem }}$	，	${ }^{2237}$	，	${ }_{\text {cosem }}$	${ }_{4}$	，
${ }_{61}$	${ }^{61}$	${ }^{738}$	${ }^{128}$	${ }^{123}$	${ }^{78}$	${ }^{713}$	79	${ }^{704}$	${ }^{69}$	${ }^{694}$	${ }^{69}$	${ }^{184}$	${ }^{69}$	${ }^{673}$	${ }^{69} 9$	${ }^{64}$	${ }^{688}$	${ }_{663}^{68}$	${ }_{688}^{688}$	${ }^{6}$	${ }^{\text {b6 }}$
	（tang	$\underbrace{}_{\substack{\text { a } \\ 1482 \\ 1.81}}$				$\underbrace{4.0}_{\substack{4.599 \\ 1481}}$		$\underbrace{\text { and }}_{\substack{4.587 \\ 4.851}}$	$\underbrace{\substack{\text { a }}}_{\substack{4.500 \\ 4.811}}$			${ }_{\substack{4.687 \\ \text { Lesi }}}^{\text {a }}$					（4035	$\underbrace{}_{\substack{\text { a } \\ 1485 \\ 1.811}}$			
${ }_{5}^{524}$	5520	53，	${ }^{53.47}$	${ }_{5}^{593}$	s，a3	${ }^{\text {a，455}}$	${ }_{\text {S517 }}$	，		Se8	${ }_{\text {sfer }}$	${ }_{5}^{5718}$	${ }_{5}^{5,56}$	${ }_{\text {S }}^{5}$	${ }_{\text {s．a3，}}^{5}$		，			6，948	
${ }_{13}^{1.15}$	$\underset{\substack{158 \\ 14 \\ 14}}{ }$	$\underset{\substack{1.66 \\ 14}}{ }$	$\underset{\substack{1124 \\ 14}}{ }$	${ }_{\text {L }}^{1.14}$	${ }_{\substack{1180 \\ 15}}$	${ }_{15}^{129}$	$\underset{\substack{1201 \\ 15}}{ }$	（1266	$\underset{\substack{1294 \\ 15}}{ }$		（1241	${ }_{\substack{1.280 \\ 16}}$	$\underset{16}{1239}$	$\underset{16}{1280}$	$\underset{17}{1276}$	$\underset{17}{12965}$	$\underset{17}{1294}$	（120	$\underset{18}{132}$	$\underset{\substack{13,2 \\ 18}}{ }$	${ }^{1,32}$
6.40	6，45	6.95	6.58	6.59	6.9	699	6，72	6.99	689	6899	6，988	6，97	${ }_{7} 10.8$	${ }_{7}^{1082}$	${ }_{7} 129$	${ }_{2}^{2} 7.75$	${ }_{122}$	${ }_{1286}$	${ }_{2} 1312$	${ }_{2,97}$	， 39

	189as	1.95	${ }^{1245}$	1.954	${ }^{2364}$	2.95	199\％	1 1as\％	2285	${ }^{21556}$	12087	1.897	${ }^{2255}$	2.55	1208	1789	1．85\％	163\％	4，46		26em
			cile						cist											cition	
${ }_{81}^{88,54}$	1.1041 .88	102789	${ }_{1020296}$	1200818	${ }^{1010828}$	10.5892	1.104127	${ }_{10212904}$	1.102029	101.159	1011317	121150	1.102123	101298	${ }_{1010234}$	${ }_{1} 1.15884$	101789	109898	1022212	1020212	
		cose	cose	（10，29		Somer	cose			cose	cose		coseme	comen	cione	Stack	（1020．24	cememe	coseme	cosmer	
${ }^{69585}$	${ }^{72352}$	${ }^{738880}$	${ }^{753} 382$	${ }_{77 \times 95}$	${ }_{788} 35$	${ }_{\text {g1907 }}$	${ }^{29890}$	${ }^{80} 772$	${ }^{812.01}$	${ }_{90,146}$	${ }^{294821}$	${ }^{264207}$	${ }^{567889}$	${ }^{\text {ma98 }}$	${ }^{1010156}$	${ }^{1038}$	${ }_{1}^{1055762}$	${ }^{1077980}$	${ }^{1.10,393}$	1.121 .154	${ }^{1144.405}$
${ }_{\substack{68 \\ 2680}}$	738 3035 305	¢	${ }_{3}^{124}$	cin	¢121		（201		－	（179	（168	$\underset{\substack{n 4 \\ 3.4}}{\substack{\text { and }}}$	$\underset{\substack{17 \\ 308}}{ }$	${ }_{\substack{720 \\ 3.92}}$	（188		－	（178	${ }_{\substack{715 \\ 2982}}$	（138	${ }_{\substack{211}}^{\substack{2000}}$
2264	2693	${ }_{2693}$	${ }_{2683}$	${ }^{2683}$	${ }^{26898}$	26.68	${ }^{2683}$	${ }_{2683}$	${ }^{26,98}$	26.68	${ }^{2689}$	2683	${ }_{2689}$	26893	${ }^{2693}$	${ }_{2683}$	${ }_{2693}$	${ }_{2689} 26$	${ }_{2683}$	26893	${ }^{26698}$
	$\substack{\text { k2124 } \\ 4.989}$				cisma		coicle	cose			隹	既	cosk			coicle					
${ }_{8}$	${ }_{8}^{39}$	${ }^{39}$	8	${ }^{38}$	${ }^{38}$	${ }^{38}$	${ }^{38}$	${ }^{38}$	${ }^{38}$	${ }^{38}$	${ }^{38}$	${ }^{88}$	8	${ }_{8}^{88}$	${ }^{38}$	${ }^{38}$	${ }^{38}$	${ }^{38}$	${ }^{38}$	${ }^{38}$	
	4723		49924	${ }_{\text {co，} 24}$	s204				， 56	S，984	6，35	61，74		2	6001	8，477	6893	${ }^{20,33}$	${ }^{\text {n，033 }}$	83.16	7，4．58

Kenenick

 mam

$$
\begin{gathered}
\text { Cascade Natual Gas } \\
\text { 20111 RP epenand Forecas } \\
\text { Hith }
\end{gathered}
$$

Moses Lhee

		Sa48	2468	0.68	0014	2006	29\％\％	0.096	Oata	0．196	${ }^{\text {0236 }}$	0056	0026	0.55	0．536	O6S5	OOSes	0.196	Oase	02045	44080
2，840，914					$3,171,816$ $4,636,166$	3，195，583	3，227，107	3，241，734	3，251，236	3，274，55	3，301，79	3，312，925	3，318，067	3，339，180		3，409，05					
	${ }^{1224363}$	${ }^{1212,62}$	${ }^{1197935}$	${ }_{\text {che }}$	${ }^{1.12085080}$	1.15895		${ }_{\text {che }}$	${ }^{1122729}$	${ }^{1.1212660}$	${ }^{12102585}$	${ }^{1008124}$	${ }^{120.430}$	10．7880	${ }^{1.08080}$	${ }^{1080}$		${ }_{1} 1.97106$			${ }^{1080738}$
8，70，${ }^{\text {a }}$	8，747588	9，02189	900374	9，95605	90， 9 s，92	9073，49	909296	9，00：206	9，114，46	g，12，468	9，42382	9，15883	9，15170	9，15659	9224007	920，${ }^{2} 3$	922450	922838	924，91	028.1 .15	退
cien			cosm	cose		cois	cosm	cisel				${ }_{10238}$	${ }_{10280}$		${ }^{13104}$					（417	Sess
cex	cex	cose	cose	${ }_{\substack{\text { ampa } \\ 502}}$		cose	cos	（10）		come			（1208	com	cose				边	${ }^{1037}$	
coick	${ }_{\substack{3 \\ 2380}}^{2650}$				$\underbrace{\text { 20，}}_{\substack{3.368 \\ 2805}}$			$\underbrace{\substack{\text { 2，}}}_{\substack{3.305 \\ 2.85}}$			${ }_{\substack{3 \\ 2380}}^{2385}$		${ }_{\substack{3 \\ 2365 \\ 2365}}$	${ }_{\substack{339 \\ 205}}$		${ }_{\substack{3 \\ 2305 \\ 2055}}$		${ }_{\substack{3 \\ 2380}}^{2805}$			
											5		5，911	${ }_{\text {S．} 565}$							${ }^{5.598}$
${ }_{\text {1，39 }}^{1,38}$	${ }_{1}^{1.388}$	${ }_{1}^{1.31}$	${ }^{1386}$			， 281	${ }^{1.386}$	${ }^{1.380}$	${ }^{1.1984}$	${ }^{1.388}$	${ }^{1.420}$	${ }^{1.465}$	${ }^{1,489}$	${ }_{1 / 121}^{1.1}$	${ }^{1.4 .45}$	${ }^{1.48}$	${ }^{1.2102}$	${ }_{1,23}^{1.23}$	${ }_{1.268}^{1.2}$	${ }^{1,268}$	${ }^{1.428}$
${ }_{668}$	$6{ }_{6} 68$	620	678	${ }_{6} 6.8$	6788	699	， 29	6s0	689	${ }^{698}$	\％	：9，${ }^{2}$	，93	680	${ }_{697}^{69}$	${ }^{699}$	2007	， 102	108	209	${ }^{2085}$

[^9]| | 2908 | 2996 | 0.55 | 0996 | 0 058 | 0746 | 0739 | O846 | 0724 | 090 | O646 | Oasm | 094 | 0．530 | 0.59 | 0.446 | 089 | 2996 | 0376 | 0796 | ${ }_{0} \mathbf{2} 28$ |
| :---: |
| （tanze9 | citiceen | | （istage | | | | cose | | | | | | | | 7，528，131 | | | （istrex | （inges | cincine | |
| ${ }^{99768}$ | 11225 | ${ }^{108855}$ | 10530 | ${ }_{10,981}$ | 98065 | ${ }^{95554}$ | 22.551 | ${ }^{89706}$ | ${ }^{8699}$ | ${ }^{8,396}$ | $81 / \mathrm{T}$ | ${ }^{7220}$ | 7899 | ${ }^{74573}$ | | ${ }^{20.125}$ | ${ }_{\text {seas }}$ | ${ }_{609}$ | 81.12 | 112 | |
| Smas ${ }^{\text {a }}$ | 10.73407 | 10.80850 | 10.98302 | 11.00109 | ${ }^{11238797}$ | 1120,082 | 13.30172 | 11.32954 | 11475820 | 1.58470 | 126835 | 1171229 | $11.18,0,07$ | 11.88713 | 11.989 | 1.9896 | 1208985 | 1205828 | ${ }^{121040} 5$ | ${ }^{12129046}$ | ${ }^{12272988}$ |
| ¢ | | | | | | cilit | ， | | | ${ }_{182055}$ | | | | | | ${ }_{19,688}^{19}$ | ${ }_{18805}$ | cos | | ${ }_{10888}$ | ${ }_{\text {peobs }}$ |
| ${ }^{58}$ | ${ }_{67}$ | ${ }_{67}$ | ${ }_{612}$ | ${ }^{11}$ | ${ }^{61}$ | ${ }^{61}$ | ${ }_{6} 10$ | ${ }_{60}$ | ${ }^{10}$ | ${ }_{60}$ | 08 | ${ }^{\text {¢ }}$ | ${ }_{6}$ | ${ }^{611}$ | ${ }_{61}$ | ${ }_{611}$ | ${ }_{61}$ | ${ }^{6}$ | ${ }^{69}$ | ${ }^{69}$ | ${ }_{\text {cose }}$ |
| ${ }_{\substack{3,25 \\ 2325}}$ | cosis | | （inct | cose | | | cois | cisis | | | cos | （inctis | | | | 边 | | cise | cose | | |
| ${ }^{1.0,46}$ | ${ }^{10.520}$ | ${ }^{10,2020}$ | ${ }^{\text {jo，asa }}$ | ${ }^{\text {10，} 2,98}$ | ${ }_{122}^{1122}$ | ${ }^{112288}$ | ${ }^{11230}$ | ${ }^{12,587}$ | ${ }^{11,629}$ | 退 | ${ }^{112089}$ | ${ }^{12004}$ | ${ }^{12113}$ | ${ }^{12219}$ | ${ }^{12323}$ | ${ }^{\text {Reala }}$ | 退 | 退 | | ， 70 | |
| | | | | ${ }^{3}$ | | | | | | 2 | | | | 2 | | | | 2 | | | |
| 11.68 | 1178 | 1.973 | 1219 | 1220 | 12.47 | ${ }^{125680}$ | ${ }^{12989}$ | ${ }^{1283}$ | ${ }^{12,96}$ | 1307 | 1325 | ${ }^{13,38}$ | ${ }^{13,484}$ | ${ }^{13,56}$ | 2， 2 5 | 13，78 | 2，988 | 2984 | L0， | A，488 | ${ }_{1427}$ |

	${ }^{2689}$	${ }_{105} 109$	${ }^{2086}$	2214	${ }^{2388}$	${ }^{2} 23 \times 0$	${ }^{208 \%}$	${ }^{2354}$	${ }^{2534}$	${ }^{2946}$	${ }^{22465}$	${ }^{25258}$	${ }^{2070}$	${ }^{2} 2750$	${ }^{2398}$	${ }^{26965}$	2786	${ }^{2664}$	270\％	${ }^{2898}$	2988
		coicle		com			cos				cin					con				cose	${ }^{1.887,783}$
${ }^{12783.49}$	92179		20331	${ }^{201681}$	${ }^{383} 8$	${ }^{88}$	88	${ }_{8}^{882388}$			${ }_{\text {kline }}$	，	cien	${ }^{1214,37}$	（10）295		（18298		）		frami
500．en	56，	552734	，	5202822	5172，${ }^{\text {anc }}$	5， 5	\％ene，	483322		4．5s，		4，	424，39		402780	\％ena	cemer	3nhare	364．a66	comer	
	${ }_{\text {chene }}^{4.808}$	${ }_{\text {a }}^{\text {a }}$						${ }_{\substack{\text { a }}}^{\text {a，izo }}$					${ }_{\substack{3,785 \\ 6.230}}^{\substack{\text { a }}}$								cisile
${ }_{4}^{487}$	$\underset{\substack{487 \\ 4.54}}{\substack{\text { a }}}$	${ }_{\substack{531 \\ 483}}^{583}$	${ }_{\substack{52 \\ 4.23}}^{\text {and }}$	${ }_{\substack{512}}^{4.588}$	$\substack{507 \\ 4.45}_{\substack{\text { a }}}$	${ }_{\substack{566 \\ 4.306}}^{\text {and }}$	$\underbrace{\text { ate }}_{\substack{566 \\ 4.169}}$	$\underset{\substack{\text { sion } \\ \text { and }}}{\text { and }}$		${ }_{\substack{4.46 \\ 3.76}}^{\text {and }}$	$\underbrace{\substack{\text { a }}}_{\substack{465 \\ 3.611}}$	${ }_{\substack{480 \\ 349}}^{\text {3．49 }}$	${ }_{3}^{485}$	${ }_{\substack{482 \\ 3283}}^{4}$	${ }_{\substack{487 \\ 3065}}^{4}$	${ }_{\substack{482 \\ 2950}}^{4}$	${ }_{\substack{478 \\ 2985}}$	${ }_{\text {c }}^{4765}$	2589	${ }_{\substack{488 \\ 2889}}^{4}$	${ }^{247}$
${ }_{6}{ }_{6} 9$	4，179	${ }_{4}^{4} \mathbf{4} 179$	${ }_{4}^{4} 4$	${ }_{4}^{4}$	${ }_{4}^{4178}$	4．719	${ }_{\text {ctir }}$	4		${ }_{4}$	4tir		${ }_{4} 4178$		（tirs	${ }_{4}^{2}$		cita		ctire	（tat
${ }_{7}^{150}$	－		${ }_{\substack{1.565 \\ 762}}$		${ }_{\substack{1587 \\ 768}}^{1.5}$	${ }_{\substack{1.512 \\ 760}}$	${ }_{\substack{1.58 \\ 760}}$	cise	${ }_{\text {cke }}^{156}$	${ }_{\substack{1.588 \\ 760}}^{\substack{\text { be }}}$	${ }_{\substack{1987 \\ 781}}^{1.10}$	${ }_{161}^{1020}$	${ }_{720}$		${ }_{\substack{1.615 \\ 788}}$	${ }_{\substack{1.199 \\ 763}}$	${ }_{\text {cki }}^{162}$		$\underset{\substack{1.800 \\ 780}}{ }$		${ }_{\substack{1.66 \\ 766}}^{\substack{\text { a }}}$
${ }_{20}^{20}$	${ }_{2}^{20}$	19	19	${ }_{2}^{19}$	${ }^{19}$	19	19	${ }^{18}$	${ }^{18}$	${ }^{18}$	${ }^{18}$	18	17	17	17	1	17	${ }^{16}$	${ }^{16}$	${ }_{16}$	
${ }_{203}$	${ }_{233}$	${ }_{232}$	${ }_{238}$	${ }_{238}$	${ }_{2} 239$	${ }_{238}$	${ }_{2} 2.8$	2384	2389	${ }_{23}{ }^{23}$	${ }_{238}$	${ }_{238}^{238}$	238	${ }_{2} 238$	${ }_{238}$	2001	205	248	243	146	

$$
\begin{gathered}
\text { Cascade Natual Gas } \\
\text { 20111 RP epenand Forecas } \\
\text { Hith }
\end{gathered}
$$

 coll

	cose	come	come	31，528，152	32，271，435	32，989，320													coik		
							${ }_{1,76514}$	${ }_{1,73895}$		120.108	1.1886200	${ }_{1}^{10635736}$	1.168988	${ }_{1}^{1.64439}$	${ }_{1} 1683418$	${ }_{1.66601}$	${ }_{1.80999}$	${ }_{1}^{1888892}$	${ }_{1}^{1 / 8.89585}$	${ }_{1}^{1889851}$	
46.5854	S．1．5248	${ }^{52268.38}$	S228829	Strasas	s570．598	St，5，501		60，94424	${ }^{\text {Begrasar }}$	84723137	${ }^{\text {cfsamare }}$	884127	V．08535	13782241	\％ 5929888	R，34，${ }^{\text {a }}$	8，080122	83757．14	E6s508］	1	
	cisemb																				
¢12．ar	coice	coiche	cisex	cien		coict		coicio	${ }^{6053}$				（1995		（1098	cose	（18729	（89999	cisc	，	（mint
279	${ }^{290}$		${ }_{2985}^{1985}$	${ }_{\text {20，}}^{1095}$	${ }_{\text {cose }}^{1700}$	${ }^{705}$	${ }^{3112}$	${ }_{\text {che }}{ }^{736}$	${ }_{321}^{294}$	${ }_{324}^{324}$	${ }_{\substack{7386}}^{7386}$	${ }^{\text {and }}$	${ }_{3,45}^{174}$	${ }^{\text {3，588 }}$		${ }_{3728}^{173}$	${ }_{\text {a }}^{\text {and }}$	${ }_{395} 9$	${ }_{\text {amb }}$	${ }_{\text {a }}$	${ }_{4020}^{1020}$
S2096	退	A，	， 1238		${ }^{14288}$	${ }^{12384}$	${ }^{4} 1238$	${ }^{13,384}$	${ }^{13,384}$	退	A1394	${ }_{41384}$	， 139	${ }_{\text {che }}^{4.384}$		${ }_{4138}$		$\frac{4.384}{\substack{\text { and }}}$	（12．34	4	
ciele	coss		${ }^{\text {cosb }}$	${ }_{7}$	1218	7 1414	${ }^{2613}$	${ }_{7}$	800	${ }_{\text {d }}$	\％al	abi	${ }_{\text {ax }}$	9，09	边	2，50	，	${ }^{1017}$	1025	\％	
${ }_{5}$	50	${ }_{48}$	${ }_{6}$	${ }_{4}$	4	${ }^{43}$	${ }_{4}{ }^{3}$	4	42	4	${ }^{4}$	40	${ }_{40}$	40	40	40	40	4	${ }_{4}$	${ }^{4}$	
4，688	4.68	4.85	S5724	${ }_{6}^{6,79}$	${ }_{4}^{4785}$	East	S00］	${ }_{51215}$	${ }_{5232}$	， 3,52	， 7,18	6023	， 213	S	边	${ }^{61220}$	S235	${ }^{\text {Brab }}$	6.5	6 600	60，

Cascade Nawural Gas
2011 RPD Demanad Forecast

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

Aberdeen

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

Bellingham

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

	Bremerton																	
	Annual Requirements (Therms)									Annual Change								
	Low			Medium			High			Low			Medium			High		
	Heating	Baseload	Total	$\begin{array}{\|r\|} \hline \text { Heating } \\ \hline 10.16 \% \end{array}$	Baseload	Total	$\begin{array}{\|r\|} \hline \text { Heating } \\ \hline 14.35 \% \end{array}$	Baseload	Total									
2011	17,763,561	12,413,867	30,177,428	18,192,775	12,713,818	30,906,594	18,884,623	13,197,308	32,081,931	7.56\%	7.56\%	7.56\%		10.16\%	10.16\%		14.35\%	14.35\%
2012	17,865,489	12,485,098	30,350,587	18,388,942	12,850,907	31,239,849	19,191,473	13,411,747	32,603,220	0.57\%	0.57\%	0.57\%	1.08\%	1.08\%	1.08\%	1.62\%	1.62\%	1.62\%
2013	18,085,184	12,638,629	30,723,812	18,618,859	13,011,582	31,630,442	19,571,773	13,677,515	33,249,288	1.23\%	1.23\%	1.23\%	1.25\%	1.25\%	1.25	1.98\%	1.98	1.98\%
2014	18,418,548	12,871,597	31,290,146	18,975,931	13,261,118	32,237,050	20,081,632	14,033,825	34,115,457	1.84\%	1.84\%	1.84\%	1.92\%	1.92\%	1.92\%	2.61%	.61	2.61\%
2015	18,816,038	13,149,378	31,965,416	19,430,824	13,579,015	33,009,839	20,628,054	14,415,685	35,043,739	2.16\%	2.16\%	2.16\%	2.40\%	2.40\%	2.40\%	2.72\%	2.72\%	2.72\%
2016	19,197,130	13,415,700	32,612,830	19,906,064	13,911,131	33,817,194	21,200,271	14,815,573	36,015,843	2.03\%	2.03\%	2.03\%	2.45\%	2.45\%	2.45\%	2.77\%	2.77\%	2.77\%
2017	19,552,063	13,663,741	33,215,805	20,342,065	14,215,826	34,557,891	21,754,288	15,202,742	36,957,030	1.85\%	1.85\%	1.85\%	2.19\%	2.19\%	2.19\%	2.61\%	2.61\%	2.61\%
2018	19,928,185	13,926,590	33,854,775	20,802,672	14,537,716	35,340,388	22,337,104	15,610,036	37,947,140	1.92\%	1.92\%	1.92\%	2.26\%	2.26\%	2.26\%	2.68\%	2.68\%	2.68
2019	20,320,498	14,200,753	34,521,251	21,301,031	14,885,988	36,187,019	22,927,109	16,022,355	38,949,464	.97\%	1.97\%	1.97\%	2.40\%	2.40\%	2.40\%	2.64\%	.64	2.64
2020	20,713,970	14,475,727	35,189,697	21,784,908	15,224,140	37,009,047	23,546,032	16,454,882	40,000,915	1.94\%	1.94\%	1.94	2.27\%	2.27\%	2.27\%	2.70\%	2.70\%	2.70\%
2021	21,079,817	14,731,395	35,811,213	22,245,079	15,545,725	37,790,805	24,145,205	16,873,607	41,018,812	1.77\%	1.77\%	1.77\%	2.11\%	2.11\%	2.11\%	2.54\%	2.54\%	2.54\%
2022	21,450,145	14,990,195	36,440,340	22,713,492	15,873,071	38,586,563	24,756,745	17,300,975	42,057,720	1.76\%	1.76\%	1.76\%	2.11\%	2.11\%	2.11\%	2.53\%	2.53\%	2.53\%
2023	21,893,838	15,300,265	37,194,103	23,258,275	16,253,786	39,512,062	25,412,371	17,759,152	43,171,524	2.07\%	2.07\%	2.07\%	2.40\%	2.40\%	2.40\%	2.65\%	2.65\%	2.65\%
2024	22,345,648	15,616,007	37,961,656	23,813,512	16,641,807	40,455,319	26,085,939	18,229,868	44,315,807	2.06\%	2.06\%	2.06\%	2.39\%	2.39\%	2.39\%	2.65\%	2.65%	2.65
2025	22,739,536	15,891,271	38,630,807	24,315,219	16,992,420	41,307,639	26,725,446	18,676,780	45,402,226	1.76\%	1.76\%	1.76\%	2.11\%	2.11\%	2.11\%	2.45\%	2.45\%	. 5 \%
2026	23,134,922	16,167,582	39,302,504	24,821,478	17,346,213	42,167,692	27,397,965	19,146,762	46,544,727	1.74\%	1.74\%	1.74\%	2.08\%	2.08\%	2.08\%	2.52\%	2.52\%	2.52\%
2027	23,546,847	16,455,452	40,002,299	25,369,404	17,729,125	43,098,529	28,075,607	19,620,325	47,695,933	1.78\%	1.78\%	1.78\%	2.21\%	2.21\%	2.21\%	2.47\%	2.47\%	2.47\%
2028	23,944,860	16,733,598	40,678,458	25,885,125	18,089,531	43,974,657	28,769,758	20,105,425	48,875,183	1.69\%	1.69\%	1.69\%	2.03\%	2.03\%	2.03\%	2.47\%	2.47\%	2.47\%
2029	24,325,408	16,999,540	41,324,948	26,387,180	18,440,386	44,827,566	29,455,176	20,584,421	50,039,597	1.59\%	1.59\%	1.59\%	1.94\%	1.94\%	1.94\%	2.38\%	2.38\%	2.38\%
2030	24,475,555	17,104,469	41,580,024	26,633,795	18,612,730	45,246,525	29,816,871	20,837,188	50,654,058	0.62\%	0.62\%	0.62\%	0.93\%	0.93\%	0.93\%	1.23\%	1.23\%	1.23\%
2031	24,859,411	17,372,722	42,232,133	27,144,323	18,969,507	46,113,830	30,525,311	21,332,273	51,857,584	1.57\%	1.57\%	1.57\%	1.92\%	1.92\%	1.92\%	2.38\%	2.38\%	2.38\%
	Peak Day - Baseload									Annual Change								
	Lo			Medium			High			Low			Medium			High		
	Dally	Peak	Total Cor	Dally	eak	otal Core	Daly	Peak	$\begin{array}{c\|} \hline \text { Total Core } \\ \text { Peak } \end{array}$		Peak	Total	Base	Peak	otal	Base	Peak	Total
	Baseload		Peak	Baseload		Peak	Baseload			Base								
2011	34,011	308,902	342,912	34,832	309,797	344,630	36,157	310,940	347,097	7.56\%	-1.32\%	-0.51\%	10.16\%	-1.04\%	-0.01\%	14.35\%	-0.67\%	0.70\%
2012	34,206	311,143	345,348	35,208	312,224	347,432	36,745	313,630	350,374	0.57\%	0.73\%	0.71\%	1.08\%	0.78\%	0.81\%	1.62\%	0.86\%	0.94\%
2013	34,626	315,659	350,285	35,648	314,589	350,237	37,473	319,746	357,219	1.23\%	1.45\%	1.43\%	1.25\%	0.76\%	0.81\%	1.98\%	1.95\%	1.95\%
2014	35,265	320,893	356,157	36,332	321,084	357,416	38,449	327,220	365,669	1.84\%	1.66\%	1.68\%	1.92\%	2.06\%	2.05\%	2.61\%	2.34\%	2.37\%
2015	36,026	326,036	362,061	37,203	327,460	364,663	39,495	334,738	374,233	2.16\%	1.60\%	1.66\%	2.40\%	1.99\%	2.03\%	2.72\%	2.30\%	2.34\%
2016	36,755	331,253	368,008	38,113	333,876	371,989	40,591	342,344	382,934	2.03\%	1.60\%	1.64\%	2.45\%	1.96\%	2.01\%	2.77\%	2.27\%	2.33\%
2017	37,435	336,561	373,996	38,947	340,458	379,405	41,651	350,135	391,786	1.85\%	1.60\%	1.63\%	2.19\%	1.97\%	1.99\%	2.61\%	2.28\%	2.31\%
2018	38,155	341,859	380,014	39,829	347,069	386,898	42,767	357,971	400,738	1.92\%	1.57\%	1.61\%	2.26\%	1.94\%	1.97\%	2.68\%	2.24\%	2.28\%
2019	38,906	347,165	386,072	40,784	353,698	394,481	43,897	365,945	409,842	1.97\%	1.55\%	1.59\%	2.40\%	1.91\%	1.96\%	2.64\%	2.23\%	2.27\%
2020	39,660	352,500	392,159	41,710	360,422	402,132	45,082	373,992	419,074	1.94\%	1.54\%	1.58\%	2.27\%	1.90\%	1.94\%	2.70\%	2.20\%	2.25\%
2021	40,360	357,941	398,301	42,591	367,295	409,886	46,229	382,242	428,471	1.77\%	1.54\%	1.57\%	2.11\%	1.91\%	1.93\%	2.54\%	2.21\%	2.24\%
2022	41,069	363,404	404,473	43,488	374,242	417,730	47,400	390,591	437,991	1.76\%	1.53\%	1.55\%	2.11\%	1.89\%	1.91\%	2.53\%	2.18\%	2.22\%
2023	41,919	368,778	410,696	44,531	381,105	425,636	48,655	398,976	447,631	2.07\%	1.48\%	1.54\%	2.40\%	1.83\%	1.89\%	2.65\%	2.15\%	2.20\%
2024	42,784	374,162	416,946	45,594	388,037	433,631	49,945	407,476	457,421	2.06\%	1.46\%	1.52\%	2.39\%	1.82\%	1.88\%	2.65\%	2.13\%	2.19\%
2025	43,538	379,685	423,223	46,555	395,156	441,711	51,169	416,161	467,330	1.76\%	1.48\%	1.51\%	2.11\%	1.83\%	1.86\%	2.45\%	2.13\%	2.17\%
2026	44,295	385,241	429,535	47,524	402,340	449,864	52,457	424,928	477,385	1.74\%	1.46\%	1.49\%	2.08\%	1.82\%	1.85\%	2.52\%	2.11\%	2.15\%
2027	45,083	390,790	435,873	48,573	409,519	458,092	53,754	433,809	487,563	1.78\%	1.44\%	1.48\%	2.21\%	1.78\%	1.83\%	2.47\%	2.09\%	2.13\%
2028	45,845	396,403	442,249	49,560	416,833	466,394	55,083	442,802	497,885	1.69\%	1.44\%	1.46\%	2.03\%	1.79\%	1.81\%	2.47\%	2.07\%	2.12\%
2029	46,574	402,075	448,649	50,522	424,271	474,793	56,396	451,960	508,355	1.59\%	1.43\%	1.45\%	1.94\%	1.78\%	1.80\%	2.38\%	2.07\%	2.10\%
2030	46,862	407,171	454,033	50,994	431,086	482,080	57,088	460,582	517,670	0.62\%	1.27\%	1.20\%	0.93\%	1.61\%	1.53\%	1.23\%	1.91\%	1.83\%
2031	47,596	412,942	460,538	51,971	438,706	490,678	58,445	470,021	528,465	1.57\%	1.42\%	1.43\%	1.92\%	1.77\%	1.78\%	2.38\%	2.05\%	2.09\%
	Therm Usage by Class									Annual Change								
	Low			Medium			High			Low						High		
	RES	COM/IND	Total	RES	COM/IND	Total	RES	COMIIND	Total	RES ${ }^{\text {COM/IND }}$		Total	RES ${ }^{\text {M }}$ Medium		ota	RES ${ }^{\text {CoM/IND }}$ Total		
2011	19,846,854	10,330,574	30,177,42	20,368,359	10,538,235	30,906,59	21,234,902	10,847,029	32,081,931	6.82	9.01\%	7.56\%	9.63\%	11.20\%	10.16	14.29\%	14.46\%	14.35\%
2012	19,693,206	10,657,381	30,350,587	20,315,617	10,924,232	31,239,849	21,290,850	11,312,370	32,603,220	-0.77\%	3.16\%	0.57\%	-0.26\%	3.66\%	1.08	0.26\%	4.29%	1.62\%
2013	19,714,458	11,009,354	30,723,812	20,316,912	11,313,530	31,630,442	21,502,190	11,747,098	33,249,288	0.11\%	3.30\%	1.23\%	0.01\%	3.56\%	1.25\%	0.99\%	3.84%	1.98\%
2014	19,930,513	11,359,633	31,290,146	20,535,102	11,701,948	32,237,050	21,929,645	12,185,812	34,115,457	1.10\%	3.18\%	1.84\%	1.07\%	3.43\%	1.92\%	1.99\%	3.73\%	2.61\%
2015	20,262,452	11,702,964	31,965,416	20,926,863	12,082,976	33,009,839	22,421,511	12,622,228	35,043,739	1.67\%	3.02\%	2.16\%	1.91\%	3.26\%	2.40\%	2.24\%	3.58\%	2.72\%
2016	20,567,624	12,045,206	32,612,830	21,352,880	12,464,314	33,817,194	22,952,400	13,063,443	36,015,843	1.51\%	2.92\%	2.03\%	2.04\%	3.16\%	2.45\%	2.37\%	3.50\%	2.77\%
2017	20,814,540	12,401,265	33,215,805	21,693,340	12,864,551	34,557,891	23,430,505	13,526,525	36,957,030	1.20\%	2.96\%	1.85\%	1.59\%	3.21\%	2.19\%	2.08\%	3.54%	2.61\%
2018	21,091,668	12,763,107	33,854,775	22,066,916	13,273,472	35,340,388	23,945,404	14,001,736	37,947,140	1.33\%	2.92\%	1.92\%	1.72\%	3.18\%	2.26\%	2.20\%	3.51\%	2.68\%
2019	21,401,029	13,120,222	34,521,251	22,507,710	13,679,309	36,187,019	24,469,219	14,480,245	38,949,464	1.47\%	2.80\%	1.97\%	2.00\%	3.06\%	2.40\%	2.19\%	3.42\%	2.64\%
2020	21,711,768	13,477,929	35,189,697	22,920,930	14,088,117	37,009,047	25,034,112	14,966,803	40,000,915	1.45\%	2.73\%	1.94\%	1.84\%	2.99\%	2.27\%	2.31\%	3.36\%	2.70\%
2021	21,961,329	13,849,884	35,811,213	23,274,084	14,516,721	37,790,805	25,541,368	15,477,444	41,018,812	1.15\%	2.76\%	1.77\%	1.54\%	3.04\%	2.11\%	2.03\%	3.41\%	2.54\%
2022	22,210,440	14,229,900	36,440,340	23,629,820	14,956,743	38,586,563	26,054,588	16,003,132	42,057,720	1.13\%	2.74\%	1.76\%	1.53\%	3.03\%	2.11\%	2.01\%	3.40\%	2.53\%
2023	22,591,995	14,602,108	37,194,103	24,122,976	15,389,086	39,512,062	26,645,466	16,526,058	43,171,524	1.72\%	2.62\%	2.07\%	2.09\%	2.89\%	2.40\%	2.27\%	3.27\%	2.65\%
2024	23,010,120	14,951,536	37,961,656	24,658,191	15,797,128	40,455,319	27,283,390	17,032,417	44,315,807	1.85\%	2.39\%	2.06\%	2.22\%	2.65\%	2.39\%	2.39\%	3.06\%	2.65\%
2025	23,297,157	15,333,650	38,630,807	25,060,870	16,246,769	41,307,639	27,819,648	17,582,578	45,402,226	1.25\%	2.56\%	1.76\%	1.63\%	2.85\%	2.11\%	1.97\%	3.23\%	2.45\%
2026	23,585,328	15,717,176	39,302,504	25,466,571	16,701,121	42,167,692	28,401,456	18,143,271	46,544,727	1.24\%	2.50\%	1.74\%	1.62\%	2.80\%	2.08\%	2.09\%	3.19\%	2.52\%
2027	23,908,688	16,093,611	40,002,299	25,948,370	17,150,159	43,098,529	28,990,704	18,705,229	47,695,933	1.37\%	2.40\%	1.78\%	1.89\%	2.69\%	2.21\%	2.07\%	3.10\%	2.47\%
2028	24,198,888	16,479,570	40,678,458	26,361,329	17,613,328	43,974,657	29,588,880	19,286,303	48,875,183	1.21\%	2.40\%	1.69\%	1.59\%	2.70\%	2.03\%	2.06\%	3.11\%	2.47\%
2029	24,453,815	16,871,133	41,324,948	26,740,861	18,086,705	44,827,566	30,155,398	19,884,199	50,039,597	1.05\%	2.38\%	1.59\%	1.44\%	2.69\%	1.94\%	1.91\%	3.10\%	2.38\%
2030	24,708,891	16,871,133	41,580,024	27,159,820	18,086,705	45,246,525	30,769,859	19,884,199	50,654,058	1.04\%	0.00\%	0.62\%	1.57\%	0.00\%	0.93\%	2.04\%	0.00\%	1.23\%
2031	24,966,141	17,265,992	42,232,133	27,546,816	18,567,014	46,113,830	31,362,558	20,495,026	51,857,584	1.04\%	2.34\%	1.57\%	1.42\%	2.66\%	1.92\%	1.93\%	3.07\%	2.38\%
	Customer Count Forecast									Annual Change								
	Low			Medium			High			Low			Medium			High		
	RES	COM/IND	Total															
2011	27,914	2,532	30,446	28,017	2,582	30,599	28,163	2,655	30,818	-0.57\%	0.13\%	-0.51\%	-0.20\%	2.08\%	-0.01\%	0.32\%	4.97\%	0.70\%
2012	28,053	2,609	30,662	28,177	2,670	30,847	28,350	2,759	31,109	0.50\%	3.05\%	0.71\%	0.57\%	3.44\%	0.81\%	0.66\%	3.92\%	0.94\%
2013	28,407	2,694	31,101	28,336	2,761	31,097	28,862	2,854	31,716	1.26\%	3.23\%	1.43\%	0.56\%	3.37\%	0.81\%	1.81\%	3.47\%	1.95\%
2014	28,843	2,779	31,622	28,882	2,852	31,734	29,515	2,952	32,467	1.53\%	3.17\%	1.68\%	1.93\%	3.31\%	2.05\%	2.26\%	3.41\%	2.37\%
2015	29,281	2,865	32,146	29,433	2,944	32,377	30,177	3,050	33,227	1.52\%	3.10\%	1.66\%	1.91\%	3.24\%	2.03\%	2.24\%	3.33\%	2.34\%
2016	29,722	2,952	32,674	29,990	3,038	33,028	30,850	3,150	34,000	1.51\%	3.04\%	1.64\%	1.89\%	3.17\%	2.01\%	2.23\%	3.27\%	2.33\%
2017	30,166	3,040	33,206	30,554	3,132	33,686	31,535	3,251	34,786	1.49\%	2.97\%	1.63\%	1.88\%	3.11\%	1.99\%	2.22\%	3.20\%	2.31\%
2018	30,612	3,128	33,740	31,124	3,228	34,352	32,228	3,352	35,580	1.48\%	2.90\%	1.61\%	1.87\%	3.04\%	1.97\%	2.20\%	3.13\%	2.28\%
2019	31,061	3,217	34,278	31,701	3,324	35,025	32,933	3,456	36,389	1.47\%	2.84\%	1.59\%	1.85\%	2.98\%	1.96\%	2.19\%	3.08\%	2.27\%
2020	31,512	3,307	34,819	32,283	3,421	35,704	33,648	3,560	37,208	1.45\%	2.78\%	1.58\%	1.84\%	2.93\%	1.94\%	2.17\%	3.03\%	2.25\%
2021	31,967	3,397	35,364	32,873	3,520	36,393	34,376	3,667	38,043	1.44\%	2.73\%	1.57\%	1.83\%	2.88\%	1.93\%	2.16\%	2.99\%	2.24\%
2022	32,424	3,488	35,912	33,470	3,619	37,089	35,114	3,774	38,888	1.43\%	2.68\%	1.55\%	1.82\%	2.82\%	1.91\%	2.15\%	2.93\%	2.22\%
2023	32,885	3,580	36,465	34,072	3,719	37,791	35,862	3,882	39,744	1.42\%	2.62\%	1.54\%	1.80\%	2.76\%	1.89\%	2.13\%	2.86\%	2.20\%
2024	33,348	3,671	37,019	34,681	3,820	38,501	36,622	3,991	40,613	1.41\%	2.57\%	1.52\%	1.79\%	2.71\%	1.88\%	2.12\%	2.81\%	2.19\%
2025	33,813	3,764	37,577	35,297	3,921	39,218	37,392	4,101	41,493	1.39\%	2.51\%	1.51\%	1.78\%	2.65\%	1.86\%	2.10\%	2.75\%	2.17\%
2026	34,281	3,856	38,137	35,919	4,023	39,942	38,174	4,212	42,386	1.38\%	2.46\%	1.49\%	1.76\%	2.60\%	1.85\%	2.09\%	2.70\%	2.15\%
2027	34,751	3,949	38,700	36,547	4,126	40,673	38,966	4,323	43,289	1.37\%	2.40\%	1.48\%	1.75\%	2.55\%	1.83\%	2.07\%	2.65\%	2.13\%
2028	35,224	4,042	39,266	37,181	4,229	41,410	39,770	4,436	44,206	1.36\%	2.36\%	1.46\%	1.73\%	2.50\%	1.81\%	2.06\%	2.60\%	2.12\%
2029	35,699	4,135	39,834	37,823	4,332	42,155	40,586	4,549	45,135	1.35\%	2.31\%	1.45\%	1.73\%	2.45\%	1.80\%	2.05\%	2.56\%	2.10\%
2030	36,177	4,135	40,312	38,470	4,332	42,802	41,413	4,549	45,962	1.34\%	0.00\%	1.20\%	1.71\%	0.00\%	1.53\%	2.04\%	0.00\%	1.83\%
2031	36,661	4,229	40,890	39,129	4,437	43,566	42,257	4,664	46,921	1.34\%	2.26\%	1.43\%	1.71\%	2.41\%	1.78\%	2.04\%	2.52\%	2.09\%

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

Bremerton

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

	Kennewick																	
	Annual Requirements (Therms)									Annual Change								
	Low			Medium			High			Low			Medium			High		
	Heating	Baseload	Total															
2011	18,017,773	7,499,572	25,517,345	18,333,901	7,631,154	25,965,055	18,794,708	7,822,957	26,617,665	5.79\%	5.79\%	5.79\%	7.65\%	7.65\%		10.35\%	10.35\%	10.35\%
2012	18,747,457	7,803,289	26,550,746	19,062,450	7,934,400	26,996,850	19,599,255	8,157,835	27,757,090	4.05\%	4.05\%	4.05\%	3.97\%	3.97\% 2.99\%	3.97\%2.49\%	4.28\%	4.28\%	4.28\%
2013	19,326,324	8,044,232	27,370,556	19,536,765	8,131,825	27,668,590	20,185,534	8,401,863	28,587,397	$3.09 \%$$3.30 \%$	$3.09 \%$$3.30 \%$	3.09\%	2.49\%			2.99\%	2.99\%	2.99\%
2014	19,963,481	8,309,438	28,272,918	20,186,100	8,402,099	28,588,199	20,838,925	8,673,825	29,512,750					3.32\%	$\begin{aligned} & 2.49 \% \\ & 3.32 \% \end{aligned}$	3.24\%	3.24\%	3.24\%
2015	20,652,967	8,596,424	29,249,391	20,903,869	8,700,857	29,604,726	21,530,593	8,961,720	30,492,313	3.45\%	3.45\%	3.45\%	3.56\%	3.56\%	3.56\%	3.32\%	3.32\%	3.32\%
2016	21,388,382	8,902,527	30,290,908	21,672,706	9,020,872	30,693,577	22,257,364	9,264,225	31,521,589	3.56\%	3.56\%	3.56\%	3.68\%	3.68\%	3.68\%	3.38\%	3.38\%	3.38%
2017	22,115,590	9,205,214	31,320,804	22,411,334	9,328,312	31,739,646	22,963,279	9,558,049	32,521,328	3.40% 3.18%	$3.40 \%$$3.18 \%$	$3.40 \%$$3.18 \%$	$3.41 \%$$3.14 \%$	$3.41 \%$$3.14 \%$	3.41\%	$3.17 \%$$2.89 \%$	$3.17 \%$$2.89 \%$	
2018	22,818,188	9,497,658	32,315,845	23,115,325	9,621,336	32,736,661	23,626,781	9,834,220	33,461,002						$3.14 \%$$3.18 \%$3.23			$\begin{aligned} & 3.17 \% \\ & 2.89 \% \end{aligned}$
2019	23,541,610	9,798,769	33,340,379	23,850,325	9,927,266	33,777,591	24,299,728	10,114,322	34,414,050	3.17\%	3.17\%	3.18% 3.17% 3	3.18\%	3.18\%		2.85\%	2.85\%	2.85\%
2020	24,298,750	10,113,915	34,412,666	24,619,816	10,247,553	34,867,368	24,994,019	10,403,308	35,397,327	3.22\%	3.22\%	3.22\%	3.23\%	3.23\%	3.18\%	2.86\%	2.86\%	2.86\%
2021	25,042,444	10,423,464	35,465,909	25,355,794	10,553,890	35,909,684	25,665,301	10,682,717	36,348,017	3.06\%	3.06\%	3.06\%	2.99\%	2.99\%	2.99\%	2.69\%	2.69\%	$\begin{aligned} & 2.69 \% \\ & 2.45 \% \end{aligned}$
2022	25,758,159	10,721,367	36,479,527	26,051,651	10,843,528	36,895,178	26,293,294	10,944,107	37,237,401	2.86\%	2.86\%	2.86\% 2.87%	2.74\%	2.74\%	$\begin{aligned} & 2.74 \% \\ & 2.80 \% \end{aligned}$	$2.45 \%$$2.41 \%$	2.45\% 2.41%	
2023	26,497,786	11,029,224	37,527,010	26,782,359	11,147,672	37,930,031	26,925,846	11,207,396	38,133,242	2.87\%								2.45% 2.41%
2024	27,336,162	11,378,183	38,714,345	27,648,488	11,508,183	39,156,671	27,643,391	11,506,061	39,149,453	3.16\%	3.16\%	2.87% 3.16%	3.23\%	3.23\%	2.80% 3.23%	2.66\%	2.66%	2.46\%
2025	28,159,759	11,720,990	39,880,749	28,447,313	11,840,679	40,287,992	28,338,654	11,795,452	40,134,106	3.01\%	3.01\%	3.01\%	2.89\%	2.89\%	2.89\%	2.52\%	2.52\%	2.52\%
2026	28,916,291	12,035,883	40,952,174	29,171,525	12,142,119	41,313,644	28,946,605	12,048,500	40,995,105	2.69\%	2.69\%	2.69\%	2.55\%	2.55\%	2.55\%	2.15\%	2.15%	2.15\%2.15\%
2027	29,702,147	12,362,981	42,065,127	29,935,027	12,459,913	42,394,941	29,568,217	12,307,235	41,875,452	2.72\%	$2.72 \%$$2.67 \%$	2.72\%	$2.62 \%$$2.52 \%$	2.62\%				
2028	30,494,248	12,692,679	43,186,927	30,689,483	12,773,942	43,463,425	30,188,206	12,565,294	42,753,500					2.52\%	2.52\%	2.10\%	2.10\%	2.10\%
2029	31,263,487	13,012,861	44,276,348	31,409,548	13,073,656	44,483,203	30,771,410	12,808,042	43,579,452	2.52\%	2.52\%	2.52\%	2.35\%	2.35\%	2.35\%	1.93\%	1.93\%	1.93\%
2030	31,642,209	13,170,497	44,812,706	31,843,791	13,254,401	45,098,192	31,242,165	13,003,985	44,246,150	1.21\%	1.21\%	1.21\%	1.38\%	1.38\%	1.38\%	1.53\%	1.53\%	1.53\%
2031	32,410,587	13,490,320	45,900,907	32,558,030	13,551,691	46,109,721	31,814,261	13,242,110	45,056,371	2.43\%	2.43\%	2.43\%	2.24\%	2.24\%	2.24\%	1.83\%	1.83\%	1.83\%
				Pea	kay - Baseloa									ual Change				
		Low			Medium			High			Low			Medium			High	
	Dally		otal core	Dally		Total Core	Daily		otal Core									
	Baseload	Peak	Peak	Baseload	Peak	Peak	Baseload	Peak	Peak	Base	Peak	Total	Base	Peak	Total	Base	Peak	Total
2011	20,547	355,181	375,728	20,907	360,741	381,648	21,433	369,368	390,801	5.79\%	1.06\%	1.31\%	7.65\%	2.64\%	2.91\%	10.35\%	5.10\%	5.37\%
2012	21,379	364,395	385,774	21,738	370,984	392,722	22,350	380,947	403,298	4.05\%	2.59\%	2.67\%	3.97\%	2.84\%	2.90\%	4.28\%	3.13\%	3.20\%
2013	22,039	377,320	399,359	22,279	381,568	403,847	23,019	396,682	419,701	3.09\%	3.55\%	3.52\%	2.49\%	2.85\%	2.83\%	2.99\%	4.13\%	4.07\%
2014	22,766	391,500	414,266	23,019	397,540	420,559	23,764	414,673	438,437	3.30\%	3.76\%	3.73\%	3.32\%	4.19\%	4.14\%	3.24\%	4.54\%	4.46\%
2015	23,552	405,912	429,464	23,838	413,830	437,668	24,553	433,120	457,673	3.45\%	3.68\%	3.67\%	3.56\%	4.10\%	4.07\%	3.32\%	4.45\%	4.39\%
2016	24,390	420,543	444,933	24,715	430,461	455,175	25,381	452,099	477,481	3.56\%	3.60\%	3.60\%	3.68\%	4.02\%	4.00\%	3.38\%	4.38\%	4.33\%
2017	25,220	435,439	460,658	25,557	447,539	473,096	26,186	471,656	497,843	3.40\%	3.54\%	3.53\%	3.41\%	3.97\%	3.94\%	3.17\%	4.33\%	4.26\%
2018	26,021	450,616	476,637	26,360	465,033	491,393	26,943	491,761	518,704	3.18\%	3.49\%	3.47\%	3.14\%	3.91\%	3.87\%	2.89\%	4.26\%	4.19\%
2019	26,846	466,025	492,871	27,198	482,908	510,106	27,710	512,464	540,174	3.17\%	3.42\%	3.41\%	3.18\%	3.84\%	3.81\%	2.85\%	4.21\%	4.14\%
2020	27,709	481,684	509,393	28,075	501,175	529,250	28,502	533,749	562,251	3.22\%	3.36\%	3.35\%	3.23\%	3.78\%	3.75\%	2.86\%	4.15\%	4.09\%
2021	28,557	497,631	526,189	28,915	519,946	548,861	29,268	555,705	584,972	3.06\%	3.31\%	3.30\%	2.99\%	3.75\%	3.71\%	2.69\%	4.11\%	4.04\%
2022	29,374	513,918	543,292	29,708	539,196	568,905	29,984	578,316	608,300	2.86\%	3.27\%	3.25\%	2.74\%	3.70\%	3.65\%	2.45\%	4.07\%	3.99\%
2023	30,217	530,433	560,650	30,542	558,817	589,359	30,705	601,452	632,158	2.87\%	3.21\%	3.20\%	2.80\%	3.64\%	3.60\%	2.41\%	4.00\%	3.92\%
2024	31,173	547,105	578,278	31,529	578,715	610,244	31,523	625,152	656,676	3.16\%	3.14\%	3.14\%	3.23\%	3.56\%	3.54\%	2.66\%	3.94\%	3.88\%
2025	32,112	564,062	596,175	32,440	599,114	631,555	32,316	649,422	681,739	3.01\%	3.10\%	3.09\%	2.89\%	3.52\%	3.49\%	2.52\%	3.88\%	3.82\%
2026	32,975	581,346	614,321	33,266	619,993	653,259	33,010	674,412	707,422	2.69\%	3.06\%	3.04\%	2.55\%	3.48\%	3.44\%	2.15\%	3.85\%	3.77\%
2027	33,871	598,832	632,703	34,137	641,271	675,408	33,718	700,022	733,741	2.72\%	3.01\%	2.99\%	2.62\%	3.43\%	3.39\%	2.15\%	3.80\%	3.72\%
2028	34,774	616,560	651,334	34,997	662,985	697,982	34,425	726,270	760,696	2.67\%	2.96\%	2.94\%	2.52\%	3.39\%	3.34\%	2.10\%	3.75\%	3.67\%
2029	35,652	634,582	670,233	35,818	685,182	721,000	35,091	753,197	788,287	2.52\%	2.92\%	2.90\%	2.35\%	3.35\%	3.30\%	1.93\%	3.71\%	3.63\%
2030	36,084	650,637	686,721	36,313	704,999	741,312	35,627	777,304	812,931	1.21\%	2.53\%	2.46\%	1.38\%	2.89\%	2.82\%	1.53\%	3.20\%	3.13\%
2031	36,960	669,369	706,329	37,128	728,278	765,406	36,280	805,765	842,045	2.43\%	2.88\%	2.86\%	2.24\%	3.30\%	3.25\%	1.83\%	3.66\%	3.58\%
				Ther	m Usage by Cla									nual Change				
		Low			Medium			High			Low			Medium			High	
	RES	COM/IND	Total	RES	COM/IND	otal												
2011	11,272,737	14,244,608	25,517,345	11,439,814	14,525,241	25,965,05	11,699,773	14,917,892	26,617,665	1.09\%	9.84\%	5.79\%	2.59\%	12.00\%	7.65\%	4.92\%	15.03\%	10.35\%
2012	11,873,368	14,677,378	26,550,746	12,066,276	14,930,573	26,996,850	12,363,673	15,393,417	27,757,090	5.33\%	3.04\%	4.05\%	5.48\%	2.79\%	3.97\%	5.67\%	3.19\%	4.28\%
2013	12,216,636	15,153,921	27,370,556	12,305,182	15,363,407	27,668,590	12,765,485	15,821,912	28,587,397	2.89\%	3.25\%	3.09\%	1.98\%	2.90\%	2.49\%	3.25\%	2.78\%	2.99\%
2014	12,614,064	15,658,855	28,272,918	12,747,446	15,840,753	28,588,199	13,251,242	16,261,509	29,512,750	3.25\%	3.33\%	3.30\%	3.59\%	3.11\%	3.32\%	3.81\%	2.78\%	3.24\%
2015	13,040,575	16,208,816	29,249,391	13,220,273	16,384,454	29,604,726	13,768,316	16,723,996	30,492,313	3.38\%	3.51\%	3.45\%	3.71\%	3.43\%	3.56\%	3.90\%	2.84\%	3.32\%
2016	13,510,456	16,780,452	30,290,908	13,738,737	16,954,840	30,693,577	14,334,383	17,187,206	31,521,589	3.60\%	3.53\%	3.56\%	3.92\%	3.48\%	3.68\%	4.11\%	2.77\%	3.38\%
2017	14,003,102	17,317,702	31,320,804	14,283,187	17,456,460	31,739,646	14,927,775	17,593,553	32,521,328	3.65\%	3.20\%	3.40\%	3.96\%	2.96\%	3.41\%	4.14\%	2.36\%	3.17\%
2018	14,468,705	17,847,140	32,315,845	14,801,648	17,935,013	32,736,661	15,493,569	17,967,433	33,461,002	3.32\%	3.06\%	3.18\%	3.63\%	2.74\%	3.14\%	3.79\%	2.13\%	2.89\%
2019	14,931,828	18,408,550	33,340,379	15,319,909	18,457,682	33,777,591	16,060,382	18,353,668	34,414,050	3.20\%	3.15\%	3.17\%	3.50\%	2.91\%	3.18\%	3.66\%	2.15\%	2.85\%
2020	15,428,758	18,983,907	34,412,666	15,874,655	18,992,714	34,867,368	16,666,103	18,731,224	35,397,327	3.33\%	3.13\%	3.22\%	3.62\%	2.90\%	3.23\%	3.77\%	2.06\%	2.86\%
2021	15,942,426	19,523,483	35,465,909	16,450,029	19,459,655	35,909,684	17,293,830	19,054,187	36,348,017	3.33\%	2.84\%	3.06\%	3.62\%	2.46\%	2.99\%	3.77\%	1.72\%	2.69\%
2022	16,429,405	20,050,122	36,479,527	16,998,937	19,896,241	36,895,178	17,894,097	19,343,304	37,237,401	3.05\%	2.70\%	2.86\%	3.34\%	2.24\%	2.74\%	3.47\%	1.52\%	2.45\%
2023	16,908,008	20,619,002	37,527,010	17,541,128	20,388,904	37,930,031	18,485,737	19,647,506	38,133,242	2.91\%	2.84\%	2.87\%	3.19\%	2.48\%	2.80\%	3.31\%	1.57\%	2.41\%
2024	17,429,635	21,284,710	38,714,345	18,129,647	21,027,024	39,156,671	19,127,395	20,022,057	39,149,453	3.09\%	3.23\%	3.16\%	3.36\%	3.13\%	3.23\%	3.47\%	1.91\%	2.66\%
2025	18,043,806	21,836,943	39,880,749	18,816,408	21,471,584	40,287,992	19,870,733	20,263,372	40,134,106	3.52\%	2.59\%	3.01\%	3.79\%	2.11\%	2.89\%	3.89\%	1.21\%	2.52\%
2026	18,561,826	22,390,347	40,952,174	19,404,022	21,909,621	41,313,644	20,510,189	20,484,916	40,995,105	2.87\%	2.53\%	2.69\%	3.12\%	2.04\%	2.55\%	3.22\%	1.09\%	2.15\%
2027	19,086,718	22,978,409	42,065,127	20,001,865	22,393,075	42,394,941	21,159,896	20,715,556	41,875,452	2.83\%	2.63\%	2.72\%	3.08\%	2.21\%	2.62\%	3.17\%	1.13\%	2.15\%
2028	19,648,781	23,538,146	43,186,927	20,640,495	22,822,930	43,463,425	21,852,518	20,900,983	42,753,500	2.94\%	2.44\%	2.67\%	3.19\%	1.92\%	2.52\%	3.27\%	0.90\%	2.10\%
2029	20,192,452	24,083,896	44,276,348	21,261,593	23,221,611	44,483,203	22,525,728	21,053,724	43,579,452	2.77\%	2.32\%	2.52\%	3.01\%	1.75\%	2.35\%	3.08\%	0.73\%	1.93\%
2030	20,728,810	24,083,896	44,812,706	21,876,581	23,221,611	45,098,192	23,192,426	21,053,724	44,246,150	2.66\%	0.00\%	1.21\%	2.89\%	0.00\%	1.38\%	2.96\%	0.00\%	1.53\%
2031	21,276,144	24,624,763	45,900,907	22,504,999	23,604,722	46,109,721	23,872,738	21,183,633	45,056,371	2.64\%	2.25\%	2.43\%	2.87\%	1.65\%	2.24\%	2.93\%	0.62\%	1.83\%
				Custo	ner Count Fore	cast								ual Change				
		Low			Medium			High			Low			Medium			High	
	RES	COM/IND	Total															
2011	20,511	3,166	23,677	20,815	3,235	24,050	21,288	3,339	24,627	1.09\%	2.77\%	1.31\%	2.59\%	5.01\%	2.91\%	4.92\%	8.38\%	5.37\%
2012	21,021	3,289	24,310	21,371	3,377	24,748	21,911	3,504	25,415	2.49\%	3.89\%	2.67\%	2.67\%	4.38\%	2.90\%	2.93\%	4.93\%	3.20\%
2013	21,745	3,421	25,166	21,927	3,522	25,449	22,787	3,661	26,448	3.44\%	4.02\%	3.52\%	2.60\%	4.29\%	2.83\%	4.00\%	4.50\%	4.07\%
2014	22,550	3,556	26,106	22,832	3,670	26,502	23,806	3,823	27,629	3.70\%	3.93\%	3.73\%	4.13\%	4.21\%	4.14\%	4.47\%	4.42\%	4.46\%
2015	23,371	3,693	27,064	23,759	3,822	27,581	24,853	3,988	28,841	3.64\%	3.84\%	3.67\%	4.06\%	4.12\%	4.07\%	4.40\%	4.32\%	4.39\%
2016	24,207	3,831	28,038	24,708	3,976	28,684	25,932	4,157	30,089	3.58\%	3.76\%	3.60\%	3.99\%	4.04\%	4.00\%	4.34\%	4.24\%	4.33\%
2017	25,057	3,972	29,029	25,680	4,133	29,813	27,042	4,331	31,373	3.51\%	3.68\%	3.53\%	3.93\%	3.96\%	3.94\%	4.28\%	4.17\%	4.26\%
2018	25,921	4,115	30,036	26,673	4,293	30,966	28,180	4,507	32,687	3.45\%	3.60\%	3.47\%	3.87\%	3.87\%	3.87\%	4.21\%	4.08\%	4.19\%
2019	26,799	4,260	31,059	27,689	4,456	32,145	29,352	4,688	34,040	3.39\%	3.52\%	3.41\%	3.81\%	3.80\%	3.81\%	4.16\%	4.02\%	4.14\%
2020	27,693	4,407	32,100	28,729	4,623	33,352	30,558	4,873	35,431	3.34\%	3.45\%	3.35\%	3.76\%	3.73\%	3.75\%	4.11\%	3.95\%	4.09\%
2021	28,602	4,557	33,159	29,795	4,793	34,588	31,800	5,063	36,863	3.28\%	3.39\%	3.30\%	3.71\%	3.67\%	3.71\%	4.06\%	3.89\%	4.04\%
2022	29,528	4,709	34,237	30,885	4,966	35,851	33,076	5,257	38,333	3.24\%	3.33\%	3.25\%	3.66\%	3.61\%	3.65\%	4.01\%	3.83\%	3.99\%
2023	30,468	4,863	35,331	31,998	5,142	37,140	34,382	5,455	39,837	3.18\%	3.27\%	3.20\%	3.60\%	3.54\%	3.60\%	3.95\%	3.76\%	3.92\%
2024	31,423	5,018	36,441	33,135	5,321	38,456	35,725	5,657	41,382	3.13\%	3.20\%	3.14\%	3.55\%	3.48\%	3.54\%	3.91\%	3.70\%	3.88\%
2025	32,393	5,176	37,569	34,296	5,503	39,799	37,099	5,862	42,961	3.09\%	3.14\%	3.09\%	3.50\%	3.42\%	3.49\%	3.85\%	3.63\%	3.82\%
2026	33,377	5,336	38,713	35,479	5,688	41,167	38,508	6,072	44,580	3.04\%	3.08\%	3.04\%	3.45\%	3.36\%	3.44\%	3.80\%	3.57\%	3.77\%
2027	34,374	5,497	39,871	36,687	5,875	42,562	39,953	6,285	46,238	2.99\%	3.02\%	2.99\%	3.40\%	3.30\%	3.39\%	3.75\%	3.52\%	3.72\%
2028	35,385	5,660	41,045	37,919	6,066	43,985	41,434	6,503	47,937	2.94\%	2.97\%	2.94\%	3.36\%	3.24\%	3.34\%	3.71\%	3.46\%	3.67\%
2029	36,411	5,825	42,236	39,176	6,259	45,435	42,951	6,725	49,676	2.90\%	2.91\%	2.90\%	3.31\%	3.19\%	3.30\%	3.66\%	3.41\%	3.63\%
2030	37,450	5,825	43,275	40,456	6,259	46,715	44,504	6,725	51,229	2.85\%	0.00\%	2.46\%	3.27\%	0.00\%	2.82\%	3.62\%	0.00\%	3.13\%
2031	38,519	5,992	44,511	41,778	6,456	48,234	46,113	6,950	53,063	2.85\%	2.86\%	2.86\%	3.27\%	3.14\%	3.25\%	3.62\%	3.36\%	3.58\%

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

Kennewick

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

Longview

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

Moses Lake

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

Mount Vernon

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

Walla Walla

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

	Wenatchee																	
	Annual Requirements (Therms)									Annual Change								
	Low			Medium			High			Low			Medium			High		
	Heating	Baseload	Total															
2011	7,858,126	2,635,857	10,493,983	7,927,403	2,659,095	10,586,497	8,037,869	2,696,148	10,734,017	4.96\%	4.96\%	4.96\%	5.88\%	5.88\%	5.88\%	7.36\%	7.36\%	7.36\%
2012	7,863,299	2,637,592	10,500,891	7,981,730	2,677,318	10,659,048	8,149,461	2,733,580	10,883,040	0.07\%	0.07\%	0.07\%	0.69\%	0.69\%	0.69\%	1.39\%	1.39\%	1.39\%
2013	7,901,692	2,650,471	10,552,163	8,037,716	2,696,097	10,733,813	8,194,414	2,748,658	10,943,072	0.49\%	0.49\%	0.49\%	0.70\%	0.70\%	0.70\%	0.55\%	.55\%	. 55%
2014	7,965,324	2,671,815	10,637,139	8,087,489	2,712,792	10,800,281	8,267,077	2,773,032	11,040,109	0.81\%	0.81\%	0.81\%	0.62\%	0.62\%	0.62\%	0.89\%	0.89\%	0.89\%
2015	8,044,148	2,698,255	10,742,403	8,165,571	2,738,983	10,904,554	8,337,233	2,796,564	11,133,797	0.99\%	0.99\%	0.99\%	0.97\%	0.97\%	0.97\%	0.85\%	0.85\%	0.85\%
2016	8,109,764	2,720,264	10,830,028	8,229,789	2,760,524	10,990,314	8,401,808	2,818,225	11,220,032	0.82\%	0.82\%	0.82\%	0.79\%	0.79\%	0.79\%	0.77\%	0.77\%	0.77\%
2017	8,164,582	2,738,652	10,903,233	8,293,078	2,781,753	11,074,831	8,463,016	2,838,756	11,301,772	0.68\%	0.68\%	0.68\%	0.77\%	0.77\%	0.77\%	0.73\%	0.73\%	0.73\%
2018	8,227,530	2,759,767	10,987,297	8,356,467	2,803,016	11,159,483	8,531,295	2,861,659	11,392,954	0.77\%	0.77\%	0.77\%	0.76\%	0.76\%	0.76\%	0.81\%	0.81\%	0.81\%
2019	8,300,037	2,784,088	11,084,125	8,419,425	2,824,134	11,243,558	8,592,928	2,882,332	11,475,260	.88\%	0.88\%	0.88\%	0.75\%	0.75\%	0.75\%	0.72\%	0.72\%	0.72\%
2020	8,352,441	2,801,665	11,154,106	8,479,000	2,844,117	11,323,118	8,652,422	2,902,288	11,554,710	0.63\%	0.63\%	0.63\%	0.71\%	0.71\%	0.71\%	0.69\%	0.69\%	0.69\%
2021	8,401,252	2,818,038	11,219,290	8,528,295	2,860,652	11,388,948	8,707,568	2,920,786	11,628,354	0.58\%	0.58\%	0.58\%	0.58\%	0.58\%	0.58\%	0.64\%	0.64\%	0.64\%
2022	8,459,527	2,837,586	11,297,113	8,587,065	2,880,366	11,467,431	8,762,139	2,939,091	11,701,229	0.69\%	0.69\%	0.69\%	0.69\%	0.69\%	0.69\%	0.63\%	0.63\%	0.63\%
2023	8,535,531	2,863,080	11,398,611	8,661,086	2,905,194	11,566,280	8,833,117	2,962,899	11,796,017	0.90\%	0.90\%	0.90\%	0.86\%	0.86\%	0.86\%	0.81\%	0.81\%	0.81\%
2024	8,594,148	2,882,741	11,476,890	8,715,867	2,923,570	11,639,436	8,878,913	2,978,260	11,857,173	0.69\%	0.69\%	0.69\%	0.63\%	0.63\%	0.63\%	0.52\%	0.52\%	0.52\%
2025	8,642,310	2,898,897	11,541,207	8,762,958	2,939,365	11,702,323	8,931,159	2,995,785	11,926,944	0.56\%	0.56\%	0.56\%	0.54\%	0.54\%	0.54\%	0.59\%	0.59\%	0.59\%
2026	8,696,616	2,917,112	11,613,728	8,815,983	2,957,152	11,773,135	8,979,617	3,012,040	11,991,656	0.63\%	0.63\%	0.63\%	0.61\%	0.61\%	0.61\%	0.54\%	0.54\%	0.54\%
2027	8,743,877	2,932,965	11,676,842	8,861,454	2,972,404	11,833,858	9,022,523	3,026,432	12,048,955	0.54\%	0.54\%	0.54\%	0.52\%	0.52\%	0.52\%	0.48\%	0.48\%	0.48\%
2028	8,783,945	2,946,405	11,730,350	8,900,308	2,985,437	11,885,745	9,057,158	3,038,049	12,095,208	0.46\%	0.46\%	0.46\%	0.44\%	0.44%	0.44\%	0.38\%	0.38\%	0.38\%
2029	8,813,845	2,956,434	11,770,279	8,938,574	2,998,273	11,936,847	9,091,110	3,049,438	12,140,548	0.34\%	0.34\%	0.34\%	0.43\%	0.43\%	0.43\%	0.37\%	0.37\%	0.37\%
2030	8,841,263	2,965,631	11,806,894	8,966,261	3,007,560	11,973,821	9,128,505	3,061,981	12,190,486	0.31\%	0.31\%	0.31\%	0.31\%	0.31\%	0.31\%	0.41\%	0.41\%	0.41\%
2031	8,870,579	2,975,465	11,846,043	8,994,172	3,016,922	12,011,094	9,156,475	3,071,363	12,227,838	0.33\%	0.33\%	0.33\%	0.31\%	0.31\%	0.31\%	0.31\%	0.31\%	0.31\%
	Peak Day - Baseload									Annual Change								
	Low			Medium			High			Low			Medium			High		
	Daly	Peak	Total CorePeak	$\begin{gathered} \text { Daily } \\ \text { Baseload } \end{gathered}$	Peak	otal Core	Daly	Peak	$\begin{array}{c\|\|} \hline \text { Total Core } \\ \text { Peak } \end{array}$		Peak	Total	Base	Peak	Total	Base	Peak	Total
	Baseload					Peak	Baseload			Base								
2011	7,222	154,711	161,933	7,285	155,389	162,674	7,387	156,422	163,809	4.96\%	-0.35\%	-0.13	5.88\%	0.08\%	0.33\%	7.36\%	0.75\%	1.03\%
2012	7,226	156,339	163,566	7,335	157,355	164,690	7,489	158,959	166,448	0.07\%	1.05\%	1.01\%	0.69\%	1.27\%	1.24\%	1.39\%	1.62\%	1.61\%
2013	7,262	158,334	165,596	7,387	159,291	166,677	7,531	160,957	168,488	0.49\%	1.28\%	1.24\%	0.70\%	1.23\%	1.21\%	0.55\%	1.26\%	1.23\%
2014	7,320	160,305	167,625	7,432	161,300	168,732	7,597	162,984	170,581	0.81\%	1.24\%	1.23\%	0.62\%	1.26\%	1.23\%	0.89\%	1.26\%	1.24\%
2015	7,392	162,247	169,640	7,504	163,256	170,760	7,662	164,958	172,620	0.99\%	1.21\%	1.20\%	0.97\%	1.21\%	1.20\%	0.85\%	1.21\%	1.20\%
2016	7,453	164,157	171,610	7,563	165,194	172,757	7,721	166,892	174,613	0.82\%	1.18\%	1.16\%	0.79\%	1.19\%	1.17\%	0.77\%	1.17\%	1.15\%
2017	7,503	166,035	173,538	7,621	167,076	174,697	7,777	168,773	176,550	0.68\%	1.14\%	1.12\%	0.77\%	1.14\%	1.12\%	0.73\%	1.13\%	1.11\%
2018	7,561	167,861	175,422	7,679	168,913	176,593	7,840	170,574	178,414	0.77\%	1.10\%	1.09\%	0.76\%	1.10\%	1.09\%	0.81\%	1.07\%	1.06\%
2019	7,628	169,621	177,249	7,737	170,695	178,432	7,897	172,354	180,251	0.88\%	1.05\%	1.04\%	0.75\%	1.05\%	1.04\%	0.72\%	1.04\%	1.03\%
2020	7,676	171,370	179,046	7,792	172,450	180,242	7,951	174,134	182,085	0.63\%	1.03\%	1.01\%	0.71\%	1.03\%	1.01\%	0.69\%	1.03\%	1.02\%
2021	7,721	173,080	180,801	7,837	174,186	182,024	8,002	175,862	183,864	0.58\%	1.00\%	0.98\%	0.58\%	1.01\%	0.99\%	0.64\%	0.99\%	0.98\%
2022	7,774	174,738	182,512	7,891	175,856	183,747	8,052	177,518	185,570	0.69\%	0.96\%	0.95\%	0.69\%	0.96\%	0.95\%	0.63\%	0.94\%	0.93\%
2023	7,844	176,322	184,166	7,959	177,426	185,386	8,118	179,059	187,176	0.90\%	0.91\%	0.91\%	0.86\%	0.89\%	0.89\%	0.81\%	0.87\%	0.87\%
2024	7,898	177,837	185,735	8,010	178,972	186,981	8,160	180,581	188,741	0.69\%	0.86\%	0.85\%	0.63\%	0.87\%	0.86\%	0.52\%	0.85\%	0.84\%
2025	7,942	179,319	187,261	8,053	180,452	188,505	8,208	182,040	190,247	0.56\%	0.83\%	0.82\%	0.54\%	0.83\%	0.81\%	0.59\%	0.81\%	0.80\%
2026	7,992	180,722	188,715	8,102	181,855	189,957	8,252	183,416	191,668	0.63\%	0.78\%	0.78\%	0.61\%	0.78\%	0.77\%	0.54\%	0.76\%	0.75\%
2027	8,036	182,076	190,112	8,144	183,224	191,367	8,292	184,783	193,075	0.54\%	0.75\%	0.74\%	0.52\%	0.75\%	0.74\%	0.48\%	0.75\%	0.73\%
2028	8,072	183,379	191,452	8,179	184,541	192,720	8,323	186,087	194,410	0.46\%	0.72\%	0.70\%	0.44\%	0.72\%	0.71\%	0.38\%	0.71\%	0.69\%
2029	8,100	184,620	192,720	8,214	185,786	194,000	8,355	187,333	195,688	0.34\%	0.68\%	0.66\%	0.43\%	0.67\%	0.66\%	0.37\%	0.67\%	0.66\%
2030	8,125	185,777	193,902	8,240	186,928	195,168	8,389	188,439	196,828	0.31\%	0.63\%	0.61\%	0.31\%	0.61\%	0.60\%	0.41\%	0.59\%	0.58\%
2031	8,152	187,003	195,155	8,266	188,155	196,420	8,415	189,648	198,063	0.33\%	0.66\%	0.65\%	0.31\%	0.66\%	0.64\%	0.31\%	0.64\%	0.63\%
	Therm Usage by Class									Annual Change								
	Low			Medium			High			Low						High		
	RES	COM/IND	Total	RES	COM/IND	Total	RES	COM/IND	Total	RES ${ }^{\text {COM/IND }}$		Total	RES ${ }^{\text {Medium }}$		Tota	RES ${ }^{\text {CoM/IND }}$ Total		
2011	6,246,794	4,247,189	10,493,983	6,338,901	4,247,596	10,586,49	6,490,840	4,243,177	10,734,017	3.89	6.56\%	4.96\%	5.42\%	6.57\%	5.88	7.95\%	6.46\%	7.36\%
2012	6,219,552	4,281,339	10,500,891	6,369,762	4,289,286	10,659,048	6,602,517	4,280,523	10,883,040	-0.44\%	0.80\%	0.07\%	0.49\%	0.98\%	0.69\%	1.72\%	0.88\%	1.39\%
2013	6,238,556	4,313,607	10,552,163	6,408,766	4,325,047	10,733,813	6,634,080	4,308,992	10,943,072	0.31\%	0.75\%	0.49\%	0.61\%	0.83\%	0.70\%	0.48\%	0.67\%	0.55\%
2014	6,299,024	4,338,115	10,637,139	6,449,652	4,350,629	10,800,281	6,710,613	4,329,496	11,040,109	0.97\%	0.57\%	0.81\%	0.64\%	0.59\%	0.62\%	1.15\%	0.48\%	0.89\%
2015	6,391,125	4,351,278	10,742,403	6,543,215	4,361,339	10,904,554	6,795,542	4,338,255	11,133,797	1.46\%	0.30\%	0.99\%	1.45\%	0.25\%	0.97\%	1.27\%	0.20\%	0.85\%
2016	6,470,685	4,359,343	10,830,028	6,624,730	4,365,584	10,990,314	6,878,638	4,341,394	11,220,032	1.24\%	0.19\%	0.82\%	1.25\%	0.10\%	0.79\%	1.22\%	0.07\%	0.77\%
2017	6,526,102	4,377,131	10,903,233	6,692,598	4,382,233	11,074,831	6,947,900	4,353,872	11,301,772	0.86\%	0.41\%	0.68\%	1.02\%	0.38\%	0.77\%	1.01\%	0.29\%	0.73\%
2018	6,590,568	4,396,729	10,987,297	6,758,421	4,401,062	11,159,483	7,025,370	4,367,584	11,392,954	0.99\%	0.45\%	0.77\%	0.98\%	0.43\%	0.76\%	1.12\%	0.31\%	0.81\%
2019	6,675,350	4,408,775	11,084,125	6,833,139	4,410,419	11,243,558	7,101,620	4,373,640	11,475,260	1.29\%	0.27\%	0.88\%	1.11\%	0.21\%	0.75\%	1.09\%	0.14\%	0.72\%
2020	6,736,068	4,418,038	11,154,106	6,906,671	4,416,447	11,323,118	7,177,870	4,376,840	11,554,710	0.91\%	0.21\%	0.63\%	1.08\%	0.14\%	0.71\%	1.07\%	0.07\%	0.69\%
2021	6,783,100	4,436,190	11,219,290	6,955,479	4,433,469	11,388,948	7,239,792	4,388,562	11,628,354	0.70\%	0.41\%	0.58\%	0.71\%	0.39\%	0.58\%	0.86\%	0.27\%	0.64\%
2022	6,839,727	4,457,386	11,297,113	7,013,330	4,454,101	11,467,431	7,298,432	4,402,797	11,701,229	0.83\%	0.48\%	0.69\%	0.83\%	0.47\%	0.69\%	0.81\%	0.32\%	0.63\%
2023	6,929,587	4,469,024	11,398,611	7,103,408	4,462,872	11,566,280	7,388,930	4,407,087	11,796,017	1.31\%	0.26\%	0.90\%	1.28\%	0.20\%	0.86\%	1.24\%	0.10\%	0.81\%
2024	7,016,405	4,460,485	11,476,890	7,192,152	4,447,284	11,639,436	7,465,809	4,391,364	11,857,173	1.25\%	-0.19\%	0.69\%	1.25\%	-0.35\%	0.63\%	1.04\%	-0.36\%	0.52\%
2025	7,065,480	4,475,727	11,541,207	7,241,716	4,460,607	11,702,323	7,528,131	4,398,813	11,926,944	0.70\%	0.34\%	0.56\%	0.69\%	0.30\%	0.54\%	0.83\%	0.17\%	0.59\%
2026	7,123,680	4,490,048	11,613,728	7,300,423	4,472,712	11,773,135	7,586,787	4,404,869	11,991,656	0.82\%	0.32\%	0.63\%	0.81\%	0.27\%	0.61\%	0.78\%	0.14\%	0.54\%
2027	7,179,552	4,497,290	11,676,842	7,357,351	4,476,507	11,833,858	7,644,832	4,404,123	12,048,955	0.78\%	0.16\%	0.54\%	0.78\%	0.08\%	0.52\%	0.77\%	-0.02\%	0.48\%
2028	7,220,668	4,509,682	11,730,350	7,399,408	4,486,337	11,885,745	7,687,220	4,407,988	12,095,208	0.57\%	0.28\%	0.46\%	0.57\%	0.22\%	0.44\%	0.55\%	0.09\%	0.38\%
2029	7,246,185	4,524,094	11,770,279	7,438,326	4,498,521	11,936,847	7,726,992	4,413,556	12,140,548	0.35\%	0.32\%	0.34\%	0.53\%	0.27\%	0.43\%	0.52\%	0.13\%	0.37\%
2030	7,282,800	4,524,094	11,806,894	7,475,300	4,498,521	11,973,821	7,776,930	4,413,556	12,190,486	0.51\%	0.00\%	0.31\%	0.50\%	0.00\%	0.31\%	0.65\%	0.00\%	0.41\%
2031	7,307,136	4,538,907	11,846,043	7,499,940	4,511,154	12,011,094	7,808,442	4,419,396	12,227,838	0.33\%	0.33\%	0.33\%	0.33\%	0.28\%	0.31\%	0.41\%	0.13\%	0.31\%
	Customer Count Forecast									Annual Change								
	Low			Medium			High			Low			Medium			High		
	$\begin{array}{\|c\|} \hline \text { RES } \\ \hline 10,394 \\ \hline \end{array}$	COM/IND Total 1,254 11,648		RES	COM/IND	Total	RES	COM/IND	Total	RES ${ }^{\text {COM }}$			RES	COM/IND	Total	RES	COM/IND ${ }^{\text {Total }}$	
2011				10,44310,581	1,258	11,701	10,520	1,263	11,783	-0.12% -0.25% -0.13% 0.36% 0.10% 0.33% 1.10% 0.46% 1.03%								
2012	10,506	1,259	11,765		1,265	11,846	10,701	1,272	11,973	1.08\%	0.44\%	1.01\%	1.32\%	0.56\%	1.24\%	1.72\%	0.70\%	1.61\%
2013	10,646	1,265	11,911	10,717	1,272	11,989	10,840	1,279	12,119	1.33\%	0.48\%	1.24\%	1.29\%	0.55\%	1.21\%	1.30\%	0.60\%	1.23\%
2014	10,786	1,271	12,057	10,858	1,279	12,137	10,983	1,287	12,270	1.32\%	0.47\%	1.23\%	1.32\%	0.54\%	1.23\%	1.32\%	0.60\%	1.24\%
2015	10,925	1,277	12,202	10,997	1,286	12,283	11,122	1,295	12,417	1.29\%	0.47\%	1.20\%	1.28\%	0.54\%	1.20\%	1.27\%	0.59\%	1.20\%
2016	11,061	1,283	12,344	11,134	1,292	12,426	11,258	1,302	12,560	1.24\%	0.45\%	1.16\%	1.25\%	0.52\%	1.17\%	1.22\%	0.57\%	1.15\%
2017	11,194	1,289	12,483	11,267	1,299	12,566	11,390	1,309	12,699	1.20\%	0.44\%	1.12\%	1.19\%	0.51\%	1.12\%	1.17\%	0.56\%	1.11\%
2018	11,324	1,294	12,618	11,397	1,305	12,702	11,517	1,316	12,833	1.16\%	0.43\%	1.09\%	1.15\%	0.49\%	1.09\%	1.12\%	0.54\%	1.06\%
2019	11,450	1,300	12,750	11,523	1,312	12,835	11,642	1,324	12,966	1.11\%	0.42\%	1.04\%	1.11\%	0.48\%	1.04\%	1.09\%	0.54\%	1.03\%
2020	11,574	1,305	12,879	11,647	1,318	12,965	11,767	1,330	13,097	1.08\%	0.41\%	1.01\%	1.08\%	0.47\%	1.01\%	1.07\%	0.53\%	1.02\%
2021	11,695	1,310	13,005	11,769	1,324	13,093	11,888	1,337	13,225	1.05\%	0.40\%	0.98\%	1.05\%	0.47\%	0.99\%	1.03\%	0.52\%	0.98\%
2022	11,813	1,315	13,128	11,887	1,330	13,217	12,004	1,344	13,348	1.01\%	0.39\%	0.95\%	1.00\%	0.45\%	0.95\%	0.98\%	0.50\%	0.93\%
2023	11,927	1,320	13,247	11,999	1,336	13,335	12,113	1,351	13,464	0.97\%	0.38\%	0.91\%	0.94\%	0.44\%	0.89\%	0.91\%	0.49\%	0.87\%
2024	12,035	1,325	13,360	12,108	1,342	13,450	12,219	1,357	13,576	0.91\%	0.37\%	0.85\%	0.91\%	0.43\%	0.86\%	0.88\%	0.48\%	0.84\%
2025	12,140	1,330	13,470	12,212	1,347	13,559	12,321	1,364	13,685	0.87\%	0.36\%	0.82\%	0.86\%	0.42\%	0.81\%	0.83\%	0.47\%	0.80\%
2026	12,240	1,334	13,574	12,311	1,353	13,664	12,417	1,370	13,787	0.82\%	0.34\%	0.78\%	0.81\%	0.40\%	0.77\%	0.78\%	0.45\%	0.75\%
2027	12,336	1,339	13,675	12,407	1,358	13,765	12,512	1,376	13,888	0.78\%	0.34\%	0.74\%	0.78\%	0.40\%	0.74\%	0.77\%	0.45\%	0.73\%
2028	12,428	1,343	13,771	12,499	1,363	13,862	12,602	1,382	13,984	0.75\%	0.33\%	0.70\%	0.74\%	0.39\%	0.71\%	0.72\%	0.44\%	0.69\%
2029	12,515	1,347	13,862	12,586	1,369	13,955	12,688	1,388	14,076	0.70\%	0.31\%	0.66\%	0.70\%	0.38\%	0.66\%	0.68\%	0.43\%	0.66\%
2030	12,600	1,347	13,947	12,670	1,369	14,039	12,770	1,388	14,158	0.68\%	0.00\%	0.61\%	0.67\%	0.00\%	0.60\%	0.65\%	0.00\%	0.58\%
2031	12,686	1,352	14,038	12,755	1,374	14,129	12,853	1,394	14,247	0.68\%	0.31\%	0.65\%	0.67\%	0.37\%	0.64\%	0.65\%	0.42\%	0.63\%

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

Wenatchee

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

Yakima

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

	Baker																	
	Annual Requirements (Therms)									Annual Change								
	Low			Medium			High			Low			Medium			High		
	Heating	Baseload	Total	Heating	Baseload	Total	Heating	Baseload	Total	$\begin{array}{\|r\|} \hline \text { Heating } \\ \hline 0.21 \% \end{array}$	Baseload	Total	Heating	Baseload	$\begin{array}{\|c\|} \hline \text { Total } \\ \hline 3.29 \% \end{array}$	Heating	Baseload	Total
2011	2,609,668	1,109,179	3,718,847	2,689,953	1,143,302	3,833,254	2,811,456	1,194,944	4,006,400		0.21\%	0.21\%	$\begin{array}{r} \hline 3.29 \% \\ -1.35 \% \end{array}$			7.96\%	7.96\%	$\begin{array}{r\|} \hline 7.96 \% \\ -1.33 \% \end{array}$
2012	2,578,064	1,095,746	3,673,811	2,653,582	1,127,843	3,781,426	2,774,119	1,179,075	3,953,193	-1.21\%	-1.21\%	-1.21\%		-1.35\%	-1.35\%	-1.33\%	$-1.33 \%$$-0.69 \%$	
2013	2,545,158	1,081,760	3,626,919	2,618,825	1,113,071	3,731,896	2,754,961	1,170,932	3,925,893	-1.28\%	-1.28\%	-1.28\%	-1.31\%	-1.31\%	-1.31\%	-0.69\%		$\begin{aligned} & -1.33 \% \\ & -0.69 \% \end{aligned}$
2014	2,525,198	1,073,277	3,598,475	2,603,228	1,106,442	3,709,670	2,749,381	1,168,561	3,917,942	-0.78\%	-0.78\%	-0.78\%	$\begin{gathered} -0.60 \% \\ -0.08 \% \end{gathered}$	-0.60\%	-0.60\%	$-0.20 \%$$-0.01 \%$	-0.69% -0.20%	-0.69\%
2015	2,517,723	1,070,100	3,587,823	2,601,182	1,105,572	3,706,754	2,749,134	1,168,456	3,917,590	-0.30\%	-0.30\%	-0.30\%			-0.08\%		-0.01\%	-0.01\%
2016	2,515,768	1,069,269	3,585,037	2,604,051	1,106,792	3,710,843	2,755,642	1,171,222	3,926,863	-0.08\%	-0.08\%	-0.08\%	0.11\%	0.11\%		0.24\%	0.24\%	0.24\%
2017	2,505,698	1,064,989	3,570,687	2,600,124	1,105,122	3,705,246	2,757,551	1,172,033	3,929,583	-0.40\%	-0.40\%	-0.40\%	-0.15\%	-0.15\%	-0.15\%	0.07\%	0.07\%	$\begin{gathered} 0.07 \% \\ -0.04 \% \end{gathered}$
2018	2,498,558	1,061,954	3,560,512	2,596,116	1,103,419	3,699,535	2,756,403	1,171,545	3,927,948	-0.28\%	-0.28\%	-0.28\%	-0.15\%	$-0.15 \%$$0.22 \%$	-0.15\%	-0.04\%	$-0.04 \%$$0.27 \%$	
2019	2,498,583	1,061,965	3,560,547	2,601,809	1,105,839	3,707,648	2,763,777	1,174,679	3,938,457	0.00\%	0.00\%	0.00\%	0.22\%			0.27\%		-0.04\%
2020	2,501,612	1,063,252	3,564,864	2,607,976	1,108,459	3,716,435	2,773,577	1,178,845	3,952,422	0.12\%	0.12\%	0.12\%	0.24\%	0.24%	0.22% 0.24%	0.35\%	0.35\%	0.35\%
2021	2,493,274	1,059,708	3,552,983	2,604,400	1,106,940	3,711,339	2,777,236	1,180,399	3,957,635	-0.33\%	-0.33\%	-0.33\%	-0.14\%	-0.14\%	-0.14\%	0.13\%	0.13\%	$0.13 \%$$0.16 \%$
2022	2,488,742	1,057,782	3,546,523	2,604,322	1,106,907	3,711,229	2,781,734	1,182,311	3,964,045	-0.18\%	-0.18\%	-0.18\%	$0.00 \%$$0.27 \%$	0.00\%	0.00\%	$0.16 \%$$0.15 \%$	$0.16 \%$$0.15 \%$	
2023	2,495,107	1,060,487	3,555,594	2,611,243	1,109,848	3,721,091	2,785,842	1,184,057	3,969,899	0.26\%	0.26\%	0.26\%		$0.27 \%$$0.82 \%$	0.27\%			$\begin{aligned} & 0.16 \% \\ & 0.15 \% \end{aligned}$
2024	2,512,711	1,067,969	3,580,680	2,632,589	1,118,921	3,751,509	2,806,215	1,192,716	3,998,931	0.71\%	0.71\%	0.71\%	0.82\%				0.73\%	$0.73 \%$$0.21 \%$
2025	2,511,991	1,067,664	3,579,655	2,634,295	1,119,646	3,753,942	2,812,019	1,195,183	4,007,202	-0.03\%	-0.03\%	-0.03\%	0.06\%	0.06\%	0.82% 0.06%	0.73\% 0.21%	0.21\%	
2026	2,513,374	1,068,251	3,581,625	2,637,536	1,121,023	3,758,559	2,819,690	1,198,444	4,018,134	0.06\%	0.06\%	0.06\%	0.12\%	$0.12 \%$$0.44 \%$	$0.12 \%$$0.44 \%$	0.27\%	0.27\%	0.21% 0.27%
2027	2,520,265	1,071,180	3,591,446	2,649,126	1,125,949	3,775,075	2,830,517	1,203,045	4,033,562	0.27\%	0.27\%	0.27\%	0.44\%			$0.38 \%$$0.37 \%$	$0.38 \%$$0.37 \%$	0.38\%
2028	2,523,484	1,072,548	3,596,033	2,653,288	1,127,718	3,781,006	2,840,975	1,207,490	4,048,465	0.13\%	0.13\%	0.13\%	$0.16 \%$$0.13 \%$	$0.16 \%$$0.13 \%$	$0.16 \%$$0.13 \%$			$0.37 \%$$0.29 \%$
2029	2,522,606	1,072,175	3,594,781	2,656,658	1,129,151	3,785,809	2,849,251	1,211,008	4,060,259	-0.03\%	-0.03\%	-0.03\%				$0.29 \%$$0.42 \%$	0.29\%	
2030	2,524,957	1,073,174	3,598,131	2,663,577	1,132,091	3,795,668	2,861,131	1,216,057	4,077,188	0.09\%	0.09\%	0.09\%	$\begin{aligned} & 0.13 \% \\ & 0.26 \% \end{aligned}$	0.26\%	0.26\%			0.42\%
2031	2,525,669	1,073,477	3,599,147	2,667,364	1,133,701	3,801,065	2,868,231	1,219,075	4,087,306	0.03\%	0.03\%	0.03\%	0.14\%	0.14\%	0.14\%	0.25\%	0.25\%	0.25\%
	Peak Day - Baseload												$\begin{gathered} \hline \text { Annual Change } \\ \hline \text { Medium } \end{gathered}$					
	Low			Medium			High			Low						High		
	$\begin{gathered} \text { Daily } \\ \text { Baseload } \end{gathered}$	Peak	Total Core Peak	$\begin{gathered} \text { Daily } \\ \text { Baseload } \end{gathered}$	Peak	Total Core Peak	$\begin{gathered} \text { Daily } \\ \text { Baseload } \end{gathered}$	Peak	Total Core Peak		Peak	Total	Base	Peak	Total	Base	Peak	
2011	3,039	23,245	26,284	3,132	23,174	26,306	3,274	23,066	26,340	Base	0.27\%	0.26\%	3.29\%	-0.04\%	0.35\%	7.96\%	-0.50\%	0.48\%
2012	3,002	23,239	26,241	3,090	23,105	26,195	3,230	22,872	26,103	-1.21\%	-0.02\%	-0.16\%	-1.35\%	-0.30\%	-0.42\%	-1.33\%	-0.84\%	-0.90\%
2013	2,964	23,229	26,192	3,050	23,036	26,086	3,208	22,927	26,136	-1.28\%	-0.04\%	-0.19\%	-1.31\%	-0.30\%	-0.42\%	-0.69\%	0.24\%	0.13\%
2014	2,940	23,237	26,178	3,031	23,094	26,125	3,202	23,027	26,228	-0.78\%	0.04\%	-0.06\%	-0.60\%	0.25\%	0.15\%	-0.20\%	0.43\%	0.35\%
2015	2,932	23,245	26,177	3,029	23,150	26,179	3,201	23,121	26,322	-0.30\%	0.03\%	0.00\%	-0.08\%	0.24\%	0.21\%	-0.01\%	0.41\%	0.36\%
2016	2,930	23,246	26,176	3,032	23,193	26,225	3,209	23,205	26,414	-0.08\%	0.00\%	-0.01\%	0.11\%	0.18\%	0.17\%	0.24\%	0.37\%	0.35\%
2017	2,918	23,271	26,189	3,028	23,264	26,292	3,211	23,330	26,541	-0.40\%	0.11\%	0.05\%	-0.15\%	0.31\%	0.26\%	0.07\%	0.54\%	0.48\%
2018	2,909	23,305	26,214	3,023	23,348	26,371	3,210	23,463	26,672	-0.28\%	0.14\%	0.10\%	-0.15\%	0.36\%	0.30\%	-0.04\%	0.57\%	0.50\%
2019	2,909	23,351	26,260	3,030	23,435	26,464	3,218	23,594	26,812	0.00\%	0.20\%	0.17\%	0.22\%	0.37\%	0.35\%	0.27\%	0.56\%	0.52\%
2020	2,913	23,385	26,298	3,037	23,513	26,549	3,230	23,714	26,944	0.12\%	0.15\%	0.14\%	0.24\%	0.33\%	0.32\%	0.35\%	0.51\%	0.49\%
2021	2,903	23,447	26,350	3,033	23,616	26,649	3,234	23,863	27,097	-0.33\%	0.26\%	0.20\%	-0.14\%	0.44\%	0.38\%	0.13\%	0.63\%	0.57\%
2022	2,898	23,510	26,408	3,033	23,722	26,754	3,239	24,009	27,248	-0.18\%	0.27\%	0.22\%	0.00\%	0.45\%	0.39\%	0.16\%	0.61\%	0.56\%
2023	2,905	23,567	26,472	3,041	23,831	26,872	3,244	24,174	27,418	0.26\%	0.24\%	0.24\%	0.27\%	0.46\%	0.44\%	0.15\%	0.69\%	0.62\%
2024	2,926	23,630	26,556	3,066	23,937	27,002	3,268	24,340	27,608	0.71\%	0.27\%	0.32\%	0.82\%	0.44\%	0.49\%	0.73\%	0.69\%	0.69\%
2025	2,925	23,720	26,645	3,068	24,078	27,146	3,274	24,516	27,791	-0.03\%	0.38\%	0.34\%	0.06\%	0.59\%	0.53\%	0.21\%	0.72\%	0.66\%
2026	2,927	23,806	26,733	3,071	24,209	27,280	3,283	24,687	27,971	0.06\%	0.36\%	0.33\%	0.12\%	0.54\%	0.50\%	0.27\%	0.70\%	0.65\%
2027	2,935	23,927	26,862	3,085	24,366	27,450	3,296	24,887	28,183	0.27\%	0.51\%	0.48\%	0.44\%	0.65\%	0.63\%	0.38\%	0.81\%	0.76\%
2028	2,938	24,041	26,979	3,090	24,512	27,601	3,308	25,059	28,367	0.13\%	0.48\%	0.44\%	0.16\%	0.60\%	0.55\%	0.37\%	0.69\%	0.65\%
2029	2,937	24,176	27,114	3,094	24,690	27,783	3,318	25,272	28,590	-0.03\%	0.56\%	0.50\%	0.13\%	0.73\%	0.66\%	0.29\%	0.85\%	0.78\%
2030	2,940	24,309	27,250	3,102	24,845	27,947	3,332	25,442	28,773	0.09\%	0.55\%	0.50\%	0.26\%	0.63\%	0.59\%	0.42\%	0.67\%	0.64\%
2031	2,941	24,446	27,387	3,106	25,011	28,117	3,340	25,630	28,970	0.03\%	0.56\%	0.50\%	0.14\%	0.67\%	0.61\%	0.25\%	0.74\%	0.68\%
				Ther	m Usage by Cl									nual Change				
		Low			Medium			High			Low			Medium			High	
	RES	COM/IND	Total															
2011	1,836,826	1,882,021	3,718,847	1,948,220	1,885,034	3,833,254	2,126,880	1,879,520	4,006,400	-11.96\%	15.83\%	0.21\%	-6.62\%	16.02\%	3.29\%	1.95\%	15.68\%	7.96\%
2012	1,812,891	1,860,920	3,673,811	1,933,860	1,847,566	3,781,426	2,114,840	1,838,353	3,953,193	-1.30\%	-1.12\%	-1.21\%	-0.74\%	-1.99\%	-1.35\%	-0.57\%	-2.19\%	-1.33\%
2013	1,791,312	1,835,607	3,626,919	1,909,575	1,822,321	3,731,896	2,105,514	1,820,379	3,925,893	-1.19\%	-1.36\%	-1.28\%	-1.26\%	-1.37\%	-1.31\%	-0.44\%	-0.98\%	-0.69\%
2014	1,779,154	1,819,321	3,598,475	1,901,328	1,808,342	3,709,670	2,108,523	1,809,419	3,917,942	-0.68\%	-0.89\%	-0.78\%	-0.43\%	-0.77\%	-0.60\%	0.14\%	-0.60\%	-0.20\%
2015	1,774,752	1,813,071	3,587,823	1,900,859	1,805,895	3,706,754	2,111,512	1,806,078	3,917,590	-0.25\%	-0.34\%	-0.30\%	-0.02\%	-0.14\%	-0.08\%	0.14\%	-0.18\%	-0.01\%
2016	1,773,688	1,811,349	3,585,037	1,903,143	1,807,700	3,710,843	2,121,183	1,805,680	3,926,863	-0.06\%	-0.10\%	-0.08\%	0.12\%	0.10\%	0.11\%	0.46\%	-0.02\%	0.24\%
2017	1,763,686	1,807,001	3,570,687	1,900,460	1,804,786	3,705,246	2,127,312	1,802,271	3,929,583	-0.56\%	-0.24\%	-0.40\%	-0.14\%	-0.16\%	-0.15\%	0.29\%	-0.19\%	0.07\%
2018	1,758,072	1,802,440	3,560,512	1,898,883	1,800,652	3,699,535	2,130,660	1,797,288	3,927,948	-0.32\%	-0.25\%	-0.28\%	-0.08\%	-0.23\%	-0.15\%	0.16\%	-0.28\%	-0.04\%
2019	1,757,366	1,803,181	3,560,547	1,905,120	1,802,528	3,707,648	2,141,370	1,797,087	3,938,457	-0.04\%	0.04\%	0.00\%	0.33\%	0.10\%	0.22\%	0.50\%	-0.01\%	0.27\%
2020	1,759,470	1,805,394	3,564,864	1,910,790	1,805,645	3,716,435	2,154,865	1,797,557	3,952,422	0.12\%	0.12\%	0.12\%	0.30\%	0.17\%	0.24\%	0.63\%	0.03\%	0.35\%
2021	1,749,222	1,803,761	3,552,983	1,907,448	1,803,891	3,711,339	2,163,420	1,794,215	3,957,635	-0.58\%	-0.09\%	-0.33\%	-0.17\%	-0.10\%	-0.14\%	0.40\%	-0.19\%	0.13\%
2022	1,746,160	1,800,363	3,546,523	1,911,385	1,799,844	3,711,229	2,175,390	1,788,655	3,964,045	-0.18\%	-0.19\%	-0.18\%	0.21\%	-0.22\%	0.00\%	0.55\%	-0.31\%	0.16\%
2023	1,753,686	1,801,908	3,555,594	1,919,830	1,801,261	3,721,091	2,182,300	1,787,599	3,969,899	0.43\%	0.09\%	0.26\%	0.44\%	0.08\%	0.27\%	0.32\%	-0.06\%	0.15\%
2024	1,766,171	1,814,509	3,580,680	1,936,255	1,815,254	3,751,509	2,201,500	1,797,431	3,998,931	0.71\%	0.70\%	0.71\%	0.86\%	0.78\%	0.82\%	0.88\%	0.55\%	0.73\%
2025	1,765,669	1,813,986	3,579,655	1,940,098	1,813,844	3,753,942	2,213,072	1,794,130	4,007,202	-0.03\%	-0.03\%	-0.03\%	0.20\%	-0.08\%	0.06\%	0.53\%	-0.18\%	0.21\%
2026	1,768,520	1,813,105	3,581,625	1,946,768	1,811,791	3,758,559	2,228,144	1,789,990	4,018,134	0.16\%	-0.05\%	0.06\%	0.34\%	-0.11\%	0.12\%	0.68\%	-0.23\%	0.27\%
2027	1,774,461	1,816,985	3,591,446	1,959,694	1,815,381	3,775,075	2,242,152	1,791,410	4,033,562	0.34\%	0.21\%	0.27\%	0.66\%	0.20\%	0.44\%	0.63\%	0.08\%	0.38\%
2028	1,779,848	1,816,185	3,596,033	1,967,988	1,813,018	3,781,006	2,261,428	1,787,037	4,048,465	0.30\%	-0.04\%	0.13\%	0.42\%	-0.13\%	0.16\%	0.86\%	-0.24\%	0.37\%
2029	1,779,325	1,815,456	3,594,781	1,974,947	1,810,862	3,785,809	2,276,637	1,783,622	4,060,259	-0.03\%	-0.04\%	-0.03\%	0.35\%	-0.12\%	0.13\%	0.67\%	-0.19\%	0.29\%
2030	1,782,675	1,815,456	3,598,131	1,984,806	1,810,862	3,795,668	2,293,566	1,783,622	4,077,188	0.19\%	0.00\%	0.09\%	0.50\%	0.00\%	0.26\%	0.74\%	0.00\%	0.42\%
2031	1,785,945	1,813,202	3,599,147	1,994,617	1,806,448	3,801,065	2,309,406	1,777,900	4,087,306	0.18\%	-0.12\%	0.03\%	0.49\%	-0.24\%	0.14\%	0.69\%	-0.32\%	0.25\%
				Custom	er Count Fore	cast								nual Change				
		Low			Medium			High			Low			Medium			High	
	RES	COM/IND	Total															
2011	3,358	506	3,864	3,359	508	3,867	3,360	512	3,872	0.12\%	1.23\%	0.26\%	0.15\%	1.69\%	0.35\%	0.18\%	2.47\%	0.48\%
2012	3,351	507	3,858	3,340	511	3,851	3,320	518	3,838	-0.21\%	0.15\%	-0.16\%	-0.57\%	0.53\%	-0.42\%	-1.19\%	1.00\%	-0.90\%
2013	3,342	509	3,851	3,321	514	3,835	3,321	521	3,842	-0.27\%	0.36\%	-0.19\%	-0.57\%	0.56\%	-0.42\%	0.03\%	0.74\%	0.13\%
2014	3,338	511	3,849	3,324	517	3,841	3,331	525	3,856	-0.12\%	0.37\%	-0.06\%	0.09\%	0.55\%	0.15\%	0.30\%	0.70\%	0.35\%
2015	3,336	512	3,848	3,329	520	3,849	3,341	529	3,870	-0.06\%	0.37\%	0.00\%	0.15\%	0.56\%	0.21\%	0.30\%	0.72\%	0.36\%
2016	3,334	514	3,848	3,333	522	3,855	3,351	532	3,883	-0.06\%	0.35\%	-0.01\%	0.12\%	0.53\%	0.17\%	0.30\%	0.67\%	0.35\%
2017	3,334	516	3,850	3,340	525	3,865	3,366	536	3,902	0.00\%	0.38\%	0.05\%	0.21\%	0.56\%	0.26\%	0.45\%	0.69\%	0.48\%
2018	3,336	518	3,854	3,349	528	3,877	3,382	539	3,921	0.06\%	0.33\%	0.10\%	0.27\%	0.50\%	0.30\%	0.48\%	0.62\%	0.50\%
2019	3,341	520	3,861	3,360	531	3,891	3,399	543	3,942	0.15\%	0.33\%	0.17\%	0.33\%	0.51\%	0.35\%	0.50\%	0.66\%	0.52\%
2020	3,345	521	3,866	3,370	533	3,903	3,415	546	3,961	0.12\%	0.30\%	0.14\%	0.30\%	0.47\%	0.32\%	0.47\%	0.61\%	0.49\%
2021	3,351	523	3,874	3,382	536	3,918	3,434	550	3,984	0.18\%	0.32\%	0.20\%	0.36\%	0.50\%	0.38\%	0.56\%	0.64\%	0.57\%
2022	3,358	524	3,882	3,395	538	3,933	3,453	553	4,006	0.21\%	0.29\%	0.22\%	0.38\%	0.46\%	0.39\%	0.55\%	0.60\%	0.56\%
2023	3,366	526	3,892	3,410	541	3,951	3,475	556	4,031	0.24\%	0.27\%	0.24\%	0.44\%	0.42\%	0.44\%	0.64\%	0.53\%	0.62\%
2024	3,377	527	3,904	3,427	543	3,970	3,500	559	4,059	0.33\%	0.25\%	0.32\%	0.50\%	0.41%	0.49\%	0.72\%	0.53\%	0.69\%
2025	3,389	528	3,917	3,446	545	3,991	3,524	562	4,086	0.36\%	0.22\%	0.34\%	0.55\%	0.38\%	0.53\%	0.69\%	0.52\%	0.66\%
2026	3,401	529	3,930	3,464	547	4,011	3,548	564	4,112	0.35\%	0.17\%	0.33\%	0.52\%	0.32\%	0.50\%	0.68\%	0.45\%	0.65\%
2027	3,419	530	3,949	3,487	549	4,036	3,576	567	4,143	0.53\%	0.18\%	0.48\%	0.66\%	0.38\%	0.63\%	0.79\%	0.56\%	0.76\%
2028	3,436	530	3,966	3,508	550	4,058	3,601	569	4,170	0.50\%	0.05\%	0.44\%	0.60\%	0.22\%	0.55\%	0.70\%	0.37\%	0.65\%
2029	3,455	531	3,986	3,533	552	4,085	3,631	572	4,203	0.55\%	0.14\%	0.50\%	0.71\%	0.31\%	0.66\%	0.83\%	0.47\%	0.78\%
2030	3,475	531	4,006	3,557	552	4,109	3,658	572	4,230	0.58\%	0.00\%	0.50\%	0.68\%	0.00\%	0.59\%	0.74\%	0.00\%	0.64\%
2031	3,495	531	4,026	3,581	553	4,134	3,685	574	4,259	0.58\%	0.02\%	0.50\%	0.67\%	0.19\%	0.61\%	0.74\%	0.34\%	0.68\%

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

Baker

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

Bend

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

Ontario

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

OR

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

	Pendleton																	
	Annual Requirements (Therms)									Annual Change								
	Low			Medium			High			Low			Medium			High		
	Heating	Baseload	Total															
2011	8,277,161	4,971,623	13,248,784	8,478,391	5,092,490	13,570,881	8,797,934	5,284,422	14,082,355	8.37\%	8.37\%	8.37\%	11.01\%	11.01\%	11.01\%	15.19\%	15.19\%	15.19\%
2012	8,305,598	4,988,704	13,294,302	8,536,574	5,127,438	13,664,011	8,952,134	5,377,041	14,329,175	0.34\%	0.34\%	0.34\%	0.69\%	$\begin{aligned} & 0.69 \% \\ & 0.82 \% \end{aligned}$	0.69\%		1.75\%	1.75\%
2013	8,373,076	5,029,234	13,402,310	8,606,547	5,169,467	13,776,014	9,077,506	5,452,345	14,529,851	0.81\%1.20%	0.81\%1.20%	1.20\%	0.82% 1.09%		0.82\%	$\begin{aligned} & 1.75 \% \\ & 1.40 \% \end{aligned}$	1.40\%	1.40\%
2014	8,473,346	5,089,460	13,562,806	8,700,544	5,225,926	13,926,470	9,205,914	5,529,472	14,735,386					0.82% 1.09%	1.09\%	1.41\%	1.41\%	1.41\%
2015	8,594,250	5,162,081	13,756,331	8,802,373	5,287,088	14,089,461	9,336,640	5,607,992	14,944,633	1.43\%	1.43\%	1.20\%	1.17\%	1.17\%	1.17\%	1.42\%	1.42\%	1.42\%
2016	8,716,664	5,235,608	13,952,272	8,904,060	5,348,166	14,252,226	9,476,917	5,692,249	15,169,166	1.42\%	1.42\%	1.42\%	1.16\%	1.16\%	1.16\%	1.50\%	1.50\%	1.50\%
2017	8,814,743	5,294,518	14,109,261	8,992,381	5,401,215	14,393,596	9,591,369	5,760,993	15,352,362	1.13\%	1.13\%	1.13% 1.14%	0.99\%0.94%	0.99\%0	0.99\%0.94%	1.21\%	1.21%	$\begin{aligned} & 1.21 \% \\ & 1.22 \% \end{aligned}$
2018	8,915,659	5,355,133	14,270,792	9,076,739	5,451,884	14,528,624	9,708,800	5,831,528	15,540,328	$1.14 \%$$1.26 \%$	$1.14 \%$$1.26 \%$					1.22\%	1.22\%	
2019	9,027,617	5,422,379	14,449,996	9,169,255	5,507,454	14,676,709	9,827,412	5,902,771	15,730,183			1.26\%	1.02\%	1.02\%	1.02\%	1.22\%	1.22\%	1.22\%
2020	9,138,070	5,488,723	14,626,793	9,268,535	5,567,086	14,835,621	9,954,097	5,978,864	15,932,961	1.22\%	1.22\%	1.22\%	1.08\%	1.08\%	1.08\%	1.29\%	1.29\%	1.29\%
2021	9,223,496	5,540,033	14,763,530	9,337,499	5,608,508	14,946,007	10,054,795	6,039,347	16,094,142	0.93\%	0.93\%	0.93\%	0.74\%	0.74\%	0.74\%	1.01\%	1.01\%	$\begin{aligned} & 1.01 \% \\ & 1.00 \% \end{aligned}$
2022	9,303,002	5,587,788	14,890,790	9,409,098	5,651,513	15,060,611	10,155,002	6,099,536	16,254,538	0.86\%	$0.86 \%$$1.25 \%$	0.86\%1.25%	0.77\%	0.77\%	0.77\%	$1.00 \%$$1.01 \%$	$1.00 \%$$1.01 \%$	
2023	9,419,111	5,657,528	15,076,640	9,497,912	5,704,859	15,202,771	10,257,307	6,160,985	16,418,292	1.25\%								$\begin{aligned} & 1.00 \% \\ & 1.01 \% \end{aligned}$
2024	9,546,946	5,734,311	15,281,257	9,602,493	5,767,675	15,370,168	10,388,487	6,239,777	16,628,265	1.36\%	1.36\%	1.25\%	0.94\% 1.10\%	1.10\%	1.10\%	1.28\%	1.28\%	1.28\%
2025	9,626,765	5,782,254	15,409,019	9,663,993	5,804,614	15,468,607	10,466,597	6,286,693	16,753,290	0.84\%	0.84\%	0.84\%	0.64\%	0.64\%	0.64\%	0.75\%	0.75\%	0.75\%
2026	9,701,577	5,827,189	15,528,766	9,729,812	5,844,148	15,573,960	10,549,972	6,336,772	16,886,745	0.78\%	0.78\%	0.78\%	0.68\%	0.68\%	0.68\%	0.80\%	0.80\%	
2027	9,786,678	5,878,305	15,664,982	9,795,779	5,883,771	15,679,550	10,633,746	6,387,090	17,020,836	0.88\%	$0.88 \%$$0.78 \%$		0.68\%	0.68\%	0.68\%	0.79\%	0.79\%	$\begin{aligned} & 0.80 \% \\ & 0.79 \% \end{aligned}$
2028	9,863,082	5,924,196	15,787,278	9,854,422	5,918,994	15,773,416	10,716,384	6,436,727	17,153,111	0.78\%		$0.88 \%$$0.78 \%$$0.53 \%$	0.60\%	0.60\%	0.60\%	0.78\%	0.78\%	0.78\%
2029	9,914,887	5,955,312	15,870,199	9,889,424	5,940,019	15,829,443	10,774,911	6,471,880	17,246,791	0.53\%	0.53\%		0.36\%	0.36\%	0.36\%	0.55\%	0.55\%	0.55\%
2030	9,945,627	5,973,776	15,919,403	9,942,629	5,971,976	15,914,605	10,841,749	6,512,026	17,353,775	0.31\%	0.31\%	0.31\%	0.54\%	0.54\%	0.54\%	0.62\%	0.62\%	0.62\%
2031	10,001,853	6,007,548	16,009,400	9,982,196	5,995,741	15,977,937	10,898,920	6,546,365	17,445,285	0.57\%	0.57\%	0.57\%	0.40\%	0.40\%	0.40\%	0.53\%	0.53\%	0.53\%
				Pea	k Day - Baselo									ual Change				
		Low			Medium			High			Low			Medium			High	
	Dally		Total Core	Dally		Total Core	Daly		Total Core									
	Baseload	Peak	Peak	Baseload	Peak	Peak	Baseload	Peak	Peak	Base	Peak	Total	Base	Peak	Total	Base	Peak	Total
2011	13,621	184,434	198,054	13,952	186,047	199,999	14,478	188,523	203,001	8.37\%	0.02\%	0.55\%	11.01\%	0.90\%	1.54\%	15.19\%	2.24\%	3.07\%
2012	13,668	187,784	201,452	14,048	190,199	204,246	14,732	193,900	208,632	0.34\%	1.82\%	1.72\%	0.69\%	2.23\%	2.12\%	1.75\%	2.85\%	2.77\%
2013	13,779	192,066	205,845	14,163	194,297	208,460	14,938	198,261	213,199	0.81\%	2.28\%	2.18\%	0.82\%	2.15\%	2.06\%	1.40\%	2.25\%	2.19\%
2014	13,944	196,370	210,314	14,318	198,766	213,083	15,149	202,839	217,988	1.20\%	2.24\%	2.17\%	1.09\%	2.30\%	2.22\%	1.41\%	2.31\%	2.25\%
2015	14,143	200,589	214,732	14,485	203,138	217,624	15,364	207,232	222,596	1.43\%	2.15\%	2.10\%	1.17\%	2.20\%	2.13\%	1.42\%	2.17\%	2.11\%
2016	14,344	204,753	219,097	14,653	207,460	222,112	15,595	211,590	227,186	1.42\%	2.08\%	2.03\%	1.16\%	2.13\%	2.06\%	1.50\%	2.10\%	2.06\%
2017	14,506	208,891	223,396	14,798	211,737	226,535	15,784	215,910	231,694	1.13\%	2.02\%	1.96\%	0.99\%	2.06\%	1.99\%	1.21\%	2.04\%	1.98\%
2018	14,672	212,940	227,611	14,937	215,936	230,873	15,977	220,156	236,133	1.14\%	1.94\%	1.89\%	0.94\%	1.98\%	1.92\%	1.22\%	1.97\%	1.92\%
2019	14,856	216,903	231,759	15,089	220,041	235,129	16,172	224,271	240,443	1.26\%	1.86\%	1.82\%	1.02\%	1.90\%	1.84\%	1.22\%	1.87\%	1.83\%
2020	15,038	220,752	235,790	15,252	224,048	239,301	16,380	228,337	244,717	1.22\%	1.77\%	1.74\%	1.08\%	1.82\%	1.77\%	1.29\%	1.81\%	1.78\%
2021	15,178	224,576	239,754	15,366	228,040	243,406	16,546	232,380	248,926	0.93\%	1.73\%	1.68\%	0.74\%	1.78\%	1.72\%	1.01\%	1.77\%	1.72\%
2022	15,309	228,310	243,619	15,484	231,895	247,379	16,711	236,226	252,937	0.86\%	1.66\%	1.61\%	0.77\%	1.69\%	1.63\%	1.00\%	1.65\%	1.61\%
2023	15,500	231,851	247,351	15,630	235,574	251,204	16,879	239,921	256,801	1.25\%	1.55\%	1.53\%	0.94\%	1.59\%	1.55\%	1.01\%	1.56\%	1.53\%
2024	15,710	235,225	250,935	15,802	239,111	254,913	17,095	243,454	260,549	1.36\%	1.46\%	1.45\%	1.10\%	1.50\%	1.48\%	1.28\%	1.47\%	1.46\%
2025	15,842	238,528	254,370	15,903	242,522	258,425	17,224	246,811	264,035	0.84\%	1.40\%	1.37\%	0.64\%	1.43\%	1.38\%	0.75\%	1.38\%	1.34\%
2026	15,965	241,643	257,607	16,011	245,744	261,755	17,361	250,043	267,404	0.78\%	1.31\%	1.27\%	0.68\%	1.33\%	1.29\%	0.80\%	1.31\%	1.28\%
2027	16,105	244,593	260,698	16,120	248,820	264,940	17,499	253,114	270,613	0.88\%	1.22\%	1.20\%	0.68\%	1.25\%	1.22\%	0.79\%	1.23\%	1.20\%
2028	16,231	247,392	263,623	16,216	251,741	267,958	17,635	255,987	273,622	0.78\%	1.14\%	1.12\%	0.60\%	1.17\%	1.14\%	0.78\%	1.14\%	1.11\%
2029	16,316	250,053	266,368	16,274	254,539	270,814	17,731	258,787	276,518	0.53\%	1.08\%	1.04\%	0.36\%	1.11\%	1.07\%	0.55\%	1.09\%	1.06\%
2030	16,367	252,398	268,765	16,362	256,896	273,257	17,841	261,089	278,930	0.31\%	0.94\%	0.90\%	0.54\%	0.93\%	0.90\%	0.62\%	0.89\%	0.87\%
2031	16,459	254,918	271,377	16,427	259,536	275,963	17,935	263,708	281,643	0.57\%	1.00\%	0.97\%	0.40\%	1.03\%	0.99\%	0.53\%	1.00\%	0.97\%
				Ther	m Usage by Cl									nual Change				
		Low			Medium			High			Low			Medium			High	
	RES	COM/IND	Total	RES	COM/IND	otal												
2011	5,786,265	7,462,519	13,248,784	6,072,614	7,498,267	13,570,88	6,543,600	7,538,755	14,082,355	4.07\%	11.96\%	8.37\%	9.22\%	12.50\%	11.01\%	17.69\%	13.10\%	15.19\%
2012	5,808,192	7,486,110	13,294,302	6,158,097	7,505,914	13,664,011	6,752,836	7,576,339	14,329,175	0.38\%	0.32\%	0.34\%	1.41\%	0.10\%	0.69\%	3.20\%	0.50\%	1.75\%
2013	5,881,356	7,520,954	13,402,310	6,262,434	7,513,580	13,776,014	6,924,204	7,605,647	14,529,851	1.26\%	0.47\%	0.81\%	1.69\%	0.10\%	0.82\%	2.54\%	0.39\%	1.40\%
2014	5,999,389	7,563,417	13,562,806	6,402,715	7,523,755	13,926,470	7,092,764	7,642,622	14,735,386	2.01\%	0.56\%	1.20\%	2.24\%	0.14\%	1.09\%	2.43\%	0.49\%	1.41\%
2015	6,137,987	7,618,344	13,756,331	6,551,434	7,538,027	14,089,461	7,254,702	7,689,931	14,944,633	2.31\%	0.73\%	1.43\%	2.32\%	0.19\%	1.17\%	2.28\%	0.62\%	1.42\%
2016	6,274,998	7,677,274	13,952,272	6,698,482	7,553,744	14,252,226	7,428,357	7,740,809	15,169,166	2.23\%	0.77\%	1.42\%	2.24\%	0.21%	1.16\%	2.39\%	0.66\%	1.50\%
2017	6,385,659	7,723,602	14,109,261	6,831,016	7,562,580	14,393,596	7,574,364	7,777,998	15,352,362	1.76\%	0.60\%	1.13\%	1.98\%	0.12\%	0.99\%	1.97\%	0.48\%	1.21\%
2018	6,505,042	7,765,750	14,270,792	6,960,255	7,568,369	14,528,624	7,730,282	7,810,046	15,540,328	1.87\%	0.55\%	1.14\%	1.89\%	0.08\%	0.94\%	2.06\%	0.41\%	1.22\%
2019	6,634,438	7,815,558	14,449,996	7,099,005	7,577,704	14,676,709	7,881,384	7,848,799	15,730,183	1.99\%	0.64\%	1.26\%	1.99\%	0.12\%	1.02\%	1.95\%	0.50\%	1.22\%
2020	6,760,152	7,866,641	14,626,793	7,248,016	7,587,605	14,835,621	8,044,623	7,888,338	15,932,961	1.89\%	0.65\%	1.22\%	2.10\%	0.13\%	1.08\%	2.07\%	0.50\%	1.29\%
2021	6,857,588	7,905,942	14,763,530	7,355,458	7,590,549	14,946,007	8,178,772	7,915,370	16,094,142	1.44\%	0.50\%	0.93\%	1.48\%	0.04\%	0.74\%	1.67\%	0.34\%	1.01\%
2022	6,950,952	7,939,838	14,890,790	7,471,030	7,589,581	15,060,611	8,319,038	7,935,500	16,254,538	1.36\%	0.43\%	0.86\%	1.57\%	-0.01\%	0.77\%	1.72\%	0.25\%	1.00\%
2023	7,093,388	7,983,252	15,076,640	7,608,636	7,594,135	15,202,771	8,453,886	7,964,406	16,418,292	2.05\%	0.55\%	1.25\%	1.84\%	0.06\%	0.94\%	1.62\%	0.36\%	1.01\%
2024	7,231,974	8,049,283	15,281,257	7,756,756	7,613,412	15,370,168	8,613,040	8,015,225	16,628,265	1.95\%	0.83\%	1.36\%	1.95\%	0.25\%	1.10\%	1.88\%	0.64\%	1.28\%
2025	7,324,800	8,084,219	15,409,019	7,856,580	7,612,027	15,468,607	8,719,983	8,033,307	16,753,290	1.28\%	0.43\%	0.84\%	1.29\%	-0.02\%	0.64\%	1.24\%	0.23\%	0.75\%
2026	7,410,932	8,117,834	15,528,766	7,964,250	7,609,710	15,573,960	8,836,965	8,049,780	16,886,745	1.18\%	0.42\%	0.78\%	1.37\%	-0.03\%	0.68\%	1.34\%	0.21\%	0.80\%
2027	7,506,300	8,158,682	15,664,982	8,066,925	7,612,625	15,679,550	8,947,917	8,072,919	17,020,836	1.29\%	0.50\%	0.88\%	1.29\%	0.04\%	0.68\%	1.26\%	0.29\%	0.79\%
2028	7,596,428	8,190,850	15,787,278	8,164,050	7,609,366	15,773,416	9,066,644	8,086,467	17,153,111	1.20\%	0.39\%	0.78\%	1.20\%	-0.04\%	0.60\%	1.33\%	0.17\%	0.78\%
2029	7,651,476	8,218,723	15,870,199	8,225,875	7,603,568	15,829,443	9,151,128	8,095,663	17,246,791	0.72\%	0.34\%	0.53\%	0.76\%	-0.08\%	0.36\%	0.93\%	0.11\%	0.55\%
2030	7,700,680	8,218,723	15,919,403	8,311,037	7,603,568	15,914,605	9,258,112	8,095,663	17,353,775	0.64\%	0.00\%	0.31\%	1.04\%	0.00\%	0.54\%	1.17\%	0.00\%	0.62\%
2031	7,765,278	8,244,122	16,009,400	8,382,120	7,595,817	15,977,937	9,343,938	8,101,348	17,445,285	0.84\%	0.31\%	0.57\%	0.86\%	-0.10\%	0.40\%	0.93\%	0.07\%	0.53\%
				Custo	ner Count For	cast								ual Change				
		Low			Medium			High			Low			Medium			High	
	RES	COM/IND	Total	RES	COMIIND	Total	RES	COM/IND	Total									
2011	10,617	1,864	12,481	10,729	1,874	12,603	10,906	1,887	12,793	0.45\%	1.13\%	0.55\%	1.51\%	1.70\%	1.54\%	3.19\%	2.36\%	3.07\%
2012	10,816	1,879	12,695	10,977	1,894	12,871	11,236	1,911	13,147	1.87\%	0.81\%	1.72\%	2.31\%	1.05\%	2.12\%	3.03\%	1.32\%	2.77\%
2013	11,076	1,896	12,972	11,223	1,914	13,137	11,502	1,933	13,435	2.40\%	0.90\%	2.18\%	2.24\%	1.03\%	2.06\%	2.37\%	1.14\%	2.19\%
2014	11,341	1,912	13,253	11,495	1,933	13,428	11,782	1,955	13,737	2.39\%	0.87\%	2.17\%	2.42\%	1.01\%	2.22\%	2.43\%	1.13\%	2.25\%
2015	11,603	1,929	13,532	11,762	1,952	13,714	12,051	1,976	14,027	2.31\%	0.86\%	2.10\%	2.32\%	0.99\%	2.13\%	2.28\%	1.09\%	2.11\%
2016	11,862	1,945	13,807	12,026	1,971	13,997	12,319	1,998	14,317	2.23\%	0.83\%	2.03\%	2.24\%	0.97\%	2.06\%	2.22\%	1.07\%	2.06\%
2017	12,117	1,961	14,078	12,286	1,990	14,276	12,582	2,019	14,601	2.15\%	0.82\%	1.96\%	2.16\%	0.95\%	1.99\%	2.13\%	1.06\%	1.98\%
2018	12,367	1,976	14,343	12,541	2,008	14,549	12,841	2,039	14,880	2.06\%	0.80\%	1.89\%	2.08\%	0.92\%	1.92\%	2.06\%	1.03\%	1.92\%
2019	12,613	1,992	14,605	12,791	2,026	14,817	13,092	2,060	15,152	1.99\%	0.78\%	1.82\%	1.99\%	0.91\%	1.84\%	1.95\%	1.01\%	1.83\%
2020	12,852	2,007	14,859	13,036	2,044	15,080	13,341	2,080	15,421	1.89\%	0.75\%	1.74\%	1.92\%	0.88\%	1.77\%	1.90\%	0.99\%	1.78\%
2021	13,087	2,022	15,109	13,277	2,062	15,339	13,586	2,101	15,687	1.83\%	0.74\%	1.68\%	1.85\%	0.87\%	1.72\%	1.84\%	0.97\%	1.72\%
2022	13,316	2,036	15,352	13,510	2,079	15,589	13,819	2,120	15,939	1.75\%	0.72\%	1.61\%	1.75\%	0.84\%	1.63\%	1.72\%	0.94\%	1.61\%
2023	13,537	2,050	15,587	13,734	2,096	15,830	14,043	2,140	16,183	1.66\%	0.70\%	1.53\%	1.66\%	0.82\%	1.55\%	1.62\%	0.92\%	1.53\%
2024	13,749	2,064	15,813	13,951	2,113	16,064	14,260	2,159	16,419	1.57\%	0.68\%	1.45\%	1.58\%	0.80\%	1.48\%	1.55\%	0.90\%	1.46\%
2025	13,952	2,078	16,030	14,156	2,129	16,285	14,461	2,178	16,639	1.48\%	0.65\%	1.37\%	1.47\%	0.77\%	1.38\%	1.41\%	0.86\%	1.34\%
2026	14,143	2,091	16,234	14,350	2,145	16,495	14,655	2,196	16,851	1.37\%	0.63\%	1.27\%	1.37\%	0.75\%	1.29\%	1.34\%	0.84\%	1.28\%
2027	14,325	2,103	16,428	14,535	2,161	16,696	14,839	2,214	17,053	1.29\%	0.61\%	1.20\%	1.29\%	0.73\%	1.22\%	1.26\%	0.83\%	1.20\%
2028	14,497	2,116	16,613	14,710	2,176	16,886	15,011	2,232	17,243	1.20\%	0.58\%	1.12\%	1.20\%	0.70\%	1.14\%	1.16\%	0.80\%	1.11\%
2029	14,658	2,128	16,786	14,875	2,191	17,066	15,176	2,249	17,425	1.11\%	0.57\%	1.04\%	1.12\%	0.69\%	1.07\%	1.10\%	0.79\%	1.06\%
2030	14,809	2,128	16,937	15,029	2,191	17,220	15,328	2,249	17,577	1.03\%	0.00\%	0.90\%	1.04\%	0.00\%	0.90\%	1.00\%	0.00\%	0.87\%
2031	14,962	2,139	17,101	15,185	2,205	17,390	15,482	2,266	17,748	1.03\%	0.55\%	0.97\%	1.04\%	0.66\%	0.99\%	1.00\%	0.75\%	0.97\%

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

Pendleton

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

Sunnyside

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

SYSTEM TOTAL																					
	Annual Requirements (Therms)									Annual Change											
	Low			Medium			High			Low			Medium			High					
	Heating	Baseload	Total	Heating	Baseload	Tota															
2011	191,626,024	94,623,746	286,249,771	194,379,444	96,038,972	290,418,416	198,553,701	98,188,335	296,742,036	5.94\%	6.35\%	6.07\%	7.46\%	7.94\%	7.62\%	9.77\%	10.35\%	9.96\%			
2012	195,573,590	96,686,595	292,260,185	198,644,323	98,266,949	296,911,272	203,934,831	100,982,980	304,917,812	2.06\%	2.18\%	2.10\%	2.19\%	2.32\%	2.24\%	2.71\%	2.85\%	2.76\%			
13	196,955,090	97,437,895	294,392,984	199,727,602	98,866,024	298,593,626	206,264,855	102,230,741	308,495,596	. 7%	0.78\%	0.73	.55\%	.61\%	0.57\%	1.14\%	.24	1.17\%			
2014	199,315,519	98,677,580	297,993,099	202,205,880	100,171,329	302,377,209	209,683,287	104,021,537	313,704,824	.20\%	27	1.22\%	1.24\%	1.32\%	1.27	1.66\%	.75	1.69\%			
2015	202,540,432	100,333,925	302,874,358	205,879,337	102,054,533	307,933,870	213,862,839	106,168,332	320,031,170	. 62%	1.68\%	1.64\%	1.82\%	1.88\%	1.84\%	1.99\%	2.06\%	2.02\%			
2016	205,969,680	102,074,188	308,043,869	209,889,600	104,101,263	313,990,862	218,365,555	108,472,758	326,838,313	1.69\%	1.73\%	1.71\%	1.95\%	2.01\%	1.97\%	2.11\%	2.17\%	2.13\%			
2017	208,843,677	103,553,205	312,396,881	213,253,894	105,832,288	319,086,182	222,387,986	110,547,518	332,935,504	1.40\%	1.45\%	1.41\%	1.60\%	1.66\%	1.62\%	1.84\%	1.91\%	1.87\%			
2018	211,702,135	105,031,139	316,733,274	216,518,897	107,526,851	324,045,748	226,366,148	112,608,776	338,974,924	1.37\%	1.43\%	1.39\%	1.53\%	1.60\%	1.55\%	1.79\%	86\%	1.81\%			
2019	214,964,473	106,700,554	321,665,027	220,353,535	109,499,170	329,852,705	230,774,573	114,875,931	345,650,504	.54\%	1.59\%	1.56\%	1.77\%	1.83\%	1.79\%	1.95	2.01\%	1.9			
2020	218,386,550	108,442,418	326,828,967	224,317,479	111,521,313	335,838,792	235,398,314	117,244,388	352,642,702	1.59\%	1.63\%	1.61	1.80\%	1.85\%	1.81\%	2.00	2.06\%	2.02\%			
2021	221,176,311	109,881,902	331,058,214	227,639,946	113,239,593	340,879,539	239,508,430	119,367,449	358,875,879	1.28\%	1.33\%	1.29\%	1.48\%	1.54\%	1.50\%	1.75\%	1.81\%	1.77\%			
2022	223,906,578	111,296,413	335,202,992	230,823,485	114,894,642	345,718,127	243,545,708	121,464,783	365,010,491	1.23\%	1.29\%	1.25\%	1.40\%	1.46\%	1.42\%	1.69\%	1.76\%	1.71\%			
2023	227,444,191	113,111,622	340,555,813	234,934,351	117,006,241	351,940,591	248,294,062	123,905,683	372,199,745	1.58\%	1.63\%	1.60\%	1.78\%	1.84\%	1.80\%	1.95\%	2.01\%	1.97\%			
2024	231,972,017	115,375,847	347,347,865	240,239,623	119,674,450	359,914,073	254,149,691	126,853,036	381,002,727	1.99\%	2.00\%	1.99	2.26\%	2.28\%	2.27	2.36\%	.38	2.3			
2025	235,139,452	116,996,187	352,135,639	243,980,452	121,592,809	365,573,261	258,720,297	129,193,024	387,913,321	1.37\%	1.40\%	. 38	1.56\%	1.60\%	1.57	1.80	1.84	1.81\%			
2026	238,264,518	118,598,999	356,863,517	247,647,552	123,482,414	371,129,966	263,326,185	131,566,403	394,892,588	, 33%	1.37\%	1.34	50\%	1.55\%	1.52\%	1.78\%	1.84\%	1.80\%			
2027	241,767,536	120,379,243	362,146,780	251,844,139	125,626,237	377,470,375	268,347,699	134,126,225	402,473,923	1.47\%	1.50\%	1.48\%	1.69\%	1.74\%	1.71\%	1.91\%	1.95\%	1.92\%			
2028	244,896,598	121,983,398	366,879,996	255,715,367	127,610,712	383,326,079	273,193,914	136,608,448	409,802,362	1.29\%	1.33\%	1.31\%	1.54\%	1.58\%	1.55\%	1.81\%	1.85\%	82\%			
2029	247,791,542	123,470,980	371,262,522	259,225,149	129,417,533	388,642,682	277,783,365	138,968,861	416,752,226	1.18\%	1.22\%	1.19	1.37\%	1.42\%	1.39\%	1.68\%	1.73\%	1.70\%			
2030	249,327,237	124,256,768	373,584,005	261,278,487	130,478,353	391,756,839	280,288,151	140,267,683	420,555,834	0.62\%	0.64\%	0.63\%	0.79\%	0.82\%	0.80\%	0.90\%	0.93\%	0.91\%			
2031	252,190,301	125,732,655	377,922,956	264,798,049	132,291,961	397,090,010	284,968,088	142,673,004	427,641,091	1.15\%	1.19\%	1.16\%	1.35\%	1.39\%	1.36\%	1.67\%	1.71\%	1.68\%			
	Peak Day - Baseload									Annual Change											
	Low			Medium			High			Low			Medium			High					
	Daly	Peak	otal Core Peak	Daly	Peak	Core	Dally	Peak	Total CorePeak		Peak	Total	Base	Peak	Total	Base	Peak	Total			
	Baseload			Baseload		Peak	Baseload			Base											
2011	259,243	3,357,311	3,616,554	263,120	3,380,972	3,644,093	269,009	3,417,030	3,686,039	6.35	0.10	0.52	7.94\%	0.81	1.29	10.35	1.88\%	2.45\%			
2012	264,89	3,391,689	3,656,583	269,225	3,420,942	3,690,166	276,666	3,463,879	3,740,545	2.18\%	1.02\%	1.11\%	2.32\%	1.18\%	1.26\%	2.85\%	1.37\%	1.48\%			
2013	266,953	3,450,492	3,717,445	270,866	3,465,491	3,736,357	280,084	3,536,168	3,816,252	0.78\%	1.73\%	1.66	0.61\%	1.30\%	1.25\%	1.24\%	2.09\%	2.02\%			
2014	270,350	3,514,726	3,785,075	274,442	3,539,450	3,813,892	284,991	3,618,852	3,903,843	1.27\%	1.86\%	1.82\%	1.32\%	2.13\%	2.08\%	1.75\%	2.34\%	2.30\%			
2015	274,887	3,578,233	3,853,120	279,601	3,612,648	3,892,249	290,872	3,701,658	3,992,530	1.68\%	1.81\%	1.80	1.88\%	2.07\%	2.05\%	2.06\%	2.29\%	2.27\%			
2016	279,655	3,641,854	3,921,510	285,209	3,686,051	3,971,260	297,186	3,785,135	4,082,321	1.73\%	1.78\%	1.77\%	2.01\%	2.03\%	2.03\%	2.17\%	2.26%	2.25\%			
2017	283,707	3,706,545	3,990,253	289,951	3,761,072	4,051,023	302,870	3,870,440	4,173,310	1.45\%	1.78\%	1.75\%	1.66\%	2.04\%	2.01\%	1.91\%	2.25\%	2.23\%			
2018	287,757	3,771,427	4,059,184	294,594	3,836,936	4,131,530	308,517	3,956,968	4,265,485	1.43\%	1.75\%	1.73\%	1.60\%	2.02\%	1.99\%	1.86\%	2.24\%	2.21\%			
2019	292,330	3,836,195	4,128,525	299,998	3,912,797	4,212,795	314,729	4,044,149	4,358,877	1.59\%	1.72\%	1.71\%	1.83\%	1.98\%	1.97\%	2.01\%	2.20\%	2.19\%			
2020	297,103	3,900,990	4,198,093	305,538	3,989,234	4,294,772	321,218	4,132,430	4,453,647	1.63\%	1.69\%	1.69\%	1.85\%	1.95\%	1.95\%	2.06\%	2.18\%	2.17\%			
2021	301,046	3,966,974	4,268,020	10,245	4,067,427	4,377,672	327,034	4,222,849	4,549,883	1.33\%	1.69\%	1.67\%	1.54\%	1.96\%	1.93\%	1.81\%	2.19%	2.16\%			
2022	304,922	4,033,528	4,338,450	314,780	4,146,612	4,461,392	332,780	4,314,565	4,647,346	1.29\%	1.68\%	1.65\%	1.46\%	1.95\%	1.91\%	1.76\%	2.17\%	2.14\%			
2023	309,895	4,099,125	4,409,020	320,565	4,225,088	4,545,653	339,468	4,406,215	4,745,683	1.63\%	1.63\%	1.63\%	1.84\%	1.89\%	1.89\%	2.01\%	2.12\%	2.12\%			
2024	316,098	4,163,705	4,479,803	327,875	4,302,731	4,630,607	347,543	4,497,887	4,845,430	2.00\%	1.58\%	1.61\%	2.28\%	1.84\%	1.87	2.38\%	2.08\%	2.10\%			
2025	320,537	4,230,224	4,550,761	333,131	4,383,012	4,716,143	353,953	4,592,052	4,946,005	1.40\%	1.60\%	1.58	1.60\%	1.87\%	1.85	1.84\%	2.09\%	2.08\%			
2026	324,929	4,296,847	4,621,776	338,308	4,463,907	4,802,215	360,456	4,687,327	5,047,783	1.37%	1.57\%	1.56\%	1.55\%	1.85\%	1.83%	1.84	2.07%	2.06\%			
2027	329,806	4,363,195	4,693,002	344,181	4,544,844	4,889,025	367,469	4,783,437	5,150,906	1.50\%	1.54\%	1.54\%	1.74\%	1.81\%	1.81\%	1.95\%	2.05\%	2.04			
2028	334,201	4,430,080	4,764,281	349,618	4,626,736	4,976,354	374,270	4,880,789	5,255,058	1.33\%	1.53\%	1.52\%	1.58\%	1.80\%	1.79\%	1.85\%	2.04\%	2.02\%			
2029	338,277	4,497,458	4,835,735	354,569	4,709,852	5,064,421	380,737	4,979,882	5,360,619	1.22\%	1.52\%	1.50\%	1.42\%	1.80\%	1.77\%	1.73\%	2.03\%	2.01\%			
2030	340,430	4,557,425	4,897,855	357,475	4,784,278	5,141,753	384,295	5,069,990	5,454,285	0.64\%	1.33\%	1.28\%	0.82\%	1.58\%	1.53\%	0.93\%	1.81\%	1.75\%			
2031	344,473	4,626,194	4,970,667	362,444	4,869,664	5,232,108	390,885	5,172,452	5,563,336	1.19\%	1.51\%	1.49\%	1.39\%	1.78\%	1.76\%	1.71\%	2.02\%	2.00\%			
	Therm Usage by Class									Annual Change											
	Low			Medium			High			Low						High					
	RES	OM/IND	otal	ES	COM/IND	Total	RES	COM/IND	otal	RES ${ }^{\text {COM/IND }}$		Total	Medium RES COM/IND		Total	RES	COM/IND	Total			
2011	148,404,93	137,844,840	286,249,77	151,540,174	138,878,242	290,418,416	156,512,27	140,229,765	96,742,03	3.17\%	9.39\%	6.07\%	5.35\%	10.21\%	7.62	8.81	11.28	9.96\%			
2012	153,596,290	138,663,895	292,260,185	157,334,898	139,576,374	296,911,272	163,121,065	141,796,746	304,917,812	3.50\%	0.59\%	2.10\%	3.82\%	0.50\%	2.24	4.22\%	1.12	2.76%			
2013	154,586,035	139,806,950	294,392,984	157,953,386	140,640,240	298,593,626	165,024,151	143,471,445	308,495,596	0.64\%	0.82\%	0.73\%	0.39\%	0.76\%	0.57\%	1.17\%	1.18\%	1.17\%			
2014	156,644,794	141,348,305	297,993,099	160,121,931	142,255,278	302,377,209	168,146,069	145,558,755	313,704,824	1.33\%	1.10\%	1.22\%	1.37\%	1.15\%	1.27\%	1.89\%	1.45\%	1.69\%			
2015	159,388,511	143,485,847	302,874,358	163,267,887	144,665,983	307,933,870	171,744,798	148,286,372	320,031,170	1.75\%	1.51\%	1.64\%	1.96\%	1.69\%	1.84	2.14\%	1.87\%	2.02\%			
2016	162,151,634	145,892,234	308,043,869	166,569,592	147,421,270	313,990,862	175,535,658	151,302,654	326,838,313	1.73\%	1.68\%	1.71\%	2.02\%	1.90\%	1.97\%	2.21\%	2.03\%	.3\%			
2017	164,570,353	147,826,528	312,396,881	169,546,243	149,539,938	319,086,182	179,090,673	153,844,831	332,935,504	1.49\%	1.33\%	1.41\%	1.79\%	1.44\%	1.62\%	2.03\%	1.68	1.87\%			
2018	167,072,617	149,660,657	316,733,274	172,517,105	151,528,643	324,045,748	182,665,631	156,309,293	338,974,924	1.52\%	1.24\%	1.39\%	1.75\%	1.33\%	1.55\%	2.00%	1.60\%	1.81\%			
2019	169,765,797	151,899,230	321,665,027	175,802,426	154,050,279	329,852,705	186,418,881	159,231,623	345,650,504	1.61\%	1.50\%	1.56\%	1.90\%	1.66\%	1.79\%	2.05\%	1.87\%	1.97\%			
2020	172,538,093	154,290,874	326,828,967	179,061,693	156,777,100	335,838,792	190,282,195	162,360,506	352,642,702	1.63\%	1.57\%	1.61\%	1.85\%	1.77\%	1.81\%	2.07\%	1.96\%	2.02\%			
2021	174,838,857	156,219,357	331,058,214	181,979,196	158,900,343	340,879,539	193,848,963	165,026,916	358,875,879	1.33\%	1.25\%	1.29\%	1.63\%	1.35\%	1.50\%	1.87\%	1.64\%	1.77\%			
2022	177,223,216	157,979,776	335,202,992	184,908,214	160,809,913	345,718,127	197,474,642	167,535,849	365,010,491	1.36\%	1.13\%	1.25\%	1.61\%	1.20\%	1.42\%	1.87\%	1.52	1.71\%			
2023	180,307,225	160,248,587	340,555,813	188,551,745	163,388,847	351,940,591	201,548,524	170,651,220	372,199,745	1.74\%	1.44\%	1.60\%	1.97\%	1.60\%	1.80\%	2.06\%	1.86\%	1.97\%			
2024	183,683,346	163,664,519	347,347,865	192,436,692	167,477,381	359,914,073	205,879,041	175,123,686	381,002,727	1.87	2.13\%	1.99	2.06	2.50\%	2.27	2.15\%	2.62	2.37\%			
2025	186,409,343	165,726,296	352,135,639	195,774,104	169,799,157	365,573,261	209,799,532	178,113,789	387,913,321	1.48\%	1.26\%	1.38	1.73\%	1.39\%	1.57\%	1.90\%	1.71\%	1.81\%			
2026	189,046,804	167,816,712	356,863,517	198,954,804	172,175,162	371,129,966	213,690,686	181,201,902	394,892,588	1.41\%	1.26\%	1.34\%	1.62\%	1.40\%	1.52\%	1.85\%	1.73\%	1.80\%			
2027	191,821,735	170,325,045	362,146,780	202,360,398	175,109,977	377,470,375	217,633,693	184,840,230	402,473,923	1.47\%	1.49\%	1.48	1.71\%	1.70\%	1.71\%	1.85\%	2.01%	1.92\%			
2028	194,368,777	172,511,218	366,879,996	205,683,464	177,642,615	383,326,079	221,621,288	188,181,074	409,802,362	1.33\%	1.28\%	1.31\%	1.64\%	1.45\%	1.55\%	1.83\%	1.81\%	1.82\%			
2029	196,708,310	174,554,212	371,262,522	208,640,820	180,001,862	388,642,682	225,331,045	191,421,181	416,752,226	1.20\%	1.18\%	1.19\%	1.44\%	1.33\%	1.39\%	1.67\%	1.72\%	1.70\%			
2030	199,029,793	174,554,212	373,584,005	211,754,977	180,001,862	391,756,839	229,134,653	191,421,181	420,555,834	1.18\%	0.00\%	0.63\%	1.49\%	0.00\%	0.80\%	1.69\%	0.00\%	0.91\%			
2031	201,356,710	176,566,246	377,922,956	214,752,901	182,337,110	397,090,010	232,943,526	194,697,565	427,641,091	1.17\%	1.15\%	1.16\%	1.42\%	1.30\%	1.36\%	1.66\%	1.71\%	1.6			
	Customer Count Forecast									Annual Change											
	Low			Medium			High			Low			Medium			High					
	RES ${ }^{\text {Com }}$ COM/IND		Total	RES	COM/IND	Total	RES	COM/IND	Total	RES ${ }^{\text {COM/IND }}$		 RES CoM 0.49% 0.57% Total 0.50%	RES	COM/IND	Total	RES ${ }^{\text {COM/IND }}$ Total					
2011	226,535	34,725	261,260	$\begin{aligned} & \hline 228,091 \\ & 230,588 \end{aligned}$	35,083	263,174	230,492	35,594	266,086	0.49\%\%	1.68\%	0.50\%	1.18\%	1.61\%	1.24\%	$\begin{aligned} & 2.25 \% \\ & 1.28 \% \end{aligned}$	3.09% 2.36% 2.29% 1.41% 2.12% 1.99%				
2012	228,728	35,307	264,035		36,477	266,363	233,434	36,411	269,845			1.06\%	1.09\%	1.97\%	1.21\%						
2013	232,391	35,932	268,323	233,083 237,894		269,560	238,044	37,182	275,226	1.60\%	$1.77 \%$$1.75 \%$	1.62\%	1.08\%	1.96\%	1.20\%	1.28% 1.97%					
2014	236,548	36,562	273,110		37,18637,904	275,080	243,522	37,964	281,486	1.79\%		1.78\%	2.06\%	1.94\%	2.05\%	2.30\%					
2015	240,731	37,197	277,928	242,758247,663			249,075	$\begin{aligned} & 38,759 \\ & 39,560 \end{aligned}$	287,834	$1.77 \%$$1.75 \%$	1.74%	1.76\%	2.04\%	1.93\%	2.03\%	 2.28% 2.09% 2.26% 2.26% 2.07% 2.23% 2.22% 2.05% 2.21%					
2016	244,936	37,838	282,774		38,628 39,359	286,291291,972	254,694		294,254		$1.72 \%$$1.70 \%$	1.74\%	$\begin{aligned} & 2.02 \% \\ & 2.00 \% \end{aligned}$	$1.91 \%$$1.89 \%$	2.01\%						
2017	249,160	38,482	287,642	252,613			260,390	40,371	300,761	1.72\%		1.72\%			1.98\%	2.24\%	$\begin{array}{l\|l\|} \hline 2.05 \% & 2.21 \% \\ 2.04 \% & 2.20 \% \end{array}$				
2018	253,399	39,129	292,528		40,09840,843	297,715	266,172	41,19442,026	307,366	$\begin{aligned} & 1.70 \% \\ & 1.68 \% \end{aligned}$	$\begin{aligned} & 1.68 \% \\ & 1.67 \% \end{aligned}$	1.70\%	$1.98 \%$$1.96 \%$	1.88\%	1.97\%	$\begin{array}{l\|l\|l\|} 2.22 \% & 2.04 \% & 2.20 \% \\ 2.20 \% & 2.02 \% & 2.18 \% \end{array}$					
2019	257,665	39,781	297,446	262,668		303,511	272,027		314,053			1.68\%			1.95\%						
2020	261,943	40,436	302,379	267,762	41,59542,355	309,357	277,970	42,869	320,839	1.68% 1.66%	1.67% 1.65%	1.66\%	1.96% 1.94%	1.86% 1.84%	1.93\%	2.18\% $\quad 2.01 \%$ 2.16\%					
2021	266,246	41,095	307,341			315,272	284,010	43,725	327,735	1.64\%	1.63\%	1.64\%	1.93\%	1.83\%	1.91\%	2.18 2.17% 2.00% 2.15% 2.15% 1.98% 2.13%					
2022	270,578	41,759	312,337	278,123	43,123	321,246	290,126	44,590	334,716	1.63\%	1.62\%	1.63\%	1.91\%	1.81\%	1.89\%						
2023	274,921	42,426	317,347	283,367	43,897	327,264	296,308	45,464	341,772	1.61\%	1.60\%	1.60\%	1.89\%	1.79\%	1.87\%	2.13\%	1.96\%	2.11\%			
2024	279,279	43,096	322,375	288,657	44,676	333,333	302,577	46,347	348,924	1.59\%	1.58\%	1.58\%	1.87\%	1.78\%	1.85\%	2.12\%	1.94%	2.09\%			
2025	283,648	43,768	327,416	293,985	45,460	339,445	308,900	47,237	356,137	56\%	1.56\%	1.56\%	1.85\%	1.76\%	1.83\%	2.09\%	1.92\%	2.07\%			
2026	288,021	44,442	332,463	299,349	46,250	345,599	315,307	48,137	363,444	1.54\%	1.54\%	1.54\%	1.82\%	1.74\%	1.81\%	2.07\%	1.91\%	2.05\%			
2027	292,415	45,119	337,534	304,764	47,047	351,811	321,801	49,047	370,848	1.53\%	1.52\%	1.53\%	1.81\%	1.72\%	1.80\%	2.06\%	1.89\%	2.04\%			
2028	296,807	45,796	342,603	310,211	47,847	358,058	328,363	49,966	378,329	1.50\%	1.50\%	1.50\%	1.79\%	1.70\%	1.78\%	2.04\%	1.87\%	2.02\%			
2029	301,214	46,476	347,690	315,708	48,653	364,361	335,016	50,894	385,910	1.48\%	1.49\%	1.48\%	1.77\%	1.69\%	1.76\%	2.03\%	1.86\%	2.00\%			
2030	305,640	46,476	352,116	321,249	48,653	369,902	341,751	50,894	392,645	1.47\%	0.00\%	1.27\%	1.76\%	0.00\%	1.52\%	2.01\%	0.00\%	1.75\%			
2031	310,145	47,160	357,305	326,907	49,466	376,373	348,648	51,832	400,480	1.47\%	1.47\%	1.47\%	1.76\%	1.67\%	1.75\%	2.02\%	1.84\%	2.00\%			

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

SYSTEM TOTAL

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

	WA																	
	Annual Requirements (Therms)									Annual Change								
	Low			Medium			High			Low			Medium			High		
	Heating	Baseload	Total	Heating	Baseload	Tota												
2011	142,565,215	71,864,213	214,429,428	144,468,710	72,871,646	217,340,355	147,346,379	74,396,676	221,743,055	5.58\%	6.14\%	5.77	6.99\%	7.63\%	7.21\%	9.12\%	9.88\%	9.38\%
2012	146,420,791	73,888,905	220,309,696	148,506,506	74,994,748	223,501,254	152,110,486	76,898,490	229,008,977	2.70\%	2.82\%	2.74\%	2.79\%	2.91\%	2.83\%	3.23\%	3.36\%	3.28\%
2013	147,813,460	74,629,585	222,443,045	149,579,575	75,572,211	225,151,786	153,941,166	77,900,763	231,841,928	0.95\%	1.0	0.97\%	0.72\%	.77\%	.74	.20\%	1.30\%	1.24\%
2014	149,838,197	75,701,622	225,539,819	151,626,682	76,667,581	228,294,263	156,441,418	79,261,492	235,702,910	1.37\%	1.44	. 39	1.37\%	1.45\%	1.40%	1.62\%	1.75\%	1.67\%
2015	152,359,193	77,026,599	229,385,792	154,361,304	78,117,776	232,479,080	159,326,328	80,814,816	240,141,144	1.68\%	1.75\%	1.71\%	1.80\%	1.89\%	1.83\%	1.84\%	.96\%	1.88\%
2016	155,004,808	78,401,638	233,406,445	157,336,627	79,690,230	237,026,858	162,420,521	82,474,226	244,894,747	1.74\%	1.79\%	1.75\%	1.93\%	2.01\%	1.96\%	1.94\%	2.05\%	1.98\%
2017	157,331,784	79,621,991	236,953,775	159,877,656	81,040,659	240,918,314	165,220,884	83,988,598	249,209,482	1.50\%	1.56\%	1.52\%	1.62\%	1.69\%	1.64\%	1.72\%	1.84\%	1.76\%
2018	159,641,343	80,839,336	240,480,679	162,343,681	82,365,727	244,709,40	167,931,290	85,469,187	253,400,477	1.47\%	1.53\%	1.49\%	1.54\%	1.64\%	1.57\%	1.64\%	1.76\%	1.68\%
2019	162,168,876	82,165,795	244,334,671	165,164,677	83,873,605	249,038,282	170,881,354	87,071,651	257,953,005	1.58\%	1.64\%	1.60\%	1.74\%	83\%	1.77\%	1.76\%	1.87\%	1.80\%
2020	164,796,933	83,539,349	248,336,282	168,025,722	85,391,405	253,417,127	173,921,710	88,719,562	262,641,272	1.62\%	1.67\%	1.64\%	1.73\%	1.81\%	1.76%	1.78\%	1.89\%	1.82
2021	167,063,947	84,732,904	251,796,850	170,506,467	86,724,049	257,230,516	176,642,933	90,210,760	266,853,693	1.38\%	1.43\%	1.39\%	1.48\%	1.56\%	1.50\%	1.56\%	1.68\%	1.60\%
2022	169,267,904	85,899,950	255,167,854	172,862,038	87,998,162	260,860,200	179,284,163	91,671,895	270,956,058	1.32\%	1.38\%	1.34\%	1.38\%	1.47\%	1.41\%	1.50\%	1.62\%	1.54\%
2023	171,971,171	87,327,283	259,298,454	175,808,741	89,579,218	265,387,958	182,337,741	93,346,240	275,683,981	1.60\%	1.66\%	1.62\%	1.70\%	1.80\%	1.74\%	1.70\%	1.83\%	1.74\%
2024	175,216,761	89,007,759	264,224,520	179,433,332	91,490,119	270,923,450	185,869,067	95,247,610	281,116,677	1.89\%	1.92\%	1.90\%	2.06\%	13\%	2.09\%	1.94\%	2.04	1.97\%
2025	177,753,954	90,336,502	268,090,456	182,156,941	92,947,189	275,104,130	188,785,661	96,842,244	285,627,904	1.45\%	1.49	. 46	1.52\%	1.59\%	1.54	1.57	1.67	1.6
2026	180,181,240	91,617,917	271,799,158	184,769,061	94,357,705	279,126,766	191,616,033	98,415,521	290,031,554	1.37\%	1.42\%	1.3	1.43\%	.52\%	1.46\%	1.50\%	1.62\%	1.54\%
2027	182,818,291	93,002,669	275,820,960	187,672,163	95,918,637	283,590,801	194,603,958	100,062,238	294,666,196	1.46\%	1.51\%	1.48\%	1.57\%	1.65\%	1.60\%	1.56\%	1.67\%	1.60\%
2028	185,260,945	94,290,762	279,551,707	190,367,291	97,371,911	287,739,201	197,485,401	101,660,938	299,146,338	1.34\%	1.39\%	1.35\%	1.44\%	1.52\%	1.46%	1.48\%	1.60\%	1.52\%
2029	187,538,637	95,496,480	283,035,117	192,828,571	98,707,427	291,535,998	200,173,867	103,169,046	303,342,913	1.23\%	1.28\%	1.25\%	1.29\%	1.37\%	1.32\%	1.36\%	1.48	1.40\%
2030	188,779,904	96,147,219	284,927,123	194,377,372	99,536,259	293,913,630	201,976,598	104,145,859	306,122,457	0.66\%	0.68\%	0.67\%	0.80\%	0.84\%	0.82\%	0.90\%	0.95\%	0.92\%
2031	191,017,046	97,337,010	288,354,056	196,822,995	100,866,724	297,689,719	204,671,837	105,662,007	310,333,844	1.19\%	1.24\%	1.20\%	1.26\%	1.34\%	1.28\%	1.33\%	1.46\%	1.38\%
	Peak Day - Baseload									Annual Change								
	Low			Medium			High			Low			Medium			High		
		Peak	otal Core Peak		Peak	otal Core Peak		Peak	Total Core Peak	Base	Peak	Total	Base	Peak	Total	Base	Peak	Total
2011	196,888	2,585,210	2,782,098	199,648	2,606,303	2,805,952	203,827	2,638,685	2,842,512	6.14\%	-0.09\%	0.32	7.63\%	0.72\%	1.19	9.88\%	1.97\%	2.50\%
2012	202,435	2,613,796	2,816,231	205,465	2,639,333	2,844,798	210,681	2,677,339	2,888,020	2.82\%	1.11\%	1.23	2.91\%	1.27\%	1.38\%	3.36\%	1.46\%	1.60\%
2013	204,465	2,661,382	2,865,847	207,047	2,676,681	2,883,729	213,427	2,734,890	2,948,317	1.00\%	1.82\%	1.76	0.77\%	1.42\%	1.37	1.30\%	2.15\%	2.09\%
2014	207,402	2,713,007	2,920,408	210,048	2,735,315	2,945,363	217,155	2,800,122	3,017,277	1.44\%	1.94\%	1.90\%	1.45\%	2.19\%	2.14\%	1.75\%	2.39\%	2.34\%
2015	211,032	2,764,258	2,975,290	214,021	2,793,628	3,007,650	221,410	2,865,666	3,087,077	1.75\%	1.89\%	1.8	1.89\%	2.13\%	2.11\%	1.96\%	2.34\%	2.31\%
2016	214,799	2,815,663	3,030,462	218,329	2,852,162	3,070,491	225,957	2,931,884	3,157,841	1.79\%	1.86\%	1.85\%	2.01\%	2.10\%	2.09\%	2.05\%	2.31%	2.29\%
2017	218,142	2,867,810	3,085,952	222,029	2,911,919	3,133,948	230,106	2,999,460	3,229,566	1.56\%	1.85\%	1.83\%	1.69\%	2.10\%	2.07\%	1.84\%	2.30\%	2.27\%
2018	221,478	2,920,129	3,141,607	225,660	2,972,323	3,197,982	234,162	3,067,943	3,302,105	1.53\%	1.82\%	1.8	1.64\%	2.07\%	2.04\%	1.76\%	2.28\%	2.25\%
2019	225,112	2,972,446	3,197,558	229,791	3,032,863	3,262,654	238,552	3,137,212	3,375,765	1.64\%	1.79\%	1.78\%	1.83\%	2.04\%	2.02\%	1.87\%	2.26\%	2.23\%
2020	228,875	3,024,906	3,253,781	233,949	3,093,988	3,327,937	243,067	3,207,451	3,450,518	1.67\%	1.76\%	1.76\%	1.81\%	2.02\%	2.00\%	1.89\%	2.24\%	2.21\%
2021	232,145	3,078,181	3,310,326	237,600	3,156,414	3,394,014	247,153	3,279,319	3,526,472	1.43\%	1.76\%	1.74\%	1.56\%	2.02\%	1.99\%	1.68\%	2.24	2.20\%
2022	235,342	3,131,969	3,367,311	241,091	3,219,680	3,460,771	251,156	3,352,329	3,603,485	1.38\%	1.75\%	1.72\%	1.47\%	2.00\%	1.97\%	1.62\%	2.23\%	2.18\%
2023	239,253	3,185,240	3,424,493	245,423	3,282,617	3,528,039	255,743	3,425,419	3,681,162	1.66\%	1.70\%	1.70\%	1.80\%	1.95\%	1.94\%	1.83\%	2.18\%	2.16\%
2024	243,857	3,237,999	3,481,856	250,658	3,345,197	3,595,855	260,952	3,499,079	3,760,031	1.92\%	1.66\%	1.68\%	2.13\%	1.91\%	1.92\%	2.04\%	2.15\%	2.14\%
2025	247,497	3,291,982	3,539,480	254,650	3,409,647	3,664,296	265,321	3,574,433	3,839,754	1.49\%	1.67\%	1.65\%	1.59\%	1.93\%	1.90\%	1.67\%	2.15\%	2.12\%
2026	251,008	3,346,221	3,597,229	258,514	3,474,659	3,733,173	269,632	3,650,684	3,920,316	1.42\%	1.65\%	1.63\%	1.52\%	1.91\%	1.88\%	1.62\%	2.13	2.10\%
2027	254,802	3,400,315	3,655,117	262,791	3,539,867	3,802,658	274,143	3,727,883	4,002,026	1.51\%	1.62\%	1.61\%	1.65\%	1.88\%	1.86\%	1.67\%	2.11	2.08\%
2028	258,331	3,454,878	3,713,209	266,772	3,605,915	3,872,687	278,523	3,806,139	4,084,663	1.39\%	1.60\%	1.59\%	1.52\%	1.87\%	1.84\%	1.60\%	2.10\%	2.06\%
2029	261,634	3,509,846	3,771,480	270,431	3,672,888	3,943,320	282,655	3,885,746	4,168,401	1.28\%	1.59\%	1.57\%	1.37\%	1.86\%	1.82\%	1.48\%	2.09\%	2.05\%
2030	263,417	3,559,278	3,822,695	272,702	3,733,360	4,006,062	285,331	3,958,259	4,243,590	0.68\%	1.41\%	1.36\%	0.84\%	1.65\%	1.59\%	0.95\%	1.87\%	1.80\%
2031	266,677	3,615,491	3,882,167	276,347	3,802,317	4,078,664	289,485	4,040,811	4,330,296	1.24\%	1.58\%	1.56\%	1.34\%	1.85\%	1.81\%	1.46\%	2.09\%	2.04\%
	Therm Usage by Class									Annual Change								
	Low			Medium			High			Low			Medium			High		
	RES	COM/IND	otal	RES	COM/IND	Total	RES	OMIIND	Total	RES	COM/IND	Tota	RES	COM/IND	Total	RES COM/IND		
2011	10,110,68	104,318,745	214,429,42	112,196,225	105,144,130	217,340,35	15,468,30	106,274,747	221,743,055	3.17%	8.66%	5.77	5.13\%	9.52\%	7.21\%	.9\%	10.69	9.38\%
2012	115,036,211	105,273,485	220,309,696	117,567,426	105,933,828	223,501,254	121,406,986	107,601,991	229,008,977	4.47\%	0.92\%	2.74	4.79\%	0.75\%	2.83\%	5.14\%	1.25	3.28\%
2013	116,003,668	106,439,376	222,443,045	118,216,303	106,935,483	225,151,786	122,962,712	108,879,216	231,841,928	0.84\%	1.11\%	0.97\%	0.55\%	0.95\%	0.74\%	1.28\%	1.19	1.24\%
2014	117,737,121	107,802,698	225,539,819	120,043,215	108,251,048	228,294,263	125,361,919	110,340,992	235,702,910	1.49\%	1.28\%	1.39\%	1.55\%	1.23\%	1.40\%	1.95\%	1.34\%	1.67\%
2015	119,922,480	109,463,312	229,385,792	122,468,636	110,010,444	232,479,080	128,057,646	112,083,498	240,141,144	1.86\%	1.54\%	1.71\%	2.02\%	1.63\%	1.83\%	2.15\%	1.58\%	1.88\%
2016	122,151,098	111,255,347	233,406,445	125,072,487	111,954,371	237,026,858	130,952,942	113,941,805	244,894,747	1.86\%	1.64\%	1.75\%	2.13\%	1.77\%	1.96\%	2.26\%	1.66	1.98\%
2017	124,144,673	112,809,102	236,953,775	127,400,101	113,518,213	240,918,314	133,668,578	115,540,904	249,209,482	1.63\%	1.40\%	1.52\%	1.86\%	1.40\%	1.64\%	2.07\%	1.40	1.76\%
2018	126,171,493	114,309,187	240,480,679	129,719,155	114,990,253	244,709,408	136,336,934	117,063,544	253,400,477	1.63\%	1.33\%	1.49\%	1.82\%	1.30\%	1.57\%	2.00\%	1.32\%	1.68\%
2019	128,326,530	116,008,141	244,334,671	132,286,666	116,751,615	249,038,282	139,173,052	118,779,954	257,953,005	1.71\%	1.49\%	1.60\%	1.98\%	1.53\%	1.77\%	2.08\%	1.47\%	1.80\%
2020	130,553,553	117,782,729	248,336,282	134,804,435	118,612,692	253,417,127	142,082,486	120,558,786	262,641,272	1.74\%	1.53\%	1.64	1.90\%	1.59\%	1.76\%	2.09\%	1.50\%	1.82\%
2021	132,471,566	119,325,284	251,796,850	137,108,380	120,122,136	257,230,516	144,757,976	122,095,717	266,853,693	1.47\%	1.31\%	1.39\%	1.71\%	1.27\%	1.50\%	1.88\%	1.27\%	1.60\%
2022	134,385,335	120,782,519	255,167,854	139,359,500	121,500,700	260,860,200	147,424,529	123,531,528	270,956,058	1.44\%	1.22\%	1.34\%	1.64\%	1.15\%	1.41\%	1.84\%	1.18	1.54\%
2023	136,806,804	122,491,650	259,298,454	142,156,435	123,231,524	265,387,958	150,484,534	125,199,447	275,683,981	1.80\%	1.42\%	1.62\%	2.01\%	1.42\%	1.74\%	2.08\%	1.35\%	1.74\%
2024	139,458,684	124,765,836	264,224,520	145,155,008	125,768,442	270,923,450	153,692,210	127,424,467	281,116,677	1.94\%	1.86\%	1.90\%	2.11\%	2.06\%	2.09\%	2.13%	1.78	1.97\%
2025	141,725,339	126,365,117	268,090,456	147,785,968	127,318,162	275,104,130	156,671,630	128,956,275	285,627,904	1.63\%	1.28\%	1.46\%	1.81\%	1.23\%	1.54\%	1.94\%	1.20\%	1.60\%
2026	143,826,975	127,972,183	271,799,158	150,251,500	128,875,266	279,126,766	159,547,526	130,484,028	290,031,554	1.48\%	1.27\%	1.38	1.67\%	1.22\%	1.46\%	1.84\%	1.18\%	1.54\%
2027	146,043,151	129,777,809	275,820,960	152,880,449	130,710,352	283,590,801	162,465,418	132,200,778	294,666,196	1.54\%	1.41\%	1.48\%	1.75\%	1.42\%	1.60\%	1.83\%	1.32	1.60\%
2028	148,126,702	131,425,005	279,551,707	155,425,605	132,313,596	287,739,201	165,393,386	133,752,953	299,146,338	1.43\%	1.27\%	1.35\%	1.66\%	1.23\%	1.46\%	1.80\%	1.17%	1.52\%
2029	150,041,085	132,994,032	283,035,117	157,732,504	133,803,494	291,535,998	168,120,118	135,222,795	303,342,913	1.29\%	1.19\%	1.25\%	1.48\%	1.13\%	1.32\%	1.65\%	1.10\%	1.40\%
2030	151,933,091	132,994,032	284,927,123	160,110,136	133,803,494	293,913,630	170,899,662	135,222,795	306,122,457	1.26\%	0.00\%	0.67\%	1.51\%	0.00\%	0.82\%	1.65\%	0.00\%	0.92\%
2031	153,812,331	134,541,726	288,354,056	162,427,789	135,261,930	297,689,719	173,666,984	136,666,860	310,333,84	1.24\%	1.16\%	1.20\%	1.45\%	1.09\%	1.28\%	1.62\%	1.07\%	1.38\%
	Customer Count Forecast									Annual Change								
	Low			Medium			High			Low			Medium			High		
	RES	COM/IND	Total	RES	COM/IND	Total	RES	COM/IND	Total	RES ${ }^{\text {COM }}$ /IND		Total	RES	COM/IND	Total	RES	COM/IND	Total
2011	170,986	25,131	196,117	172,372	25,401	197,773	174,519	25,795	200,314	0.26\%	0.43\%	0.28\%	1.07\%	1.51\%	1.13\%	2.33\%	3.08\%	2.43\%
2012	172,927	25,563	198,490	174,570	25,909	200,479	177,096	26,396	203,492	1.14\%	1.72\%	1.21\%	1.28\%	2.00\%	1.37\%	1.48\%	2.33\%	1.59\%
2013	175,955	26,030	201,985	176,765	26,425	203,190	180,801	26,956	207,757	1.75\%	1.83\%	1.76\%	1.26\%	1.99\%	1.35\%	2.09\%	2.12\%	2.10\%
2014	179,337	26,501	205,838	180,611	26,946	207,557	185,130	27,524	212,654	1.92\%	1.81\%	1.91\%	2.18\%	1.97\%	2.15\%	2.39\%	2.11\%	2.36\%
2015	182,737	26,976	209,713	184,495	27,473	211,968	189,509	28,098	217,607	1.90\%	1.79\%	1.88\%	2.15\%	1.96\%	2.13\%	2.37\%	2.09\%	2.33\%
2016	186,153	27,455	213,608	188,414	28,005	216,419	193,950	28,679	222,629	1.87\%	1.77\%	1.86\%	2.12\%	1.94\%	2.10\%	2.34\%	2.07\%	2.31\%
2017	189,585	27,936	217,521	192,368	28,542	220,910	198,450	29,267	227,717	1.84\%	1.75\%	1.83\%	2.10\%	1.92\%	2.08\%	2.32\%	2.05\%	2.29\%
2018	193,028	28,420	221,448	196,360	29,082	225,442	203,002	29,860	232,862	1.82\%	1.73\%	1.81\%	2.08\%	1.89\%	2.05\%	2.29\%	2.03\%	2.26\%
2019	196,486	28,906	225,392	200,390	29,628	230,018	207,625	30,462	238,087	1.79\%	1.71\%	1.78\%	2.05\%	1.88\%	2.03\%	2.28\%	2.01\%	2.24\%
2020	199,960	29,396	229,356	204,457	30,179	234,636	212,317	31,071	243,388	1.77\%	1.69\%	1.76\%	2.03\%	1.86\%	2.01\%	2.26\%	2.00\%	2.23\%
2021	203,454	29,888	233,342	208,574	30,736	239,310	217,085	31,689	248,774	1.75\%	1.68\%	1.74\%	2.01\%	1.84\%	1.99\%	2.25\%	1.99\%	2.21\%
2022	206,972	30,384	237,356	212,732	31,298	244,030	221,918	32,313	254,231	1.73\%	1.66\%	1.72\%	1.99\%	1.83\%	1.97\%	2.23\%	1.97\%	2.19\%
2023	210,502	30,882	241,384	216,922	31,863	248,785	226,796	32,942	259,738	1.71\%	1.64\%	1.70\%	1.97\%	1.81\%	1.95\%	2.20\%	1.95\%	2.17\%
2024	214,042	31,382	245,424	221,147	32,433	253,580	231,748	33,578	265,326	1.68\%	1.62\%	1.67\%	1.95\%	1.79\%	1.93\%	2.18\%	1.93\%	2.15\%
2025	217,597	31,883	249,480	225,411	33,006	258,417	236,755	34,219	270,974	1.66\%	1.60\%	1.65\%	1.93\%	1.77\%	1.91\%	2.16\%	1.91\%	2.13\%
2026	221,159	32,386	253,545	229,702	33,582	263,284	241,817	34,864	276,681	1.64\%	1.58\%	1.63\%	1.90\%	1.74\%	1.88\%	2.14\%	1.89\%	2.11\%
2027	224,729	32,889	257,618	234,030	34,162	268,192	246,951	35,517	282,468	1.61\%	1.55\%	1.61\%	1.88\%	1.73\%	1.86\%	2.12\%	1.87\%	2.09\%
2028	228,310	33,394	261,704	238,394	34,745	273,139	252,146	36,175	288,321	1.59\%	1.54\%	1.59\%	1.86\%	1.71\%	1.84\%	2.10\%	1.85\%	2.07\%
2029	231,902	33,900	265,802	242,794	35,332	278,126	257,409	36,840	294,249	1.57\%	1.52\%	1.57\%	1.85\%	1.69\%	1.83\%	2.09\%	1.84\%	2.06\%
2030	235,506	33,900	269,406	247,231	35,332	282,563	262,742	36,840	299,582	1.55\%	0.00\%	1.36\%	1.83\%	0.00\%	1.60\%	2.07\%	0.00\%	1.81\%
2031	239,179	34,407	273,586	251,766	35,922	287,688	268,209	37,511	305,720	1.56\%	1.50\%	1.55\%	1.83\%	1.67\%	1.81\%	2.08\%	1.82\%	2.05\%

Cascade Natural Gas
2011 IRP Demand Forecast Summary Tables

WA

Appendix C

Distribution System Planning

2011 Cascade Natural Gas IRP Forecast							
Estimated Reinforcement Projects							
Gate Station	Town	Reinforcement Needed?	Reinforcement Needed				
			Length	Size	Type	Facilities	Year
Sumas	BLAINE		$\begin{array}{\|l\|l} \hline 4480 \\ 8500 \end{array}$	4	${ }^{\text {PE }} 5$ regs / upra		$\begin{aligned} & 2013 \\ & 2030 \end{aligned}$
	FERNDALE	yes	5280	4	PE		2016
			1600	4	PE		2016
			1840	4	S		2019
						3 regs / upra	2022
			5280	6	PE		2024
			15840	4	HP	new reg	2027
			6500	6	PE		2027
			5500	4	PE		2029
	SUMAS	no					
	WHATCOM HP	no					
Sunnyside	SUNNYSIDE	no					
Walla Walla	COLLEGE PLACE	no	1500	4	HP		2014
	WALLA WALLA	no					
Wenatchee	EAST WENATCHEE	$\begin{array}{c\|} \hline \text { See } \\ \text { wenatchee } \end{array}$					
	WENATCHEE	no					
Woodland	WOODLAND	yes					
Yakima	UNION GAP	no					
	YAKIMA	yes	12500	8	HP	reg	2017
Zillah	GRANGER	no					
	TOPPENISH	no					
	WAPATO	no					
	ZIILAH	no					
Athena	ATHENA	no					
	WESTON	no					

Appendix D-1

Oregon Residential Conservation Measures

Detailed Measure Table - OR Residential Sector Technical Potential to 2030
2030 Potential Estimated with 02/26/09 Stellar Study

Measure Code	Measure Description	Program	Average Lifetime	$\begin{aligned} & \text { Gas Savings to } \\ & 2030 \end{aligned}$	Level Cost, \$/th
N-A102	MEF 2.0 Washer	New	12	5,764	(\$1.29)
N-A105	Hi-eff Washer	New	12	2,542	(\$0.82)
R-A102	MEF 2.0 Washer	Replace	12	154,270	(\$0.09)
R-GH115	AFUE 90 to hydrocoil combo, Z 3	Retro Gas	45	308,136	\$0.10
R-GH118	AFUE 90 to hydrocoil combo, Z 4	Retro Gas	45	302,706	\$0.10
N-GH130	Heating upgrade (AFUE 90) (Z 3)	New Gas	15	247,769	\$0.17
R-GW128	Wx insulation (add walls), Z 4	Retro Gas	45	952,980	\$0.21
R-GH125	Duct Sealing and AFUE 90+, Z 4	Replace Gas	20	1,728,412	\$0.21
R-GW123	Wx insulation (add walls), Z 3	Retro Gas	45	143,816	\$0.22
N-GH135	Heating upgrade (AFUE 90) (Z 4)	New Gas	15	186,780	\$0.23
N-GH132	HRV, E* (Gas Z 3)	New Gas	15	2,454,909	\$0.23
N-GH133	Ducts Indoor, DHW, Lights (Gas Z 3)	New Gas	45	3,357,567	\$0.28
R-GW127	Wx insulation (ceiling, floor), Z 4	Retro Gas	45	1,028,694	\$0.28
R-GW122	Wx insulation (ceiling, floor), Z 3	Retro Gas	45	156,318	\$0.28
R-GH114	Duct Sealing, Z 3	Retro Gas	20	80,756	\$0.30
N-GH137	HRV, E* (Gas Z 4)	New Gas	15	1,850,624	\$0.31
R-GH117	Duct Sealing, Z 4	Retro Gas	20	73,292	\$0.33
N-GH138	Ducts Indoor, DHW, Lights (Gas Z 4) E* Insulation, Ducts, DHW, Lights	New Gas	45	2,531,089	\$0.37
N-GH129	(Gas Z 3)	New Gas	45	2,663,551	\$0.47
R-A103	Estar Dishwasher	Replace	12	65,292	\$0.49
N-GH131	Window U=.3 (Gas Z 3)	New Gas	45	400,915	\$0.55
R-GH116	Boiler to Polaris Combo radiant, Z 3	Retro Gas	45	715,671	\$0.64
N-GH134	E* Insulation, Ducts, DHW, Lights (Gas Z 4)	New Gas	45	1,903,399	\$0.66
R-GH119	Boiler to Polaris Combo radiant, Z 4	Retro Gas	45	913,018	\$0.67
N-GH139	Tank upgrade (50 gal gas)	New Gas	15	651,638	\$0.69
N-GH136	Window U=. 3 (Gas Z 4)	New Gas	45	402,971	\$0.72
N-A103	Estar Dishwasher	New	12	1,477	\$0.73
R-GW130	Window replace ($\mathrm{U}=.35$), Z 4	Replace Gas	45	44,032	\$0.74
N-GD106	Tank upgrade (50 gal gas) Hi Eff Alternative	New Gas	15	371,756	\$0.74
R-GW125	Window replace ($\mathrm{U}=.35$), Z 3	Replace Gas	45	6,764	\$0.77
N-GD109	Upgrade to Navien Tankless Gas heater	New Gas	20	303,548	\$0.89
N-GD108	Tankless Gas heater	New Gas	20	2,097,671	\$0.91
R-GD113	Solar hot water heater (50 gal) - With gas backup.	Replace Gas	20	179,409	\$1.01
R-GW129	Window, retro ($\mathrm{U}=.35$), Z 4	Retro Gas	45	965,743	\$1.19
R-GW124	Window, retro ($\mathrm{U}=.35$), Z 3	Retro Gas	45	165,563	\$1.23
R-GW131	HRV, Z 4	Retro Gas	18	277,542	\$2.52
R-GW126	HRV, Z 3	Retro Gas	18	42,401	\$2.60
N-GD107	Solar hot water heater (50 gal) - With gas backup.	New Gas	20	1,150,458	\$4.49
R-GH124	AFUE 90+ Furnace, Z 4	Replace Gas	18	115,904	\$5.01
R-GD111	Tank upgrade (50 gal gas) Hi Eff Alternative	Replace Gas	15	1,163,065	\$5.25
R-GH122	AFUE 90+ Furnace, Z 3	Replace Gas	18	72,360	\$8.03
R-GD110	Tankless Gas heater replace	Replace Gas	20	305,719	\$8.58
R-GH123	Duct Sealing and AFUE 90+, Z 3	Replace Gas	20	45,431	\$9.97
R-GD112	Upgrade to Navien Tankless Gas heater	Replace Gas	20	44,656	\$10.59

Appendix D-2

Oregon
 Commercial/Industrial
 Conservation Measures

Detailed Measure Table-Oregon Commercial

Measure Code	Measure Name	Construct ion Type	Measure End Use	Average Lifetime	Levelized Cost, \$/th
Co116	EStar Steam Cooker	New	Cooking	10	\$0.04
Co116rep	EStar Steam Cooker	Replace	Cooking	10	\$0.04
H105	HW Boiler Tune	Retrofit	Heating	5	\$0.08
Co112	Infrared Fryer	New	Cooking	8	\$0.08
Co107	Infrared Fryer	Replace	Cooking	8	\$0.08
H104	Hot Water Temperature Reset	Retrofit	Heating	10	\$0.10
E111	Roof Insulation - Attic R0-30	Retrofit	Heating	30	\$0.10
R106	Heat Reclaim	New	Refrigeration	18	\$0.11
R106rep	Heat Reclaim	Replace	Refrigeration	18	\$0.11
H102	DCV	Retrofit	Heating	15	\$0.13
H106	Steam Balance	Retrofit	Heating	15	\$0.14
E103	Roof Insulation - Rigid R0-11	Replace	Heating	30	\$0.15
E101	Wall Insulation - Blown R11	Retrofit	Heating	30	\$0.17
W101	DHW Wrap	Retrofit	Water Heat	7	\$0.21
W127r	Waste Water Heat Exchanger	Retrofit	Water Heat	15	\$0.21
H119	Hi Eff Unit Heater (new)	New	Heating	18	\$0.22
W102	DHW Shower Heads	Retrofit	Water Heat	8	\$0.22
E104	Roof Insulation - Rigid R0-22	Replace	Heating	30	\$0.23
H114	Hi Eff Unit Heater (replace)	Replace	Heating	18	\$0.24
E102	Wall Insulation - Spray On for Metal Buildings	Retrofit	Heating	30	\$0.24
E107	Roof Insulation - Blanket R0-19	Retrofit	Heating	30	\$0.29
E108	Roof Insulation - Blanket R0-30	Retrofit	Heating	30	\$0.31
H107	Vent Damper	Retrofit	Heating	12	\$0.31
E105	Roof Insulation - Rigid R11-22	Replace	Heating	30	\$0.34
W121	Combo Hieff Boiler (new)	New	Heating	20	\$0.36
W124r	Computerized Water Heater Control	Retrofit	Water Heat	15	\$0.37
W119	Combo Hieff Boiler (repl)	Replace	Heating	20	\$0.40
E112	Roof Insulation - Attic 11-30	Retrofit	Heating	30	\$0.40
W103	DHW Faucets	Retrofit	Water Heat	8	\$0.42
E114	Windows - Add Low E to Vinyl Tint	Replace	Heating	20	\$0.42
E123	Windows - Add Low E to Vinyl Tint	New	Heating	20	\$0.42
H117	SPC Hieff Boiler (new)	New	Heating	20	\$0.45
Co115	Power Range Burner	New	Cooking	12	\$0.46
Co110	Power Range Burner	Replace	Cooking	12	\$0.46
H111	SPC Hieff Boiler Replace Windows - Add Low E and Argon to	Replace	Heating	20	\$0.49
E115	Vinyl Tint	Replace	Heating	20	\$0.57
E124	Windows - Add Low E and Argon to Vinyl Tint	New	Heating	20	\$0.58
W109	DHW Condensing Tank (new)	New	Water Heat	15	\$0.62
W108	DHW Condensing Tank (repl)	Replace	Water Heat	15	\$0.62
Co114	Infrared Griddle	New	Cooking	12	\$0.62
Co109	Infrared Griddle	Replace	Cooking	12	\$0.62
H108	Power burner	Retrofit	Heating	12	\$0.63
H120a	Cond Unit Heater from Nat Draft (new)	New	Heating	18	\$0.68

Detailed Measure Table-Oregon Commercial

Measure Code	Measure Name	Construct ion Type	Measure End Use	Average Lifetime	Levelized Cost, \$/th
W127	Waste Water Heat Exchanger	New	Water Heat	15	\$0.70
W122	Combo Cond Boiler (new)	New	Heating	20	\$0.73
W115	DHW Hieff Boiler (new)	New	Water Heat	20	\$0.74
W113	DHW Hieff Boiler (repl)	Replace	Water Heat	20	\$0.74
H118	SPC Cond Boiler (new)	New	Heating	20	\$0.75
H115a	Cond Unit Heater from Nat draft (replace)	Replace	Heating	18	\$0.75
E129	Windows - Tinted AL Code to Class 45	New	Heating	20	\$0.76
W120	Combo Cond Boiler (repl)	Replace	Heating	20	\$0.80
E121	Windows - Tinted AL Code to Class 40	Replace	Heating	20	\$0.80
H112	SPC Cond Boiler Replace	Replace	Heating	20	\$0.81
W104	DHW Pipe Ins	Retrofit	Water Heat	15	\$0.84
E130	Windows - Tinted AL Code to Class 40	New	Heating	20	\$0.87
H123	HVAC controls	New	Heating	5	\$0.90
H103	Ducts	Retrofit	Heating	15	\$0.90
W105	DHW Recirc Controls	Retrofit	Water Heat	10	\$0.95
E113	Roof Insulation - Roofcut 0-22	Replace	Heating	30	\$0.96
H101	Warm Up Control	Retrofit	Heating	10	\$0.98
W124	Computerized Water Heater Control	New	Water Heat	15	\$1.04
W123	Hi Eff Clothes Washer	New	Water Heat	10	\$1.06
W123r	Hi Eff Clothes Washer	Replace	Water Heat	10	\$1.09
E106	Roof Insulation - Rigid R11-33	Replace	Heating	30	\$1.15
W116	DHW Cond Boiler (new)	New	Water Heat	20	\$1.16
W114	DHW Cond Boiler (repl)	Replace	Water Heat	20	\$1.16
H129	Steam Trap Maintenance	Retrofit	Heating	10	\$1.25
E116	Windows - Add Argon to Vinyl Lowe Cond Unit Heater From Power Draft	Replace	Heating	20	\$1.29
H120b	(new)	New	Heating	18	\$1.38
E125	Windows - Add Argon to Vinyl Lowe Cond Unit Heater from power draft	New	Heating	20	\$1.47
H115b	(replace)	Replace	Heating	18	\$1.52
H121	Cond Furnace (new)	New	Heating	18	\$1.55
E122	Windows - Tinted AL Code to Class 36	Replace	Heating	20	\$1.66
W125r	Solar Hot Water	Retrofit	Water Heat	15	\$1.68
E131	Windows - Tinted AL Code to Class 36	New	Heating	20	\$1.78
H116	Cond Furnace (repl)	Replace	Heating	18	\$1.82
H122	HVAC System Commissioning	New	Heating	15	\$1.85
E110	Roof Insulation - Blanket R11-41	Retrofit	Heating	30	\$1.96
E118	Windows - Non-Tinted AL Code to Class 40	Replace	Heating	20	\$1.97
E127	Windows - Non-Tinted AL Code to Class 40	New	Heating	20	\$2.00

Detailed Measure Table-Oregon Commercial

Measure Code	Measure Name	Construct ion Type	Measure End Use	Average Lifetime	Levelized Cost, \$/th
E109	Roof Insulation - Blanket R11-30	Retrofit	Heating	30	\$2.08
E119	Windows - Non-Tinted AL Code to Class 36	Replace	Heating	20	\$3.21
	Windows - Non-Tinted AL Code to				
E128	Class 36	New	Heating	20	\$3.28
E117	Windows - Non-Tinted AL Code to Class 45	Replace	Heating	20	\$3.43
E126	Windows - Non-Tinted AL Code to Class 45	New	Heating	20	\$3.49
H128	Rooftop Condensing Burner	Retrofit	Heating	10	\$3.74
W125	Solar Hot Water	New	Water Heat	15	\$4.96

Appendix D-3

Washington Residential Conservation Measures

Detailed Measure Table - WA Residential Sector Technical Potential to 2030

Measure Code	Measure Description	Program	Average Lifetime	Implied No. of Units	$\begin{gathered} \text { Gas Savings } \\ \text { to } 2030 \\ \hline \end{gathered}$	Total Incremental Cost	Total O\&M Impact (\$)	Level Cost, $\$ / \mathrm{th}$
N-A105	Hi-eff Washer	New	12	762	3,048	24,350	$(85,118)$	(\$2.15)
N-A102	MEF 2.0 Washer	New	12	7,970	23,910	43,316	$(147,895)$	(\$1.63)
R-A102	MEF 2.0 Washer	Replace	12	120873	725,238	1,763,734	$(2,127,400)$	(\$0.19)
R-WG106	Wx insulation 1 added measure Zone 3	WxExist	45	1,391	510,983	1,234,140	0	\$0.12
R-WG104	Wx insulation 1 added measure Zone 1	WxExist	45	934	301,730	832,603	0	\$0.14
R-WG104	Wx insulation 1 added measure				301,730			
R-WG105	Zone 2	WxExist	45	1,879	589,428	1,679,135	0	\$0.14
R-GD112	Upgrade to Navien Tankless Gas heater	Replace Gas	20	11136	155,904	232,741	0	\$0.39
N-H103	E* Insulation, Ducts, Zone 3	NewPkg	45	12,556	1,582,087	10,192,822	0	\$0.41
R-WG109	Window, replacement ($\mathrm{U}=.35$) Zone 3	WxExist	45	2,422	1,316,936	11,363,551	0	\$0.43
R-H115	Duct Sealing and AFUE 90+, Zone 3 Window, replacement ($\mathrm{U}=.35$) Zone	HVACExist	20	1,464	308,084	1,833,962	0	\$0.44
R-WG107	1	WxExist	45	1,630	774,175	7,663,457	0	\$0.49
N-H102	E* Insulation, Ducts, Zone 2	NewPkg	45	17,078	1,736,881	13,867,698	0	\$0.50
R-WG108	Window, replacement (U=.35) Zone 2	WxExist	45	3,285	1,502,388	15,463,828	0	\$0.51
R-WG103	Wx insulation 2 measures Zone 3	WxExist	45	3,119	805,609	8,310,798	0	\$0.51
N-H105	Heating upgrade (AFUE 90), Zone 2	NewPkg	18	8,948	724,759	3,704,483	0	\$0.52
R-H103	Duct Sealing, Zone 3	HVACExist	20	2,019	228,955	1,613,145	0	\$0.53
R-H113	Duct Sealing and AFUE 90+, Zone 1	HVACExist	20	987	170,490	1,237,027	0	\$0.54
$\mathrm{N}-\mathrm{H} 101$	E* Insulation, Ducts, Zone 1	NewPkg	45	8,471	800,512	6,874,610	0	\$0.54
R-GH116	Boiler to Polaris Combo radiant, Z 3	Retro Gas	45	8,680	3,463,320	11,060,754	0	\$0.55
R-GH119	Boiler to Polaris Combo radiant, Z 4	Retro Gas	45	8,698	3,313,938	11,061,382	0	\$0.57
R-WG101	Wx insulation 2 measures Zone 1	WxExist	45	1,830	417,792	4,904,168	0	\$0.58
R-H114	Duct Sealing and AFUE 90+, Zone 2	HVACExist	20	1,991	319,309	2,495,913	0	\$0.58
R-WG102	Wx insulation 2 measures Zone 2	WxExist	45	4,327	959,919	11,627,064	0	\$0.60
R-A103	Estar Dishwasher	Replace	12	154,177	308,354	707,690	-178,161	\$0.63
N-H115	E* Plus (FTC) Insulation, Zone 3	NewPkg	45	5,597	1,657,242	16,749,493	0	\$0.64
N-H106	Heating upgrade (AFUE 90), Zone 3	NewPkg	18	6,661	431,603	2,722,812	0	\$0.64
R-H106	AFUE 90+ Furnace, Zone 3	HVACExist	18	19,042	1,877,753	15,358,651	0	\$0.66
N-A103	Estar Dishwasher	New	12	1,531	4,593	11,152	-3,183	\$0.67
R-H101	Duct Sealing, Zone 1	HVACExist	20	1,361	119,088	1,087,999		\$0.68
N-H104	Heating upgrade (AFUE 90), Zone 1	NewPkg	18	4,453	272,494	1,836,417	0	\$0.69

Detailed Measure Table - WA Residential Sector Technical Potential to 2030

Measure Code	Measure Description	Program	Average Lifetime	Implied No. of Units	$\begin{gathered} \text { Gas Savings } \\ \text { to } 2030 \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Incremental } \\ \text { Cost } \\ \hline \end{gathered}$	Total O\&M Impact (\$)	$\begin{aligned} & \text { Level Cost, } \\ & \$ / \text { th } \end{aligned}$
R-H112	Combo with Hot Water delivery, Zone 3	HVACExist	30	91	29,712	364,000	0	\$0.72
R-H102	Duct Sealing, Zone 2	HVACExist	20	2,746	211,442	2,195,448	0	\$0.78
R-H110	Combo with Hot Water delivery, Zone 1	HVACExist	30	61	18,133	244,000	0	\$0.79
R-H104	AFUE 90+ Furnace, Zone 1	HVACExist	18	12,831	1,041,976	10,358,494	0	\$0.80
N-H114	E* Plus (FTC) Insulation, Zone 2	NewPkg	45	7,611	1,787,826	22,788,282	0	\$0.81
N-H112	HRV, E*, Zone 3	NewPkg	45	3,801	355,811	4,537,264	0	\$0.81
N-GD109	Upgrade to Navien Tankless Gas heater	New Gas	20	67,453	944,342	2,970,760	0	\$0.81
R-H111	Combo with Hot Water delivery, Zone 2	HVACExist	30	124	35,691	496,000	0	\$0.82
N-H113	E* Plus (FTC) Insulation, Zone 1	NewPkg	45	3,773	832,004	11,296,795	0	\$0.86
R-H105	AFUE 90+ Furnace, Zone 2	HVACExist	18	25,874	1,944,881	20,896,271	0	\$0.86
R-WG112	Window upgrade $(\mathrm{U}=.4$ to $\mathrm{U}=.35)$ Zone 3	WxExist	45	2,461	49,386	884,069	0	\$0.89
N-H111	HRV, E*, Zone 2	NewPkg	45	5,157	417,696	6,173,109	0	\$0.93
N-H110	HRV, E*, Zone 1	NewPkg	45	2,558	195,679	3,060,185	0	\$0.99
N-H109	Window U=.3, Zone 3	NewPkg	45	7,199	259,177	4,100,052	0	\$1.00
R-WG110	Window upgrade ($\mathrm{U}=.4$ to $\mathrm{U}=.35$) Zone 1	WxExist	45	1,656	28,618	596,290	0	\$1.03
R-WG111	Window upgrade ($\mathrm{U}=.4$ to $\mathrm{U}=.35$) Zone 2	WxExist	45	3,330	56,406	1,202,679	0	\$1.06
N-H108	Window U=.3, Zone 2	NewPkg	45	9,772	307,830	5,578,267	0	\$1.15
N-H107	Window U=.3, Zone 1	NewPkg	45	4,854	139,786	2,765,305	0	\$1.25
N-DG104	Tankless Gas heater	NewDHW	20	9,049	386,527	5,817,746	0	\$1.43
R-DG104	Tankless Gas heater	DHWExist	20	8,339	356,200	6,832,212	0	\$1.43
R-H109	AFUE 85 DHW combo, Zone 3	HVACExist	18	1,685	194,119	3,622,750	0	\$1.49
R-H107	AFUE 85 DHW combo, Zone 1	HVACExist	18	1,137	124,127	2,444,550	0	\$1.58
R-H108	AFUE 85 DHW combo, Zone 2	HVACExist	18	2,293	232,643	4,929,950	0	\$1.70
R-WG115	HRV Zone 3	WxExist	18	1,468	108,423	2,840,925	0	\$2.10
R-WG113	HRV Zone 1	WxExist	18	978	63,748	1,915,293	0	\$2.41
N-DG101	Tank upgrade (50 gal gas)	NewDHW	15	63,684	835,897	17,490,620	0	\$2.43
R-DG101	Tank upgrade (50 gal gas)	DHWExist	15	58,690	770,347	20,541,500	0	\$2.43
R-WG114	HRV Zone 2	WxExist	18	1,961	123,896	3,865,663	0	\$2.50
N-DG103	Solar hot water heater (50 gal) Solar Zone 2. With gas backup.	NewDHW	20	8,845	996,646	27,993,336	0	\$2.67
R-DG103	Solar hot water heater (50 gal) Solar Zone 2. With gas backup.	DHWExist	20	8,151	918,447	32,874,630	0	\$2.67
R-DG102	Tank upgrade (50 gal gas) condensing	DHWExist	15	12,307	815,203	30,767,500	0	\$3.44
N-DG102	Tank upgrade (50 gal gas) condensing	NewDHW	15	13,354	884,555	26,197,402	0	\$3.44

Appendix D-4

Washington Commercial/Industrial Conservation Measures

Detailed Measure Table - WA Commercial Sector Technical Potential to 2030

Measure Code	Measure Description	Measure Description	Construction Type	Measure End Use	Levelized Cost, \$/th
C116rep	Estar Steam Cooker	Install Energy Star Steam Cooker	At Replacement	Cooking	\$0.04
C116	Estar Steam Cooker	Install Energy Star Steam Cooker	New	Cooking	\$0.04
H105	HW Boiler Tune	Tune up in accordance with Minneapolis Energy Office protocol. Can include derating the burner, adjusting the secondary air, adding flue restrictors, cleaning the fire-side of the heat exchanger, cleaning the water side, or installing turbulators. Other modifications may include uprating the burner to reduce oxygen or derating the burner to reduce stack temperature. Note: In gas systems, excess air and stack temperatures are often within reasonable ranges, so the technical potential for this measure is limited. Combining this measure with the vent damper and power burner measures increases both applicability and cost effectiveness, and was assumed for this analysis.	Retrofit	Heating	\$0.08
C112	Infared Fryer		New	Cooking	\$0.08
C107	Infared Fryer		At Replacement	Cooking	\$0.08
H104	Hot Water Temperature Reset	Controller automatically resets the delivery temperature in a hot water radiant system based on outside air temperature. The reset reduces the on-time of the heating equipment and the occurrence of simultaneous heating and cooling through instantaneous adjustments.	Retrofit	Heating	\$0.10
E111	Roof Insulation - Attic R0-30	Roof Insulation - Attic R0-30. Application: Buildings with uninsulated attics	Retrofit	Heating	\$0.10
H102	DCV	Applicable to single zone packaged systems with large make up air fractions either because of intermittent occupancy or because of code requirements. In most cases the outdoor air is reset to 5% or less with CO2 build-up modulating ventilation.	Retrofit	Heating	\$0.13
H106	Steam Balance	Single-pipe steam systems are notorious for uneven heating, which wastes energy because the thermostat must be set to heat the coldest spaces and overheating other spaces. Steam balances corrects these problems by: 1) Adding air venting on the main line or at the radiators; 2) Adding boiler cycle controls; 3) Adding or subtracting radiators. Energy savings accrue from lowering the overall building temperature.	Retrofit	Heating	\$0.14
E103	Roof Insulation - Rigid R0-11	Roof Insulation - Rigid R0-11-not including re-roofing costs bu including deck preparation. Application: Old buildings with fla roofs and no attics	At Replacement	Heating	\$0.15
E101	Wall Insulation - Blown R11	Wall Insulation - Blown R11. Application: Old buildings	Retrofit	Heating	\$0.17
C111	Direct Fired Convection Oven		New	Cooking	\$0.18
C106	Direct Fired Convection Oven		At Replacement	Cooking	\$0.18
W101	DHW Wrap	Insulate the surface of the storage water heater or an unfired storage tank to R-5 to reduce standby losses.	Retrofit	Water Heat	\$0.21
W127r	Waste Water Heat Exchanger	Install HX on waste water	Retrofit	Water Heat	\$0.21
H119	HiEff Unit Heater (new)	Install power draft units (80\% seas. Eff) inplace of natural draft (64\% seas. Eff)	New	Heating	\$0.22
W102	DHW Shower Heads	Install low flow shower heads (2.0 gallons per minute) to replace 3.4 GPM shower heads.	Retrofit	Water Heat	\$0.22
E104	Roof Insulation - Rigid R0-22	Roof Insulation - Rigid R0-22-- not including re-roofing costs but including deck preparation and ~ 4 " rigid.. Application: Old buildings with flat roofs and no attics	At Replacement	Heating	\$0.23
H114	Hi Eff Unit Heater (replace)	Install power draft units (80\% seas. Eff) inplace of natural draft (64\% seas. Eff)	At Replacement	Heating	\$0.24
E102	Wall Insulation - Spray On for Metal Buildings	Wall Insulation - Spray On for Metal Buildings (Cellulose) Unfinished. Application: Old buildings	Retrofit	Heating	\$0.24
E107	Roof Insulation - Blanket R0-19	Roof Insulation - Blanket R0-19. Application: Buildings with open truss unfinished interior	Retrofit	Heating	\$0.29
E108	Roof Insulation - Blanket R0-30	Roof Insulation - Blanket R0-30. Application: Buildings with open truss unfinished interior	Retrofit	Heating	\$0.31
H107	Vent Damper	Install vent damper downstream of the draft relief to prevent airflow up the stack, while allowing warm air from the boiler to spill into the conditioned space as heat or into the boiler room to reduce jacket losses. This measure is most cost-effective when combined with the boiler tune up and power burner measures.	Retrofit	Heating	\$0.31
E105	Roof Insulation - Rigid R11-22	Roof Insulation - Rigid R11-22 2" rigid added to an existing foam roof insulation at re-roof, includes some surface prep. Application: Old buildings with flat roofs, no attics, and some insulation	At Replacement	Heating	\$0.34
W121	Combo Hieff Boiler (new)	Replace existing boiler with unit meeting OR Code requirements of 85% combustion efficiency.	New	Heating	\$0.36
W124r	Computerized Water Heater Control	Install intelligent controls on the hot water circulation loops.	Retrofit	Water Heat	\$0.37
W119	Combo Hieff Boiler (repl)	Replace existing boiler with unit meeting OR Code requirements of 85% combustion efficiency.	At Replacement	Heating	\$0.40
E112	Roof Insulation - Attic 11-30	Roof Insulation - Attic 11-30. Application: Buildings with partially insulated attics	Retrofit	Heating	\$0.40

Detailed Measure Table - WA Commercial Sector Technical Potential to 2030

Measure Code	Measure Description	Measure Description	Construction Type	Measure End Use	Levelized Cost, \$/th
W103	DHW Faucets	Add aerators to existing faucets to reduce flow from 3.4 gallons per minute to 2.0 GPM.	Retrofit	Water Heat	\$0.42
E114	Windows - Add Low E to Vinyl Tint	Windows - Add Low E to Vinyl Tint. Application: Old buildings	At Replacement	Heating	\$0.42
E123	Windows - Add Low E to Vinyl Tint	Windows - Add Low E to Vinyl Tint. Application: New Construction	New	Heating	\$0.42
H117	SPC Hieff Boiler (new)	Install near condensing boiler. Assumed seasonal combustion efficiency of 82% over base of 75%	New	Heating	\$0.45
C115	Power Range Burner		New	Cooking	\$0.46
C110	Power Range Burner		At Replacement	Cooking	\$0.46
H111	SPC Hieff Boiler Replace	Install near condensing boiler. Assumed seasonal combustion efficiency of 82% over base of 75%	At Replacement	Heating	\$0.49
E115	Windows - Add Low E and Argon to Vinyl Tint	Windows - Add Low E and Argon to Vinyl Tint. Application: Old buildings	At Replacement	Heating	\$0.57
E124	Windows - Add Low E and Argon to Vinyl Tint	Windows - Add Low E and Argon to Vinyl Tint. Application: New Construction	New	Heating	\$0.58
W109	DHW Condensing Tank (new)	Costs and savings are incremental over a Code-rated tank (combustion efficiency of 80\%) for a condensing tank with a minimum combustion efficiency of 94% and an R-16 tank wrap.	New	Water Heat	\$0.62
		Costs and savings are incremental over a Code-rated tank (combustion efficiency of 80\%) for a condensing tank with a minimum combustion efficiency of 94% and an R-16 tank wrap			
$\left\lvert\, \begin{aligned} & \text { W108 } \\ & \text { C114 } \end{aligned}\right.$	DHW Condensing Tank (repl) Infared Griddle	wrap.	At Replacement New	Water Heat Cooking	$\begin{aligned} & \$ 0.62 \\ & \$ 0.62 \end{aligned}$
C109	Infared Griddle		At Replacement	Cooking	\$0.62
H108	Power burner	Replace standard burner with a power burner to optimize combustion and reduce standby losses in the stack. Note: Costs and savings assume that this measure will be performed in conjunction with a boiler tune up when appropriate.	Retrofit	Heating	\$0.63
H120a	Cond Unit Heater from Nat Draft(new)	Install condensing power draft units (90\% seas. Eff) inplace of natural draft (64\% seas. Eff)	New	Heating	\$0.68
W127	Waste Water Heat Exchanger	Install HX on waste water	New	Water Heat	\$0.70
W122	Combo Cond Boiler (new)	Replace with boiler using condensing or pulse technology to achieve steady-state combustion efficiencies of 89% to 94% (this analysis used 90% efficiency for savings calculations).	New	Heating	\$0.73
W115	DHW Hieff Boiler (new)	Replace existing boiler with unit meeting OR Code requirements of 85% combustion efficiency.	New	Water Heat	\$0.74
W113	DHW Hieff Boiler (repl)	Replace existing boiler with unit meeting OR Code requirements of 85% combustion efficiency.	At Replacement	Water Heat	\$0.74
H118	SPC Cond Boiler (new)	Install condensing boiler. Assumed seasonal combustion efficiency of 88% over base of 75%	New	Heating	\$0.75
H115a	Cond Unit Heater from Nat draft(replace)	Install condensing power draft units (90\% seas. Eff) inplace of natural draft (64\% seas. Eff)	At Replacement	Heating	\$0.75
W120	Combo Cond Boiler (repl)	Replace with boiler using condensing or pulse technology to achieve steady-state combustion efficiencies of 89% to 94% (this analysis used 90% efficiency for savings calculations).	At Replacement	Heating	\$0.80
R101	Heat Reclaim with Floating Head Control	Large Grocery - Heat recovery to space heating with floating head control	New	Refrigeration	\$0.80
R101rep	Heat Reclaim with Floating Head Control	Large Grocery - Heat recovery to space heating with floating head control	At Replacement	Refrigeration	\$0.80
E121	Windows - Tinted AL Code to Class 40	Windows - Tinted AL Code to Class 40. Application: Old buildings	At Replacement	Heating	\$0.80
H112	SPC Cond Boiler Replace	Install condensing boiler. Assumed seasonal combustion efficiency of 88% over base of 75%	At Replacement	Heating	\$0.81
W104	DHW Pipe Ins	Add 1" insulation to pipes used for steam or hydronic distribution; particularly effective when pipes run through unheated spaces.	Retrofit	Water Heat	\$0.84
E130	Windows - Tinted AL Code to Class 40	Windows - Tinted AL Code to Class 40. Application: New Construction	New	Heating	\$0.87
H123	HVAC controls	Control set up and algorithm. This assumes the development of an open source control package aimed at describing scheduling and control points throughout the HVAC system, properly training operators so that scheduling can be maintained and adjusted as needed, and providing operator back up so that temperature reset, pressure reset, and minimum damper settings are set at optimum levels for the current occupancy.	New	Heating	\$0.90
H103	Ducts	Duct retrofit of both insulation and air sealing	Retrofit	Heating	\$0.90
W105	DHW Recirc Controls	Install electronic controller to hot water boiler system that turns off the boiler and circulation pump when the hot water demand is reduced (usually in residential type occupancies) or can be reset to meet the hot water load. (Steel boilers also require a mixing valve to prevent water temperatures from dropping below required levels).	Retrofit	Water Heat	\$0.95
E113	Roof Insulation - Roofcut 0-22	Roof Insulation - Roofcut 0-22. Application: Buildings with uninsulated flat roofs at reroofing time	At Replacement	Heating	\$0.96

Detailed Measure Table - WA Commercial Sector Technical Potential to 2030

Measure Code	Measure Description	Measure Description	Construction Type	Measure End Use	Levelized Cost, \$/th
H101	Warm Up Control	This measure is designed to implement a shut down of outside air when the building is coming off night setback. Ususally the capability for this is available in a commercial tstat but either the extra control wire is not attached or the unit itself has not been set up to receive the signal. Cost is based on labor cost to enable this ability in existing controllers	Retrofit	Heating	\$0.98
W124	Computerized Water Heater Control	Install intelligent controls on the hot water circulation loops.	New	Water Heat	\$1.04
W123	HiEff Clothes Washer	Install high performance commercial clothes washers residential sized units	New	Water Heat	\$1.06
W123r	HiEff Clothes Washer	Install high performance commercial clothes washers residential sized units	At Replacement	Water Heat	\$1.09
E106	Roof Insulation - Rigid R11-33	Roof Insulation - Rigid R11-33: add 4' of insulation at reroof. Application: Old buildings with flat roofs, no attics, and some insulation	At Replacement	Heating	\$1.15
W116	DHW Cond Boiler (new)	Replace with boiler using condensing or pulse technology to achieve steady-state combustion efficiencies of 89% to 94% (this analysis used 90% efficiency for savings calculations).	New	Water Heat	\$1.16
W114	DHW Cond Boiler (repl)	Replace with boiler using condensing or pulse technology to achieve steady-state combustion efficiencies of 89% to 94% (this analysis used 90% efficiency for savings calculations).	At Replacement	Water Heat	\$1.16
H129	Steam Trap Maintanence	Set up a in-house steam trap maintenance program with equipment, training, and trap replacement. An alternative procedure is to just pay for an outside contractor to conduct a steam survey.	Retrofit	Heating	\$1.25
E116	Windows - Add Argon to Vinyl Lowe	Windows - Add Argon to Vinyl Lowe. Application: Old buildings	At Replacement	Heating	\$1.29
H120b	Cond Unit Heater From Power Draft (new)	Install condensing power draft units (90\% seas. Eff) inplace of power draft (80\% seas. Eff)	New	Heating	\$1.38
E125	Windows - Add Argon to Vinyl Lowe	Windows - Add Argon to Vinyl Lowe. Application: New Construction	New	Heating	\$1.47
H115b	Cond Unit Heater from power draft (replace)	Install condensing power draft units (90\% seas. Eff) inplace of power draft (80\% seas. Eff)	At Replacement	Heating	\$1.52
H121	Cond Furnace (new)	Condensing / pulse package or residential-type furnace with a minimum AFUE of 92\%.	New	Heating	\$1.55
E122	Windows - Tinted AL Code to Class 36	Windows - Tinted AL Code to Class 36. Application: Old buildings	At Replacement	Heating	\$1.66
W125r	Solar Hot Water	Install solar water heaters on large use facility such as multifamily or lodging	Retrofit	Water Heat	\$1.68
E131	Windows - Tinted AL Code to Class 36	Windows - Tinted AL Code to Class 36. Application: New Construction	New	Heating	\$1.78
H116	Cond Furnace (repl)	Condensing / pulse package or residential-type furnace with a minimum AFUE of 92%.	At Replacement	Heating	\$1.82
H122	HVAC System Commisioning	HVAC system commissioning. Includes testing and balancing, damper settings, economizer settings, and proper HVAC heating and compressor control installation. This measure includes the proper set-up of single zone package equipment in simple HVAC systems. The majority of the Commercial area is served by this technology. Work done in Eugene (Davis, et al, 2002) suggests higher savings than the other documented commissioning on more complex systems.	New	Heating	\$1.85
E110	Roof Insulation - Blanket R11-41	Roof Insulation - Blanket R11-41. Application: Buildings with open truss unfinished interior	Retrofit	Heating	\$1.96
E118	Windows - Non-Tinted AL Code to Class 40	Windows - Non-Tinted AL Code to Class 40. Application: Old buildings	At Replacement	Heating	\$1.97
E127	Windows - Non-Tinted AL Code to Class 40	Windows - Non-Tinted AL Code to Class 40. Application: New Construction	New	Heating	\$2.00
E109	Roof Insulation - Blanket R11-30	Roof Insulation - Blanket R11-30. Application: Buildings with open truss unfinished interior	Retrofit	Heating	\$2.08
E119	Windows - Non-Tinted AL Code to Class 36	Windows - Non-Tinted AL Code to Class 36. Application: Old buildings	At Replacement	Heating	\$3.21
E128	Windows - Non-Tinted AL Code to Class 36	Windows - Non-Tinted AL Code to Class 36. Application: New Construction	New	Heating	\$3.28
E117	Windows - Non-Tinted AL Code to Class 45	Windows - Non-Tinted AL Code to Class 45. Application: Old buildings	At Replacement	Heating	\$3.43
E126	Windows - Non-Tinted AL Code to Class 45	Windows - Non-Tinted AL Code to Class 45. Application: New Construction	New	Heating	\$3.49
W125	Solar Hot Water	Install solar water heaters on large use facility such as multifamily or lodging	New	Water Heat	\$4.96

Appendix D-5

ETO 2008 Stellar Study Update

ENERGY EFFICIENCY AND CONSERVATION MEASURE RESOURCE ASSESSMENT FOR THE YEARS 2008-2027

Prepared for the Energy Trust of Oregon, Inc.

Final Report
February 26, 2009
By
Stellar Processes
And

Ecotope

Table of Contents

Project Overview 1
Summary of Results 2
Significant Efficiency Measures 5
Utility Sector 5
Industrial Sector 5
Commercial Sector 9
Residential Sector 13
Emerging Technology 16
Resource Assessment Methodology 17
Data Collection 18
Selection of Potential Measures 18
New Measure Development 20
Tool Selection and Use 22
Tool Limitations 22
Benefit Cost Ratio (BCR) 23
Supply Curve of Conservation Measures 23
Levelized Cost Calculation 24
Technical Potential Savings Check 24
Industrial Sector Resource Assessment. 28
Industrial Sector Characterization 28
Cross Cutting Measures 33
Specific Industrial Segments 41
Industrial Natural Gas Conservation Measures 51
Commercial Sector Resource Assessment 55
Commercial Sector Characterization 55
Description of Commercial Measures 55
Lighting Measures. 55
HVAC Measures 57
Water Heating Measures 59
Cooking Measures 61
Shell Measures 61
Window Measures 62
Cooling and HVAC Controls Measures 63
Refrigeration Measures 65
Residential Sector Resource Assessment 67
Sector Characterization 67
Description of Residential Measures 67
HVAC Measures 67
Lighting Measures 69
Domestic Hot Water Measures 70
Appliance Measures 70
Appendix: Detailed Measure Descriptions 72

List of Figures

Figure 1: Electricity Supply Curve 3
Figure 2: Electricity Technical Potential 3
Figure 3: Natural Gas Supply Curve 4
Figure 4: Natural Gas Technical Potential 4
Figure 5: Major Industrial Measures 6
Figure 6: Small Industrial Natural Gas Measures 8
Figure 7: Major Commercial Segment Measures, Electricity 9
Figure 8: Major Commercial Sector Measures, Gas 11
Figure 9: Major Residential Segment Measures, Electricity 13
Figure 10: Major Residential Sector Measures, Gas 15
Figure 11. With Emerging Technology 16
Figure 12: Savings Percentages for Industrial Segments 25
Figure 13: Residential Savings Percentages by Electricity End Use 26
Figure 14: Residential Savings Percentages by Gas End Use 26
Figure 15: Commercial Savings Percentages by Electricity End Use 27
Figure 16: Commercial Savings Percentages by Gas End Use 27
Figure 17: Industrial Electricity Consumption 28
Figure 18: Industrial Growth Forecast 29
List of Tables
Table 1: Summary of Technical Potential by Utility 1
Table 2: Industrial Sector Technical Potential Saving in 2027 by Segment 6
Table 3: Industrial Sector Technical Potential Saving in 2027, Screened by BCR 7
Table 4 Small Industrial Gas 2027 Technical Potential Savings, Screened by BCR 8
Table 5: Commercial Sector 2027 Technical Potential Savings, Screened by BCR 10
Table 6: Commercial Sector Gas Technical Potential Savings for 2027, 12
Table 7: Residential Sector Electric Technical Potential Savings for 2027 14
Table 8: Residential Sector Gas Technical Potential Savings for 2027, 15
Table 9: Residential Emerging Technology 17
Table 10: Industrial Process Share Downs 30
Table 11: List of Industrial Measures. 31
Table 12: Electronics Segment Process Shares 46
Table 13: Summary of Measures -- Electronics Segment 50
Table 14: Window Measure Details 63
Table 15: Detailed Measure Description, Industrial Electricity 73
Table 16: Detailed Measure Description, Industrial Natural Gas 76
Table 17: Detailed Measure Table, Commercial Sector, Electricity Savings, 2027 Technical Potential 78
Table 18: Detailed Measure Table, Commercial Sector, Gas Savings, 2027 Technical Potential 96
Table 19: Detailed Measure Table, Residential Sector, Electricity Savings, 2027 Technical Potential 110
Table 20: Detailed Measure Table, Residential Sector, Gas Savings, and 2027 Technical Potential 117

Project Overview

The goal of this project was to provide Energy Trust of Oregon, Inc. (Energy Trust) with the amount and cost of potential energy efficiency and renewable energy measures that could provide electricity and natural gas demand-side savings for Oregon consumers by 2027 within the Energy Trust service territory. This resource assessment is designed to inform strategic planning, the project development and selection process, and for use in utility resource planning. By 2027, a technical potential of approximately 684 Average Megawatts (aMW) of electric savings and 148 million annual therms of gas savings were identified in this study ${ }^{1}$.

Table 1: Summary of Technical Potential by Utility

Electric Utilities	PGE aMW	PPL, aMW	Both Utilities, aMW
Residential	32	67	99
Commercial	179	123	270
Industrial	223	82	305
Conservation Voltage Reduction	19	14	33
Total (Including cross-utility impact)	NNG, Mmtherm	CSG, Mmtherm	Both Utilities, Mmtherm
Natural Gas Utilities	76	21	97
Residential	38	2	40
Commercial	15		15
Industrial			153
Total (Including cross-utility impact)			

Conservation Voltage Reduction is a potential measure applicable by the utility at the substation level. Hence, it is not a measure that would be targeted by the Energy Trust but it is included in order to give a complete picture of the demand side potential. Quantification of Conservation Voltage reduction comes from the work of the Northwest Power Planning and Conservation Council and was not explicitly developed in this project.
Stellar Processes and Ecotope, Inc., reviewed existing demographic and energy efficiency measure data sources to identify and quantify the resource potential. The

[^10]contractors created updateable planning tools to develop these estimates and for Energy Trust to incorporate in their ongoing planning processes. The tools to evaluate the cost of individual measures and packages of measures considers the measure life, equipment and installation, annual O\&M expenses, and the discount rate employed by the Energy Trust to produce levelized costs and a Benefit Cost Ratio (BCR). Levelized costs are useful to compare on a comparable basis program options and conservation strategies that have different measure lives. The BCR provides a comparison to longterm benefits that include the lifetime and load shape value of the savings. In this sense, the BCR is a more thorough comparison and is the index used to screen for costeffectiveness.
It is important to note that program related costs are not included because Energy Trust staff directed that they are outside the scope of this study. It is equally important to note that the levelized costs shown in this study are the entire societal cost of efficiency measures for situations where existing, working equipment is retrofit, and the incremental cost of efficiency when considering new purchases of efficiency versus standard equipment. The incentive costs to the Energy Trust are often only a portion of these "total measure costs". This study provides the basic information on the cost of measures, which the Energy Trust will combine with their knowledge of markets and programs and incentives to develop estimates of total program costs to the society and (separately) to the utility system.

While this project was not intended to provide program design, it does identify and quantify estimates of electricity and gas use and measures of activity (such as number and energy use of households or total floor space) in the target markets for the industrial / agriculture, residential, and commercial sectors. Residential savings potential is quantified by housing type for new and existing single family, multifamily, and manufactured homes. Commercial savings are quantified on a square footage basis for typical business type designations such as retail, grocery, and large and small office spaces. The industrial analysis quantifies savings and costs by process type such as wood products, food, and electronics.
Determining the applicability of potential measures to specific segments or subsectors of the commercial and industrial building stock can be difficult. For these segments, many "cross cutting" measures such as lighting improvements for commercial applications or motor efficiency improvements for industrial customers were analyzed. Cross cutting measures can be applicable across a wide variety of circumstances and building types. In the industrial sector, many measures are relevant for specific applications or processes rather than in discrete building types. The industrial technical potential section discusses the assumptions used to determine measure applicability.

Summary of Results

The resource potential can be considered "technical" or "achievable". The technical potential is an estimate of all energy savings that could be accomplished immediately without the influence of any market barriers such as cost and customer awareness. As such, it provides a snapshot of everything that could be done. Technical potential does not present what can be saved through programs; it would be impossible to get every customer to install every possible measure. Furthermore, some resources may cost
more than the Energy Trust or participants wish to pay. The achievable potential represents a more realistic assessment of what could be expected - taking into account the fact that not all consumers can be persuaded to participate and other real world limitations.

The following figures and tables summarize the results of this analysis for 2027. In providing summary statistics for this section, we screened measures to a BCR of 1 or better. This provides a summary of the savings potential that has a reasonable chance of being cost effective when compared to avoided energy costs. Although the list of cost-effective measures does not include the highest cost measures, the supply curves and detailed tables of measures in the Technical Appendix lists all measures considered in this study. Both supply curves show some additional potential just beyond the current cost-effectiveness screen. Should higher avoided costs occur, there would be more additional measures available for conservation programs.

Figure 1: Electricity Supply Curve

Figure 2: Electricity Technical Potential

Figure 1 shows that the estimated savings from all electricity measures would reduce electricity use by 715 aMW of technical potential for cost-effective measures. Figure 2 shows the distribution of potential electric savings across market segments.

Figure 3 shows that natural gas conservation measures could reduce consumption by an estimated 153 million therms. Note that only small industrial customers are included in this gas supply curve. The larger industrial natural gas customers are not included within the Energy Trust mission. Figure 4 shows the distribution of potential natural gas savings across market segments.
Figure 3: Natural Gas Supply Curve

Figure 4: Natural Gas Technical Potential
All Sector 2027 Technical Potential 153 Million therm and Levelized
Cost \$/th, screened by BCR

Significant Efficiency Measures

Utility Sector

As mentioned previously, Conservation Voltage Reduction (CRV) is a set of measures that would be implemented at the utility level. The estimate of conservation potential was developed by the Northwest Power Planning and Conservation Council (NWPPC). The savings estimate amounts to saving 1.2\% of current utility sales across all customer classes. In general, these measures could be negative in cost after credit for deferred utility investment in capacity expansion. No independent analysis was conducted for that set of measures. For further information, the reader is referred to NWPPC.

Industrial Sector

Industrial customers of investor owned utilities in Oregon with over 1 aMW demand have the option of using their payment to the energy efficiency portion of the public purpose charge to self-direct implementation of efficiency projects. In addition, some industrial customers are transmission customers only for the utilities. For this study, neither of these types of industrial customers were removed - that is, these results apply to all the industries within Energy Trust territory regardless of whether they are currently eligible for Trust programs.
For this sector, measures can be thought of as cutting across industries or processspecific segments. For example, motors and lighting occur in all segments; however, other measures may be specific to paper manufacturing or another process. Due to proprietary concerns, it is difficult to obtain information on specific facilities; the actual amount of process savings is likely to be much larger than estimated here.
Transformer and motor-related measures as well as lighting opportunities are important crosscutting measures because of the widespread applicability to virtually all end uses. With this sort of study, it is important that national-level process and end use data by industry type be carefully considered and adjusted for relevance to the local industry. Energy Trust program files provided further information on process opportunities of the existing facilities with Pacific Northwest-specific characteristics. As a result of this region specific analysis, additional detailed process measures for the electronics, paper and wood products segments are included.

Figure 5: Major Industrial Measures

Table 2: Industrial Sector Technical Potential Saving in 2027 by Segment Screened by BCR

Segment	Consumption, aMW	Potential Savings, aMW	Savings Fraction
Electronics	465	153	33%
Wood Products	112	48	43%
Paper	239	16	7%
Food	62	4	6%
Other	242	10	4%
Primary Metal	145	26	18%
Fabricated Metal	31	2	6%
Agriculture	74	7	53%
Street and Area Lighting	36	305	20%
Total	1405	22%	

As Table 3 shows, industrial sector measures appear low in cost from a societal perspective because there are non-energy benefits in terms of increased production and reduced use of raw materials.

Table 3: Industrial Sector Technical Potential Saving in 2027, Screened by BCR

Measure Category	CrosW Savings	
Level Cost, \$/kWh		
Supply \& Transformer		58.0
Generic O\&M	31.1	$\$ 0.002$
Efficient Motors	19.0	$\$ 0.046$
Efficient Lighting	12.8	$\$ 0.031$
Pump Efficiency	20.5	$\$ 0.004$
Duct/Pipe Insulation	7.9	$\$ 0.019$
Air Compressor	5.3	$\$ 0.015$
Sensors and Controls	7.7	$-\$ 0.001$
Fan system improvements	1.6	$\$ 0.004$
Microwave Processing	3.9	$\$ 0.064$
Segment Measures		
Electronics: process	65.2	$-\$ 0.060$
Wood: Repl Pneumatics	10.0	$-\$ 0.031$
Electronics: chiller	22.0	$-\$ 0.053$
Paper: Refiner Mod	9.1	$\$ 0.005$
Electronics: HVAC	15.3	$\$ 0.039$
Metals	1.2	$-\$ 0.036$
Food: Cooling and Storage	2.0	$\$ 0.015$
Paper: Vapor Recompr	1.7	$\$ 0.014$
Paper: ChlorOxy Mod	1.5	$\$ 0.012$
Wood: Soft Start Press	0.5	$\$ 0.020$
Ag Irrigation	1.7	$-\$ 0.514$
Traffic \& Area Lights	7.2	$\$ 0.049$
Total	305.3	$-\$ 0.008$

Only firm industrial gas customers are included in this analysis, which is only a small fraction of gas company sales. That is because large gas customers are outside the Energy Trust mission. The firm industrial customers tend to be small facilities that are similar to commercial sector. Figure 6 and Table 4 show the potential for gas conservation measures.
Figure 6: Small Industrial Natural Gas Measures

Table 4 Small Industrial Gas 2027 Technical Potential Savings, Screened by BCR

Measure Category	Technical Potential, ktherm	Levelized Cost, \$/th
Replacement		
Process Boiler	1,205	$\$ 0.453$
DHW Measures	493	$\$ 1.034$
Space Heat	1,534	$\$ 0.307$
Retrofit	4,865	$\$ 0.194$
DHW Measures	2,861	$\$ 0.014$
Process Boiler	2,917	$\$ 0.289$
Weatherization	1,379	$\$ 0.433$
Steam Boiler	15,254	$\$ 0.259$
Total		

Commercial Sector.

Figure 7 and Table 5 show the potential for groups of measures in the commercial sector with most significant savings. These measure groups are broken out according market segments that affect program design. These groups are as repair and replacement of existing stock as well as measures specific to new construction. In both cases, lighting opportunities dominate. In most cases, achievable potential is estimated as 85% of technical potential. Details are shown in Table 5.

Figure 7: Major Commercial Segment Measures, Electricity

Commercial Potential 270 aMW and Levelized Cost \$/kWh, screened by BCR

Table 5: Commercial Sector 2027 Technical Potential Savings, Screened by BCR

Measure Category	aMW Savings	Winter Peak Savings, MW	Summer Peak Savings, MW	Level Cost, \$/kWh
New Cooling	1	3	2	\$0.031
New Cooking	1	1	1	\$0.002
New Windows	0	1	0	\$0.053
New HVAC	3	7	6	\$0.051
New Lighting	34	34	44	\$0.039
New Appliances	2	2	2	\$0.047
New Refrigeration	8	9	12	\$0.017
New DHW Measures	1	1	1	\$0.041
Replace Cooling	10	19	17	\$0.030
Replace Cooking	3	3	3	\$0.002
Replace Shell	5	15	1	\$0.036
Replace HVAC	19	42	37	\$0.005
Replace Lighting	28	34	44	\$0.033
Replace Appliances	49	51	51	\$0.046
Replace Refrigeration	22	27	35	\$0.017
Replace DHW Measures	1	1	1	\$0.050
Retrofit Shell	2	7	1	\$0.016
Retrofit HVAC	12	24	21	\$0.029
Retrofit Lighting	57	68	88	\$0.025
Transformers	4	4	4	\$0.010
Retrofit Controls	6	6	6	\$0.035
Retrofit DHW	3	3	3	\$0.037
Total	270	360	379	\$0.030

Figure 8 and Table 6 show the conservation potential for natural gas in the commercial sector. These measures are also grouped by retrofit or replacement versus new construction. Equipment upgrades are the primary measures. Heat reclamation from refrigeration has emerged as a significant resource due to recent regional market research. In new construction, the predominant savings measure is from roof insulation required to be better than code minimum.

Figure 8: Major Commercial Sector Measures, Gas

Table 6: Commercial Sector Gas Technical Potential Savings for 2027, Screened by BCR

Measure Category	Thousand therm	$\$ /$ therm
New Cooking	1,209	$\$ 0.166$
New Windows	72	$\$ 0.509$
New Equipment	1,891	$\$ 0.471$
New Water Heating	628	$\$ 0.593$
Replace Cooking	10,239	$\$ 0.144$
Replace Shell	4,222	$\$ 0.284$
Replace Equipment	6,221	$\$ 0.459$
Replace Water Heating	1,792	$\$ 0.570$
Retrofit Shell	4,352	$\$ 0.226$
Retrofit Equipment	5,302	$\$ 0.141$
Retrofit Water Heating	4,440	$\$ 0.331$
Total	$\mathbf{4 0 , 3 6 8}$	$\$ 0.279$

Residential Sector

Figure 9 and Table 7 show residential electricity potential in 2027 grouped by existing and new construction opportunities. There is also significant potential for weatherization, replacement of heating systems and appliances. In new construction, emerging heat pump water heaters are expected to be a major resource. Otherwise, lighting in new buildings provides the most savings potential. In addition to these known opportunities, there is an expanding array of new technology to be discussed later.

Figure 9: Major Residential Segment Measures, Electricity

Table 7: Residential Sector Electric Technical Potential Savings for 2027, Screened by BCR

Measure	aMW Savings	Winter Peak Savings, MW	Summer Peak Savings, MW	Level Cost, $\mathbf{\$ / k W h}$
New Construction	21	33	7	$\$ 0.050$
New DHW	2	3	2	$\$ 0.068$
New Lighting	2	2	2	$\$ 0.072$
New Appliance	1	1	1	$-\$ 0.159$
New HVAC	1	2	0	$\$ 0.071$
Replace Appliance	17	20	18	$\$ 0.000$
Replace Windows	4	9	0	$\$ 0.011$
Replace DHW	1	1	1	$\$ 0.040$
Replace HVAC	1	1	0	$\$ 0.075$
DHW Measures	0	0	7	$\$ 0.009$
HVAC Retrofit	15	6	7	10
Lighting Retrofit	6	$\mathbf{1 1 5}$	$\$ 0.042$	
Weatherize	5	$\mathbf{7 6}$		$\mathbf{4 3}$
Total			$\$ 0.024$	

Figure 10 and Table 8 show residential potential for natural gas savings in 2027 grouped by existing and new construction. For natural gas, the greatest opportunity lies in weatherization of existing buildings, retrofit of existing heating equipment, and increased efficiency for new construction. Opportunities during new construction include better insulation and windows, duct sealing, high efficiency furnaces, and heat recovery ventilation. The fact that some appliances are negative in cost reflects the fact that there are non-energy benefits, such as water savings, that offset cost for some appliances.
Figure 10: Major Residential Sector Measures, Gas

Residential Technical Potential 97 Million Therms and Levelized Cost $\$ /$ th, screened by BCR

Table 8: Residential Sector Gas Technical Potential Savings for 2027, Screened by BCR

Measure Category	Thousand Therm	\$/therm
New Appliance	59	$-\$ 1.809$
New Construction	14,450	$\$ 0.473$
New DHW	613	$\$ 0.721$
Replace Appliance	37,360	$\$ 0.607$
Replace Equipment	4,454	$\$ 0.348$
Retrofit Equipment	35,976	$\$ 0.351$
Weatherize Retrofit	3,681	$\$ 0.246$
Total	$\mathbf{9 6 , 5 9 2}$	$\mathbf{\$ 0 . 4 6 5}$

Emerging Technology

Distinction should be noted between those measures that are new -- that is, available but not yet in wide spread practice -- and those that are emerging but not yet available in the market. These measures are expected to become widespread in the future even if they are not yet considered mainstream. Measures in this category deserve discussion and possible support for demonstration because they are quite likely to become important opportunities. Unfortunately, the methodology of resource assessment is not well suited to exploring hypothetical new options (see Fred Gordon, et al., "Beyond Supply Curves", ACEEE Conference Proceedings, 2008).
Given that our ability to predict future inventions is limited, one can still develop some sensitivity estimates for products that are known or expected to be almost market ready. Figure 11 shows emerging technology increases the supply curve by almost 20%.

Figure 11. With Emerging Technology

The specific measures treated as emerging are discussed in more detail titled "New Measure Development" on page 20. In general, most of these measures we could identify as "emerging" are in the residential sector.

Residential consumer electronics are a rapidly changing market. One anticipates that many new products will start to use "smart" capabilities including internet controls. If done properly, this could lead to energy savings during "sleep" mode. California has identified large savings opportunities and is pursuing a program for Low Power Mode Appliances. Such savings would occur through new standards to be implemented at the manufacturing level and would not be immediate program opportunities. Within programs, there are opportunities for new lighting products, for heat pump water heaters and new ductless heat pumps for space heating.

The importance of these new technologies is illustrated in Table 9. Assuming that the new products occur, they would then be responsible for 61% of the new and increased technical potential for residential sector.

Table 9: Residential Emerging Technology

Measure	aMW Savings	Emerging Technology as Percent of Total
New Appliance	20	95%
New DHW	4	64%
New Lighting	2	47%
Replace Appliance	56	77%
Lighting Retrofit	23	78%
Heat Pump HW	2	100%
HVAC Retrofit	10	41%
Total	$\mathbf{1 1 7}$	$\mathbf{6 1 \%}$

Resource Assessment Methodology

This section describes the methodology used in this report. More detailed description is provided in the detailed appendix and many of the specifics are documented in the calculation spreadsheets.
To summarize the approach, we applied the following steps in this study:

- Establish Energy Consumption Baseline.

We quantified current energy use by segment unit (residential household, commercial square footage, and industrial by typical facility) and customer type within each segment (single family, small office, wood products, etc.). It is important to understand how much energy is currently consumed for specific end uses and market segments in order for the eventual savings estimates to be realistic. We utilized the utility estimates of sales by customer group and market segment and best estimates of Energy Use Index (EUI kWh/sq. ft.) factors to calibrate our estimates to the actual utility sales data.

- Estimate Energy Consumption by End Use for Each Customer Type.

The methods varied by customer group. For the industrial sector, we estimated the "share down" factors, that is, the fraction of consumption for specific process uses. For the commercial sector, the EUI factors provided consumption by end use. For the residential sector, we applied prototype models to estimate major end use consumption, calibrated to actual sector consumption

- Forecast future consumer population.

We applied the utility forecasted growth rate to estimate the customer base available in future years.

- Compile And Screen List Of Measures, Develop Measure Details

We reviewed information on specific measures for applicability to ETO territory customers. This information includes estimates of incremental cost and savings but also
assesses the market potential for specific measures. Applicability of some measures depends on the fuel for space heating, for example. Also the amount to which the market is currently saturated affects the amount of remaining potential. We focused on measures with significant savings for a significant portion of the housing, building, or equipment stock in question. The intention was not to represent every possible measure, but represent the available cost and savings by choosing the most significant measures.

- Implement Worksheet Tool To Aggregate And Sum Conservation Potential.

We developed a series of worksheets to compute the savings potential and cost for each measure and customer type, and then results were aggregated for an estimate of the total potential.

Data Collection

To develop the inputs required by the tool, the team utilized a wide variety of resources. A literature review was conducted to collect equipment and O\&M costs and energy savings. This review was augmented by internal data developed by the team members for use in prior projects. Where available, the Northwest Power \& Conservation Council's (NPCC) Regional Technical Forum (RTF) data was utilized in the residential sector to collect costs and energy benefits. In addition, the NPCC libraries provided cost and benefit data for many of the commercial sector measures. In some cases, technical papers or data provided by manufacturers was used. Energy Trust historical program data and measure screening analysis also provided data input for the study. The data source(s) used for each measure are noted in the Notes and Sources section of each measure workbook.

To determine the applicability of measures to the Energy Trust service territory and to assess market conditions, economic and census data was collected from Economy.com and from the U.S. Census Bureau and the Department of Housing and Urban Development. Population estimates were also collected from the Portland State University Center for Population Studies and from the Manufactured Housing Association.

Where available, public documents prepared by the individual utilities were used to generate electricity end use or device saturation and penetration rates for the Energy Trust service territory. Where not available, these rates were extrapolated from countyor state-level data.

Selection of Potential Measures

In residential sector, we utilized 107 measures. Each measure is developed separately for three building types. In the commercial sector, we utilized 106 measures. Each measure is then developed separately for 12 building types.

The measures identified in the initial list were then analyzed for cost and performance in the Energy Trust service territory. We used a wide variety of resources to develop measure-specific inputs for this study. We conducted a literature review to collect equipment and labor costs and energy benefits. Energy Trust project data and measure cost effectiveness screening models were combined with Northwest Power \&

Conservation Council's Regional Technical Forum (RTF) data and other regional sources for measure costs, savings, and non energy benefits assumptions. We studied the Oregon market to identify the total market size, infrastructure, climate, energy use, energy costs, and other variables that impact the usefulness of each of the measures in the particular market served by the Energy Trust.
The study is structured to present efficiency potential by measures directed to "New Construction," "Retrofit," or "Replacement." "Replacement" applies to the annual turnover of equipment in any year. We can also compute this resource as a cumulative total for a future year. Retrofit applies to upgrading existing equipment that has not yet reached its useful life.

For each measure, we attempted to identify and quantify the potential market for which that measure was applicable. While this is relatively straightforward in the residential sector and only slightly problematic in the commercial sector, it is very difficult to provide the same level of detail for a technical potential assessment in the industrial sector. Nevertheless, we have provided an approximate technical potential for each measure that can be used to estimate overall program size and savings potential.

To calculate the cost of each measure, the following assumptions were generally followed. Where appropriate, exceptions have been noted within the measure workbook. Only actual equipment and labor costs were included in the measure cost calculation used in this analysis. In addition, incremental costs (or savings) related to differences in operations and maintenance was considered in the cost analysis. We did not consider program administrative costs, marketing or other overhead expenses.

For each measure, the incremental cost of the equipment examined in the measure over that required by the relevant energy code was used where applicable in new construction, renovation, and replacement markets. The entire cost of substitute equipment was considered in retrofit situations ${ }^{2}$. These measures generally examine one-for-one equipment selections so all other costs are assumed to be the same. In cases where additional installation costs would be associated with the equipment in the measure, these incremental costs have also been included.
The impact of the measure on O\&M expenses was calculated and included in the costeffectiveness analysis. In some cases, there are negative O\&M costs - that is, nonenergy benefits - that are included in the analysis. In planning terms, we utilized a cost that represents the full societal cost or total resource cost (TRC).
For the technical potential savings analysis, we assumed that the measure would be applied to all applicable situations and where no related measure was applied. For retrofit measures, we assumed that the existing population would be addressed to the extent possible. For replacement measures, we first calculated a replacement rate and then assumed that the measure was applied for the cumulative number of replacements up to the target year. For "new" measures in new construction, we assumed that all of the applicable new construction was treated every year. Growth rates were developed

[^11]based on utility projections. For replacement and new measures, it is important to specify a target year sufficiently into the future that significant new resources will be counted. We utilized the year 2027 as the target year for assessment.

Retrofit and replacement can be in conflict; if one does a retrofit, the efficiency opportunity is no longer available to become a replacement candidate later. At the same time, there are measures that occur only as retrofit or only as replacement options. We worked with the measures in various ways to assure that retrofit and replacement would not be "double-counted." Often, the retrofit is much more expensive because the replacement is only an incremental cost over replacement with a less efficient but otherwise similar piece of equipment. In cases where retrofit was clearly more expensive than grid power and pipe gas, yet replacement was feasible, we ruled out the retrofit as not feasible. Another option was to compute the cumulative replacements and remove those from eligibility as retrofits. The Resource Assessment spreadsheets allow the analyst to choose an approach.
Another potential conflict can occur when two technologies go after the same energy end use. For example, heat pump water heaters and solar water heaters are competing technologies. In these cases, we divided the market between the two options to avoid double-counting.
Since we are dealing with two fuels, we must be aware of some other factors. In general, we can develop a supply curve for only one fuel at a time. That is, the gas and electricity supply curves are independent. Of course, that does not mean that efficiency opportunities for the two fuels are always independent - many measures save both electricity and gas on the same site (e.g. building energy management system) and many markets can only be effectively approached by a dual fuel program (e.g. new homes.) This merely means that the impacts of investment in one fuel on energy use for the other are not captured in the supply curve graph. These impacts are maintained in the output tables and they do influence the levelized cost.

New Measure Development

In preparing this version of the planning tools, the primary focus was on updating costs and savings for previously developed measures. However, we considered a number of new measures as the request of reviewers.

Heat reclamation from commercial refrigeration has been identified as a new measure due to recent regional market research. Although still not widely practiced, it is recognized as a significant category for gas savings in this study. Heat recovery to hot water heating is low cost, easy to implement, and enjoys wide market acceptance. Heat recovery for space heating is more complicated and, hence, perceived as more risky and less attractive to customers. It is one of relatively few measures with large potential for gas conservation. Similarly, Heat Recovery Ventilation (HRV) has a large technical potential in both the residential and the commercial sector. In both cases, there are products currently available but local builders have been reluctant to adopt them.

Heat pump water heaters are identified as having a large technical potential in both the residential and the commercial sector. In this case, new products are expected but are not yet on the market. We consider this measure to be emerging technology.

Similarly, we expect a new generation of gas water heaters within a year. High efficiency gas water heaters have been available previously but these new products will be less expensive.

The Home Energy Monitor connects a digital readout to the customer's utility meter so that the customer has direct feedback as to their consumption level. We project this product as currently available but as emerging technology.

Lighting measures are an unusual case. New federal standards will require efficient lighting starting in about 2015. As a result, the lifetime for installing lighting measures in the current stock of buildings has been reduced. We expect that a new generation of LED lighting products will be available by year 2015 and even more efficient lighting products will emerge in about year 2020.
Prototype units of condensing natural gas packaged heaters have been demonstrated in Canada. However, the condensing feature of theses units was not the primary source of their savings - rather it was the fact that exposed ductwork was better insulated. Furthermore, manufacturers have not indicated willingness to bring these units into production due to the higher cost of the hardware.

One area of interest was the application of residential gas water heating systems for combined space heat and water heat. We considered various combinations of available technology. Although there would be cost savings by eliminating the furnace, the added cost of a hydronic heating system would be comparable. And although a tankless water heater would be higher efficiency, it would be competing against an already-efficient gas furnace for space heating. Only one combination option appears to be currently costeffective - that would be a combination involving a low-cost hydrocoil applied to an air distribution system. We also include a high efficiency combination system based on the Polaris water heater. However, the basecase assumes that a conventional gas boiler and hydronic slab heating system would otherwise be installed and the efficiency improvement is small relative to the incremental cost.

A similar niche on the electricity side would be new ductless heat pump systems. These systems are designed for fool-proof installation that may eliminate some of the installer errors that have plagued large heat pumps. Current models are small in capacity, which limits their retrofit potential. They are suggested for homes with electric baseboard heating - which makes them one of the few retrofit equipment measures possible for older homes with baseboard heating. Energy savings will depend on the extent to which customers operate these units to offset baseboard heat and the addition of summertime cooling might offset winter savings. In multi-family housing where they would provide the equivalent of an efficient through-the-wall heat pump. These are included as an emerging technology measure. The cost estimate gives credit for the fact that a window air conditioner would otherwise have to be included to provide a similar cooling benefit.
A new set of high efficiency gas water heaters is becoming available. We include a lowcost gas water heater with 0.70 EF rating that will shortly be available as emerging technology. Tankless gas water heaters have an EF rating of 0.85 . There is an incremental upgrade possible to the Navien tankless heater at 0.89 EF rating that would be cost effective even for the high cost system.

Waste heat recovery from wastewater has been previously reviewed as a potential measure. It is not well suited for residential applications, as it is a relatively expensive retrofit limited to full basements. As a result, this measure is limited to commercial facilities.

Other commercial measures that were changed include high performance lighting systems. More efficient T8 systems can replace the previous generation of older T8s. T5 systems are somewhat more expensive but can be a worthwhile replacement for metal halide lights. One advantage is the new fluorescent system is that it can be switched off or dimmed, allowing application of occupancy sensors.
Low flow spray valves are a low cost commercial application that is rapidly being deployed within the current program.

Tool Selection and Use

One of the primary goals of this project was to continue use of, and improve upon the method of analyzing measures across segments and technology types that would provide a means of comparing anticipated costs and benefits associated with a variety of program options.

The Assessment Tool used by the team includes several favorable features:

- Standardized program assumptions. This spreadsheet tool allows the same set of program assumptions for each measure, so that differences in the results of the analysis of any two measures were impacted only by the variables of interest (cost, benefits, and technical potential).
- Updateable. The measure cost and performance, market penetration and other inputs into the tool can be easily changed to analyze a particular measure under a variety of program and cost conditions. For example, Trust personnel can easily modify the cost of the measure or number of program participants and calculate a new levelized cost.
- Consistent analysis approach. Team members individually assessed the measures with expertise in particular areas. The use of this tool ensured that measure assessments performed by different analysts were comparable.
- Record of assumptions, sources, etc. The input requirements of the tool provide a record of the data and processes used by the analysts to develop levelized costs. We believe this will be extremely informative and provide insights to the Trust that will be helpful during program design, particularly in cases where multiple measures are combined into a single conservation package targeted at a particular customer, segment or building type.

Tool Limitations

While the strict data input structure of the Assessment Tool provides a consistent way to compare measures across sectors, it does impose some limitations:

- The total measure costs and benefits calculations are based on an estimate of the number of cases for which the measure is applicable; i.e., the program participation
was estimated to be the total technical potential. These figures will need to be adjusted for programs that target only a portion of the identified market.
- The tool does not allow multiple-measure "what if" analysis. While we have assessed a number of combined-measure packages, the costs and benefits must be calculated and combined outside the tool and entered as one set of assumptions.
- The tool provides limited flexibility. The tool did not provide optimum flexibility to analyze measures by segment or across segments without creating multiple worksheets. While this did impose some limits on the analysis methodology, the strict requirements of the tool ensure that comparable computations across all types of measures and sectors are made.

Benefit Cost Ratio (BCR)

In previous studies, we used the levelized cost as a screening criterion to determine cost effectiveness. One problem is that the levelized cost fails to take into account Time-Of-Use (TOU), that fact that savings during a peak period may have higher value and, hence, be more cost-effective. In order to better account for this feature, we computed the total benefit, net present value of lifetime savings and Non Energy Benefits (NEB), evaluated at each measure's load shape. This lifetime benefit can then be compared to the total resource cost. If the benefits are greater than cost, the benefitcost ratio is greater than one. This ratio offers a simple comparison.

$$
B C R=\frac{\text { Net Present Value of Benefits (including TOU, NEB, hedge and externality value) }}{\text { Total Resource Cost }}
$$

In general, screening by BCR rarely results in a different cost-effectiveness determination than that afforded by the levelized cost. The exception occurs with some residential sector end uses that occur during peak periods.

In cases where the total resource cost is actually negative, due to non-energy benefits that offset cost, the calculation for BCR returns a negative value. While this is technically correct, it could be confusing. For this reason, we defined the BCR to be 100 whenever total cost is negative. This facilitates sorting the measures in order of declining BCR.

One complication with computing BCR lies in obtaining realistic estimates of the utility system avoided cost at different times of the day. For this purpose, we used values estimated by the Northwest Power and Conservation Council (NPCC). Their methodology involved modeling the West Coast energy markets in order to forecast the market price by time of day for future years. To this estimate of market value, we add a value for future cost of CO2 mitigation. NPCC also recommends adding a "hedge value" due to the fact that DSM investments decrease financial risk. As further information is developed, the estimates of avoided cost can be further updated.

Supply Curve of Conservation Measures

The results of the assessment are provided in the form of separate spreadsheets for the industrial, commercial, and residential sectors (see appendix for the final lists of measures). For each measure or package of measures, we developed cost and savings
estimates (including peak load savings), as well as an estimate of overall achievable energy savings over the future study period. To generate both the cost and savings impacts over time, we assumed that the measure was applied to all potential candidates. These calculations could change considerably as specific programs are developed, but provide an overview of the maximum potential available from each measure. As a final step, the list of measures was ranked by overall cost-effectiveness.

Levelized Cost Calculation

To compare and prioritize measures, we calculate the levelized cost for each measure opportunity. The levelized cost calculation starts with the incremental capital cost of a given measure or package of measures as described previously. We add the present value of any net operation and maintenance (O\&M) cost. The total cost is amortized over an estimated measure lifetime using a discount rate (in this case a real discount rate of 5.2 percent per year) which is the standard value used by Energy Trust. This annual net measure cost is then divided by the annual net energy savings (in kilowatthours or therms) from the measure application (again relative to a standard technology) to produce the levelized cost estimate in dollars per kWh saved, as illustrated in the following formula.

$$
\text { Levelized Cost }=\frac{\text { Net Annual Cost }(\$)}{\text { Net Annual Savings }}
$$

The levelized cost is a figure that can be compared with the full cost of delivering power from electricity generation options. The levelized cost approach was chosen as the most practical and useful method of comparing measures of various types and applications.

In dealing with two fuels (electricity and natural gas), we must be aware that there are cross-impacts. For example, a lighting program will save electricity but increase consumption of natural gas for space heating. In this case, we compute the Net Present Value (NPV) based on the avoided cost of natural gas and add that value to the O\&M component of cost.
A more complicated case occurs when the same measure has positive savings for both fuels. In that case, we compute the NPV of avoided cost for both fuels and use the ratio of the NPVs to apportion the measure cost between the two fuels. Thus, both fuels would see a reduced levelized cost because they are only "charged" for part of the measure cost. The final result of this analysis provides the cumulative amount of potential resource available at a given levelized cost, as shown in the supply curves.

Technical Potential Savings Check

Since the potential savings estimate results in large numbers, it is useful to apply a reality check to verify that the numbers are reasonable. One procedure to check the potential is to compare estimated savings to the amount of estimated consumption. Such a comparison may be presented as the expected percent of end use savings. Note that the amount of consumption for new and existing building stock is quite different due to the inherently different deployment approach to achieve savings.

For existing stock, generally it is more cost-effective to replace old equipment with more efficient equipment as it wears out. We assumed that replacement of existing stock is
limited to the turnover rate of the old equipment. In the case of new construction, it is technically possible to change the choice for all the new equipment at the time it is first installed. Thus, for some appliances, the potential savings percentage is higher for new installations merely because of the deployment limitations. On the other hand, because the older stock is less efficient, for some measures the existing stock offers a higher savings percentage that can be addressed.

Figure 12 demonstrates that our analysis focused on the segments that account for the most energy consumption. The technical potential for the industrial sector is high and, in many cases, the cost is offset by non-energy economic benefits.
Figure 12: Savings Percentages for Industrial Segments

Figure 13 shows savings percentages for residential electricity consumption. Low Power Mode Appliances account for the large fraction in the appliance enduse.
Figure 13: Residential Savings Percentages by Electricity End Use

Figure 14 shows savings percentages for residential gas measures.
Figure 14: Residential Savings Percentages by Gas End Use

Figure 15 and Figure 16 show savings percentages for commercial sector. Refrigeration savings reflect recovered heat in addition to the refrigeration end use. Gas DHW savings are high reflecting controls, a number of boiler improvements and heat recovery for water heating.
Figure 15: Commercial Savings Percentages by Electricity End Use

Figure 16: Commercial Savings Percentages by Gas End Use

Industrial Sector Resource Assessment

A list of the recommended industrial measures, ordered by the levelized cost, is provided in Table 11. This list presents individual measures, with incremental capital costs and net operations and maintenance costs (or benefits-shown as negative O\&M costs) expressed in units of kWh of annual energy savings by the measure. In the section that follows, we provide a discussion of the potential application of these measures, as well as selected recommendations regarding potential program designs for the industrial sector.

Industrial Sector Characterization

There are several important caveats to understanding the industrial approach. First, it is a top-down assessment. That is, it estimates the potential for conservation starting with MWh sales. (This approach differs from the residential and commercial sectors, which build up from an estimate of the number of customers.) In fact, economic growth has not been robust in recent years- the electronic segment in particular suffered from business reverses. We applied the same forecasted growth rates as used by the utilities in their planning to project future MWh sales.
Energy Trust serves participating industries, yet these industries have the option of selfdirection. In fact, some industrial customers are transmission customers only for the utilities. For this study, we did not remove any of these loads - that is, these results apply to all the industries within Energy Trust territory regardless of whether they are currently eligible for Energy Trust programs.
The savings potential is derived from the total electrical consumption of the customer. To the extent that customers produce their own electricity, we need to include that generation as part of overall consumption. Figure 15 shows our estimate of current industrial consumption including self-generation where it is significant.

Figure 17: Industrial Electricity Consumption

Paper, wood products, and computer equipment manufacturing are the top electricity users in the service territory. Together, these industries used approximately two-thirds of the industrial electricity consumed.

We examined the potential for further generation from co-generation or Combined Heat and Power (CHP) but found it too difficult to generalize since it depends on various market factors that are not technical issues. Accordingly, CHP is an additional opportunity that is not included in this study.
Figure 18: Industrial Growth Forecast

Historically, industry has been based primarily on natural resource extraction and processing (Food and Forest Products). These industries are expected to decline or exhibit low growth rates. One notable exception is the electronics sector - this is the only industry expected to show future growth. However, past events have shown that this sector is dependent on the global business outlook and can be extremely volatile. Growth in solar photovoltaic manufacture has been proposed as a source for Oregon's future economic development. The forecast above includes solar photovoltaics as part of the electronics sector. Currently only one specific new photovoltaic plant is in operation. Other plants are projected but not yet confirmed at specific sites.
The next step is to estimate how the electricity sales are distributed to various end uses and processes within the facility. Table 10 shows the estimated shares for various processes within each type of facility.

We reviewed the current program list of committed projects in determining the extent to which further measures are applicable. For example, where one paper plant has adopted a new technology under the Trust program - that measure is no longer applicable. In general, the currently committed projects account for savings of a few percent within industrial segments - so there is still plenty of remaining opportunity.

It is difficult to estimate the extent to which technically possible industrial opportunities are achievable in the real world. We rated measures loosely as high (85% achievable), medium (50\% achievable), or low (25% achievable) based on judgment.
Table 11 lists the industrial measures by increasing levelized cost. Screening by the BCR ratio is to screening by a levelized cost of about \$0.09 per kWh.

Table 10: Industrial Process Share Downs

	Percent Electricity by End Use															
	Motors							Process Heating								
	Pumps	$\begin{array}{\|c\|} \hline \text { Fans } \\ \text { and } \\ \text { Blowers } \end{array}$	Compressed Air	Material Handling	Material Processing	$\begin{aligned} & \text { Low } \\ & \text { Temp } \\ & \text { Refer } \end{aligned}$	Med Temp Refer	Pollution Control	Other Motors	$\begin{aligned} & \text { Drying } \\ & \text { and } \\ & \text { Curing } \end{aligned}$	$\begin{array}{c\|} \hline \text { Heat } \\ \text { Treating } \end{array}$	Heating	$\begin{aligned} & \text { Melting } \\ & \text { and } \\ & \text { Casting } \end{aligned}$	HVAC	Lighting	Other
Comp \& elect mfg	27\%	10\%	5\%	3\%	10\%	5\%		3\%				5\%		25\%	3\%	4\%
Paper mfg	26\%	16\%	5\%	10\%	17\%			3\%	5\%	3\%				1\%	2\%	12\%
Primary metal	2\%	4\%	4\%	9\%	6\%			7\%		2\%	4\%	20\%	8\%	2\%	3\%	29\%
Fab metal mfg		10\%	4\%	10\%	24\%			1\%	5\%	3\%	6\%			3\%	10\%	24\%
Food mfg	8\%	5\%	4\%	4\%	9\%	42\%	12\%		5\%	1\%				2\%	8\%	
Wood mfg	3\%	10\%	12\%	31\%	23\%			3\%	4\%	3\%				1\%	7\%	3\%
Agriculture	67\%	9\%	0\%	4\%	0\%	0\%	4\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	2\%	13\%
other manf	29\%	7\%	10\%	1\%	9\%	0\%	0\%	1\%	0\%	1\%	0\%	2\%	0\%	1\%	9\%	30\%
Total	23\%	10\%	6\%	7\%	11\%	4\%	1\%	3\%	2\%	1\%	1\%	4\%	1\%	9\%	5\%	13\%

Table 11: List of Industrial Measures

Measure Name	Incremental Cost (\$/kWh)	O\&M Cost (\$/Yr/kWh)	Levelized cost (\$/kWh)	Potential Savings (aMW)	Status
Irrigation: Ditch > Pipe	\$0.080	-\$1.010	-\$1.000	1	available
Electronics: Wastewater preheat of OSA	\$0.454	-\$0.232	-\$0.173	9	Available
Metal: New Arc Furnace	\$0.087	-\$0.173	-\$0.162	0	Available
Electronics: Exhaust Injector	\$0.473	-\$0.135	-\$0.073	35	Available
Electronics: Solidstate chiller	\$0.534	-\$0.123	-\$0.071	21	Emerging
Metal: Net Casting	\$0.634	-\$0.113	-\$0.030	1	Available
Wood: Replace Pneumatics	\$0.298	-\$0.061	-\$0.031	10	Available
Metal Fab: UV Curing	-\$0.085	\$0.000	-\$0.011	1	Available
Electrical Supply System Improvements	\$0.011	-\$0.010	-\$0.007	39	Emerging
ASD Motors	\$0.072	-\$0.013	-\$0.005	2	Emerging
Sensors and Controls	\$0.022	-\$0.003	-\$0.001	8	Available
Electronics: Reduce pressure, gases	\$0.001	-\$0.001	-\$0.001	2	Emerging
Ag: High Draft Fans for Barns	\$0.001	\$0.000	\$0.000	0	Available
Pump Efficiency Improvement	\$0.167	-\$0.018	\$0.004	21	Available
Motor Management (Prevent. Maint.)	\$0.152	-\$0.010	\$0.005	1	Available
Air Compressor Sensors	\$0.045	\$0.000	\$0.004	1	Available
Fan system improvements	\$0.033	\$0.000	\$0.004	2	Available
Paper: Refiner Mod	\$0.046	\$0.000	\$0.005	9	Available
Advanced Lubricants	\$0.014	-\$0.008	\$0.007	3	Available
Motor Systems O\&M Optimize	\$0.062	\$0.000	\$0.008	15	Available
Electronics: Clean Room HVAC	\$0.112	\$0.000	\$0.011	3	Available
Food: Cooling and Storage	\$0.118	\$0.000	\$0.012	1	Available
Paper: ChlorOxy Mod	\$0.123	\$0.000	\$0.012	1	Available
Transformers	\$0.203	\$0.000	\$0.020	19	Available
Paper: Vapor Recompression	\$0.008	\$0.014	\$0.014	2	Available
Air Compressor O\&M	\$0.016	\$0.000	\$0.017	5	Available
Wood: Soft Start Press	\$0.201	\$0.000	\$0.020	1	Available
Duct/Pipe Insulation	\$0.098	\$0.002	\$0.019	8	Available
Efficient Lighting Fixtures and Lamps	\$0.271	\$0.000	\$0.026	2	Available
Food: Refrig Storage O\&M	\$0.055	\$0.000	\$0.020	1	Available
Irrigation: Pump Systems Adjust	\$0.233	-\$0.064	\$0.021	1	Available

Measure Name	Incremental Cost (\$/kWh)	O\&M Cost (\$/Yr/kWh)	Levelized cost (\$/kWh)	Potential Savings (aMW)	Status
Electronics: CW to gas plant	\$0.177	\$0.000	\$0.023	0	Available
Electronics: New chiller/tower, 2 loops	\$0.191	\$0.000	\$0.025	12	Available
Electronics: Eliminate exhaust	\$0.196	\$0.000	\$0.026	5	Emerging
High Bay Lighting	\$0.174	-\$0.022	\$0.028	9	Available
Electronics: New air compressor	\$0.198	\$0.000	\$0.026	2	Available
Electronics: VSD tower pumps	\$0.217	\$0.000	\$0.028	0	Available
Electronics: Chiller optimize	\$0.202	\$0.011	\$0.037	5	Available
Efficient Lighting Design	\$0.541	\$0.000	\$0.053	2	Available
SR Motor	\$0.416	\$0.000	\$0.054	2	Emerging
Electronics: Change filter strategy	\$0.054	-\$0.002	\$0.054	7	Available
Generic O\&M	\$0.000	\$0.050	\$0.050	29	Available
Microwave Processing	\$0.488	\$0.000	\$0.064	4	Available
Electronics: Reduce CW pressure, reset CHW	\$0.535	\$0.000	\$0.070	0	Available
Irrigation: Nozzles	\$0.240	\$0.000	\$0.089	0	Available
Irrigation: Water Management	\$0.195	\$0.067	\$0.112	0	Available
Electronics: Chiller heat recovery	\$1.161	\$0.000	\$0.152	1	Available
Advanced Industrial HVAC	\$0.704	\$0.050	\$0.142	1	Available
Other: Wastewater Biomanagement	\$0.001	\$0.258	\$0.258	1	Available
Irrigation: Pump Systems Repair	\$1.835	-\$0.010	\$0.309	0	Available
Metal Fab: IR Heating	\$0.488	\$0.375	\$0.438	0	Available
Food: RF Heat	\$0.488	\$0.500	\$0.564	0	Emerging
Electronics: Vacuum Pump Upgrade	\$0.876	\$0.768	\$0.972	8	Available

Note: Shaded measures are not cost-effective by the screening criteria used for this analysis.

Cross Cutting Measures

Electric Supply System

Two broad energy efficiency opportunities exist at the internal plant electricity distribution level. Equipment not operated at its original electric supply specifications may experience efficiency and performance degradation. In particular, over- or undervoltage conditions and unbalanced phases can significantly reduce the efficiency (for example, by 5 percent) of motors while also leading to premature equipment failure. Surveys have indicated that these conditions are far more common that is normally recognized. While incrementally the electricity savings and financial costs of voltage and phase correction are both modest, the pervasive nature of the problems addressed means that these corrections in internal plant power quality can result in significant savings (Nadel et al. 2002). Because this opportunity is seldom recognized, we assumed a low achievable potential.

Transformers

Similarly, all electric power passes through one or more transformers on its way to service equipment, lighting, and other loads. Currently available materials and designs can considerably reduce both load and no-load losses. The new NEMA TP-1 standard is used as the reference definition for energy-efficient products. Tier-1 represents TP-1 dry-type transformers while Tier-2 reflects a switch to liquid immersed TP-1 products. More efficient transformers with attractive payback periods are estimated to save 40 to 50 percent of the energy lost by a "typical" transformer, which translates into a one to three percent reduction in electric bills for commercial and industrial customers. Typical paybacks range from 3 to 5 years (Nadel, et al. 1998). Unfortunately, the application of high-efficiency transformers offers no significant non-energy benefits, which limits adoption of this measure in commercial and industrial applications. For that reason, we assumed a low achievable potential.

Motor Management (Preventative Maintenance)

Since almost two-thirds of industrial electricity flows through motors, motor efficiency is a logical focus for efficiency opportunities. Motors are inherently efficient devices, and the implementation in 1997 of the minimum-efficiency standards in Energy Policy Act of 1992 (EPAct) eliminated the least-efficient products from the new-motor market. A new standard, NEMA Premium ${ }^{\text {TM }}$, defining energy efficiency criteria for more efficient motors, was introduced in 2001, and several advanced motor designs (including copper rotor, switch reluctance and written-pole motors) are becoming available. While the NEMA Premium motors are cost effective in many high-use industrial applications, the current potential for advanced motors is limited by their cost.

Many experts feel that focusing on changing the existing motor stock is more important, because motors can last for more than 30 years, so most motors now operating are preEPAct. Under normal circumstances, these motors will be repaired four times before being replaced. As a result, the focus needs to shift to affecting repair and replacement decisions. The foundation of this activity is the implementation of motor-management plans at industrial facilities, which is the major focus of the national Motor Decisions Matter ${ }^{\text {TM }}$ initiative, sponsored by "a consortium of motor industry manufacturers and
service centers, trade associations, electric utilities and government agencies" (see http://www.motorsmatter.org/). This initiative focuses on affecting planned motor repair and replacement decisions to encourage replacement of old motors with new EPAct or Premium motors, and to ensure that motors are repaired properly so that their efficiency is maintained. In addition, these improved management practices can lead to greater motor system reliability, resulting in very substantial improvements in productivity and reductions in process downtime (Nadel et al. 2002). Because motor replacement has been a previous program focus and because it is well understood by the industry, we assume a relatively high achievable potential.

Advanced Lubricants

A related motor O\&M measure is the use of advanced lubricants. While these engineering lubrication products have been on the market for more than twenty years, they have seen somewhat limited market penetration due to their significantly higher cost compared with conventional petroleum-based lubricants. These advanced lubricants, however, offer a number of distinct advantages. In addition to energy savings, these advantages include extended re-lubrication intervals. Life-cycle savings in labor and lubricant often more than offset the higher lubricant costs. In addition, since the leading cost of rotating equipment failure is bearing failure, the improved lubricant life has been demonstrated to improve equipment reliability (Nadel et al. 2002). Due to ease of implementation, we assume a high achievable potential.

Motor Systems O\&M Optimize

A number of techniques have been used for many years to assess the performance of motors. These techniques have ranged from monitoring the temperature of bearings, monitoring vibration, and measuring the voltage and currents for the different phases, to extensive test bench evaluations for performance and efficiency. These tests can detect changes in motors that indicate that it should be resized for a changing load, repaired or replaced before it fails. However, in the past these test procedures have been labor intensive and expensive, often requiring that the motor be removed from service. As a result, these tests are infrequently used, and the motor is left in service until failure (Nadel et al. 2000).
Over the past decade, a number of new diagnostic devices have been introduced that make in-service testing much easier. These tests make use of advanced sensors and on-board computing to measure temperature, voltage, current, harmonics and flux density. These data allow for various analyses such as current signature that can assess performance and efficiency and detect problems before they lead to an inservice motor failure, allowing them to be repaired during normal service cycles (Nadel et al 2000). While there may be some secondary energy savings, it is unclear that this family of technologies offers any direct energy savings. The primary benefit is reduced downtime (Boteler 2000). Conditioned-based monitoring of motors offers a number of significant non-energy benefits. By identifying motors prior to failure, additional damage resulting from the failure can be avoided, thus reducing repair costs and avoiding potential permanent damage to the motors (Nadel et al 2000). By preventing most inservice failures, system availability is significantly increased, thus increasing annual
throughput. This additional production capability can avoid the need to make capital investments to expand production (Boteler 2000).
The major barriers to the adoption of motor diagnostics are the first cost of the equipment and the need to implement management practices necessary to realize the benefits. Case studies and education of end-users on the benefits are the most important actions to encourage more rapid adoption of the technology. Several programs, such as those offered by Sacramento Municipal Utility District and the Northwest Energy Efficiency Alliance have already begun to development programs to build customer awareness of this technology (Nadel, et al., 2000).
While small differences in motor efficiency can result in significant energy savings, even greater savings can be realized through improvements in the efficiency of the systems that electric motors operate. A number of related system opportunities exist, including efficiency improvements in pump, fan and compressed air systems. While some opportunity for savings exists in the selection of more efficient pumps, fans and compressors, the greatest opportunity involves correctly sizing the equipment to meet current operating demands. This frequently involves removing dampers and pressurereducing valves, and instead reducing system pressure, slowing the fans, or trimming pump impellers. In many cases, the motor that runs the system can then be downsized, moving its operating point to a range of greater efficiency. In compressed air systems, there is a particularly large opportunity for the elimination of inappropriate applications of compressed air, which has been shown to waste up to 50 percent of the compressed air produced (Nadel et al. 2002). Because these are small measures to implement, we assume a high achievable potential.

ASD Motors

Adjustable speed drives (ASD) have revolutionized motor systems by allowing for affordable, reliable speed control using rugged conventional induction motors. ASDs work by varying the frequency of the electricity supplied to the motor, thus changing the motor's speed relative to its normal supply frequency, which in the U.S. is 60 Hz . This trick is accomplished by rectifying supplied alternating current to direct current and then synthesizing an alternating current at another frequency. The current method of synthesization is accomplished using an inverter, which is a solid-state device in modern ASDs. Ideally, the waveform of this synthesized current should look like a smooth sine wave. Unfortunately, the three major kinds of inverters in use: voltagesource (VSI), plus-width modulation (PWM) and current-source (CSI), with PWM being the most common used in integral horsepower drives. All create an approximation of a sine wave, though with some distortion. This distortion creates losses in the motor due to heating of the conductors and vibration, which have the effect of shortening the life of the motor. Special inverter duty motors are made which use a higher rating of insulation that extends motor life. The ideal solution would however be to design an inverter that produced a smoother wave pattern (Nadel et al. 2000).

A number of researchers are actively working on the development of different inverter topologies (Peng 2000, von Jouanne 2000). Most of these topologies fall into the category of soft-switching inverters, which significantly reduce the voltage spikes that characterize PWM inverters. Reductions in these spikes can dramatically increase the
life of the attached motor (Kueck 2000). One example of this technology is the snubber inverter developed at Oak Ridge National Laboratory. ASDs using this technology have an efficiency of about 98 percent compared to a PWM drive at 96 percent efficiency, for drives operating in the $10-20 \mathrm{kHz}$ range. These soft-switching inverters enable the design of faster switching devices, which can further improve the waveform of the output (Peng 2000). Several manufacturers, including Rockwell Automation and Allen Bradley, have begun to offer soft-switched inverters as premium products for use in sensitive applications such as medical devices. While these advanced inverters require more complex control strategies than do PWN inverters, they allow the substitution of semiconductor devices for electronic components such as filters. In addition, the improved inverter efficiency will make thermal management in the drives easier, reducing the mass of heat sink required and allowing for more compact packaging of the drive. These tradeoffs are likely to reduce the cost to about the same level as PWM drives. In the long run, soft-switching inverters could displace PWM inverters in most applications if the costs can be brought down (Peng 2000).
These drives face a number of barriers. The most significant appears to be the cost of these drives due in large part the manufacturers' investment in existing technology. Another issue is that of intellectual property. While manufacturers have expressed interest in licensing the ORNL technology, they were unable to come to terms with the Lab. They have subsequently developed their own soft-switching technology (Peng 2000).

Even greater system savings can be achieved through the optimization of the motordriven system. This opportunity results from a systematic evaluation of the process system to determine the optimal flow and pressure requirements serviced by the motor system. These evaluations can be time-consuming and often require the use of external engineering contractors, but the savings achieved through system optimization can be dramatic-often exceeding 50 percent of initial system electricity use. Once the actual operating requirements are identified, motor-driven equipment can be correctly sized, and speed control technologies including adjustable speed drives can be effectively applied as part of a system control package. In addition to significant energy savings, system optimization in most cases results in improvements in process control and product quality (Nadel et al. 2002). Because these are large, complex projects, we assume a low achievable potential.

Sensors and Controls

A key element to implementing system optimization is the application of sensors and controls. These allow processes to be monitored and systems adjusted to minimize energy consumption. Perhaps more importantly from the consumer's perspective, these systems allow better control of the process that can improve product quality and reduce scrap rates. Since most scrap and waste generating events occur towards the end of the production process when the imbedded energy content is greatest, the resulting waste reduction can reduce in significant net energy savings, as well as other productivity and cost benefits (Martin et al. 2000). This measure is poorly understood by the customer but has the benefit of being vendor-driven. Accordingly, we assume it is moderately achievable.

Industrial HVAC

Because industrial HVAC (heating, ventilation, and air conditioning) use more electricity in the ETO service territory than the nationwide average, improvements in these enduses represent relatively greater savings opportunities than in other locations. In part, the high consumption is due to industrial process areas (such as electronic clean rooms) require a level of environmental control that exceeds that normally delivered by commercial building systems. Clean room HVAC is discussed as a separate measure.

Industrial Lighting

High-bay lighting, required to provide overall ambient lighting throughout manufacturing and storage spaces, is typically provided by high-intensity discharge (HID) sources, including metal halide, high-pressure sodium and mercury vapor lamps. HID accounts for approximately 60 percent of industrial lighting energy consumption (Johnson 1997). Supplementary lighting is used to provide low-bay and task-specific lighting for inspection, equipment operation, and fine assembly activities. Fluorescent, compact fluorescent and incandescent light sources are commonly used for task lighting needs and together account for approximately 40 percent of industrial lighting energy.

One measure is the replacement of HID lighting with high-intensity fluorescent lighting in high-bay applications. New high-intensity fluorescent lighting systems incorporate highefficiency twin-tube or linear T5 fluorescent lamps, advanced electronic ballasts, and high-efficacy fixtures that maximize light output to the work plane. Each of the system components confers advantages over traditional HID fixtures. Advantages include: lower energy consumption; lower lumen depreciation over the lifetime of the lamp; better dimming options; faster start-up and re-strike (virtually "instant-on" capability); better color rendition; higher pupil lumens ratings (translating into improved worker productivity and performance); and less glare (given fixture design and the more diffuse nature of the fluorescent light source) (Rogers and Krepchin 2000).

The greatest opportunity for savings in industrial lighting, however, is through improved design practices. Industrial lighting design is more challenging due to the applicationspecific nature of the designs and more demanding performance requirements relative to commercial design. In addition to energy savings, substantial productivity and safety benefits have been documented to result from improved industrial lighting designs (Martin et al 2000). Unfortunately, designers with industrial lighting experience are in short supply.
We broke the lighting measure into High Bay and other configurations. The cost and savings for the lighting measures are based on the same measures in commercial buildings. Since High Bay lighting and industrial HVAC are unlikely to disrupt processes, we assume a high achievable potential. However, lighting and HVAC in clean rooms and other critical environments is considered disruptive by the facility staff and we assume a low achievable potential.

Air Compressor O\&M

Achieving peak compressed air system performance requires addressing the performance of individual components, analyzing the supply and demand sides of the system, and assessing the interaction between the components and the system. This
"systems approach" moves the focus away from components to total system performance. System opportunities have been shown to be the area of greatest efficiency opportunity. At the system level, savings opportunities can be grouped into three general categories: leaks, inappropriate uses of CA, and system pressure level. The goal of a management plan is to minimize all three.

The best strategy to avoid further problems is to set up a prevention program that monitors the system for new leaks and fixes them as they develop (DOE 1998). Reductions in wasted air due to inadequate maintenance, leaks, and inappropriate uses can save 20-30 percent of CA energy. A system's pressure level should be set at the lowest pressure that meets all requirements of the facility. Lowering the compressed air header pressure by 10 psi reduces the air leak losses by approximately 5 percent and improves centrifugal compressor capacity by 2-5 percent. One element of this may be the application of controls. Reducing system pressure also decreases stress on system components, lessening the likelihood of future leaks (DOE 1998). It is necessary to implement an ongoing maintenance program by plant staff, which requires both awareness and technical training (DOE 1998). Most of the barriers to improved compressors result from the lack of awareness of the opportunity. The staff reductions that have become common in United States industry and a hesitation to pay for outside consultants compound this problem. The Compressed Air Challenge (CAC) has developed a CA management training program that is available for plant staff and the Compressed Air and Gas Institute (CAGI) has developed CA training.

Air Compressor Sensors

Most compressed air systems typically consist of several compressors delivering air to a common header. Controls match the air supply from the compressors with system demand, regulating the pressure between two levels called the control range. The objective is to shut off or delay starting a compressor until it is needed. To this end, the controls try to operate all units at full-load, except the one used for trimming (adjusting compressed air supply based on the fluctuations in compressed air demand). In the past, control technologies were slow and imprecise. This resulted in wide control ranges and higher compressor set points than needed to maintain the system pressure above a minimum level. Most systems were controlled using an approach known as cascading set points. The set points for each individual compressor would either add or subtract the compressor capacity to follow the system load. This approach led to wide swings in system pressure (DOE 1998).
Modern microprocessor-based technologies allow for much tighter control ranges as well as lower system pressure-control points. The largest benefits of these controls can be obtained in multi-compressor systems, which are much more complex and sophisticated. Controls for single compressors can be relatively simple. System controls coordinate the operation of multiple individual compressors when meeting the system requirements. In addition, to energy savings, the application of controls can eliminate the need for some existing compressors, allowing extra compressors to be sold or kept for backup. Alternatively, capacity can be expanded without the purchase of additional compressors. The reduced operating pressure will reduce system maintenance requirements. Also, a more constant pressure level can enhance production quality control by providing more precise operation of pneumatic equipment (DOE 1998).

In spite of the attractive return, there are two principal barriers to the use of this technology: higher first cost, and lack of appreciation of the importance of compressed air system efficiency. Educational efforts, such as the Compressed Air Challenge (CAC 2000), are key to the expanded deployment of these technologies. Due to relative ease of installation and suitability to vendors, we assume a high technical potential.

Duct/Pipe Insulation

ACEEE identified repair and replacement of insulation as a conservation measure. Savings apply to processes that transfer heat or "cool". Because these are relatively easy to implement, we assume they are highly achievable.

Fan System Improvements

Just as motor systems benefit from optimal design and sizing, so do fan systems. Air distribution systems are often oversized, leaky and poorly designed. ACEEE has identified a cross-cutting opportunity for all segments. Since facility operators are reluctant to change process equipment we assume it is only moderately achievable. ACEEE has identified efficient ventilation fans as a measure for confined animal production. This is a small segment in Oregon but there is some production of poultry and livestock where it might apply. Since retrofit would be relatively easy, we consider this to be highly achievable.

Generic O\&M

ACEEE identified an overall opportunity for O\&M that applies to all motors and processes. The measure is low-cost to implement but is short-lived. Due to ease of implementation, we assume it is highly achievable.

Microwave Processing

ACEEE identified a wide range of applications for microwave heating that apply across most of the segments for heating operations. Since facility operators are reluctant to change process equipment we assume it is low achievability.

Pump Efficiency Improvement

Pumps consume approximately 20 percent of industrial electricity. The selection of a pump for a given application requires the consideration of the flow requirements, required delivered pressure, and the system effects. While most engineers are trained to select pumps to meet requirements as specified in a design, many motor selection decisions are based upon estimates of operating conditions that may not be close to the true operating conditions. Once a system is placed in operation, the conditions may change further, moving the pump into a range of operation that is not only inefficient, but potentially even destructive. These changes result from changes in application, such as increases, or more frequently, decreases in the flow requirements. System resistance can increase as a result of fouling and/or scaling and the pump impeller can erode, changing its effective system curve. Many of these changes are gradual and so may not be evident (Nadel et al 2000). System improvements include installing a parallel pump in which the second pump is used as necessary. This may prevent the need to oversize the pump. For applications in which load varies, energy savings may be achieved through the replacement of throttle valves with variable speed drives (NEEA, 2000).

The savings from right-sizing a pump can be dramatic. Because large pumps frequently require the largest motors at a facility, downsizing the pump can frequently also achieve significant electricity demand savings, thus reducing demand charges paid by the facility. In addition to the electricity savings, right-sizing pumps can lead to more stable system operation. Pulsation and flow variations that often result from pumps operated outside of their system curve can disrupt processes. Correction of these problems can improve product quality, and in some cases increase the capacity of systems that depend upon the pump. Sometimes the downsizing of a pump can free up space that can offer additional options for process improvements. Frequently, these benefits will be the driving motivation for project implementation (Nadel et al. 2000, Hovstadius 2000).
Many engineers understand the approach but are not experienced in conducting these analyses. Software tools, such as the pump system assessment tool developed by DOE and the Hydraulic Institute (DOE-OIT 2000b), provide a means of addressing this issue. Engineers need to be made aware of this and similar tools, and receive training in its application. The consumers must be made aware of the opportunity and encouraged to seek out these services. Because engineers understand the measure, we assume a moderately achievable potential.

Switched Reluctance (SR) Motor

Motors consume about 60 percent of industrial electricity, and a number of types of motors are available to meet specific application needs in industry. Most applications make use of a constant-speed motor, while some applications require some degree of speed control. The most common motor type is the NEMA standard poly-phase induction motor. For operations that require speed control, these motors are coupled with an adjustable speed drive (ASD). These motor/drive combinations are now reliable and cost-effective for many applications.

The switched reluctance motor is an old concept for designing a variable speed motor that has advanced recently with progress in solid-state electronics and software. The switched reluctance (SR) drive itself is a compact, brushless, electronically-commutated AC motor with high efficiency and torque, and simple construction. Available in virtually any size, the SR motor offers the advantage of variable speed capability (very low to very high) and precision control. As for its design, the motor comes as a package integrated with a controller. This setup enables some models to operate at speeds as low as $50-\mathrm{rpm}$ and as high as 100,000-rpm (Howe et al. 1999). The rugged rotor of a SR motor is much simpler than that of other motors, since it has no field coils or embedded magnetic materials. However, the coils and magnets attached to the rotor can be subjected to very high stresses (Albers 1998). Both torque and efficiency are, in general, higher in SR drives (motor and controls) than in induction motors with ASDs. The current generation of SR drives has relatively flat efficiency curves with maximum efficiencies around 93 percent in integral-hp models and the low- to mid-80 percent range in fractional-hp units (Albers 1998).

Because of its simplicity, the SR motor in mass production should theoretically cost no more than, and perhaps less than, mass-produced induction motor/ASD packages of comparable size. But at this time, automating the manufacturing of integral horsepower and larger fractional horsepower SR motors is proving difficult and it is uncertain
whether the hoped-for price reductions will materialize (Wallace 1998, Albers 1998, Boteler 1999). Currently, an SR motor and its associated controls, starter, and enclosure cost 50 percent more than comparably sized and equipped induction motors with variable speed controls (Wallace 1998, Albers 1998, Means 1997). This amounts to about a $\$ 2,000$ premium for a $20-h p$ installation. For this analysis we assume that the price premium will be cut in half, to 25 percent (or $\$ 1,000$ for a 20 -hp motor), once SR motors are more widely adopted.

Because of their precise and wide range of speed control and their ruggedness of design, SR motors are attractive in a broad range of commercial and industrial applications. Most SR research and application in the U.S. is in fractional-hp printer, copier, precision motion tasks and appliances. SR motors are now also being used in residential and commercial washing machines. Industrial applications include manufacturing equipment, process fans and pumps, and machine (servo) control (Wallace 1998). In addition, SR motors with control systems are competing to supplant induction motors with variable speed drives in a number of applications. For example, SR motors are most attractive in new and OEM (original equipment manufacturer) installations where the full benefits of their speed control can be realized. In the future, there may be some retrofit applications for both general-purpose applications and as replacements for DC drives in process equipment, but the availability and understanding of how to use these motors has not yet progressed to the point that this is feasible. SR motors could potentially replace 20 to 50 percent of the existing general-purpose motors in service today (Albers 1998, Motor Challenge Clearinghouse 1998). We assume the middle of this range (35 percent) as the level of feasible applications once the technology matures.
The primary technical challenge facing SR motor technology is the fact that while the motor is simple conceptually, it is complex to engineer and manufacture (Wallace 1998). Unless the cost premium can be reduced, it will limit SR motors to applications that require the unique features of this motor. Noise has been an issue in some designs. The development and commercialization effort is primarily through manufacturers, OEMs, and EPRI-funded R\&D. The motor's recent introduction in the Maytag horizontalaxis clothes washer should help speed the SR motor's market development (Nadel et al. 2000). Since introduction of the motor depends on the manufacturer at the national level, we assume a low achievable potential in terms of being a local measure.

Specific Industrial Segments

Metal Segment

Primary metal production occurs in a few facilities within the Trust territory. There is one steel mill operating on recycled scrap and one exotic metal plant. Without specific audits of these individual facilities, we estimate the potential based on national level assumptions provided by ACEEE. The suggested potential should be considered as likely but not verified.

Metal: Net Casting

Currently, the casting and rolling process is a multi-step process. The liquid steel is first cast continuously into blooms, billets, or slabs. Liquid steel flows out of the ladle into the
tundish (or holding tank), and then is fed into a water-cooled copper mold. Solidification begins in the mold, and continues through the caster. The strand is straightened, torchcut, then discharged for intermediate storage (Kozak and Dzierzawski 2000). Most steel is reheated in reheating furnaces, and rolled into final shape in hot and cold rolling mills or finishing mills. Near net shape casting is a new technology that integrates the casting and hot rolling of steel into one process step, thereby reducing the need to reheat the steel before rolling it. As applied to flat products, instead of casting slabs in a thickness of 120-300 millimeters, strip is cast directly to a final thickness between 1 and 10 mm . (De Beer et al. 1998a, Opalka 1999, Worrell, Bode, and de Beer 1997). The steel is essentially cast and formed into its final shape without the reheating step. An intermediate technology, thin-slab casting casts slabs 30-60 mm thick and then reheats them (the slabs enter the furnace at higher temperatures than current technology thereby saving energy). This technology is already commercially applied in the U.S. and other countries. The energy consumption of a thin strip caster is significantly less than the current process of continuous casting. Given the narrow application (only one plant in the territory), we assume a low achievable potential.

Metal: New Arc Furnace

While modern EAFs are generally more energy efficient many technologies exist to improve energy efficiency in existing furnaces, such as process control, efficient transformers, oxy-fuel injection, bottom stirring, post-combustion, eccentric bottomtapping and scrap preheating (Worrell et al. 1999). Several new EAF-designs are under development, which combine energy saving features like increased fuel and oxygen injection with scrap preheating (Greissel 2000, IISI 2000b). The aim is to produce a semi-continuous process with enhanced productivity through reduced resource use (e.g. refractories, electrodes) and reduced tap-to-tap times. At the same time increased product quality also demands increased feedstock flexibility (e.g. scrap, DRI or pig iron). Different developers are involved in new EAF-process design, the most important being the Twin Electrode DC (IHI, Japan), Comelt (Voest Alpine, Austria) and Contiarc and Conarc (SMS Demag, Germany). The production costs are expected to be \$9-13 lower per ton steel produced (Reichelt and Hofman 1996; Mannesmann 1998), or up to a 20 percent reduction. Given the narrow application (only one plant in the territory), we assume a low achievable potential.

Metal Fabrication

This segment includes rolling and casting. In our territory, there is some steel rolling and exotic metal casting. Within this segment we also include manufacture of transportation equipment. In general, the other measures specific to this segment are the cross-cutting general measures.

Metal Fabrication: UV Curing

ACEEE has identified an opportunity for UV curing as an alternative to painting steps that require heat-treating. In general, the other measures specific to this segment are the cross-cutting general measures. Given the novelty of the measure, we assume low achievable potential.

Infra-Red Heating

ACEEE identified an opportunity for infra-red heating that applies to metal heating operations. This measure is directed at electric savings although savings of other fuels are likely involved as well. This measure is expensive and not cost effective. We assumed it to be only moderately achievable.

Food Segment

Refrigeration in the food segment is a large energy consumer and is mainly used for freezing of vegetables. Many options exist to improve the performance of industrial refrigeration systems. System optimization and control strategies combined show a large potential for energy efficiency improvement of up to 30 percent (Brownell 1998). Opportunities include system design, component design (e.g. adjustable speed drives), as well as improved operation and maintenance practices. We focus on new system designs. Adjustable speed drives and process control systems have been discussed elsewhere. New system designs include the use of adsorption heat pumps, gas engine driven adsorption cooling, new working fluids (e.g. ammonia, CO2) and alternative approaches (e.g. thermal storage). Due to the wide variety, we focus on selected technology developments in the areas of gas engines, thermal storage and new working fluids. Because these are new technologies, we assume a low achievable potential.

Food: Refrigerated Storage O\&M

Although the processing of frozen food tends to be seasonal, the product is stored throughout the year in refrigerated warehouses. This application is a large consumer of energy within the food segment. Simple O\&M practices have been identified as providing savings. Such measures include tune-up and cleaning of compressor systems and control sensors (DEER, 2005). Due to ease of implementation, we assume a high achievable potential.

Food: RF Heat

ACEEE has identified the opportunity for radio frequency (microwave) processing of food products. Without specific audits of these individual facilities, we estimate the potential based on national level assumptions provided by ACEEE. The suggested potential should be considered as likely but not verified. Given that the seasonal nature of the business will discourage investment, we assume low achievable potential.
Agriculture Segment
Agriculture is important to the rural economy but a difficult segment for the utility to serve. That is because these loads tend to be highly seasonal. By far the largest agricultural use is for irrigation pumping. However, the pumping season lasts for only a few months, resulting in poor utilization of the capital investment. Nursery stock has become a major part of the local economy and consumes electricity for cooling. Animal production of poultry and containment livestock is a small segment with year-round requirement for ventilation and lighting.

Irrigation: Ditch to Pipe Conversion

PacifiCorp's IRP previously identified a narrow niche for this measure. A small amount of irrigation involves the pumping of water from unlined ditches. If the ditches are
replaced with a piped system, there is sufficient gravity head that pumping is no longer needed. More importantly, the conversion saves water that would otherwise have leaked from the ditch. The saved water is a valuable commodity that can be used by the farmer or resold for wildlife or other users. While the applicability is small, the nonenergy benefits can be large. We assume a high achievable where potential exists.

Irrigation: Pump Systems

The industry consists of multiple pump users including both farmers and water suppliers, such as irrigation districts. Irrigation is a difficult industry target for energy efficiency initiatives. However, there is inefficiency due to the fragmented nature. For instance, 80% of pumps in this industry are older than 15 years, resulting in poor efficiency. Pump efficiency tests performed by utilities were discontinued in the early 1990s due to budget constraints. As a result, awareness of energy efficiency and operating cost savings as well as knowledge of new technologies has decreased. Efficiency initiatives could be targeted at creating awareness of such practices as properly sizing pumps and replacing older equipment (NEEA). Pump efficiency testing and impeller improvements have long been part of program in the Northwest. Net savings from pump testing and impeller improvements are unclear, difficult to verify and not long-lived. We considered these savings to be moderately achievable.

Irrigation: Water Management

Scientific scheduling of irrigation utilizes direct measurement of soil moisture combined with local meteorological forecasts of crop transpiration. The result is a way of determining the proper amount of water to apply at just the right time. Net savings are unclear, difficult to verify and not long-lived. We considered them to be moderately achievable.

Paper Segment

Paper manufacture is one of the largest industrial consumers. Trust territory includes only a few firms but they have been actively participating in the efficiency program. For the most part, these firms produce different products and do not compete with each other. That also means that conservation measures appropriate to one plant are probably not transferable to other plants.

There is one exception in two plants that come close to similar operations. Both produce newsprint using primarily recycled paper fiber. However, the first plant produces coated paper such as is used in the advertising supplements. The second produces unfinished newsprint. The first plant has utilized Trust incentives for a major retrofit of their fiber refining process that provided large energy savings. It is possible that a similar retrofit could benefit the second plant.

ACEEE has referred to several technical innovations in paper forming -- high consistency forming and heat recovery enclosing hoods. High consistency forming is useful in the production of boxboard, such as is used for milk cartons. However, Oregon facilities are not producing this product.

There are several systems for heat recovery hoods that can improve energy efficiency. One new system involves the installation of enclosed hoods and sensors on the drying section of the paper machine. Paper machines with enclosed hoods can require up to
one-half the amount of air per ton of water evaporated than paper machines with canopy hoods. Thermal energy demands are reduced since a smaller volume of air is heated. Electricity requirements in the exhaust fan are also reduced optimizing drying efficiency (Elaahi and Lowitt 1988, CADDET 1994d). Another promising system further upgrades this waste heat by means of heat pumps and mechanical vapor recompression (MVR) (Van Deventer 1997, Abrahamsson et al. 1997). A different technology approach, which involves the heating provided to the cylinders, is to use stationary siphons to better extract the exhausted steam from the cylinders (Morris 1998). The heat can also be recuperated from the ventilation air of the drying section and used for heating of the facilities (de Beer et al. 1994).
However, most of the savings would be for the fuel used to provide thermal heat; Furthermore, the industry has previously upgraded hoods. Thus, the electricity savings from these hoods is not clear without a more careful and detailed study of the specific plants. We did not include these hoods as a potential measure.

Other Measures

Boiler auxiliaries such as powered fans for induced draft and pollution control have been previously identified as an opportunity for improvement (PP\&L). This is a relatively small measure but typical of opportunities for continuous improvement of O\&M practices. In general, the other measures specific to this segment are the cross-cutting general measures. These plants rely on large motors for refining, pumping, pressing and other processes. The facilities have staff dedicated to maintaining plant operations and are usually well informed about energy savings opportunities. Accordingly, we assume that measures in this segment are likely to be achievable.
Conveyor systems are broadly defined as a piece of equipment moving material from one place to another. There are multiple types including blowers and pumps. Together they account for one of the largest energy uses within these facilities. The industry is fragmented with many smaller vendors. As a result, this is a difficult market to pursue energy efficiency initiatives. However, there are areas of improvement for the use of conveyor systems. These include: regular maintenance of the conveyor, installation of a VSD where loads vary significantly and replacement of inefficient pneumatic conveyors.
The Wood Products segment is large and diverse. It includes facilities that mill and cure lumber or veneer. It also includes facilities that process these products into chipboard, plywood and manufactured lumber. This segment is unique in that current Trust programs have already captured part (3\%) of the opportunity for process improvements. We adjusted applicability for this fact.

Electronics Segment

This segment is one of the largest, accounting for 40\% of PGE's industrial sales. This industry segment is comprised of a small number of companies, whose facilities are known to exhibit a wide variation in energy use, depending on their design, vintage and management philosophy. Most of these firms are self- directors. One smaller firm is cooperating eagerly with the PE program and another firm, although a self-director, has also been willing to accept Trust incentives for efficiency improvements.

There is an understandable reluctance to make changes in their process equipment (also known as "tools") because the processes are finely tuned to produce specific, repeatable results within extremely tight tolerances, and are sensitive to contamination. These process tool sets are persistent. For example, a manufacturer is still making 386 and 486 computer chips. Although these chips may be 20 years obsolete for desktop computers, they are still in demand for "smart appliances" or other applications. So the original process and facility is still in operation.

There may be an opening to address new measures to both tools and facility loads during the design of new facilities. However, existing facilities may operate for a long time without permitting any major overhaul. Thus, while there is large technical potential, the reluctance to participate is shown by a low achievable potential for these sorts of measures.

Process Shares

The industry in Oregon differs from national averages. There is no longer any silicon melt operation in Oregon. Instead, the plants focus on wafer and chip production. While the MWh data include a small amount of instrument assembly and compressed gas production, chip plants dominate and require clean rooms with high HVAC consumption. Solar photovoltaic manufacturer is included with chip plants. Table 12 shows process shares for this segment. Note that the shares are split into those at the process line and those treated as part of the central facility. That is because the process lines may be more difficult for the program to access.

Table 12: Electronics Segment Process Shares

Electricity Process Shares	Total	Facility	Process
Pumps	27%	2%	25%
Fans	10%	10%	
Air Compressor	5%	5%	
Material Handling	3%	3%	
Material Processing	10%	5%	5%
Refrigeration	5%	5%	
Pollution Control	3%	3%	
Drying	0%		5%
Heating	25%	25%	
HVAC	3%	2%	1%
Lighting	4%		4%
Other Process	100%	60%	40%
All Electric	83%		
All Motors			

Specific Measures

We applied a higher achievable potential to measures that could be implemented without disruption of the process line. There are two potential openings here. To the extent that central facility operations (e.g. chiller plant) could be changed without disrupting a process line, those operations are moderately achievable. We also identified a few replacement opportunities for smaller equipment that would be achievable without disruption of processes.

Even so, it must be recognized that replacement of some parts of the process support equipment (for example, vacuum pumps) requires "re-qualifying" the process line. That is, it takes staff days to properly tune and calibrate all the mass flow, heating and cooling operations in a process tool - every time something changes they have to go through the calibration again. Of course, the same problem occurs if any equipment breaks or fails so there are continual replacement openings, albeit they cannot be scheduled.

Highly Achievable

We focused on etch tools and wet benches processes that etch and clean the wafers. This equipment runs continuously, with little electric load variation during times it is processing wafers. The equipment is so difficult to properly set up and calibrate that engineers are reluctant to let it go idle. We estimate there are about 5000 of these "benches" in Oregon. Components include 4 kW of vacuum pumps, the treatment equipment and trim chillers. The trim chiller consumes about 4.5 kW of electricity. Its role is to adjust the process cooling water temperature to that required by the process tool. The fabricating process produces dangerously reactive gases that are collected in a powered exhaust system.

Upgrade vacuum pump

The vacuum pumps are rebuilt periodically but slow to be replaced. Current units are 50% more efficient than the old units still in place. Replacement is not welcome since the process line must be "re-qualified" with every change. An efficiency incentive would encourage new replacement rather than re-build of older units. However, given that the units will eventually be replaced anyway, accelerating the upgrade is not cost effective.

Alternative Chiller

The trim chillers are large and inefficient and lack effective feedback controls. They can be replaced by a smaller, thermoelectric system that incorporates more effective feedback, does a better job of controlling temperature and increase throughput. Electricity savings are 90\%. The thermoelectric system also saves about \$5000 annually on decreased maintenance. There is another significant benefit in that the smaller unit has a much smaller footprint. We did not attempt to quantify the value of clean room floor space savings but it is considerable. Nor did we quantify the value of increased process throughput. The thermoelectric system permits more usable wafers per batch; better feedback controls decrease the risk of process flaws. Estimates derived from industry data sources.

Alternative Exhaust Injector

Etch tools use a point of use (POU) exhaust system to pre-treat the etch effluent before it enters the house exhaust system. The POU exhaust system consumes process gases and cleaned makeup air. It requires resistance heating and needs periodic maintenance. The alternative system uses a jet of nitrogen gas to flush (or "inject") the exhaust from the etch tool into the house exhaust header. It saves 100\% of the resistance heat as well as about $\$ 6000$ annually in process gases. We estimate there about 400 applications in Oregon. Estimates derived from industry data sources.

Reduce Pressure of Process Gases (Dry Air and Nitrogen)

This is a no-cost O\&M measure. Sematech survey indicated that most tools could operate at 80 psi or less but that 100 psi is routinely provided. Reducing pressure by 20 psi is estimated to save 10% in compressor energy as well as reduce consumption of process gases.

Moderately Achievable

We consider the next set of measures to be moderately achievable because central facility operations (e.g. chiller plant) could be changed without disrupting a process line. The barriers here are the usual ones of reluctance to invest capital in major changes. In many cases, the cost and savings of the measures came from a Supersymmetry report on a typical facility. Many of these measures are specific opportunities that correct operations and design problems at Supersymmetry's case example. While Oregon facilities will not be identical, we assume that the measures identified by Supersymmetry are proxies for similar opportunities that exist in Oregon plants.

Electronics: Chiller optimize

Based on audit of a typical plant, Supersymmetry suggested a variety of simple changes to improve the overall system performance. These included elimination of unnecessary chillers, reset of CW temperature, combining pipe runs and controls for parallel operation of multiple chillers.

Electronics: Change filter strategy

New immerging filter technologies (HEPA/ULPA filters) offer the opportunity to significantly reduce filter energy use by reducing filter pressure drops (Tschudi 2000). Supersymmetry noted for their case example that less expensive filters could be used in part of the operations in order to offset the cost of more expensive filters in other operations.

Electronics: Clean Room HVAC

Several HVAC technologies that have emerged recently which when combined, can achieve significant energy savings. Currently a large amount of energy is expended in heating, cooling, and filtering air that is then exhausted. Air re-circulation is another large HVAC energy user. Recirculation air velocity can be turned down (from, say, 90 fpm to 80) without affecting cleanliness levels. Sensors and the use of laser-based particle counters are both technologies that can be applied to more efficiently moderate airflow. Additionally, more efficient airflow equipment that is near commercial (e.g. low face velocity fans, efficient duct systems, more efficient filter units) could be combined
to further reduce recirculation fan energy requirements. Existing practices can also be applied in conjunction with these technologies to further enhance energy savings, such as "right-sizing" of exhaust air flow for each specific tool, improved design guidance for ducting and other systems, and limiting the floor area that requires clean air flow to a smaller "micro" environment. This measure has been screened to avoid double counting with other HVAC measures. Combined with the other HVAC measures, clean room technologies have the potential to reduce electricity consumption of the average cleanroom facility by 25-30 percent, or an average of $145 \mathrm{kWh} / \mathrm{sq}$. ft. Additionally, they are accompanied by several additional non-energy benefits including improved productivity and a reduction in emissions without sacrificing any product quality.

Electronics: Eliminate exhaust

Minimizing exhaust flow reduces the amount of make up air that needs to be reconditioned. Ultra low fume hoods, a technology developed at Lawrence Berkeley National Laboratory, require 25 percent of normal exhaust flow. This technology is now being piloted in field trials (Tschudi 2000). Supersymmetry's audit noted that full exhaust is required for only 50% of operating hours. Use of controllers and VSD fans would reduce unneeded exhaust with significant savings on makeup air. Phil Naughton, SEMATECH, noted that various process tools could be reduced by about 30% of the exhaust requirement.

Electronics: Reduce pressure, reset CHW

In their audit, Supersymmetry notes that the existing tower experiences poor flow. The plant staff expected to increase pumping power to compensate. Instead, Supersymmetry suggested a number of ways to remove flow obstructions and lower pumping power. Also, they suggested reset of CW temperature to lower flow rate.

Electronics: VSD Tower Pumps

In their audit, Supersymmetry notes that tower pumps are staged off and on which results in unequal pressure drops to the different pumps. Use of VSD drives would allow for even distribution of flows and saved pump energy.

Electronics: Wastewater Preheat Of OSA

Conditioning of makeup air is a major HVAC energy requirement whether for heating in the winter or cooling in the summer. Supersymmetry noted that preconditioning with the plant wastewater would provide savings in both seasons.

Low Achievable

These measures are considered unlikely to be achievable either because they require a major re-investment in plant capital or a major re-design in handling processes. Facility operators may be reluctant for both reasons.

Electronics: CW to gas plant

In their audit, Supersymmetry noted the opportunity to provide more efficient cooling to the compressors that provide cleaned air and process gases to the process line.

Electronics: Chiller heat recovery

In their audit, Supersymmetry noted opportunities to recover waste heat from the chillers. The waste heat can be used for pre-conditioning makeup air or other low temperature applications. The savings quantified here are primarily due to improving chiller performance by better heat removal.

Electronics: New air compressor

In their audit, Supersymmetry noted that two large air compressors were scheduled for replacement with an existing used compressor. Replacement with new, efficient compressors would provide savings. Cost would be the incremental cost over the planned replacement.

Electronics: New chiller/tower, 2 loops

In their audit, Supersymmetry noted the opportunity to replace the chiller system with a better designed new one. The new system would be designed to maximize free cooling, a VSD chiller and would include splitting the CW system into two pipe loops - one cold and one moderate loop. The overall system performance would be improved by utilizing two loop temperatures. While savings are considerable, this would be a major capital investment.

Table 13: Summary of Measures -- Electronics Segment

Opportunity	Measure Name	Cost	Savings, kWh	O\&M/yr	Life	LC in 2008\$
Highly	Thermoelectric Chiller	$\$ 20,000$	40,571	$-\$ 5000$	10	$(\$ 0.071)$
Achievable	Exhaust Injector	$\$ 20,000$	45,815	$-\$ 6170$	10	$(\$ 0.073)$
	Reduce Gas Pressure	$\$ 0$	3,260	$-\$ 46$	10	$(\$ 0.001)$
	Vacuum pump, incremental over rebuild	$\$ 51,000$	63,072		5	$\$ 0.972$
Moderately	Chiller optimize	$\$ 50,000$	$1,736,000$		10	$\$ 0.037$
Achievable	Change filter strategy	$\$ 9,200$	$1,463,000$		1	$\$ 0.054$
	Clean Room HVAC	$\$ 20 /$ sqft	$144 /$ sqft		20	$\$ 0.011$
	Eliminate exhaust	$\$ 80,000$	442,000		10	$\$ 0.026$
	Reduce pressure, reset	$\$ 40,000$	81,000		10	$\$ 0.070$
	VSD tower pumps	$\$ 50,000$	187,000		10	$\$ 0.028$
	Wastewater preheat of OSA	$\$ 325,000$	776,000	$-\$ 180,000$	10	$(\$ 0.173)$
Low	CW to gas plant	$\$ 40,000$	245,000		10	$\$ 0.023$
	Achievable	Chiller heat recovery	$\$ 30,000$	28,000		10

Industrial Natural Gas Conservation Measures

As discussed, the gas customers included in this study are only those in the Industrial Firm tariff, corresponding to perhaps 10% of commercial and industrial customers. Those on the firm rate are generally small facilities or adjunct meters to larger facilities. As such, the end uses are more similar to other small commercial customers than to what would be expected for large industrial facilities. The primary application of gas is for boilers -either for process steam or for space heating. As a result, the opportuniy is dominated by various measures to improve boiler efficiency.
The following measures are included:
Chiller heat recovery (Electronics Segment)
Utilize heat recovery where option exists
Combo Cond Boiler (Replace and Retrofit)
Replace with boiler using condensing or pulse technology to achieve steady-state combustion efficiencies of 89% to 94% (this analysis used 90% efficiency for savings calculations).
Combo Hieff Boiler (Replace and Retrofit)
Replace existing boiler with unit meeting OR Code requirements of 85% combustion efficiency.
Condensing Furnace (Replace)
Condensing / pulse package or residential-type furnace with a minimum AFUE of 92\%.
Condensing Unit Heater from Nat draft or power draft (Replace)
Install condensing power draft units (90\% seasonal efficiency) in place of natural draft (64\% seasonal efficiency)
Heat Recovery to HW
Utilize heat recovery where option exists
DHW Condensing Boiler (Replace and Retrofit)
Replace with boiler using condensing or pulse technology to achieve steady-state combustion efficiencies of 89% to 94% (this analysis used 90% efficiency for savings calculations).
DHW Condensing Tank (Replace and Retrofit)
Costs and savings are incremental over a Code-rated tank (combustion efficiency of 80%) for a condensing tank with a minimum combustion efficiency of 94% and an R-16 tank wrap.

DHW Hieff Boiler (Replace and Retrofit)
Replace existing boiler with unit meeting OR Code requirements of 85\% combustion efficiency.
DHW Pipe Insulation

Add 1" insulation to pipes used for steam or hydronic distribution; particularly effective when pipes run through unheated spaces.

DHW Standard Boiler (Retrofit)
Replace existing boiler with unit meeting OR Code requirements of 85\% combustion efficiency.

DHW Wrap

Insulate the surface of the storage water heater or an unfired storage tank to R-5 to reduce standby losses.

Ducts
Duct retrofit of both insulation and air sealing
Hi Eff Unit Heater (Replace and Retrofit)
Install power draft units (80\% seas. Eff) in place of natural draft (64\% seasonal efficiency)

HiEff Clothes Washer (Replace and Retrofit)
Install high performance commercial clothes washers - residential sized units

Hot Water Temperature Reset

Controller automatically resets the delivery temperature in a hot water radiant system based on outside air temperature. The reset reduces the on-time of the heating equipment and the occurrence of simultaneous heating and cooling through instantaneous adjustments.
HW Boiler Tune Tune up in accordance with Minneapolis Energy Office protocol.
Can include derating the burner, adjusting the secondary air, adding flue restrictors, cleaning the fire-side of the heat exchanger, cleaning the water side, or installing turbulators. Other modifications may include uprating the burner to reduce oxygen or derating the burner to reduce stack temperature. Note: In gas systems, excess air and stack temperatures are often within reasonable ranges, so the technical potential for this measure is limited. Combining this measure with the vent damper and power burner measures increases both applicability and cost effectiveness, and was assumed for this analysis.

Power burner

Replace standard burner with a power burner to optimize combustion and reduce standby losses in the stack. Note: Costs and savings assume that this measure will be performed in conjunction with a boiler tune up when appropriate.

Process Boiler Controls
Process Boiler Insulation
Process Boiler Load Control
Process Boiler Maintenance

Process Boiler Steam Trap Maintenance
Process Boiler Water Treatment
Roof Insulation - Blanket R0-19
Application: Buildings with open truss unfinished interior
Roof Insulation - Blanket R0-30
Application: Buildings with open truss unfinished interior
Roof Insulation - Blanket R11-30
Application: Buildings with open truss unfinished interior
Roof Insulation - Blanket R11-41
Application: Buildings with open truss unfinished interior
Roof Insulation - Rigid R11-22 (Replace)
2" rigid added to an existing foam roof insulation at re-roof, includes some surface prep.
Application: Old buildings with flat roofs, no attics, and some insulation
Roof Insulation - Rigid R11-33 (Replace)
Roof Insulation - Rigid R11-33: add 4' of insulation at reroof. Application: Old buildings with flat roofs, no attics, and some insulation

Solar Hot Water

Install solar water heaters on large use facility such as multifamily or lodging

SPC Condensing Boiler (Replace)

Install condensing boiler. Assumed seasonal combustion efficiency of 88\% over base of 75\%

SPC Condensing Boiler (Retrofit)

Install condensing boiler. Assumed seasonal combustion efficiency of 88\% over base of 69.5\%

SPC High Efficiency Boiler (Replace)
Install near condensing boiler. Assumed seasonal combustion efficiency of 82\% over base of 75\%

SPC High Efficiency Boiler (Retrofit)

Install near condensing boiler. Assumed seasonal combustion efficiency of 82\% over base of 69.5\%

Steam Balance (Wood Prod)

Single-pipe steam systems are notorious for uneven heating, which wastes energy because the thermostat must be set to heat the coldest spaces and overheating other spaces. Steam balances corrects these problems by: 1) Adding air venting on the main line or at the radiators; 2) Adding boiler cycle controls; 3) Adding or subtracting radiators. Energy savings accrue from lowering the overall building temperature.

Steam Trap Maint (Wood Prod)

Set up a in-house steam trap maintenance program with equipment, training, and trap replacement. An alternative procedure is to just pay for an outside contractor to conduct a steam survey.
Upgrade Process Heat
Replace furnace, reheaters
Vent Damper
Install vent damper downstream of the draft relief to prevent airflow up the stack, while allowing warm air from the boiler to spill into the conditioned space as heat or into the boiler room to reduce jacket losses. This measure is most cost-effective when combined with the boiler tune up and power burner measures.

Wall Insulation - Blown R11
Application: Old buildings
Wall Insulation - Spray On for Metal Buildings
Wall Insulation (Cellulose) unfinished. Application: Old buildings
Waste Water Heat Exchanger
Install heat exchanger where copious warm water is discarded

Commercial Sector Resource Assessment

A list of the major commercial measures, listed by the levelized cost, is provided in Table 17 and Table 18. These lists present individual measures, with costs and benefits resulting from the applicable population.

Commercial Sector Characterization

Characterizing the commercial segment reveals certain difficulties. For example, industrial customers often have a relatively large percentage of overall floor space devoted to end uses that would typically be thought of as commercial. We included a portion of "industrial" sales as really belonging to commercial uses. New construction square footage estimates were also developed using utility estimates although these appear to assume optimistic growth.

On particular problem lies with the growth of large data server "farms". Several of these facilities have located in the Northwest and their energy consumption can be prodigious. A variety of conservation measures are available for these facilities. However, quantifying the impact is difficult. Problems occur with:

- Forecasting - specific facilities are not included in the utility forecasts.
- Baseline - computer technology changes rapidly and baseline consumption is not clear
- Current practice - the extent to which HVAC and software management measures are already adopted is not clear.
As a result, although one can anticipate significant opportunities regarding data servers, we have not attempted to quantify them.

Description of Commercial Measures

Measures were previous described in the 2005 report. For this study, the detailed measure descriptions are included in Table 17 and Table 18. Significant changes from the 2004 include a more thorough development of refrigeration measures and an updating of lighting measure costs based on the recent Northwest BEST survey of current code compliance (NEEA, April 2006).

Lighting Measures

The new evaluation has made several adjustments to the cost and savings assumptions and the calculation methods used in the lighting evaluation.
The most significant changes were to the calculation methods used. Previously savings were calculated using an assumed Lighting Power Density (LPD), hours of operation, and an array of engineering factors. The LPD was a code maximum LPD that was often high. The new method calculates savings as a fraction of the lighting EUI (same EUI as used in the calibration step) as determined from average LPD (from regional surveys) and building simulation studies. There is also credit for cooling savings and debit for increased heating. The value of this approach is that it assures consistency with the actual electricity consumption for this endues. Given that lighting efficiency current practice has greatly improved, it is important to reflect actual consumption.

Lighting equipment cost data were reviewed and adjusted to agree with current cost data as developed by NEEA in the NW BEST evaluation. The underlying data was developed primarily by Michael Lane of the Lighting Design Lab and Jim Benya from actual project experience. Labor was not evaluated so little change has occurred in retrofit applications. High performance T8 costs are significantly reduced in the replacement case.

The lighting measure savings increment was adjusted in several instances. The base T8 wattage was assumed to be 58 watts rather then 64 watts, so that the baseline fixture was more in line with the lumen output of the measure fixture. This reduced per fixture savings 36%. The HID lighting baseline was assumed to be pulse start reducing baseline watts from 460 to 365 . This reduced per fixture savings approximately 50%.

Overall high performance T8 technology is highly attractive and should be pursued aggressively. The high/low bay lighting is much less clear. Further evaluation of this niche is warranted. Hours of operation and available control strategies will have a large impact on savings and as such solutions most likely need to be evaluated on a case by case basis. Ceramic metal halide remains highly attractive but expensive option for display light situations. It definitely delivers same to better quality light and less frequent bulb changes and as such is an upgrade in most situations. As such even though this fixture is not cost effective in most situations it should be evaluated on a situation-bysituation basis.

Lighting measures:

CFL 9W to 39W hardwired
Cost of CFL lamp 75W> 18W
High Efficacy LED Display
Cost of ceramic metal halide lamp 72W>39W
T8 to HP T8
Ballast change out 58W>49W
T12 to HP T8
High Performance T8 lamp versa conventional T8 162W>49W
T8 to HP T8
Ballast change out 58W>49W
High Bay HID Medium to T8 (Retrofit and New)
Switched to T8 458W> 224W, 1 lamp HID to 6 Lamp HPT8
High Bay HID Large to T5 (Retrofit and New)
Assumes 2 -6 lamp T-5 fixtures to get equivalent light output, makes more sense than T8s 1080W> 701W

Daylight Control (overhead)
Assumes 5\% savings

Sweep Control

Assumes 25\% savings
Daylight perimeter zone
Assumes 10\% savings
Occupancy Sensors
Cost of OS switch, general area. Assumes 5\% savings

Exit signs

Cost vs cost of LED and CFL fixtures 20W> 1 W , switch to LED sign (not photoluminescent net incremental cost)
Ceramic Metal Halide (Retrofit and New)

100W>44W

Daylighting Overhead (New)

Daylight control with skylite

HVAC Measures

Economizer Diagnostic, Damper Repair \& Reset

Applicable to single zone packaged systems. The outdoor make-up air damper and control are often set incorrectly or not functioning. This measure is the general checking. Savings derive from reduced cooling due to restored economizer function and reduced heating from reduced minimum outdoor air.

Warm Up Control

This measure is designed to implement a shut down of outside air when the building is coming off night setback. Usually the capability for this is available in a commercial tstat but either the extra control wire is not attached or the unit itself has not been set up to receive the signal. Cost is based on labor cost to enable this ability in existing controllers.

Rooftop Condensing Burner

Prototype units of condensing natural gas packaged heaters have been demonstrated in Canada. However, the condensing feature of theses units was not the primary source of their savings - rather it was the fact that exposed ductwork was better insulated.

Demand Controlled Ventilation (DCV)

Applicable to single zone packaged systems with large make -up air fractions either because of intermittent occupancy or because of code requirements. In most cases the outdoor air is reset to 5% or less with CO2 build-up modulating ventilation.

Ducts

Duct retrofit of both insulation and air sealing
Hot Water Temperature Reset

Controller automatically resets the delivery temperature in a hot water radiant system based on outside air temperature. The reset reduces the on-time of the heating equipment and the occurrence of simultaneous heating and cooling through instantaneous adjustments.

HW Boiler Tune

Tune up in accordance with Minneapolis Energy Office protocol. Can include derating the burner, adjusting the secondary air, adding flue restrictors, cleaning the fire-side of the heat exchanger, cleaning the water side, or installing turbulators. Other modifications may include uprating the burner to reduce oxygen or derating the burner to reduce stack temperature. Note: In gas systems, excess air and stack temperatures are often within reasonable ranges, so the technical potential for this measure is limited. Combining this measure with the vent damper and power burner measures increases both applicability and cost effectiveness, and was assumed for this analysis.

Steam Balance

Single-pipe steam systems are notorious for uneven heating, which wastes energy because the thermostat must be set to heat the coldest spaces and overheating other spaces. Steam balances corrects these problems by: 1) Adding air venting on the main line or at the radiators; 2) Adding boiler cycle controls; 3) Adding or subtracting radiators. Energy savings accrue from lowering the overall building temperature.
Steam Trap Maintenance
Set up a in-house steam trap maintenance program with equipment, training, and trap replacement. An alternative procedure is to just pay for an outside contractor to conduct a steam survey.
Vent Damper
Install vent damper downstream of the draft relief to prevent airflow up the stack, while allowing warm air from the boiler to spill into the conditioned space as heat or into the boiler room to reduce jacket losses. This measure is most cost-effective when combined with the boiler tune up and power burner measures.

Power burner

Replace standard burner with a power burner to optimize combustion and reduce standby losses in the stack. Note: Costs and savings assume that this measure will be performed in conjunction with a boiler tune up when appropriate.

SPC Hieff Boiler (Retro and Replace)

Boiler costs for near condensing boiler. Assumed seasonal combustion efficiency of 82% over base of 69.5%

SPC Cond Boiler (Retro and Replace)
Boiler costs for condensing boiler. Assumed seasonal combustion efficiency of 88\% over base of 69.5\%

Hi Eff Unit Heater (New, Retro and Replace)

Base efficiency has gone up. Install power draft units (80% seasonal eff) in place of natural draft (64% seasonal eff)
Cond Unit Heater from Natural draft (New and Replace)
Install condensing power draft units (90% seasonal eff) in place of natural draft (64% seasonal eff)
Cond Unit Heater from Power draft (New and Replace)
Install condensing power draft units (90% seasonal eff) in place of power draft (80% seasonal eff)
Cond Furnace (New and Replace)
Condensing / pulse package or residential-type furnace with a minimum AFUE of 92%.
SPC Hieff Boiler (New)
Install near condensing boiler. Assumed seasonal combustion efficiency of 82\% over base of 75%
SPC Cond Boiler (New)
Install condensing boiler. Assumed seasonal combustion efficiency of 88% over base of 75%

Water Heating Measures

DHW Wrap

Insulate the surface of the storage water heater or an unfired storage tank to R-5 to reduce standby losses.
DHW Shower Heads
Install low flow shower heads (2.0 gallons per minute) to replace 3.4 GPM shower heads.
DHW Faucets
Add aerators to existing faucets to reduce flow from 3.4 gallons per minute to 2.0 GPM.
DHW Pipe Ins
Add 1" insulation to pipes used for steam or hydronic distribution; particularly effective when pipes run through unheated spaces.
DHW Recirc Controls
Install electronic controller to hot water boiler system that turns off the boiler and circulation pump when the hot water demand is reduced (usually in residential type occupancies) or can be reset to meet the hot water load. (Steel boilers also require a mixing valve to prevent water temperatures from dropping below required levels).

DHW Std. Tank (Retro)

This measure would replace existing DHW tank with equipment meeting current Oregon Energy Code requirements (thermal efficiency of 78% or better).

DHW Condensing Tank (Retro)
Replace older tanks with condensing tanks with combustion efficiency of 94% and tank insulation with an R -value of 16 or greater.
DHW Condensing Tank (Replace)
Costs and savings are incremental over a Code-rated tank (combustion efficiency of 80%) for a condensing tank with a minimum combustion efficiency of 94% and an R-16 tank wrap.
DHW Condensing Tank (New)
Costs and savings are incremental over a Code-rated tank (combustion efficiency of 80%) for a condensing tank with a minimum combustion efficiency of 94% and an R-16 tank wrap.

DHW Std. Boiler (Retro)
Replace existing boiler with unit meeting OR Code requirements of 80% combustion efficiency.

DHW Hieff Boiler (Retro)

Replace existing boiler with unit meeting OR Code requirements of 85% combustion efficiency.
DHW Cond Boiler (Retro)
Replace with boiler using condensing or pulse technology to achieve steady-state combustion efficiencies of 89% to 94% (this analysis used 90% efficiency for savings calculations).
DHW Hieff Boiler (Replace and New)
Replace existing boiler with unit meeting OR Code requirements of 85% combustion efficiency.
DHW Cond Boiler (Replace and New)
Replace with boiler using condensing or pulse technology to achieve steady-state combustion efficiencies of 89% to 94% (this analysis used 90% efficiency for savings calculations).
Combo Hieff Boiler (Retro)
Replace existing boiler with unit meeting OR Code requirements of 85% combustion efficiency.

Combo Cond Boiler (Retro)

Replace with boiler using condensing or pulse technology to achieve steady-state combustion efficiencies of 89% to 94% (this analysis used 90% efficiency for savings calculations).

Combo Hieff Boiler (Replace and New)
Replace existing boiler with unit meeting OR Code requirements of 85% combustion efficiency.
Combo Cond Boiler (Replace and New)
Replace with boiler using condensing or pulse technology to achieve steady-state combustion efficiencies of 89% to 94% (this analysis used 90% efficiency for savings calculations).
Solar Hot Water (New and Retrofit)
Install solar water heaters on large use facility such as multifamily or lodging New
Heat Pump Water Heat (New and Retrofit)
Waste Water Heat Exchanger (New and Retrofit)
Install HX on waste water
Hi Eff Clothes Washer (Replace)
Install high performance commercial clothes washers - for residential units
Computerized Water Heater Control (New and Retrofit)
Install intelligent controls on the hot water circulation loops.

Cooking Measures

Cooking measures with primarily gas savings include: Direct Fired Convection Oven, Infrared Fryer, Convection Range/Oven, Infrared Griddle, Power Range Burner. Energy Star Steam Cooker provides savings on both electricity and gas.

Shell Measures

Insulation measures:
Wall Insulation - Blown R11
Application: Old buildings
Wall Insulation - Spray On for Metal Buildings
Spray On for Metal Buildings (Cellulose) Unfinished. Application: Old buildings
Roof Insulation - Rigid RO-11
Rigid R0-11-not including re-roofing costs but including deck preparation. Application: Old buildings with flat roofs and no attics

Roof Insulation - Rigid RO-22
Rigid RO-22-- not including re-roofing costs but including deck preparation and ~ 4 " rigid.. Application: Old buildings with flat roofs and no attics
Roof Insulation - Rigid R11-22

Rigid R11-22 2" rigid added to an existing foam roof insulation at re-roof, includes some surface prep. Application: Old buildings with flat roofs, no attics, and some insulation

Roof Insulation - Rigid R11-33
Rigid R11-33: add 4' of insulation at time of reroofing. Application: Old buildings with flat roofs, no attics, and some insulation

Roof Insulation - Blanket R0-19
Blanket R0-19. Application: Buildings with open truss unfinished interior
Roof Insulation - Blanket R0-30
Blanket R0-30. Application: Buildings with open truss unfinished interior
Roof Insulation - Blanket R11-30
Blanket R11-30. Application: Buildings with open truss unfinished interior
Roof Insulation - Blanket R11-41
Blanket R11-41. Application: Buildings with open truss unfinished interior
Roof Insulation - Attic R0-30
Attic R0-30. Application: Buildings with uninsulated attics
Roof Insulation - Attic 11-30
Attic 11-30. Application: Buildings with partially insulated attics
Roof Insulation - Roofcut 0-22
Roofcut 0-22. Application: Buildings with uninsulated flat roofs at reroofing time

Window Measures

Window energy savings were predicted with building energy simulation models for the 2004 ETO evaluation. The window market was divided into vinyl and aluminum frame, and tinted versus non-tinted. The tinted versus un-tinted is significant because without tint windows must be include a low emissivity coating to pass the SHGC code requirement. This generally brings the window SHGC and U-value below the code requirements by a significant margin, reducing savings available.
The Oregon code has low and high glazing fraction paths. The high glazing path requires maximum performance windows, which pretty much excludes them from utility programs. Therefore, we limited this evaluation to the lower glazing path and window populations (application factor) were reduced by 40% to remove the high glazing buildings ($>30 \%$ in zone 1 and $>25 \%$ in zone 2) from the target population.
For each of these cases, savings were predicted for various measures. For the aluminum frames, several U-value targets were established with the assumption that the target buildings would evenly divide into these groups.

Categories of retrofit windows include: Windows - Single or Double to Class 45, 40, 36 or VEA. Details of window assumptions are listed in Table 14.

Table 14: Window Measure Details

| Window | SHGC | U-Value | Measure
 Code, At
 Replacement | Measure
 Code, New | Measure Name |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Cooling and HVAC Controls Measures

CEE Tier 23 ton (New and Replacement)
Install high efficiency cooling equipment complying with CEE Tier 2.
CEE Tier 27.5 ton (New and Replacement)
Install high efficiency cooling equipment complying with CEE Tier 2.

CEE Tier 215 ton (New and Replacement)
Install high efficiency cooling equipment complying with CEE Tier 2.
CEE Tier 225 ton (New and Replacement)
Install high efficiency cooling equipment complying with CEE Tier 2.
HVAC System Commissioning (New)
Commissioning includes testing and balancing, damper settings, economizer settings, and proper HVAC heating and compressor control installation. This measure includes the proper set-up of single zone package equipment in simple HVAC systems. The majority of the Commercial area is served by this technology. Work done in Eugene (Davis, et al, 2002) suggests higher savings than the other documented commissioning on more complex systems.
HVAC controls (New)
Set up control algorithms. This assumes the development of an open source control package aimed at describing scheduling and control points throughout the HVAC system, properly training operators so that scheduling can be maintained and adjusted as needed, and providing operator back up so that temperature reset, pressure reset, and minimum damper settings are set at optimum levels for the current occupancy.

Lighting Scheduling/Controls (New)

This measure includes the commissioning of any occupancy and sweep controls and the review and proper setting of daylighting controls. Since these are largely a function of schedule settings (except in cases where daylighting controls are integrated into the energy management software), we have included only the impact of properly controlled lighting and occupancy.

PCs and Monitors - Energy Management Software (New and Replacement)

There is a solution to automate the enabling of Power Management in commercial computers and monitor/displays called Surveyor by EZConserve.

LCD Monitors (New and Replacement)

Replace CRT with LCD monitor at replacement time. This measure is zeroed out as being current practice.

High Efficiency Chiller (Replace)

Replace chillers or installing new chillers to purchase units with efficiencies averaging $0.51 \mathrm{~kW} /$ ton air conditioning (AC), rather than the standard new unit, which has an efficiency of $0.65 \mathrm{~kW} /$ ton. In practice, some fraction of chiller replacements may involve the early retirement of units with lower efficiencies (perhaps $0.90 \mathrm{~kW} / \mathrm{ton}$), and thus achieve higher savings in the first few years of the measure installation.
Chiller System Optimization (Replace)
Includes improvements in efficiency and reduction in parasitic losses in pumps, fans, and other (non-chiller) electric motor-driven systems associated with chillers.

Chiller Tower 6F approach (Replace)

Install low approach cooling tower
Transformers (Retrofit)
Savings apply at service entry for all electric usage
EMS Retrofit for Restaurants (Retrofit)
Many commercial establishments have no means of operating facility lighting, heating, air conditioning, refrigeration, etc., except to rely upon employees to manually switch equipment on/off before, during and after a typical work day. This is especially true in restaurants. A proper EMS installation in such facilities can reduce existing gas and electric energy usage by about 10\% or more.
ECM Fan Powered Boxes (New)
Install ECM motors in VAV fan powered terminals with PSC motors
Indirect/Direct Evaporative Cooling ~20 ton (New and Replacement)
Install indirect/direct evaporative cooling in commercial building HVAC system in 20 to 60 ton range
Indirect/Direct Evaporative Cooling >60 ton (New and Replacement)
Install indirect/direct evaporative cooling in commercial building HVAC system in large systems <60 ton range. Original ETO evaluation evaluated at 20, 150 and 300tons with all being essentially equivalent

Ground Source Heat Pump - Air Source HP Base (Replacement)
Install GSHP in place of air source heat pumps.

Refrigeration Measures

Four energy efficiency measures were developed from Supermarket Energy Efficiency (NEEA, 2005) for large supermarket refrigeration systems.

Floating heat pressure has very large energy savings and a relatively high current saturation. It includes floating head pressure controls with variable set-point control to maintain a 10F delta T to a minimum coil temperature of 70 F .

Heat Reclaim has huge savings for the heating fuel but a significant electric interaction penalty with floating head pressure. Currently, heat reclaim is most common in the limited form of heating service hot water with refrigeration superheat. This measure is the use of condenser heat in a heat reclaim coil installed in the space heating system.
This measure assumes that floating head pressure is installed and heat reclaim holdback valves are used to maintain the refrigerant's SCT in the reclaim coil, regardless of the SCT at the condenser, thereby allowing the condenser to "float" with ambient. This greatly reduces the savings from floating head pressure and is accounted for as a negative electric savings for this measure.
Other refrigeration measures:
Refrigeration Case Package

This measure includes efficient evaporator fans, case lighting, and low energy antisweat heaters.

Efficient Refrigeration Systems

This measure includes efficient compressor, efficient condenser fans, mechanical subcooling, and controls.
Package Refrigeration - Icemakers, Vending machines (New and Replacement)
Install machines with package of measures akin to ADL low cost
Efficient Standalone Refrigeration Cases (New and Replacement)
Install efficient stand-alone cases. This measure is based upon current rebates and SAIC savings numbers

Residential Sector Resource Assessment

Sector Characterization

For this analysis, three residential segments were considered: single family, manufactured homes and multi-family units. We further divided these segments, at the request of the Energy Trust, into low income, medium low income, and all other income levels (see the ResSectorChar.xls spreadsheet). For this analysis, both electricity and fuel savings are considered. In cases where the nature of the measure limits its applicability to a portion of the homes (for example, duct measures exclude homes with basements), adjustments to the technical potential are contained in the workbook for that measure.

Description of Residential Measures

Detailed list of measures in included as Table 19 and Table 20. These tables provide results for the measures applied to the appropriate population. A short description of assumptions used to develop these measures follows. Savings estimates for heating consumption are based on simulations by Ecotope's SEEM model, which is specifically designed to include effects of duct distribution losses and other regional measures.

HVAC Measures

1. Duct Sealing (New/Replacement)

Duct sealing in accordance with PTCS standards for new construction. The distribution efficiency associated with the duct sealing measure is .85 .
2. Duct Repair (Retrofit)

Duct sealing in accordance with PTCS standards for existing construction, requiring a 50% reduction in leakage, was examined for several heating system types.
3. Heat Pump Upgrade (New/Replacement/Retrofit)

Heat pump upgrade from HSPF 7.7 to 9.5 , with PTCS-level commissioning and duct sealing. For the retrofit sector, the efficient heat pump was examined both as a retrofit from an older, working heat pump and from an electric furnace base case.
4. Ground Source Heat Pumps (New)

Install Ground Source heat pump (GSHP) in lieu of standard air source heat pump.

5. High Efficiency AC (New/Replacement)

We examined a measure to upgrade a central forced air AC system to SEER 15 from SEER 13. Some additional savings from proper commissioning are included in the total. We also examined a measure to upgrade a standalone window unit to Energy Star levels (base case EER 9.7 upgraded to 10.7).
6. Diagnostic Heat Pump tune-up (Retrofit)

A program based on field visits that offers minor adjustments to HVAC equipment (adjust charge, clean filters, check settings, install cutout thermostat) to optimize efficiency. The requirements for each system will vary, but cost and savings are based on overall expectations if a large population is treated.
7. Evaporative Cooling (New/Replacement/Retrofit)

Install a direct/indirect evaporative cooler for new and replacement models. Savings for the retrofit sector are from in lieu of a SEER 13 central AC.
8. High Efficiency Gas Furnace (New/Replacement)

This measure describes an upgraded gas furnace from AFUE . 8 to .9. A separate measure adds duct leakage improvements of 15%.
9. Ductless Mini-split Heat Pump

Current models are small in capacity, which limits their retrofit potential. They are suggested for homes with electric baseboard heating - which makes them one of the few retrofit equipment measures possible for older homes with baseboard heating. In multi-family housing where they would provide the equivalent of an efficient through-thewall heat pump. The cost estimate gives credit for the fact that a window air conditioner would otherwise have to be included to provide a similar cooling benefit.

Envelope Measures

1. Energy Star building package (New)

The Energy Star package is continuingly evolving. As new efficiency levels are implemented in codes and standards, Energy Star must develop new measures that provide a further level of energy savings. It becomes more difficult to find further measures that are cost-effective and provide sufficient savings. The current Energy Star package includes insulation, windows, duct sealing, efficient hot water and lights, as well as high efficiency heating/cooling equipment.

2. Window Upgrades (New/Replacement/Retrofit)

Improvement from $\mathrm{U}=.35$ to $\mathrm{U}=.30$. This measure is applicable to both electrically heated and gas heated homes.
2. Heat Recovery Ventilation, including infiltration reduction (New)

Addition of heat recovery to ventilation system and whole house sealing. This measure is applicable to both electrically heated and gas heated homes.
3. Standalone shell measures to Energy Star levels (New).

Window and insulation as a stand-alone measures. Basecase was R-21 in the floor and walls, and R-38 insulation in the attic. The Energy Star package requires the same wall and attic insulation performance, but also requires advanced framing for the walls and R-30 insulation in the floor. This measure is applicable to both electrically heated and gas heated homes.
4. Insulation improvements (Retrofit)

For the retrofit segment, the base cases were drawn from the existing building prototypes, weighted by vintage using data from the US Census. For these measures, the candidate home must have no existing wall insulation, ceiling insulation of R-11 or less, and floor insulation of R-19 or less. All measures utilize blown-in or batt insulation to achieve the increased R -value. The measure assumes that the home will be treated with the two most cost-effective measures (floor, wall or attic insulation), based on the specific characteristics of each home. This measure applies to both electrically heated and gas heated homes.
4. Bring Ducts Indoors. (New)

Locating ductwork within the heated space accomplished the benefits of duct sealing at low cost. Thus, it provides an alternative path to achieve similar savings to the Energy Star package. We include an alternative package with Indoor Ducts, DHW and Lights that would be the uncertified equivalent of Energy Star.
5. Weatherization Envelope Sealing (Retrofit)

Blower-door assisted sealing has been a popular measure within the program. It applies to both electric and gas heated homes.

Lighting Measures

1. Efficient fluorescent bulbs and fixtures (New/Replacement/Retrofit)

Lighting measures are difficult to categorize because new Federal standards will occur. We assume that the current Energy Star Lighting measure requires installation of 18 CFL lamps (20% reduction in LPD) or full replacement (30% reduction). However, the opportunity for this measure is short-lived. By 2015, new Federal standards will require that new lighting product meet an equivalent efficiency standard. We propose that a new set of emerging technology lighting products, based on LED lights, will become available starting in 2015 to provide efficiency beyond code minimum requirements. These proposed measures are described as:

- Add 6 LED lamps (using incandescent base) aft 2015 (65\% reduction in LPD using both fixtures and lamps)
- Add 6 LED lamps (using CFL base) after 2015
- Add 16 LED lamps (using incandescent base) after 2015
- Add 16 LED lamps (using CFL base) after 2015
- All LED (from 2020 base) after 2020

Similarly for retrofit lighting measures, CFL replacements may occur up until year 2015 but then we anticipate emerging technology be based on high efficiency LED lights. These are proposed as:

- 50\% LED after 2020
- 100\% LED after 2020

Domestic Hot Water Measures

1. Tank wrap (Retrofit)

This measure assumes an R-6 tank wrap is installed in water heaters older than 5 years, and applies to both gas and electric units.
2. Hot water pipe wrap (Retrofit)

This measure assumes that the hot and cold water pipes are insulated with an R-2 wrap, and applies to both gas and electric water heat.

3. Water Heater Upgrade (New/Replacement)

Two water heater upgrade measures were examined for the new and replacement markets. The primary difference is in the quality of the unit. For electric water heat, the first measure upgrades the water heater from an EF of .90 to .93 , with a 20 year warrantee. The second measure costs less for a unit with a 10 year warrantee. The efficiency improvement for that measure is from an EF of .90 to .94 .
For the gas segment, the measures includes a water tank upgrade from EF=. 59 to $E F=.62$. an emerging efficient option to EF=.70. Tankless water heaters provide an EF= .85 and an incremental improvement to and efficient model with EF=.89.
4. Heat Pump Water Heater (New/Replacement)

This measure assumes that an electric water heater is replaced with a heat pump water heater (EF from . 90 to 2.0).
6. Combined Space and Water Heating

We examined a variety of system that combine gas space and water heating. Although these systems have some appeal in providing radiant slab heating, there is a question about the appropriate baseline. Compared to a hydronic system that would provide similar radiant heating, there is little or no energy saving. One combination option appears to be currently cost-effective - that would be a combination involving a low-cost hydrocoil applied to an air distribution system. We also include a high efficiency combination system based on the Polaris water heater.

7. Solar Water Heater (New/Replacement)

This measure assumes that an electric or gas water heater is replaced with a solar water heater with backup, reducing the water heating load by about 60\%. Cost estimates come from the current program.

Appliance Measures

1. Low Power Mode Appliances

Many consumer electronic products consume power in standby mode even when not active. The standby mode may include keeping a time clock, waiting for a remote signal or accessing the internet for information. If these appliances were set to reduce standby power to their minimum (sleep) level, it would save over 300 kWh per year per house.

California is engaged in a program to capture these savings through standards at the manufacturer level. While costs are not clearly defined at this time, these measures are expected to be low-cost for manufacturers to implement. These savings are for other appliances in addition to the Energy Star television.
2. EStar Refrigerator assumes a unit 15\% more efficient than Federal standard.
3. Two clothes washers are considered. The MEF 2.0 Washer is only a modest improvement over the minimum standard. The high efficiency washer is MEF 2.2. It should be mentioned that units with even higher MEF ratings occur in the current program.
4. EStar Dishwasher is based on a unit rated at . 68 (higher than Energy Star minimum) over a market baseline rated . 52 (slightly higher than Federal minimum standard).
5. Home Energy Monitor is a device than offers direct feedback to consumers regarding their energy consumption. With the feedback, customers are expected to better control their energy usage. Estimates are based on the BC Hydro study that estimated a 6.5% reduction in electric load. To be conservative and because we are not in Canada we used 5\%.
6. Solar Water Heater (New/Replacement)

This measure assumes that an electric or gas water heater is replaced with a solar water heater with backup, reducing the water heating load by about 60%.

6. Energy Star Television

This measure has been proposed by CEE as an emerging technology. Savings would be possible at no cost if introduced during manufacturing, due to reduced standby losses. Similar savings from other appliances are captured in the Low Power Mode measure.

Appendix: Detailed Measure Descriptions

Table 15: Detailed Measure Description, Industrial Electricity

Conservation Measure	First Cost (\$/kWh)	End use App	\% Savings	Measure Acceptance	Achievable Potential	Lifetime	Annual O\&M Cost (\$/kWh)	Levelized Cost (\$/kWh)	BCR	Source
Advanced Industrial HVAC	\$0.704	HVAC	15\%	40\%	85\%	10	\$0.050	\$0.142	0.59	ACEEE, 2004
Advanced Lubricants	\$0.014	All Motors	3\%	23\%	85\%	1	(\$0.008)	\$0.007	14.46	ACEEE, 2001
Ag: High Draft Fans for Barns	\$0.001	Fan	4\%	23\%	85\%	10		\$0.000	1,237.67	ACEEE, 2004
Air Compressor O\&M	\$0.016	Fan	25\%	23\%	85\%	1		\$0.017	5.57	ACEEE, 2001
Air Compressor Sensors	\$0.045	Air Comp	4\%	23\%	85\%	15		\$0.004	20.32	ACEEE, 2001
ASD Motors	\$0.072	All Motors	2\%	45\%	25\%	15	(\$0.013)	(\$0.005)	100.00	ACEEE, 2001
Duct/Pipe Insulation	\$0.098	Heat, Refer, HAVC	5\%	80\%	85\%	7	\$0.002	\$0.019	4.39	ACEEE, 2004
Efficient Lighting Design	\$0.541	Lights	20\%	70\%	25\%	15		\$0.053	1.70	Ecotope
Efficient Lighting Fixtures and Lamps	\$0.271	Lights	25\%	70\%	50\%	15		\$0.026	3.39	Ecotope
Electrical Supply System Improvements	\$0.011	All Electric	3\%	100\%	25\%	5	(\$0.010)	(\$0.007)	100.00	ACEEE, 2004
Electronics: Change filter strategy	\$0.054	Fans	40\%	10\%	60\%	1	(\$0.002)	\$0.054	1.76	Supersymmetry, NEEA Chiller
Electronics: Chiller heat recovery	\$1.161	HVAC	3\%	10\%	25\%	10	\$0.000	\$0.152	0.56	Supersymmetry
Electronics: Chiller optimize	\$0.202	HVAC	17\%	25\%	50\%	10	\$0.011	\$0.037	2.27	Supersymmetry
Electronics: Clean Room HVAC	\$0.112	HVAC	9\%	30\%	25\%	15		\$0.011	8.20	ACEEE, 2001, NEEA Chiller
Electronics: CW to gas plant	\$0.177	HVAC	1\%	50\%	25\%	10	\$0.000	\$0.023	3.64	Supersymmetry
Electronics: Eliminate exhaust	\$0.196	HVAC	5\%	80\%	25\%	10	\$0.000	\$0.026	3.29	Supersymmetry, NEEA Chiller
Electronics: Exhaust Injector	\$0.473	Heat	100\%	35\%	85\%	10	(\$0.135)	(\$0.073)	100.00	Paragon
Electronics: New air compressor	\$0.198	Air Comp	17\%	50\%	25\%	10	\$0.000	\$0.026	3.25	Supersymmetry
Electronics: New chiller/tower, 2 loops	\$0.191	HVAC	34\%	15\%	25\%	10	\$0.000	\$0.025	3.38	Supersymmetry
Electronics: Solidstate chiller	\$0.534	HVAC	90\%	20\%	85\%	15	(\$0.123)	(\$0.071)	100.00	Solid State
Electronics: Reduce pressure, gases	\$0.001	Refrig, Air Comp	10\%	50\%	85\%	3	(\$0.001)	(\$0.001)	100.00	Supersymmetry, NEEA Chiller

Conservation Measure	First Cost (\$/kWh)	End use App	\% Savings	Measure Acceptance	Achievable Potential	Lifetime	Annual O\&M Cost (\$/kWh)	Levelized Cost (\$/kWh)	BCR	Source
Electronics: Reduce CW pressure, reset CHW	\$0.535	HVAC	1\%	50\%	25\%	10	\$0.000	\$0.070	1.20	Supersymmetry
Electronics: VSD tower pumps	\$0.217	HVAC	1\%	50\%	25\%	10	\$0.000	\$0.028	2.97	Supersymmetry, NEEA Chiller
Electronics: Wastewater preheat of OSA	\$0.454	HVAC	15\%	50\%	25\%	10	(\$0.232)	(\$0.173)	100.00	Supersymmetry, NEEA Chiller
Electronics: Vacuum Pump Upgrade	\$0.876	Process Pump	50\%	13\%	85\%	5	\$0.768	\$0.972	0.09	Phil Naughton, 2005
Fan system improvements	\$0.033	Fan	6\%	20\%	50\%	10		\$0.004	19.83	ACEEE, 2001
Food: Cooling and Storage	\$0.118	Refer	20\%	20\%	25\%	15		\$0.012	7.76	ACEEE, 2001
Food: Refrig Storage O\&M	\$0.055	Refer	4\%	50\%	85\%	3		\$0.020	4.42	DEER
Food: RF Heat	\$0.488	Process Drying	1\%	50\%	25\%	10	\$0.500	\$0.564	0.15	ACEEE, 2004
Generic O\&M	\$0.000	Process	5\%	80\%	85\%	1	\$0.050	\$0.050	1.90	ACEEE, 2004
High Bay Lighting	\$0.174	Lighting	25\%	70\%	85\%	4	(\$0.022)	\$0.028	3.18	ACEEE, 2005
Irrigation: Ditch > Pipe	\$0.080	Pump	60\%	3\%	85\%	10	(\$1.010)	(\$1.000)	100.00	PP\&L
Irrigation: Nozzles	\$0.240	Pump	0\%	70\%	50\%	3		\$0.089	1.01	ETO
Irrigation: Pump Systems Repair	\$1.835	Pump	0\%	70\%	50\%	7	(\$0.010)	\$0.309	0.27	ETO
Irrigation: Pump Systems Adjust	\$0.233	Pump	2\%	70\%	50\%	3	(\$0.064)	\$0.021	4.18	ETO
Irrigation: Water Management	\$0.195	Pump	1\%	70\%	50\%	5	\$0.067	\$0.112	0.76	ACEEE, 2004
Metal Fab: IR Heating	\$0.488	Heat, Treating	15\%	50\%	25\%	10	\$0.375	\$0.438	0.19	ACEEE, 2004
Metal Fab: UV Curing	(\$0.085)	Curing	60\%	50\%	25\%	10		(\$0.011)	100.00	ACEEE, 2004
Metal: Net Casting	\$0.634	Process Heat	90\%	20\%	25\%	10	(\$0.113)	(\$0.030)	100.00	ACEEE, 2001
Metal: New Arc Furnace	\$0.087	Process Heat	45\%	10\%	25\%	10	(\$0.173)	(\$0.162)	100.00	ACEEE, 2001
Microwave Processing	\$0.488	Process Drying	3\%	50\%	25\%	10		\$0.064	1.32	ACEEE, 2004
Motor Management (Prevent. Maint.)	\$0.152	All Motors	1\%	11\%	85\%	15	(\$0.010)	\$0.005	18.62	ACEEE, 2001
Motor Systems O\&M Optimize	\$0.062	Pump, Fan	20\%	11\%	85\%	10	\$0.000	\$0.008	10.46	ACEEE, 2001
Other: Wastewater Biomanagement	\$0.001	Pump	25\%	6\%	85\%	10	\$0.258	\$0.258	0.33	ACEEE, 2004

Conservation Measure	First Cost (\$/kWh)	End use App	\% Savings	Measure Acceptance	Achievable Potential	Lifetime	Annual O\&M Cost (\$/kWh)	Levelized Cost (\$/kWh)	BCR	Source
Paper: ChlorOxy Mod	\$0.123	Process	51\%	10\%	85\%	15		\$0.012	7.45	Program files
Paper: Refiner Mod	\$0.046	Process	60\%	53\%	85\%	15		\$0.005	19.89	Program files
Paper: Vapor Recompression	\$0.008	Process	60\%	10\%	85\%	15	\$0.014	\$0.014	6.28	Program files
Pump Efficiency Improvement	\$0.167	Pump, Fan	17\%	23\%	50\%	10	(\$0.018)	\$0.004	20.25	ACEEE, 2001
Sensors and Controls	\$0.022	Process	3\%	30\%	50\%	10	(\$0.003)	(\$0.001)	100.00	ACEEE, 2001
SR Motor	\$0.416	Pump, Fan, Air, Process	3\%	9\%	25\%	10		\$0.054	1.55	ACEEE, 2001
Transformers	\$0.203	All Electric	2\%	100\%	25\%	15		\$0.020	4.52	ACEEE, 2004 NEEA Chiller
Wood: Replace Pneumatics	\$0.298	Pneumatic Conveyor	75\%	85\%	85\%	15	(\$0.061)	(\$0.031)	100.00	Program files
Wood: Soft Start Press	\$0.201	Process	58\%	25\%	85\%	15		\$0.020	4.58	Program files
Rural Area Lights	\$0.331	Lighting	33\%	10\%	85\%	6		\$0.066	1.28	DEER
LED Traffic Lights 12" Grn	\$0.366	Lighting	90\%	9\%	85\%	7	(\$0.018)	\$0.046	1.82	City of Ptld
LED Traffic Lights PedX	\$0.161	Lighting	90\%	10\%	85\%	3	(\$0.014)	\$0.045	2.00	City of Ptld

Industrial Sources and References:

Note: Other references not explicitly listed here are quoted from ACEEE, 2001.
Supersymmetry USA, Proprietary report on specific site, 1998, "Report on Suggested Energy Efficiency".
ACEEE, 2004 Resource Assessment for Energy Trust.
ACEEE, 2001, Martin, N., Worrell, E., Ruth, M., Price, L., Elliott, R.N., Shipley, A.M., and J. Thorne. 2001. Emerging
Energy Efficient Technologies. Washington, D.C. Phil Naughton, Project Manger, International SEMATECH
Manufacturing Initiative, Austin TX, "Fab Energy Trends and Key Areas for Equipment Improvement", 2005.
Solid State Cooling Systems, 2005, vendor information on thermoelectric chiller.
Paragon Exhaust Injector system, 2005, vendor information supplied by Chris Robertson.
Ducker Worldwide, "Energy Efficiency within the Pulp \& Paper, Water \& Wastewater, and Irrigation Markets in the Pacific
Northwest: An Examination of Pumps, Fans/Blowers, and Conveyor Equipment", NEEA, 2000.
NEEA Chiller Efficiency Study, NEEA, 12/15/3
Results of the industrial savings estimation have already been described in Table 11 on page 31.

Table 16: Detailed Measure Description, Industrial Natural Gas

Conservation Measure	Potential Savings (th/yr)	Levelized Cost (\$/th)	Initial Cost, k\$	Lifetime	BCR	Program
Chiller heat recovery (Electronics)	287,614	\$1.479	\$3,262	10	0.48	Retrofit
Combo Cond Boiler (repl)	456,550	\$0.571	\$3,212	20	1.23	Replacement
Combo Cond Boiler (retro)	0	\$1.536	\$0	20	0.46	Retrofit
Combo Hieff Boiler (repl)	233,843	\$0.311	\$894	20	2.27	Replacement
Combo Hieff Boiler (retro)	0	\$1.617	\$0	20	0.44	Retrofit
Cond Furnace (repl)	1,290,652	\$2.491	\$33,052	15	0.28	Replacement
Cond Unit Heater from Nat draft(replace)	0	\$0.956	\$0	18	0.74	Replacement
Cond Unit Heater from power draft (replace)	398,328	\$1.934	\$8,906	18	0.36	Replacement
Heat Recovery to HW	942,821	\$0.132	\$2,538	15	5.32	Retrofit
DHW Cond Boiler (repl)	185,023	\$0.141	\$322	20	4.99	Replacement
DHW Cond Boiler (retro)	0	\$0.443	\$0	20	1.59	Retrofit
DHW Condensing Tank (repl)	150,834	\$0.023	\$36	15	30.40	Replacement
DHW Condensing Tank (retro)	0	\$0.104	\$0	15	6.76	Retrofit
DHW Hieff Boiler (repl)	110,562	\$0.044	\$60	20	15.94	Replacement
DHW Hieff Boiler (retro)	0	\$0.346	\$0	20	2.04	Retrofit
DHW Pipe Ins	44,184	\$0.018	\$8	15	39.57	Retrofit
DHW Std. Boiler (retro)	6,546	\$0.208	\$17	20	3.39	Retrofit
DHW Wrap	19,637	\$0.000	\$0	7	1,587.90	Retrofit
Ducts	1,936,462	\$2.774	\$55,229	15	0.25	Retrofit
Hi Eff Unit Heater (replace)	1,076,563	\$0.307	\$3,826	18	2.29	Replacement
Hi Eff Unit Heater (retro)	0	\$1.871	\$0	18	0.38	Retrofit
HiEff Clothes Washer (retro)	0	(\$0.890)	\$0	15	100.00	Retrofit
HiEff Clothes Washer (repl)	0	(\$1.160)	\$0	15	100.00	Replacement
Hot Water Temperature Reset	2,263,031	\$0.174	\$3,021	10	4.10	Retrofit
HW Boiler Tune	1,244,655	\$0.161	\$863	5	4.73	Retrofit
Power burner	1,834,621	\$1.035	\$16,694	12	0.68	Retrofit
Process Boiler Controls	119,927	\$0.001	\$2	15	513.68	Retrofit
Process Boiler Insulation	542,041	\$0.008	\$38	15	88.82	Retrofit
Process Boiler Load Control	271,021	\$0.002	\$4	15	445.19	Retrofit
Process Boiler Maintenance	135,510	\$0.001	\$0	15	1,407.77	Retrofit
Process Boiler Steam Trap Maintenance	440,408	\$0.035	\$0	15	20.11	Retrofit
Process Boiler Water Treatment	67,755	\$0.001	\$1	15	953.98	Replacement
Roof Insulation - Blanket R0-19	594,075	\$0.313	\$2,815	30	2.28	Retrofit
Roof Insulation - Blanket R0-30	623,292	\$0.336	\$3,166	30	2.13	Retrofit

Ronservation Measure	Potential Savings (th/yr)	Levelized Cost (\$/th)	Initial Cost, k\$	Lifetime	BCR	Program
Roof Insulation - Blanket R11-30	216,421	$\$ 2.292$	$\$ 7,506$	30	0.31	Retrofit
Roof Insulation - Blanket R11-41	259,705	$\$ 2.149$	$\$ 8,444$	30	0.33	Retrofit
Roof Insulation - Rigid R11-22 repl	509,022	$\$ 0.812$	$\$ 6,255$	30	0.88	Replacement
Roof Insulation - Rigid R11-33 repl	251,048	$\$ 2.470$	$\$ 9,382$	30	0.29	Replacement
Solar Hot Water	47,412	$\$ 4.210$	$\$ 2,458$	20	0.17	Retrofit
SPC Cond Boiler Replace	275,753	$\$ 0.996$	$\$ 3,381$	20	0.71	Replacement
SPC Cond Boiler Retro	0	$\$ 2.113$	$\$ 0$	20	0.33	Retrofit
SPC Hieff Boiler Replace	159,440	$\$ 0.638$	$\$ 1,253$	20	1.11	Replacement
SPC Hieff Boiler Retro	0	$\$ 2.232$	$\$ 0$	20	0.32	Retrofit
Steam Balance (Wood Prod)	0	$\$ 0.336$	$\$ 0$	15	2.10	Retrofit
Steam Trap Maint (Wood Prod)	0	$\$ 0.582$	$\$ 0$	10	1.23	Retrofit
Upgrade Process Heat	132,576	$\$ 0.903$	$\$ 1,231$	15	0.78	Retrofit
Vent Damper	$1,244,655$	$\$ 0.433$	$\$ 4,736$	12	1.63	Retrofit
Wall Insulation - Blown R11	417,288	$\$ 0.227$	$\$ 1,432$	30	3.15	Retrofit
Wall Insulation - Spray On for Metal Buildings	458,160	$\$ 0.253$	$\$ 1,751$	30	2.83	Retrofit
Waste Water Heat	67,731	$\$ 0.628$	$\$ 524$	20	1.12	Retrofit

Table 17: Detailed Measure Table, Commercial Sector, Electricity Savings, 2027 Technical Potential

Measure Code	Measure Name	Measure Description	Const. Type	Measure End Use	Average Lifetime	Total Incremental Cost	Total O\&M	Total MWh Savings	Winter MW	$\underset{\mathrm{mW}}{\text { Summer }}$	Gas Impacts kTherms	Floor Area	Levelized Cost, \$/kWh	BCR
Co116	EStar Steam Cooker	Install Energy Star Steam Cooker	New	Cooking	10	75,366	0	4,885	0.57	0.57	0	113,951	\$0.002	41.80
Co116rep	EStar Steam Cooker	Install Energy Star Steam Cooker	Replace	Cooking	10	386,427	0	25,045	2.95	2.95	0	861,426	\$0.002	41.80
R101rep	Floating Head Control	Large Grocery Add floating head control. This is considered measure for the independent grocery chains that are less likely to implement this feature.	Replace	Refrigeration	18	995,471	0	25,929	3.55	4.66	0	9,955	\$0.003	29.51
R101	Floating Head Control	Large Grocery Add floating head control. This is considered measure for the independent grocery chains that are less likely to implement this feature.	New	Refrigeration	18	358,657	0	9,342	1.28	1.68	0	3,587	\$0.003	29.51
H102	DCV	Applicable to single zone packaged systems with large make -up air fractions either because of intermittent occupancy or	Retrofit	Heating	15	3,081,308	0	32,011	7.94	6.91	3,894	14,121	\$0.005	18.07

Measure Code	Measure Name	Measure Description	Const. Type	Measure End Use	Average Lifetime	Total Incremental Cost	Total O\&M	Total MWh Savings	Winter MW	$\begin{gathered} \text { Summer } \\ \mathrm{mW} \\ \hline \end{gathered}$	Gas Impacts kTherms	Floor Area	Levelized Cost, \$/kWh	BCR
		because of code requirements. In most cases the outdoor air is reset to 5% or less with CO2 build-up modulating ventilation.												
H128	Ground Source Heat Pump - Air Source HP Base	Install GSHP in place of air source heat pumps.	Replace	Heating	18	9,777,685	-225,064	170,060	42.17	36.73	0	1,504	\$0.005	19.24
C107	Chiller System Optimization	The "chiller system optimization" measure includes improvements in efficiency and reduction in parasitic losses in pumps, fans, and other (non- chiller) electric motor-driven systems associated with chillers.	Replace	Cooling	15	964,191	0	15,490	3.84	3.35	(0	132,408	\$0.006	14.91
E111	Roof Insulation Attic RO-30	$\begin{aligned} & \text { Roof Insulation - } \\ & \text { Attic R0-30. } \\ & \text { Application: } \\ & \text { Buildings with } \\ & \text { uninsulated attics } \end{aligned}$	Retrofit	Heating	30	176,743	0	1,782	0.61	0.06	0	635	\$0.007	15.62
W127r	Waste Water Heat Exchanger	Install HX on waste water	Retrofit	Water Heat	15	186,226	0	2,225	0.26	0.26	0	1,588	\$0.008	10.97
W101	DHW Wrap	Insulate the surface of the storage water heater or an unfired storage tank to R-5 to	Retrofit	Water Heat	7	115,250	0	2,102	0.25	0.25	0	31,420	\$0.010	8.73

Measure Code	Measure Name	Measure Description	Const. Type	Measure End Use	Average Lifetime	Total Incremental Cost	Total O\&M	Total MWh Savings	Winter MW	$\begin{gathered} \text { Summer } \\ \mathrm{mW} \\ \hline \end{gathered}$	Gas Impacts kTherms	Floor Area	Levelized Cost, $\$ / k W h$	BCR
		reduce standby losses.												
M103	Transformers	0	Retrofit	Total	20	3,910,365	0	32,772	3.86	3.86	0	145,340	\$0.010	9.72
E101	Wall Insulation Blown R11	Wall Insulation Blown R11. Application: Old buildings	Retrofit	Heating	30	1,546,645	0	10,238	3.51	0.32	0	4,019	\$0.010	10.25
W102	DHW Shower Heads	Install low flow shower heads (2.0 gallons per minute) to replace 3.4 GPM shower heads.	Retrofit	Water Heat	8	235,466	0	3,612	0.42	0.42	0	4,420	\$0.010	8.19
R103	Efficient Refrigeration systems	Large Grocery Efficient Comp, Sub-cooling, controls	New	Refrigeration	18	6,283,666	0	50,516	6.92	9.08	0	7,173	\$0.011	9.11
R103rep	Efficient Refrigeration systems	Large Grocery Efficient Comp, Sub-cooling, controls	Replace	Refrigeration	18	17,440,647	0	140,209	19.20	25.19	0	19,909	\$0.011	9.11
E102	Wall Insulation Spray On for Metal Buildings	Wall Insulation Spray On for Metal Buildings (Cellulose) Unfinished. Application: Old buildings	Retrofit	Heating	30	137,282	0	816	0.28	0.03	0	398	\$0.011	9.21
E103	Roof Insulation Rigid R0-11	Roof Insulation Rigid R0-11-not including reroofing costs but including deck preparation. Application: Old buildings with flat roofs and no attics	Replace	Heating	30	1,049,484	0	6,097	2.09	0.19	0	1,421	\$0.011	9.00
W126r	Heat Pump Water Heat		Retrofit	Water Heat	15	4,625,848	190,709	37,270	4.38	4.38	0	15,875	\$0.013	7.11

Measure Code	Measure Name	Measure Description	Const. Type	Measure End Use	Average Lifetime	Total Incremental Cost	Total O\&M		Winter MW	$\begin{gathered} \text { Summer } \\ \mathrm{mW} \end{gathered}$	Gas Impacts kTherms	Floor Area	$\begin{array}{\|c\|} \hline \text { Levelized } \\ \text { Cost, } \\ \$ / \mathrm{kWh} \\ \hline \end{array}$	BCR
C100	CEE Tier 23 ton (new)	Install high efficiency cooling equipment complying with CEE Tier 2.	New	Cooling	20	532,875	0	3,178	0.79	0.69	0	13,977	\$0.014	6.99
E107	Roof Insulation Blanket R0-19	Roof Insulation Blanket R0-19. Application: Buildings with open truss unfinished interior	Retrofit	Heating	30	234,596	0	1,136	0.39	0.04	0	317	\$0.014	7.50
C103	$\begin{aligned} & \text { CEE Tier } 23 \text { ton (at } \\ & \text { rep) } \end{aligned}$	Install high efficiency cooling equipment complying with CEE Tier 2.	Replace	Cooling	20	2,084,742	0	12,191	3.02	2.63	0	56,234	\$0.014	6.85
L106	High Bay HID Medium to T8	$\begin{aligned} & \text { 458W> 224W, } 1 \\ & \text { lamp HID to } 6 \\ & \text { Lamp HPT8 } \\ & \hline \end{aligned}$	New	Lighting	21	14,260	521,922	8,918	1.22	1.60	-114	4,365	\$0.014	7.09
E108	Roof Insulation Blanket R0-30	Roof Insulation Blanket R0-30. Application: Buildings with open truss unfinished interior	Retrofit	Heating	30	263,921	0	1,192	0.41	0.04	0	317	\$0.015	6.99
W124r	Computerized Water Heater Control	Install intelligent controls on the hot water circulation loops.	Retrofit	Water Heat	15	759,724	0	4,700	0.55	0.55	0	5,239	\$0.016	5.68
R106rep	Heat Reclaim	Large Grocery Heat recovery to space heating. Assumes floating head control exists and must be changed to allow HR.	Replace	Refrigeration	18	2,953,644	0	9,536	1.31	1.71	885	3,692	\$0.016	6.20
R106	Heat Reclaim	Large Grocery Heat recovery to	New	Refrigeration	18	926,424	0	2,801	0.38	0.50	270	1,158	\$0.017	5.91

Measure Code	Measure Name	Measure Description	Const. Type	Measure End Use	Average Lifetime	Total Incremental Cost	Total O\&M		Winter MW	$\underset{\mathrm{mW}}{\text { Summer }}$	Gas Impacts kTherms	Floor Area	Levelized Cost, \$/kWh	BCR
		space heating. Assumes floating head control exists and must be changed to allow HR.												
E104	Roof Insulation Rigid R0-22	Roof Insulation Rigid R0-22-- not including reroofing costs but including deck preparation and -4" rigid.. Application: Old buildings with flat roofs and no attics	Replace	Heating	30	1,812,746	0	6,971	2.39	0.22	0	1,421	\$0.017	5.96
W103	DHW Faucets	Add aerators to existing faucets to reduce flow from 3.4 gallons per minute to 2.0 GPM.	Retrofit	Water Heat	8	58,605	0	482	0.06	0.06	0	2,946	\$0.019	4.39
L104	T12 to HP T8	162W> 49W	Retrofit	Lighting	21	28,557,481	9,974,135	252,650	34.60	45.40	-2,582	95,335	\$0.020	5.12
E114	Windows - Add Low E to Vinyl Tint	Windows - Add Low E to Vinyl Tint. Application: Old buildings	Replace	Heating	20	857,217	0	3,397	1.17	0.11	0	7,823	\$0.021	4.77
E105	Roof Insulation Rigid R11-22	Roof Insulation Rigid R11-22 2" rigid added to an existing foam roof insulation at re-roof, includes some surface prep. Application: Old buildings with flat roofs, no attics, and some insulation	Replace	Heating	30	3,319,778	0	10,122	3.47	0.31	0	5,085	\$0.022	4.72

Measure Code	Measure Name	Measure Description	Const. Type	Measure End Use	Average Lifetime	Total Incremental Cost	Total O\&M	Total MWh Savings	Winter MW	$\underset{\mathrm{mW}}{\text { Summer }}$	Gas Impacts kTherms	Floor Area	Levelized Cost, \$/kWh	BCR
E112	Roof Insulation - Attic 11-30	Roof Insulation - Attic 11-30. Application: Buildings with partially insulated attics	Retrofit	Heating	30	1,126,680	0	3,225	1.11	0.10	0	4,477	\$0.023	4.43
H125	ECM Fan Powered Boxes	Install ECM motors in VAV fan powered terminals with PSC motors	New	Ventilation	20	821,041	0	3,834	0.95	0.83	-34	5,337	\$0.024	3.99
L106ret	High Bay HID Medium to T8	$\begin{aligned} & 458 \mathrm{~W}>224 \mathrm{~W}, 1 \\ & \text { lamp HID to } 6 \\ & \text { Lamp HPT8 } \\ & \hline \end{aligned}$	Retrofit	Lighting	21	12,181,626	2,847,192	75,734	10.37	13.61	-910	20,987	\$0.025	4.09
E115	Windows - Add Low E and Argon to Vinyl Tint	Windows - Add Low E and Argon to Vinyl Tint. Application: Old buildings	Replace	Heating	20	1,340,609	0	4,122	1.42	0.13	0	7,823	\$0.027	3.70
L112	Exit signs	$\begin{array}{\|l\|} \hline 20 \mathrm{~W}>1 \text { W, } \\ \text { switch to LED } \\ \text { sign (not } \\ \text { photoluminescent } \\ \text { b/c of cost) } \\ \hline \end{array}$	Retrofit	Lighting	21	5,353,939	0	21,824	2.57	2.57	-237	2,878	\$0.028	3.47
E123	Windows - Add Low E to Vinyl Tint	Windows - Add Low E to Vinyl Tint. Application: New Construction	New	Heating	20	165,844	0	472	0.16	0.01	0	2,009	\$0.029	3.43
C101	$\begin{aligned} & \text { CEE Tier } 27.5 \text { ton } \\ & \text { (new) } \end{aligned}$	Install high efficiency cooling equipment complying with CEE Tier 2.	New	Cooling	20	625,549	0	1,769	0.44	0.38	0	13,977	\$0.029	3.31
C104	$\begin{aligned} & \text { CEE Tier } 27.5 \text { ton } \\ & \text { (at rep) } \end{aligned}$	Install high efficiency cooling equipment complying with CEE Tier 2.	Replace	Cooling	20	2,447,306	0	6,784	1.68	1.47	0	56,234	\$0.029	3.25
L105ret	T8 to HP T8	$58 \mathrm{~W}>49 \mathrm{~W}$	Retrofit	Lighting	21	28,557,481	5,819,339	122,727	16.81	22.05	-1,254	95,335	\$0.030	3.39

Measure Code	Measure Name	Measure Description	Const. Type	Measure End Use	Average Lifetime	Total Incremental Cost	Total O\&M	Total MWh Savings	Winter MW	Summer	Gas Impacts kTherms	Floor Area	$\begin{array}{c\|} \hline \text { Levelized } \\ \text { Cost, } \\ \$ / \mathrm{kWh} \end{array}$	BCR
L105	T8 to HP T8	58W> 49W	New	Lighting	21	11,005,355	10,632,001	70,548	9.66	12.68	-674	77,277	\$0.031	3.21
W127	Waste Water Heat Exchanger	Install HX on waste water	New	Water Heat	15	787,246	0	2,425	0.29	0.29	0	5,750	\$0.032	2.83
C102	CEE Tier 215 ton (new)	Install high efficiency cooling equipment complying with CEE Tier 2.	New	Cooling	20	1,112,087	0	2,819	0.70	0.61	0	13,977	\$0.032	2.97
L101	CFL 9W to 39W hardwired	75W> 18W	New	Lighting	21	582,972	16,645,537	56,889	7.79	10.22	-663	16,493	\$0.033	3.09
L105rep	T8 to HP T8	58W> 49W	Replace	Lighting	21	41,642,654	36,591,692	246,701	33.78	44.33	-2,537	312,126	\$0.033	3.08
C105	$\begin{aligned} & \text { CEE Tier } 215 \text { ton } \\ & \text { (at rep) } \end{aligned}$	Install high efficiency cooling equipment complying with CEE Tier 2.	Replace	Cooling	20	4,350,766	0	10,812	2.68	2.34	0	56,234	\$0.033	2.91
M104	EMS Retrofit for Restaurants	Many commercial establishments have no means of operating facility lighting, heating, air conditioning, refrigeration, etc., except to rely upon employees to manually switch equipment on/off before, during and after a typical work day. This is especially true in restaurants. A proper EMS installation in such facilities can reduce existing gas and electric energy usage by about 10\% or	Retrofit	Total	20		0	919	6.11	6.11	0	327	. 35	

Measure Code	Measure Name	Measure Description	Const. Type	Measure End Use	Average Lifetime	Total Incremental Cost	Total O\&M	Total MWh Savings	Winter MW	$\underset{\mathrm{mW}}{\text { Summer }}$	$\begin{array}{\|c\|} \hline \text { Gas } \\ \text { Impacts } \\ \text { kTherms } \\ \hline \end{array}$	Floor Area	Levelized Cost, \$/kWh	BCR
		more.												
W104	DHW Pipe Ins	Add 1" insulation to pipes used for steam or hydronic distribution; particularly effective when pipes run through unheated spaces.	Retrofit	Water Heat	15	786,209	0	2,208	0.26	0.26	0	23,447	\$0.035	2.58
H100	Economizer Diagnostic, Damper Repair \& Reset	Applicable to single zone packaged systems. The outdoor make-up air damper and control are often set incorrectly or not functioning. This measure is the general checking . . . Savings derive from reduced cooling due to restored economizer function and reduced heating from reduced minimum outdoor air.	Retrofit	Cooling	10	24,120,345	0	60,527	15.01	13.07	2,987	185,541	\$0.036	2.34
L109	Sweep Control	25\% savings	New	Lighting	21	16,225,492	0	41,492	-	-	-325	21,634	\$0.037	2.44
E124	Windows - Add Low E and Argon to Vinyl Tint	Windows - Add Low E and Argon to Vinyl Tint. Application: New Construction	New	Heating	20	259,365	0	572	0.20	0.02	0	2,009	\$0.037	2.65
C106	High Efficiency Chiller	Replace chillers or installing new	Replace	Cooling	24	8,023,037	0	14,976	1.76	1.76	0	82,755	\$0.040	2.46

Measure Code	Measure Name	Measure Description	Const. Type	Measure End Use	Average Lifetime	Total Incremental Cost	Total O\&M	Total MWh Savings	Winter MW	$\begin{gathered} \text { Summer } \\ \mathrm{mW} \end{gathered}$	Gas Impacts kTherms	Floor Area	$\begin{array}{\|c\|} \hline \text { Levelized } \\ \text { Cost, } \\ \$ / \mathrm{kWh} \\ \hline \end{array}$	BCR
		chillers to purchase units with efficiencies averaging $0.51 \mathrm{~kW} / \mathrm{ton}$ air conditioning (AC), rather than the standard new unit, which has an efficiency of 0.65 kW/ton. In practice, some fraction of chiller replacements may involve the early retirement of units with lower efficiencies (perhaps 0.90 $\mathrm{kW} /$ ton), and thus achieve higher savings in the first few years of the measure installation.												
L107	High Bay HID Large to T5	1080W> 701W	New	Lighting	21	863,874	252,953	2,917	0.40	0.52	-37	2,078	\$0.040	2.53
C108	Chiller Tower 6F approach	Install low approach cooling tower	Replace	Cooling	15	5,348,691	0	12,020	2.98	2.60	0	132,408	\$0.043	2.09
L120	Lighting Scheduling/Controls	Lighting scheduling and control. This measure includes the commissioning of any occupancy and sweep controls, and the review and proper setting of	New	lig	15	10,731,567	0	23,738	2.79	2.79	0	42,926	\$0.044	2.03

Measure Code	Measure Name	Measure Description	Const. Type	Measure End Use	Average Lifetime	Total Incremental Cost	Total O\&M	Total MWh Savings	Winter MW	$\underset{\mathrm{mW}}{\text { Summer }}$	Gas Impacts kTherms	Floor Area	Levelized Cost, \$/kWh	BCR
		daylighting controls. Since these are largely a function of schedule settings (except in cases where daylighting controls are integrated into the energy management software), we have included only the impact of properly controlled lighting and occupancy.												
M101r	PCs and Monitors Energy Management Software	$\begin{aligned} & \text { There is a } \\ & \text { solution to } \\ & \text { automate the } \\ & \text { enabling of } \\ & \text { Power } \\ & \text { Management in } \\ & \text { commercial } \\ & \text { computers and } \\ & \text { monitor/displays } \\ & \text { called Surveyor } \\ & \text { by EZConserve. } \end{aligned}$	Replace	Misc.	4	56,751,830	0	430,120	50.60	50.60	-4,478	567,518	\$0.046	1.91
L107ret	High Bay HID Large to T5	1080W> 701W	Retrofit	Lighting	21	10,325,750	1,379,909	24,771	3.39	4.45	-298	9,994	\$0.046	2.17
M101	```PCs and Monitors - Energy Management Software```	$\begin{aligned} & \text { There is a } \\ & \text { solution to } \\ & \text { automate the } \\ & \text { enabling of } \\ & \text { Power } \\ & \text { Management in } \\ & \text { commercial } \\ & \text { computers and } \\ & \text { monitor/displays } \\ & \text { called Surveyor } \end{aligned}$ by EZConserve.	New	Misc.	4	1,766,381	0	13,289	1.56	1.56	-159	17,664	\$0.047	1.85

Measure Code	Measure Name	Measure Description	Const. Type	Measure End Use	Average Lifetime	Total Incremental Cost	Total O\&M	Total MWh Savings	Winter MW	$\underset{\mathrm{mW}}{\text { Summer }}$	Gas Impacts kTherms	Floor Area	Levelized Cost, \$/kWh	BCR
W124	Computerized Water Heater Control	Install intelligent controls on the hot water circulation loops.	New	Water Heat	15	335,888	0	690	0.08	0.08	0	1,944	\$0.048	1.89
C102	CEE Tier 225 ton (new)	Install high efficiency cooling equipment complying with CEE Tier 2.	New	Cooling	20	1,912,680	0	3,199	0.79	0.69	0	24,039	\$0.049	1.96
W126	Heat Pump Water Heat	0	New	Water Heat	15	1,319,720	54,408	2,741	0.32	0.32	0	5,270	\$0.049	1.83
W123	Hi Eff Clothes Washer	Install high performance commercial clothes washers residential sized units	New	Water Heat	10	804,949	0	2,120	0.25	0.25	0	75	\$0.050	1.70
W123r	Hi Eff Clothes Washer	Install high performance commercial clothes washers residential sized units	Replace	Water Heat	10	4,285,746	0	11,288	1.33	1.33	0	399	\$0.050	1.70
E121	Windows - Tinted AL Code to Class 40	Windows Tinted AL Code to Class 40. Application: Old buildings	Replace	Heating	20	637,089	0	1,046	0.36	0.03	0	4,964	\$0.050	1.98
C105	CEE Tier 225 ton (at rep)	Install high efficiency cooling equipment complying with CEE Tier 2.	Replace	Cooling	20	7,482,889	0	12,271	3.04	2.65	0	96,717	\$0.050	1.92
L115	Daylighting Overhead	Daylight control with skylite	New	Lighting	21	40,006,551	0	90,845	12.44	16.32	-1,928	32,900	\$0.051	1.99
H103	Ducts	Duct retrofit of both insulation and air sealing	Retrofit	Heating	15	1,911,651	0	3,643	0.90	0.79	0	3,823	\$0.051	1.77
E120	Windows - Tinted AL Code to Class 45	Windows - Tinted AL Code to Class 45. Application:	Replace	Heating	20	423,664	0	630	0.22	0.02	0	4,964	\$0.055	1.79

Measure Code	Measure Name	Measure Description	Const. Type	Measure End Use	Average Lifetime	Total Incremental Cost	Total O\&M		Winter MW	Summer mW	Gas Impacts kTherms	Floor Area	Levelized Cost, \$/kWh	BCR
		coming off night setback. Usually the capability for this is available in a commercial tstat but either the extra control wire is not attached or the unit itself has not been set up to receive the signal. Cost is based on labor cost to enable this ability in existing controllers												
W125r	Solar Hot Water	Install solar water heaters on large use facility such as multifamily or lodging	Retrofit	Water Heat	15	7,589,049	463,565	12,535	1.47	1.47	0	9,264	\$0.063	1.43
E113	Roof Insulation Roofcut 0-22	Roof Insulation Roofcut 0-22. Application: Buildings with uninsulated flat roofs at reroofing time	Replace	Heating	30	8,515	0	8	0.00	0.00	0	12	\$0.068	1.52
E125	Windows - Add Argon to Vinyl Lowe	Windows - Add Argon to Vinyl Lowe. Application: New Construction	New	Heating	20	666,639	0	770	0.26	0.02	0	8,372	\$0.071	1.39
E130	Windows - Tinted AL Code to Class 40	Windows - Tinted AL Code to Class 40. Application: New Construction	New	Heating	20	151,104	0	169	0.06	0.01	0	1,474	\$0.073	1.35
E106	Roof Insulation Rigid R11-33	Roof Insulation Rigid R11-33:	Replace	Heating	30	4,979,667	0	4,157	1.43	0.13	0	5,085	\$0.080	1.29

Measure Code	Measure Name	Measure Description	Const. Type	Measure End Use	Average Lifetime	Total Incremental Cost	Total O\&M		Winter MW	$\begin{gathered} \text { Summer } \\ \mathrm{mW} \end{gathered}$	Gas Impacts kTherms	Floor Area	$\begin{array}{\|c\|} \hline \text { Levelized } \\ \text { Cost, } \\ \$ / \mathrm{kWh} \\ \hline \end{array}$	BCR
		add 4' of insulation at reroof. Application: Old buildings with flat roofs, no attics, and some insulation												
E129	Windows - Tinted AL Code to Class 45	Windows - Tinted AL Code to Class 45. Application: New Construction	New	Heating	20	100,484	0	96	0.03	0.00	0	1,474	\$0.085	1.15
R102	Refrigeration Case Package	Efficient Evap Fans, case lighting, low energy antisweat heaters	New	Refrigeration	18	6,470,168	0	6,470	0.89	1.16	0	7,173	\$0.087	1.13
R102rep	Refrigeration Case Package	Efficient Evap Fans, case lighting, low energy antisweat heaters	Replace	Refrigeration	18	17,958,292	0	17,958	2.46	3.23	0	19,909	\$0.087	1.13
E118	Windows - NonTinted AL Code to Class 40	Windows - NonTinted AL Code to Class 40. Application: Old buildings	Replace	Heating	20	2,267,922	0	2,037	0.70	0.06	0	10,552	\$0.091	1.08
E122	Windows - Tinted AL Code to Class 36	Windows - Tinted AL Code to Class 36. Application: Old buildings	Replace	Heating	20	1,592,723	0	1,428	0.49	0.04	0	4,964	\$0.091	1.08
E110	Roof Insulation Blanket R11-41	Roof Insulation Blanket R11-41. Application: Buildings with open truss unfinished interior	Retrofit	Heating	30	659,802	0	466	0.16	0.01	0	792	\$0.094	1.09
H124	Install Economizer	Economizer retrofit on unit	Retrofit	Cooling	15	3,296,668	0	3,274	0.81	0.71	0	9,277	\$0.098	0.92

Resource Assessment for Energy Trust of Oregon - Final Report 4/9/09 Page 92

Measure Code	Measure Name	Measure Description	Const. Type	Measure End Use	Average Lifetime	Total Incremental Cost	Total O\&M	Total MWh Savings	Winter MW	$\begin{array}{\|c\|} \hline \text { Summer } \\ \mathrm{mW} \\ \hline \end{array}$	Gas Impacts kTherms	Floor Area	Levelized Cost, $\$ / k W h$	BCR
		with no economizer												
E127	Windows - NonTinted AL Code to Class 40	Windows - NonTinted AL Code to Class 40. Application: New Construction	New	Heating	20	637,423	0	525	0.18	0.02	0	3,152	\$0.099	0.99
E109	Roof Insulation Blanket R11-30	Roof Insulation Blanket R11-30. Application: Buildings with open truss unfinished interior	Retrofit	Heating	30	586,491	0	389	0.13	0.01	0	792	\$0.100	1.03
H122	HVAC System Commissioning	HVAC system commissioning. Includes testing and balancing, damper settings, economizer settings, and proper HVAC heating and compressor control installation. This measure includes the proper set-up of single zone package equipment in simple HVAC systems. The majority of the Commercial area is served by this technology. Work done in Eugene (Davis, et al, 2002)	New	Heating										

Measure Code	Measure Name	Measure Description	Const. Type	Measure End Use	Average Lifetime	Total Incremental Cost	Total O\&M		Winter MW	$\begin{array}{\|c\|} \hline \text { Summer } \\ \mathrm{mW} \\ \hline \end{array}$	Gas Impacts kTherms	Floor Area	Levelized Cost, $\$ / \mathrm{kWh}$	BCR
		savings than the other documented commissioning on more complex systems.												
E131	Windows - Tinted AL Code to Class 36	Windows - Tinted AL Code to Class 36. Application: New Construction	New	Heating	20	377,760	0	231	0.08	0.01	0	1,474	\$0.133	0.74
E119	Windows - NonTinted AL Code to Class 36	Windows - NonTinted AL Code to Class 36. Application: Old buildings	Replace	Heating	20	5,669,806	0	3,091	1.06	0.10	0	10,552	\$0.150	0.66
L108	Daylight Control (overhead)	5\% savings	New	Lighting	10	57,204,281	0	52,164	7.14	9.37	-565	20,802	\$0.151	0.59
L114	Ceramic Metal Halide	100W> 44W	New	Lighting	21	17,472,353	16,162,179	17,574	2.41	3.16	-126	3,382	\$0.157	0.64
L113	Ceramic Metal Halide	100W> 44W	Replace	Lighting	21	34,711,599	31,988,660	34,811	4.77	6.26	-251	6,864	\$0.157	0.64
E128	Windows - NonTinted AL Code to Class 36	Windows - NonTinted AL Code to Class 36. Application: New Construction	New	Heating	20	1,593,557	0	782	0.27	0.02	0	3,152	\$0.166	0.59
E117	Windows - NonTinted AL Code to Class 45	Windows - NonTinted AL Code to Class 45. Application: Old buildings	Replace	Heating	20	1,508,168	0	729	0.25	0.02	0	10,552	\$0.169	0.58
E126	Windows - NonTinted AL Code to Class 45	Windows - NonTinted AL Code to Class 45. Application: New Construction	New	Heating	20	423,886	0	195	0.07	0.01	0	3,152	\$0.177	0.55
H127	Indirect/Direct Evaporative Cooling >60 ton	Install indirect/direct evaporative cooling in	New	Cooling	18	12,751,201	0	5,704	1.41	1.23	0	9,615	\$0.194	0.48

Measure Code	Measure Name	Measure Description	Const. Type	Measure End Use	Average Lifetime	Total Incremental Cost	Total O\&M		Winter MW	$\begin{gathered} \text { Summer } \\ \mathrm{mW} \end{gathered}$	Gas Impacts kTherms	Floor Area	Levelized Cost, $\$ / \mathrm{kWh}$	BCR
		commercial building HVAC system in large systems <60 ton range. Original ETO evaluation evaluated at 20, 150 and 300tons with all being essentially equivalent												
H127rep	Indirect/Direct Evaporative Cooling >60 ton	Install indirect/direct evaporative cooling in commercial building HVAC system in large systems <60 ton range. Original ETO evaluation evaluated at 20, 150 and 300tons with all being essentially equivalent	Replace	Cooling	18	55,428,808	0	24,309	6.03	5.25	0	42,985	\$0.198	0.47
H128	Rooftop Condensing Burner	Install condensing burner	Retrofit	Heating	10	21,004,333	0	12,222	3.03	2.64	0	14,121	\$0.225	0.36
W125	Solar Hot Water	Install solar water heaters on large use facility such as multifamily or lodging	New	Water Heat	15	3,291,761	201,072	1,512	0.18	0.18	0	3,465	\$0.226	0.40
L102	High Efficacy LED Display	72W> 39W	New	Lighting	21	101,484	36,920,992	10,591	1.45	1.90	-75	2,464	\$0.283	0.36
L111	Occupancy Sensors	5\% savings	New	Lighting	15	7,450,794	0	2,189	-	-	-32	4,967	\$0.343	0.25
L110	Daylight perimeter zone	10\% savings	New	Lighting	10	15,165,482	0	5,160	0.71	0.93	-80	11,666	\$0.396	0.23
H126	Indirect/Direct Evaporative Cooling	Install indirect/direct	New	Cooling	18	27,893,252	0	5,704	1.41	1.23	0	9,615	\$0.425	0.22

Measure Code	Measure Name	Measure Description	Const. Type	Measure End Use	Average Lifetime	Total Incremental Cost	Total O\&M		Winter MW	$\underset{\mathrm{mW}}{\mathrm{Summer}}$	Gas Impacts kTherms	Floor Area	Levelized Cost, \$/kWh	BCR
	-20 ton	evaporative cooling in commercial building HVAC system in 20 to 60 ton range												
H126rep	Indirect/Direct Evaporative Cooling ~20 ton	Install indirect/direct evaporative cooling in commercial building HVAC system in 20 to 60 ton range	Replace	Cooling	18	121,250,518	0	24,309	6.03	5.25	0	42,985	\$0.433	0.22
R104	Package Refrigeration - Ice makers, Vending machines	Install machines with package of measures akin to ADL low cost	new	Misc.	9	27,077,751	0	2,282	0.27	0.27	0	143,088	\$1.684	0.05
R104rep	Package Refrigeration - Ice makers, Vending machines	Install machines with package of measures akin to ADL low cost	Replace	Misc.	9	246,799,542	0	20,797	2.45	2.45	0	1,279,324	\$1.684	0.05
R105	Efficient Standalone Refrigeration Cases	Install efficient stand alone cases. This measure is based upon current rebates and SAIC savings numbers	new	Misc.	9 9	706,781,901	0	24,635	2.90	2.90	0	143,088	\$4.072	0.02
H105rep	Efficient Standalone Refrigeration Cases	Install efficient stand alone cases. This measure is based upon current rebates and SAIC savings numbers	Replace	Misc.	9	4,840,137,110	0	168,703	19.85	19.85	0	1,279,324	\$4.072	0.02

Note: Includes emerging technology measures

Table 18: Detailed Measure Table, Commercial Sector, Gas Savings, 2027 Technical Potential

Measure Code	Measure Name	Measure Description	Construction Type	Measure End Use	Average Lifetime	Total Incremental Cost	Total O\&M	Total MWh Savings	Gas Impacts kTherms	Floor Area	Levelized Cost, \$/th	BCR
Co116	EStar Steam	Install Energy Star Steam Cooker	New	Cooking	10	66,578	0	0	196	21,506	\$0.044	16.13
Co116rep	EStar Steam Cooker	Install Energy Star Steam Cooker	Replace	Cooking	10	503,392	0	0	1,485	168,077	\$0.044	16.13
H105	HW Boiler Tune	Tune up in accordance with Minneapolis Energy Office protocol. Can include derating the burner, adjusting the secondary air, adding flue restrictors, cleaning the fire-side of the heat exchanger, cleaning the water side, or installing turbulators. Other modifications may include uprating the burner to reduce oxygen or derating the burner to reduce stack temperature. Note: In gas systems, excess air and stack temperatures are often within reasonable ranges, so the technical potential for this measure is limited. Combining this measure with the vent damper and power burner measures increases both applicability and cost effectiveness, and was assumed for this analysis.	Retrofit	Heating	5	9,145	0		29	1,131	\$0.073	10.92
Co112	Infrared Fryer	0	New	Cooking	8	418,172	0	0	773	19,117	\$0.084	8.60

Measure Code	Measure Name	Measure Description	Construction Type	Measure End Use	Average Lifetime	Total Incremental Cost	Total O\&M	Total MWh Savings	Gas Impacts kTherms	Floor Area	Levelized Cost, \$/th	BCR
Co107	Infrared Fryer	0	Replace	Cooking	8	3,924,848	0	0	7,249	186,752	\$0.084	8.59
H104	Hot Water Temperature Reset	Controller automatically resets the delivery temperature in a hot water radiant system based on outside air temperature. The reset reduces the on-time of the heating equipment and the occurrence of simultaneous heating and cooling through instantaneous adjustments.	Retrofit	Heating	10	779,738	0	0	1,014	31,744	\$0.101	7.43
E111	Roof Insulation - Attic R0-30	Roof Insulation - Attic R0-30. Application: Buildings with uninsulated attics	Retrofit	Heating	30	755,884	0	1,265	318	2,478	\$0.102	7.35
R106	Heat Reclaim	Large Grocery - Heat recovery to space heating. Assumes floating head control exists and must be changed to allow HR.	New	Refrigeration	18	866,471	0	3,518	244	1,083	\$0.105	7.00
R106rep	Heat Reclaim	Large Grocery - Heat recovery to space heating. Assumes floating head control exists and must be changed to allow HR.	Replace	Refrigeration	18	3,693,658	0	14,884	1,036	4,617	\$0.106	6.95
H106	Steam Balance	Single-pipe steam systems are notorious for uneven heating, which wastes energy because the thermostat must be set to heat the coldest spaces and overheating other spaces. Steam	Retrofit	Heating	15	721,530	0	0	511	12,025	\$0.138	5.35

Measure Code	Measure Name	Measure Description	Construction Type	Measure End Use	Average Lifetime	Total Incremental Cost	Total O\&M	Total MWh Savings	Gas Impacts kTherms	Floor Area	Levelized Cost, \$/th	BCR
		balances corrects these problems by: 1) Adding air venting on the main line or at the radiators; 2) Adding boiler cycle controls; 3) Adding or subtracting radiators. Energy savings accrue from lowering the overall building temperature.										
H102	DCV	Applicable to single zone packaged systems with large make -up air fractions either because of intermittent occupancy or because of code requirements. In most cases the outdoor air is reset to 5% or less with CO2 build-up modulating ventilation.	Retrofit	Heating	15	10,703,057	0	17,059	5,302	49,048	\$0.141	5.29
E103	Roof Insulation - Rigid R0-11	Roof Insulation - Rigid R0-11-not including reroofing costs but including deck preparation. Application: Old buildings with flat roofs and no attics	Replace	Heating	30	3,720,482	0	5,083	929	5,317	\$0.152	4.94
E101	Wall Insulation Blown R11	Wall Insulation - Blown R11. Application: Old buildings	Retrofit	Heating	30	7,217,577	0	3,699	2,289	20,881	\$0.172	4.38
W127r	Waste Water Heat Exchanger	Install HX on waste water	Retrofit	Water Heat	15	480,311	0	0	238	2,676	\$0.197	3.58
W101	DHW Wrap	Insulate the surface of the storage water heater or an unfired storage tank to R-5 to reduce	Retrofit	Water Heat	7	78,020	0	0	67	16,288	\$0.203	3.61

Measure Code	Measure Name	Measure Description	Construction Type	Measure End Use	Average Lifetime	Total Incremental Cost	Total O\&M	Total MWh Savings	Gas Impacts kTherms	Floor Area	Levelized Cost, \$/th	BCR
		standby losses.										
H119	Hi Eff Unit Heater (new)	Install power draft units (80\% seas. Eff) in place of natural draft (64\% seas. Eff)	New	Heating	18	1,022,397	0	0	427	6,735	\$0.208	3.55
W102	DHW Shower Heads	Install low flow shower heads (2.0 gallons per minute) to replace 3.4 GPM shower heads.	Retrofit	Water Heat	8	608,020	0	0	425	11,424	\$0.223	3.25
H114	Hi Eff Unit Heater (replace)	Install power draft units (80\% seas. Eff) in place of natural draft (64% seas. Eff)	Replace	Heating	18	4,833,117	0	0	1,850	29,194	\$0.227	3.26
E104	Roof Insulation - Rigid R0-22	Roof Insulation - Rigid R0-22-- not including reroofing costs but including deck preparation and $\sim 4 "$ rigid.. Application: Old buildings with flat roofs and no attics	Replace	Heating	30	6,426,288	0	5,772	1,057	5,317	\$0.231	3.25
E102	Wall Insulation Spray On for Metal Buildings	Wall Insulation - Spray On for Metal Buildings (Cellulose) Unfinished. Application: Old buildings	Retrofit	Heating	30	1,078,187	0	-25	306	3,123	\$0.243	3.09
E107	Roof Insulation - Blanket R0-19	Roof Insulation - Blanket R0-19. Application: Buildings with open truss unfinished interior	Retrofit	Heating	30	1,842,477	0	46	421	2,490	\$0.287	2.62
H107	Vent Damper	Install vent damper downstream of the draft relief to prevent airflow up the stack, while allowing warm air from the boiler to spill into the conditioned space as heat or into the boiler room to reduce jacket	Retrofit	Heating	12	360,519	0	0	137	6,964	\$0.300	2.47

Measure Code	Measure Name	Measure Description	Construction Type	Measure End Use	Average Lifetime	Total Incremental Cost	Total O\&M	Total MWh Savings	Gas Impacts kTherms	Floor Area	Levelized Cost, \$/th	BCR
		losses. This measure is most cost-effective when combined with the boiler tune up and power burner measures.										
E108	Roof Insulation - Blanket R0-30	Roof Insulation - Blanket R0-30. Application: Buildings with open truss unfinished interior	Retrofit	Heating	30	2,072,786	0	51	442	2,490	\$0.307	2.45
E105	Roof Insulation - Rigid R11-22	Roof Insulation - Rigid R11-22 2" rigid added to an existing foam roof insulation at re-roof, includes some surface prep. Application: Old buildings with flat roofs, no attics, and some insulation	Replace	Heating	30	13,990,243	0	5,814	1,941	18,721	\$0.340	2.21
W124r	Computerized Water Heater Control	Install intelligent controls on the hot water circulation loops.	Retrofit	Water Heat	15	2,011,067	0	0	547	11,785	\$0.359	1.97
W121	Combo Hieff Boiler (new)	Replace existing boiler with unit meeting $O R$ Code requirements of 85\% combustion efficiency.	New	Heating	20	471,049	0	0	104	3,819	\$0.368	1.93
E112	Roof Insulation - Attic 11-30	Roof Insulation - Attic 11-30. Application: Buildings with partially insulated attics	Retrofit	Heating	30	4,400,560	0	1,174	576	16,442	\$0.397	1.89
W119	Combo Hieff Boiler (repl)	Replace existing boiler with unit meeting OR Code requirements of 85\% combustion efficiency.	Replace	Heating	20	2,075,826	0	0	417	15,219	\$0.406	1.83
W103	DHW Faucets	Add aerators to existing faucets to reduce flow from 3.4 gallons per minute to 2.0 GPM.	Retrofit	Water Heat	8	151,329	0	0	57	7,616	\$0.417	1.74

Measure Code	Measure Name	Measure Description	Construction Type	Measure End Use	Average Lifetime	Total Incremental Cost	Total O\&M	Total MWh Savings	Gas Impacts kTherms	Floor Area	Levelized Cost, \$/th	BCR
E123	Windows - Add Low E to Vinyl Tint	Windows - Add Low E to Vinyl Tint. Application: New Construction	New	Heating	20	442,153	0	421	30	7,494	\$0.418	1.77
E114	Windows - Add Low E to Vinyl Tint	Windows - Add Low E to Vinyl Tint. Application: Old buildings	Replace	Heating	20	1,751,638	0	1,629	119	29,571	\$0.427	1.74
H117	SPC Hieff Boiler (new)	Install near condensing boiler. Assumed seasonal combustion efficiency of 82\% over base of 75%	New	Heating	20	891,239	0	0	167	6,332	\$0.436	1.70
Co115	Power Range Burner	0	New	Cooking	12	579,230	0	0	144	21,506	\$0.460	1.54
Co110	Power Range Burner	0	Replace	Cooking	12	3,649,595	0	0	904	140,064	\$0.461	1.54
H111	SPC Hieff Boiler Replace	Install near condensing boiler. Assumed seasonal combustion efficiency of 82\% over base of 75\%	Replace	Heating	20	735,475	0	0	127	4,861	\$0.471	1.57
E124	Windows - Add Low E and Argon to Vinyl Tint	Windows - Add Low E and Argon to Vinyl Tint. Application: New Construction	New	Heating	20	691,488	0	424	42	7,494	\$0.576	1.28
E115	Windows - Add Low E and Argon to Vinyl Tint	Windows - Add Low E and Argon to Vinyl Tint. Application: Old buildings	Replace	Heating	20	2,739,404	0	1,589	176	29,571	\$0.578	1.28
W109	DHW Condensing Tank (new)	Costs and savings are incremental over a Code-rated tank (combustion efficiency of 80\%) for a condensing tank with a minimum combustion efficiency of 94% and an R-16 tank wrap.	New	Water Heat	15	1,549,897	0	0	261	27,350	\$0.579	1.22

Measure Code	Measure Name	Measure Description	Construction Type	Measure End Use	Average Lifetime	Total Incremental Cost	Total O\&M	Total MWh Savings	Gas Impacts kTherms	Floor Area	Levelized Cost, \$/th	BCR
W108	DHW Condensing Tank (repl)	Costs and savings are incremental over a Code-rated tank (combustion efficiency of 80%) for a condensing tank with a minimum combustion efficiency of 94% and an R-16 tank wrap.	Replace	Water Heat	15	6,095,164	0	0	1,010	108,588	\$0.589	1.20
H108	Power burner	Replace standard burner with a power burner to optimize combustion and reduce standby losses in the stack. Note: Costs and savings assume that this measure will be performed in conjunction with a boiler tune up when appropriate.	Retrofit	Heating	12	7,703,430	0	0	1,416	48,748	\$0.621	1.20
Co114	Infrared Griddle	0	New	Cooking	12	536,244	0	0	96	19,117	\$0.638	1.11
Co109	Infrared Griddle	0	Replace	Cooking	12	3,364,952	0	0	601	124,501	\$0.639	1.11
H120a	Cond Unit Heater from Nat Draft (new)	Install condensing power draft units (90\% seas. Eff) in place of natural draft (64\% seas. Eff)	New	Heating	18	5,510,548	0	0	741	8,082	\$0.646	1.14
W115	DHW Hieff Boiler (new)	Replace existing boiler with unit meeting $O R$ Code requirements of 85\% combustion efficiency.	New	Water Heat	20	803,373	0	0	95	8,285	\$0.693	1.02
W127	Waste Water Heat Exchanger	Install HX on waste water	New	Water Heat	15	1,198,545	0	0	168	6,967	\$0.697	1.01
W113	DHW Hieff Boiler (repl)	Replace existing boiler with unit meeting $O R$ Code requirements of 85\% combustion efficiency.	Replace	Water Heat	20	3,136,930	0	0	364	32,634	\$0.703	1.05

Measure Code	Measure Name	Measure Description	Construction Type	Measure End Use	Average Lifetime	Total Incremental Cost	Total O\&M	Total MWh Savings	Gas Impacts kTherms	Floor Area	Levelized Cost, \$/th	BCR
H115a	Cond Unit Heater from Nat draft (replace)	Install condensing power draft units (90\% seas. Eff) in place of natural draft (64\% seas. Eff)	Replace	Heating	18	26,049,679	0	0	3,207	35,032	\$0.706	1.05
H118	SPC Cond Boiler (new)	Install condensing boiler. Assumed seasonal combustion efficiency of 88% over base of 75%	New	Heating	20	2,748,702	0	0	311	6,839	\$0.720	1.03
W122	Combo Cond Boiler (new)	Replace with boiler using condensing or pulse technology to achieve steady-state combustion efficiencies of 89% to 94% (this analysis used 90% efficiency for savings calculations).	New	Heating	20	1,827,533	0	0	204	3,819	\$0.732	0.97
H112	SPC Cond Boiler Replace	Install condensing boiler. Assumed seasonal combustion efficiency of 88% over base of 75%	Replace	Heating	20	2,259,180	0	0	238	5,250	\$0.775	0.96
W104	DHW Pipe Ins	Add 1" insulation to pipes used for steam or hydronic distribution; particularly effective when pipes run through unheated spaces.	Retrofit	Water Heat	15	936,138	0	0	117	25,878	\$0.778	0.91
E129	Windows Tinted AL Code to Class 45	Windows - Tinted AL Code to Class 45. Application: New Construction	New	Heating	20	281,389	0	216	0	4,460	\$0.790	0.94
E121	Windows - Tinted AL Code to Class 40	Windows - Tinted AL Code to Class 40. Application: Old buildings	Replace	Heating	20	1,693,602	0	1,003	40	17,652	\$0.800	0.93
W120	Combo Cond	Replace with boiler	Replace	Heating	20	7,989,078	0	0	814	15,219	\$0.800	0.93

Measure Code	Measure Name	Measure Description	Construction Type	Measure End Use	Average Lifetime	Total Incremental Cost	Total O\&M	Total MWh Savings	Gas Impacts kTherms	Floor Area	Levelized Cost, \$/th	BCR
	Boiler (repl)	using condensing or pulse technology to achieve steady-state combustion efficiencies of 89% to 94% (this analysis used 90% efficiency for savings calculations).										
H123	HVAC controls	Control set up and algorithm. This assumes the development of an open source control package aimed at describing scheduling and control points throughout the HVAC system, properly training operators so that scheduling can be maintained and adjusted as needed, and providing operator back up so that temperature reset, pressure reset, and minimum damper settings are set at optimum levels for the current occupancy.	New	Heating	5	17,720,206	0	19,984	2,540	70,881	\$0.874	0.91
E130	Windows Tinted AL Code to Class 40	Windows - Tinted AL Code to Class 40. Application: New Construction	New	Heating	20	423,141	0	219	10	4,460	\$0.881	0.84
H103	Ducts	Duct retrofit of both insulation and air sealing	Retrofit	Heating	15	7,145,695	0	2,018	543	14,291	\$0.882	0.84
W105	DHW Recirc Controls	Install electronic controller to hot water boiler system that turns off the boiler and	Retrofit	Water Heat	10	2,757,806	0	0	380	15,897	\$0.948	0.75

Measure Code	Measure Name	Measure Description	Construction Type	Measure End Use	Average Lifetime	Total Incremental Cost	Total O\&M	Total MWh Savings	Gas Impacts kTherms	Floor Area	Levelized Cost, \$/th	BCR
		circulation pump when the hot water demand is reduced (usually in residential type occupancies) or can be reset to meet the hot water load. (Steel boilers also require a mixing valve to prevent water temperatures from dropping below required levels).										
E113	Roof Insulation - Roofcut 0-22	Roof Insulation Roofcut 0-22. Application: Buildings with uninsulated flat roofs at reroofing time	Replace	Heating	30	54,363	0	9	3	84	\$0.962	0.78
H101	Warm Up Control	This measure is designed to implement a shut down of outside air when the building is coming off night setback. Usually the capability for this is available in a commercial t-stat but either the extra control wire is not attached or the unit itself has not been set up to receive the signal. Cost is based on labor cost to enable this ability in existing controllers	Retrofit	Heating	10	11,085,625	0	0	1,405	58,787	\$1.032	0.72
W124	Computerized Water Heater Control	Install intelligent controls on the hot water circulation loops.	New	Water Heat	15	496,796	0	0	46	3,020	\$1.045	0.68
W123	Hi Eff Clothes Washer	Install high performance commercial clothes	New	Water Heat	10	555,081	0	28	65	52	\$1.059	0.68

Measure Code	Measure Name	Measure Description	Construction Type	Measure End Use	Average Lifetime	Total Incremental Cost	Total O\&M	Total MWh Savings	Gas Impacts kTherms	Floor Area	Levelized Cost, \$/th	BCR
		washers - residential sized units										
W116	DHW Cond Boiler (new)	Replace with boiler using condensing or pulse technology to achieve steady-state combustion efficiencies of 89% to 94% (this analysis used 90% efficiency for savings calculations).	New	Water Heat	20	2,431,146	0	0	185	8,285	\$1.073	0.66
W123r	Hi Eff Clothes Washer	Install high performance commercial clothes washers - residential sized units	Replace	Water Heat	10	4,207,612	0	0	504	392	\$1.091	0.66
W114	DHW Cond Boiler (repl)	Replace with boiler using condensing or pulse technology to achieve steady-state combustion efficiencies of 89% to 94% (this analysis used 90% efficiency for savings calculations).	Replace	Water Heat	20	9,569,032	0	0	711	32,634	\$1.098	0.67
E106	Roof Insulation - Rigid R11-33	Roof Insulation - Rigid R11-33: add 4' of insulation at reroof. Application: Old buildings with flat roofs, no attics, and some insulation	Replace	Heating	30	20,985,364	0	4,018	659	18,721	\$1.154	0.65
H129	Steam Trap Maintenance	Set up a in-house steam trap maintenance program with equipment, training, and trap replacement. An alternative procedure is to just pay for an outside contractor to conduct a	Retrofit	Heating	10	1,053,433	318,552	0	577	9,620	\$1.217	0.61

Measure Code	Measure Name	Measure Description	Construction Type	Measure End Use	Average Lifetime	Total Incremental Cost	Total O\&M		Gas Impacts kTherms	Floor Area	Levelized Cost, \$/th	BCR
		steam survey.										
E116	Windows - Add Argon to Vinyl Lowe	Windows - Add Argon to Vinyl Lowe. Application: Old buildings	Replace	Heating	20	8,988,268	0	-784	640	130,280	\$1.266	0.59
H120b	Cond Unit Heater From Power Draft (new)	Install condensing power draft units (90\% seas. Eff) in place of power draft (80% seas. Eff)	New	Heating	18	2,855,781	0	0	190	5,388	\$1.307	0.56
H115b	Cond Unit Heater from power draft (replace)	Install condensing power draft units (90\% seas. Eff) in place of power draft (80\% seas. Eff)	Replace	Heating	18	13,499,959	0	0	821	23,355	\$1.428	0.52
E125	Windows - Add Argon to Vinyl Lowe	Windows - Add Argon to Vinyl Lowe. Application: New Construction	New	Heating	20	2,239,214	0	-164	139	32,761	\$1.435	0.52
H121	Cond Furnace (new)	Condensing / pulse package or residentialtype furnace with a minimum AFUE of 92\%.	New	Heating	18	7,723,377	0	0	432	11,399	\$1.554	0.47
W125r	Solar Hot Water	Install solar water heaters on large use facility such as multifamily or lodging	Retrofit	Water Heat	15	18,498,211	1,129,933	0	1,218	13,246	\$1.573	0.45
E122	Windows Tinted AL Code to Class 36	Windows - Tinted AL Code to Class 36. Application: Old buildings	Replace	Heating	20	4,234,006	0	989	79	17,652	\$1.645	0.45
E131	Windows Tinted AL Code to Class 36	Windows - Tinted AL Code to Class 36. Application: New Construction	New	Heating	20	1,057,853	0	225	18	4,460	\$1.794	0.41
H122	HVAC System Commissioning	HVAC system commissioning. Includes testing and balancing, damper	New	Heating	15	52,654,326	0	11,419	1,451	81,007	\$1.801	0.41

Measure Code	Measure Name	Measure Description	Construction Type	Measure End Use	Average Lifetime	Total Incremental Cost	Total O\&M	Total MWh Savings	Gas Impacts kTherms	Floor Area	Levelized Cost, \$/th	BCR
		settings, economizer settings, and proper HVAC heating and compressor control installation. This measure includes the proper set-up of single zone package equipment in simple HVAC systems. The majority of the Commercial area is served by this technology. Work done in Eugene (Davis, et al, 2002) suggests higher savings than the other documented commissioning on more complex systems.										
H116	Cond Furnace (repl)	Condensing / pulse package or residentialtype furnace with a minimum AFUE of 92\%.	Replace	Heating	18	39,904,813	0	0	1,902	50,436	\$1.823	0.41
E118	Windows - Non-Tinted AL Code to Class 40	Windows - Non-Tinted AL Code to Class 40. Application: Old buildings	Replace	Heating	20	7,743,641	0	-407	352	41,791	\$1.910	0.39
E127	Windows -Non-Tinted AL Code to Class 40	Windows - Non-Tinted AL Code to Class 40. Application: New Construction	New	Heating	20	1,942,094	0	-71	85	10,535	\$1.946	0.38
E110	Roof Insulation - Blanket R1141	Roof Insulation - Blanket R11-41. Application: Buildings with open truss unfinished interior	Retrofit	Heating	30	5,181,965	0	23	173	6,224	\$1.960	0.38
E109	Roof Insulation - Blanket R1130	Roof Insulation - Blanket R11-30. Application: Buildings with open	Retrofit	Heating	30	4,606,192	0	23	144	6,224	\$2.084	0.36

Measure Code	Measure Name	Measure Description	Construction Type	Measure End Use	Average Lifetime	Total Incremental Cost	Total O\&M	Total MWh Savings	Gas Impacts kTherms	Floor Area	Levelized Cost, \$/th	BCR
		truss unfinished interior										
E119	Windows -Non-Tinted AL Code to Class 36	Windows - Non-Tinted AL Code to Class 36. Application: Old buildings	Replace	Heating	20	19,359,103	0	-724	531	41,791	\$3.107	0.24
E128	Windows -Non-Tinted AL Code to Class 36	Windows - Non-Tinted AL Code to Class 36. Application: New Construction	New	Heating	20	4,855,236	0	-143	128	10,535	\$3.196	0.23
E117	Windows - Non-Tinted AL Code to Class 45	Windows - Non-Tinted AL Code to Class 45. Application: Old buildings	Replace	Heating	20	5,149,521	0	-183	133	41,791	\$3.307	0.22
E126	Windows -Non-Tinted AL Code to Class 45	Windows - Non-Tinted AL Code to Class 45. Application: New Construction	New	Heating	20	1,291,493	0	-33	32	10,535	\$3.397	0.22
H128	Rooftop Condensing Burner	Install condensing burner	Retrofit	Heating	10	72,959,466	0	10,477	1,391	49,048	\$3.689	0.20
W125	Solar Hot Water	Install solar water heaters on large use facility such as multifamily or lodging	New	Water Heat	15	4,585,397	280,092	0	96	3,439	\$4.956	0.14

Table 19: Detailed Measure Table, Residential Sector, Electricity Savings, 2027 Technical Potential

Measure Code	Measure Description	Program	Average Life time	Total Incremental Cost	Total O\&M Impact (\$)	Total KWh Savings	Winter Peak Savings, kW	Summer Peak Savings, kW	Gas Savings Therms	Level Cost, \$/kWh	Level Cost, \$/th	BCR	No. Units
N-A102	MEF 2.0 Washer	New	12	3,440,567	11,747,241	4,833,801	700	586	57,115	-\$0.180	$\$ 1.349$	100.00	103,632
N-A105	Hi-eff Washer	New	12	1,935,319	-6,765,152	3,526,419	510	427	1,580	-\$0.156	\|\$1.167	100.00	38,862
R-A105	Hi-eff Washer	Replace	12	25,878,741	$41,262,215$	26,681,914	3,861	3,234	0	-\$0.066	na	100.00	168,044
R-A102	MEF 2.0 Washer	Replace	12	58,317,215	$66,337,147$	41,460,480	6,000	5,025	1,504,550	-\$0.017	$\$ 0.130$	100.00	516,082
N-A107	Energy Star Televsion	Replace	12	375	0	33,405,211	3,930	3,930	-202,252	\$0.004	na	63960.14	374,784
R-D107	Hot water pipe wrap	Replace	10	27,460	0	1,169,772	138	138	-9,073	\$0.009	na	25.67	1,248
R-W105	Window replace (U=.35), ER Z 1	Replace	45	3,594,296	0	21,746,562	5,472	152	0	\$0.010	na	11.92	12,705
R-W108	Window replace (U=.35), HP Z 2	Replace	45	176,075	0	1,064,226	178	45	0	\$0.010	na	12.39	505
R-D106	Tank wrap (in accordance with EWEB guidelines or equivalent)	Replace	10	10,485	0	216,752	25	25	-1,681	\$0.012	na	12.46	3,745
R-W106	Window replace (U=.35), HP Z 1	Replace	45	1,010,976	0	4,067,251	680	170	0	\$0.014	na	8.25	2,956
R-W107	Window replace (U=.35), ER Z 2	Replace	45	2,283,698	0	8,870,382	2,232	62	0	\$0.015	na	7.65	10,043
R-L102	Common Area Lighting (MF Only)	Retro	7	2,045,657	0	28,625,138	3,367	3,367	-192,782	\$0.017	na	6.30	127,854
N-H115	Ducts Indoor, DHW, Lights (HP, Z2)	New	45	9,392,125	0	30,628,819	5,120	1,284	0	\$0.018	na	6.69	15,243
N-H111	E* Insulation, Ducts, DHW, Lights (HP, Z 2)	New	45	12,031,313	0	32,989,680	5,515	1,382	0	\$0.021	na	5.62	7,590
R-H107	Duct Sealing, Elect Resis, Z 2	Retro	20	1,646,355	0	5,725,260	1,441	40	0	\$0.023	na	4.53	2,755
R-A108	LowPowerMode Appliances	Replace	12	94,812,300	0	393,660,688	46,310	46,310	1,176,285	\$0.030	na	3.06	1,096,928

R-A104	Refrigerator Recycle	Replace	6	4,044,629	0	26,845,205	3,158	3,158	0	\$0.030	na	2.81	40,446
N-A104	LowPowerMode Appliances	New	12	39,757,772	0	163,912,681	19,282	19,282	-497,746	\$0.030	na	3.04	455,666
R-W135	Wx (ceiling,floor) ER, Z 2	Retro	45	937,669	0	1,810,308	456	13	0	\$0.030	na	3.80	532
R-L101	Retail Lights (2 lamps)	Retro	7	4,122,926	0	27,862,743	3,278	3,278	-208,406	\$0.031	na	3.02	687,154
N-H116	$\begin{aligned} & \text { E* HP HSPF } \\ & 7.7>9.5(\mathrm{Z} 2) \text { w. cx } \end{aligned}$	New	15	5,450,782	0	16,635,383	2,781	697	0	\$0.032	na	3.32	7,464
R-H102	Duct Sealing, Elect Resis, Z 1	Retro	20	20,506,840	0	49,519,116	12,460	346	0	\$0.034	na	3.15	36,485
R-H106	Duct Sealing, Heat Pump, Z 2	Retro	20	1,719,444	0	4,017,269	672	168	0	\$0.035	na	3.18	2,881
R-W137	$\begin{aligned} & \text { Wx (ceiling,floor) } \\ & \text { HP, Z } 2 \end{aligned}$	Retro	45	266,941	0	440,075	74	18	0	\$0.035	na	3.38	127
N-H114	Window U=. 3 (ER, Z 2)	New	45	2,217,753	0	3,619,387	911	25	0	\$0.035	na	3.21	15,243
R-H110	$\begin{aligned} & \text { Commissioning } \\ & \text { (HP), Z } 2 \end{aligned}$	Retro	5	552,613	0	3,481,156	582	146	0	\$0.037	na	2.77	2,535
R-D100	Tank upgrade (50 gal)-10 yr warranty	Replace	10	965,502	0	3,350,983	485	406	-15,772	\$0.038	na	2.44	27,586
N-H121	E* Insulation, Ducts, DHW, Lights (HP, Z 3)	New	45	4,637,793	0	6,609,115	1,105	277	0	\$0.041	na	2.92	3,099
N-GH133	Ducts Indoor, DHW, Lights (Gas Z 3)	New Gas	45	1,648,548	0	8,331	2	0	346,946	\$0.041	\$0.274	2.76	2,127
R-H105	$\begin{aligned} & \text { Commissioning } \\ & \text { (HP), z } 1 \end{aligned}$	Retro	5	7,108,348	0	39,252,573	6,562	1,645	0	\$0.042	na	2.43	33,138
R-D101	Tank upgrade (50 gal)-20 yr warranty	Replace	20	1,034,467	0	1,952,469	283	237	-9,687	\$0.043	na	2.37	13,793
R-W127	Wx (ceiling,floor) ER, Z 1	Retro	45	7,841,071	0	10,479,523	2,637	73	0	\$0.043	na	2.63	4,134
N-H126	E* HP HSPF 7.7>9.5 (Z 3) w. cx	New	15	2,054,779	0	4,285,409	716	180	0	\$0.047	na	2.27	2,936
N-GH138	Ducts Indoor, DHW, Lights (Gas Z 4)	New Gas	45	1,957,651	0	15,899	4	0	340,895	\$0.050	\$0.330	2.29	2,526
N-L103	Add 6 LED lamps (using incandesent base) aft 2015	New	10	2,026,923	0	6,326,560	744	744	-77,987	\$0.051	na	1.79	42,228

N-H125	Ducts Indoor, DHW, Lights (HP, Z 3)	New	45	5,648,974	0	6,332,705	1,059	265	0	\$0.052	na	2.30	10,413
R-H108	Heat Pump, (HP Upgrade), Z 2	Replace	18	691,473	0	1,157,387	193	49	0	\$0.052	na	2.11	384
N-L105	Add 16 LED lamps (using incand base) after 2015	New	10	3,341,723	0	10,143,187	1,193	1,193	-138,093	\$0.053	na	1.72	26,107
R-D102	Heat pump water heater (50 gal)	Replace	15	7,002,868	2,184,202	16,649,860	2,410	2,018	0	\$0.054	na	1.81	7,110
N-GH128	Ducts Indoor, DHW, Lights (Gas Z 1-2)	New Gas	45	11,155,703	0	1,439,923	362	10	1,570,419	\$0.054	\$0.361	2.09	14,394
N-H113	$\begin{aligned} & \text { Window U=. } 3 \text { (HP, } \\ & \text { Z 2) } \end{aligned}$	New	45	1,414,978	0	1,487,341	249	62	0	\$0.055	na	2.15	7,929
R-D103	Heat pump water heater (80 gal)	Replace	15	688,987	163,328	1,481,350	214	180	0	\$0.056	na	1.73	532
N-H104	Window U=. 3 (ER, Z 1)	New	45	3,282,608	0	3,338,060	840	23	0	\$0.057	na	2.00	24,095
N-H106	$\begin{aligned} & \mathrm{E}^{*} \text { HP HSPF } \\ & 7.7>9.5(\mathrm{Z} 1) \text { w. cx } \\ & \hline \end{aligned}$	New	15	6,852,498	0	11,204,620	1,873	470	0	\$0.060	na	1.78	9,775
N-D102	Tank upgrade (50 gal)-20 yr warranty	New	20	8,120,452	0	11,240,441	1,627	1,362	-25,244	\$0.061	na	1.71	108,273
R-H101	Duct Sealing, Heat Pump, Z 1	Retro	20	21,059,271	0	28,076,492	4,694	1,177	0	\$0.061	na	1.81	37,657
R-W138	Wx (ceiling, floor, wall) HP, Z2	Retro	45	619,277	0	574,643	96	24	0	\$0.062	na	1.90	182
N-H101	E* Insulation, Ducts, DHW, Lights (HP, Z 1)	New	45	17,800,992	0	16,051,575	2,683	673	0	\$0.064	na	1.85	12,341
R-L103	50% LED after 2020	Retro	10	40,605,568	0	89,508,031	10,530	10,530	-668,357	\$0.065	na	1.33	135,352
N-L102	Full lighting (all high efficacy)	New	7	5,630,634	0	15,244,198	1,793	1,793	-141,417	\$0.071	na	1.19	50,274
N-GH129	E* Insulation, Ducts, DHW, Lights (Gas Z 3)	New Gas	45	25,108,237	0	711,311	179	5	2,956,271	\$0.072	\$0.475	1.60	18,078
N-GH125	Heating upgrade (AFUE 90) (Z 1-2)	New Gas	15	180,024	0	772	0	0	33,765	\$0.072	\$0.519	1.42	1,200
N-L108	Common Area Lighting (MF Only)	New	7	1,487,156	0	3,514,634	413	413	-3,334	\$0.074	na	1.12	92,947
R-H109	$\begin{aligned} & \text { Heat Pump, (ER } \\ & \text { Base), Z } 2 \end{aligned}$	Retro	18	855,404	49,982	1,042,505	174	44	0	\$0.075	na	1.45	132

N-A106	Home Energy Monitor	New	3	2,985,524	0	14,524,921	1,709	1,709	0	\$0.076	na	1.19	28,434
N-GH134	E* Insulation, Ducts, DHW, Lights (Gas Z 4)	New Gas	45	25,108,237	0	5,047,893	1,270	35	2,114,843	\$0.076	\$0.506	1.50	18,078
N-D103	Heat pump water heater (50 gal)	New	15	14,349,942	4,475,762	23,328,562	3,376	2,827	0	\$0.079	na	1.23	14,568
R-L104	100% LED after 2020	Retro	10	62,705,855	0	110,042,035	12,945	12,945	-831,081	\$0.080	na	1.06	104,510
R-A106	Home Energy Monitor	Replace	3	20,199,830	0	93,005,179	10,941	10,941	0	\$0.080	na	1.12	192,379
R-H103	Heat Pump, (HP Upgrade), Z 1	Replace	18	4,247,620	0	4,596,482	768	193	0	\$0.080	na	1.36	2,360
N-D101	Tank upgrade (50 gal)-10 yr warranty	New	10	3,789,544	0	6,282,337	909	761	-19,137	\$0.081	na	1.14	108,273
R-W129	$\begin{aligned} & \text { Wx (ceiling,floor) } \\ & \text { HP, Z } 1 \end{aligned}$	Retro	45	2,693,242	0	1,921,171	321	81	0	\$0.081	na	1.46	1,295
N-H102	E* Insulation, Ducts, DHW, Lights (ER, Z 1)	New	45	16,220,010	0	11,524,845	3,957	358	0	\$0.082	na	1.30	18,374
N-H118	HRV E* (HP Z 2)	New	15	19,330,301	0	21,966,456	3,672	921	0	\$0.086	na	1.24	7,929
N-C108	Room AC (Z 1)	New	18	386,931	0	377,327	0	172	0	\$0.089	na	1.17	9,673
R-H112	ER> Mini-split ductless heat pump Z2-3	Retro	15	84,434,715	0	90,317,000	15,098	3,785	0	\$0.091	na	1.16	28,145
R-A103	Estar Dishwasher	Replace	12	27,139,027	-6,572,160	20,752,498	3,003	2,515	613,245	\$0.092	\$0.721	1.02	714,185
N-D104	Heat pump water heater (80 gal)	New	15	6,151,515	1,458,244	7,774,831	1,125	942	0	\$0.096	na	1.02	4,747
R-W128	Wx (ceiling, floor, wall) ER, Z1	Retro	45	36,454,018	0	21,789,695	5,483	152	0	\$0.097	na	1.18	15,095
N-H122	E* Insulation, Ducts, DHW, Lights (ER, Z 3)	New	45	3,313,366	0	1,952,586	491	14	0	\$0.098	na	1.16	3,510
R-A101	Estar Refrigerator	Replace	12	27,734,007	0	33,277,016	3,915	3,915	-190,554	\$0.099	na	0.86	374,784
N-H105	Ducts Indoor, DHW, Lights (HP, Z 1)	New	15	13,901,753	0	13,616,234	2,276	571	0	\$0.100	na	1.07	24,095
R-C108	Room AC (Z 2)	Retro	18	688,446	0	594,576	0	271	0	\$0.101	na	1.04	17,211
R-W130	Wx (ceiling, floor, wall) HP, Z1	Retro	45	5,812,695	0	3,324,835	556	139	0	\$0.101	na	1.17	1,727
N-H103	$\begin{aligned} & \text { Window U=. } 3 \text { (HP, } \\ & \text { Z 1) } \end{aligned}$	New	45	1,776,622	0	975,923	163	41	0	\$0.105	na	1.13	10,364

R-H104	$\begin{aligned} & \text { Heat Pump, (ER } \\ & \text { Base), Z } 1 \end{aligned}$	Retro	18	281,241,849	16,433,136	242,160,994	60,934	1,693	0	\$0.107	na	0.98	43,268
N-H119	HRV E* (ER Z 2)	New	15	30,297,176	0	27,538,675	4,604	1,154	0	\$0.107	na	0.99	15,243
R-W131	$\begin{aligned} & \text { Windows U=.30, } \\ & \text { ER, Z } 1 \end{aligned}$	Retro	45	57,765,478	0	27,183,202	6,840	190	0	\$0.123	na	0.93	15,881
R-W140	$\begin{aligned} & \text { Windows U-.30, } \\ & \text { HP, Z } 2 \end{aligned}$	Retro	45	1,566,283	0	736,320	123	31	0	\$0.123	na	0.96	349
R-C104	Room AC (Z 1)	Retro	18	1,169,444	0	758,423	0	346	0	\$0.134	na	0.78	29,236
N-H109	HRV, E* (ER Z 1)	New	15	44,844,365	0	32,561,619	8,193	228	0	\$0.134	na	0.76	24,095
R-H111	ER> Mini-split ductless heat pump Z1	Retro	15	983,347,469	0	697,848,920	116,660	29,244	0	\$0.138	na	0.77	327,782
N-H128	HRV E* (HP Z 3)	New	15	7,255,621	0	4,924,131	823	206	0	\$0.144	na	0.74	3,099
N-L107	All LED (from 2020 base) after 2020	New	10	4,024,795	0	3,579,924	421	421	-48,739	\$0.157	na	0.50	15,480
N-H112	E* Insulation, Ducts, DHW, Lights (ER, Z 2)	New	45	6,000,154	0	2,163,268	544	15	0	\$0.161	na	0.71	5,579
N-L101	$\begin{aligned} & \text { E* lighting (18 } \\ & \text { lamps) } \\ & \hline \end{aligned}$	New	7	10,533,302	19,803,371	34,091,056	4,010	4,010	-338,156	\$0.163	na	0.49	191,515
R-W133	HRV ER, Z 1	Retro	18	48,779,737	0	23,922,959	6,020	167	0	\$0.177	na	0.59	30,174
R-C103	Evaporative Cooling (Direct/indirect) (Z 1)	Retro	18	15,277,903	0	7,215,842	0	3,291	0	\$0.184	na	0.57	19,097
R-W132	$\begin{aligned} & \text { Windows U-.30, } \\ & \text { HP, Z } 1 \end{aligned}$	Retro	45	16,247,823	0	5,084,064	850	213	0	\$0.185	na	0.64	3,695
N-A103	Estar Dishwasher	New	12	886,050	-214,571	326,800	47	40	11,016	\$0.185	\$1.460	0.51	23,317
$\mathrm{N}-\mathrm{H} 120$	ER> Mini-split ductless heat pump Z2	New	15	13,552,047	0	6,992,615	1,169	293	0	\$0.189	na	0.56	6,588
N-A101	Estar Refrigerator	New	12	30,868,038	0	18,123,563	2,132	2,132	-52,552	\$0.196	na	0.43	218,922
R-W139	$\begin{aligned} & \text { Windows U=.30, } \\ & \text { ER, } z 2 \end{aligned}$	Retro	45	21,072,610	0	6,135,475	1,544	43	0	\$0.199	na	0.57	7,229
N-H129	HRV E* (ER Z 3)	New	15	18,222,496	0	8,861,677	1,481	371	0	\$0.201	na	0.53	10,413
$\mathrm{N}-\mathrm{H} 108$	HRV, E* (HP Z 1)	New	15	25,647,495	0	12,422,501	2,077	521	0	\$0.202	na	0.53	11,282
N-C110	Evaporative Cooling (Direct/indirect) (Z 1)	New	18	9,983,302	0	4,185,202	0	1,909	0	\$0.207	na	0.50	12,479

N-H130	ER> Mini-split ductless heat pump Z3	New	15	4,714,985	0	2,141,225	358	90	0	\$0.215	na	0.49	2,289
R-D104	Solar hot water heater (50 gal) Solar Z 2. With electric backup.	Replace	20	192,291,028	0	69,360,243	9,388	29,467	0	\$0.226	na	0.43	29,904
R-C105	AC Tune - up (Z 2)	Retro	18	2,634,183	0	977,609	0	446	0	\$0.234	na	0.45	17,561
R-W136	Wx (ceiling, floor, wall) ER, Z2	Retro	45	23,856,078	0	5,836,585	1,469	41	0	\$0.237	na	0.48	11,377
R-W142	HRV HP Z 2	Retro	18	1,322,639	0	452,267	76	19	0	\$0.254	na	0.43	664
R-W141	HRV ER, Z 2	Retro	18	17,794,648	0	5,817,764	1,464	41	0	\$0.266	na	0.39	13,736
N-GH124	E* Insulation, Ducts, DHW, Lights (Gas Z 1-2)	New Gas	45	193,996,390	0	9,179,789	2,310	64	4,894,710	\$0.270	\$1.790	0.42	154,507
N-L104	Add 6 LED lamps (using CFL base) after 2015	New	10	1,253,146	0	603,761	71	71	-8,220	\$0.282	na	0.27	26,107
N-L106	Add 16 LED lamps (using CFL base) after 2015	New	10	3,341,723	0	1,569,779	185	185	-21,372	\$0.289	na	0.27	26,107
R-C107	Evaporative Cooling (Direct/indirect) (Z 2)	Retro	18	13,768,925	12,875,477	7,762,518	0	3,540	0	\$0.298	na	0.35	17,211
N-H117	$\begin{aligned} & \text { E* GSHP HSPF } 12 \\ & (\mathrm{Z} 2) \end{aligned}$	New	15	6,733,956	0	2,126,072	355	89	0	\$0.309	na	0.34	464
N-H110	ER> Mini-split ductless heat pump Z1	New	15	13,464,373	0	4,237,870	1,066	30	0	\$0.310	na	0.33	6,280
N-D105	Solar hot water heater (50 gal) With electric backup.	New	20	451,975,148	0	118,822,290	16,083	50,481	0	\$0.310	na	0.32	70,289
N-H124	Window U=. 3 (ER, Z 3)	New	45	5,102,299	0	941,054	237	7	0	\$0.314	na	0.36	10,413
N-H123	Window U=. 3 (HP, Z 3)	New	45	2,031,574	0	349,308	58	15	0	\$0.337	na	0.35	3,099
R-C101	AC Tune - up (Z 1)	Retro	18	10,461,617	0	2,659,155	0	1,213	0	\$0.342	na	0.31	69,744
R-W134	HRV HP Z 1	Retro	18	13,720,384	0	3,457,378	578	145	0	\$0.345	na	0.32	7,021
N-C111	Room AC (Z 2)	New	18	2,444,134	0	588,210	0	268	0	\$0.361	na	0.29	61,103

N-H127	$\begin{aligned} & \text { E* GSHP HSPF } 12_{\left(\begin{array}{l} \text { Z } \end{array}\right.} \end{aligned}$	New	15	2,356,885	0	542,083	91	23	0	\$0.425	na	0.25	163
N-C113	Evaporative Cooling (Direct/indirect) (Z 2)	New	18	6,346,195	0	1,021,778	0	466	0	\$0.540	na	0.19	7,933
N-H107	$\begin{aligned} & \text { E* GSHP HSPF } 12 \\ & \left(\begin{array}{ll} \text { (} & 1 \end{array}\right) \end{aligned}$	New	15	7,746,628	0	1,363,941	228	57	0	\$0.555	na	0.19	534
N-C109	High SEER CAC, (SEER 15) (Z 1)	New	18	100,306,197	0	15,594,389	0	7,112	0	\$0.559	na	0.19	143,295
R-C106	$\begin{aligned} & \text { High SEER CAC, } \\ & (\text { SEER 15) (Z 2) } \end{aligned}$	Retro	18	17,780,736	0	2,733,566	0	1,247	0	\$0.565	na	0.18	19,756
R-C102	High SEER CAC, (SEER 15) (Z 1)	Retro	18	70,615,915	0	7,247,485	0	3,305	0	\$0.847	na	0.12	78,462
N-C112	$\begin{aligned} & \text { High SEER CAC, } \\ & \text { (SEER 15) (Z 2) } \end{aligned}$	New	18	72,547,782	0	4,193,713	0	1,913	0	\$1.503	na	0.07	103,640

Note: Includes emerging technology measures

Table 20: Detailed Measure Table, Residential Sector, Gas Savings, and 2027 Technical Potential

Measure Code	Measure Description	Program	Average Lifetime	Total Incremental Cost	Total O\&M Impact (\$)	Total KWh Savings	Winter Peak Savings, kW	Summer Peak Savings, kW	Gas Savings Therms	Level Cost, \$/kWh	Level Cost, \$/th	BCR	No. Units
N-A102	MEF 2.0 Washer	New	12	17,461,607	-59,619,738	19,232,240	2,783	2,331	57,115	-\$0.245	-\$1.833	100.00	525,952
N-A105	Hi-eff Washer	New	12	9,822,154	-34,334,581	22,067,504	3,194	2,675	1,580	-\$0.127	-\$0.949	100.00	197,232
R-A102	MEF 2.0 Washer	Replace	12	58,317,215	-66,337,147	41,460,480	6,000	5,025	1,504,550	-\$0.017	-\$0.130	100.00	516,082
R-GH115	AFUE 90 to hydrocoil combo, Z 3	Retro Gas	45	867,078	0	0	0	0	495,985	na	\$0.101	7.46	2,890
R-GH118	AFUE 90 to hydrocoil combo, Z 4	$\begin{aligned} & \text { Retro } \\ & \text { Gas } \end{aligned}$	45	867,078	0	0	0	0	487,244	na	\$0.103	7.33	2,890
R-GH112	AFUE 92 to hydrocoil combo, Z 1-2	Retro Gas	45	7,727,005	0	0	0	0	2,292,345	na	\$0.195	3.87	25,757
$\begin{array}{\|l\|} \hline \text { R- } \\ \text { GW128 } \\ \hline \end{array}$	Wx insulation (add walls), Z 4	$\begin{aligned} & \text { Retro } \\ & \text { Gas } \\ & \hline \end{aligned}$	45	5,553,700	0	0	0	0	1,535,860	na	\$0.209	3.61	4,609
$\begin{array}{\|l\|} \hline \text { R- } \\ \text { GW123 } \\ \hline \end{array}$	Wx insulation (add walls), Z 3	Retro Gas	45	893,565	0	0	0	0	232,351	na	\$0.223	3.39	823
N-GH133	Ducts Indoor, DHW, Lights (Gas Z 3)	New Gas	45	1,648,548	0	8,331	2	0	346,946	\$0.041	\$0.274	2.76	2,127
$\begin{aligned} & \text { R- } \\ & \text { GW127 } \end{aligned}$	Wx insulation (ceiling, floor), Z 4	Retro Gas	45	7,932,359	0	0	0	0	1,659,335	na	\$0.277	2.73	3,981
$\begin{aligned} & \mathrm{R}- \\ & \mathrm{GW} 122 \end{aligned}$	Wx insulation (ceiling, floor), Z 3	Retro Gas	45	1,243,977	0	0	0	0	253,196	na	\$0.285	2.65	672
$\begin{aligned} & \mathrm{R}- \\ & \mathrm{GW} 118 \end{aligned}$	Wx insulation (add walls), Z 12	Retro Gas	45	81,407,568	0	0	0	0	16,138,694	na	\$0.292	2.59	63,370
R-GH114	$\begin{aligned} & \text { Duct Sealing, Z } \\ & 3 \end{aligned}$	Retro Gas	20	482,224	0	0	0	0	131,969	na	\$0.298	2.47	797
N-GH130	Heating upgrade (AFUE 90) (Z 3)	New Gas	15	31,912	0	0	0	0	9,505	na	\$0.328	2.25	225
N-GH138	Ducts Indoor, DHW, Lights (Gas Z 4)	New Gas	45	1,957,651	0	15,899	4	0	340,895	\$0.050	\$0.330	2.29	2,526
R-GH117	Duct Sealing, Z	Retro	20	482,224	0	0	0	0	118,706	na	\$0.332	2.23	797

Measure Code	Measure Description	Program	Average Lifetime	Total Incremental Cost	Total O\&M Impact (\$)	Total KWh Savings	Winter Peak Savings, kW	Summer Peak Savings, kW	Gas Savings Therms	Level Cost, \$/kWh	Level Cost, \$/th	BCR	No. Units
	4	Gas											
N-GH128	Ducts Indoor, DHW, Lights (Gas Z 1-2)	New Gas	45	11,155,703	0	1,439,923	362	10	1,570,419	\$0.054	\$0.361	2.09	14,394
RGW117	Wx insulation (ceiling, floor), Z 1-2	Retro Gas	45	108,147,695	0	0	0	0	16,349,617	na	\$0.383	1.97	53,805
N-GH135	Heating upgrade (AFUE 90) (Z 4)	New Gas	15	31,912	0	0	0	0	7,166	na	\$0.435	1.70	225
R-GH124	AFUE 90+ Furnace, Z 4	Replace Gas	18	5,826,518	2,501,729	0	0	0	1,583,456	na	\$0.457	1.61	20,768
N-GH132	$\begin{aligned} & \text { HRV, E* (Gas Z } \\ & 3 \text { 3) } \\ & \hline \end{aligned}$	New Gas	15	1,858,661	0	0	0	0	388,169	na	\$0.468	1.58	6,267
R-GH120	AFUE 90+ Furnace, Z 1-2	Replace Gas	18	49,695,619	20,584,151	0	0	0	12,981,801	na	\$0.470	1.56	170,881
N-GH129	E* Insulation, Ducts, DHW, Lights (Gas Z 3)	New Gas	45	25,108,237	0	711,311	179	5	2,956,271	\$0.072	\$0.475	1.60	18,078
R-GH122	AFUE 90+ Furnace, Z 3	Replace Gas	18	5,826,518	2,501,729	0	0	0	1,517,613	na	\$0.477	1.54	20,768
N-GH134	E* Insulation, Ducts, DHW, Lights (Gas Z 4)	New Gas	45	25,108,237	0	5,047,893	1,270	35	2,114,843	\$0.076	\$0.506	1.50	18,078
N-GH125	Heating upgrade (AFUE 90) (Z 12)	New Gas	15	180,024	0	772	0	0	33,765	\$0.072	\$0.519	1.42	1,200
N-GH137	HRV, E* (Gas Z 4)	New Gas	15	1,858,661	0	0	0	0	292,620	na	\$0.620	1.19	6,267
R-GH116	Boiler to Polaris Combo radiant, Z 3	Retro Gas	45	12,717,149	0	0	0	0	1,151,966	na	\$0.639	1.18	2,890
R-GH111	$\begin{aligned} & \text { Duct Sealing, Z } \\ & 1-2 \end{aligned}$	Retro Gas	20	4,195,831	0	0	0	0	531,435	na	\$0.644	1.15	6,779
R-GH119	Boiler to Polaris Combo radiant, Z 4	Retro Gas	45	12,717,149	0	0	0	0	1,102,216	na	\$0.668	1.13	2,890
N-GH139	Tank upgrade (50 gal gas)	New Gas	15	22,590,923	0	0	0	0	3,184,322	na	\$0.693	1.01	115,256

Measure Code	Measure Description	Program	Average Lifetime	Total Incremental Cost	Total O\&M Impact (\$)	Total KWh Savings	Winter Peak Savings, kW	Summer Peak Savings, kW	Gas Savings Therms	Level Cost, \$/kWh	Level Cost, \$/th	BCR	No. Units
R-GD110	Tankless Gas heater replace	Replace Gas	20	194,227,189	0	0	0	0	22,860,178	na	\$0.693	1.01	246,680
N-GH127	$\begin{aligned} & \begin{array}{l} \text { HRV, E* (Gas Z } \\ 1-2) \end{array} \\ & \hline \end{aligned}$	New Gas	15	12,146,439	0	0	0	0	1,700,492	na	\$0.697	1.06	40,489
R-A103	Estar Dishwasher	Replace	12	27,139,027	-6,572,160	20,752,498	3,003	2,515	613,245	\$0.092	\$0.721	1.02	714,185
R- GW130	Window replace $(\mathrm{U}=.35), \mathrm{Z} 4$	Replace Gas	45	595,209	0	0	0	0	46,455	na	\$0.742	1.02	1,833
N-GD106	$\begin{aligned} & \text { Tank upgrade } \\ & \text { (50 gal gas) Hi } \\ & \text { Eff Alternative } \end{aligned}$	New Gas	15	33,990,055	0	0	0	0	4,466,269	na	\$0.743	0.94	60,838
R-GD111	Tank upgrade (50 gal gas) Hi Eff Alternative	Replace Gas	15	47,731,073	0	0	0	0	6,271,237	na	\$0.743	0.94	82,309
RGW125	Window replace $(U=.35), \mathrm{Z} 3$	Replace Gas	45	96,187	0	0	0	0	7,184	na	\$0.775	0.97	331
R-GD112	Upgrade to Navien Tankless Gas heater	Replace Gas	20	34,539,148	0	0	0	0	3,339,127	na	\$0.844	0.83	246,680
R-GH123	Duct Sealing and AFUE 90+, Z 3	Replace Gas	20	6,291,314	994,013	0	0	0	679,479	na	\$0.875	0.84	4,056
N-GD109	Upgrade to Navien Tankless Gas heater	New Gas	20	4,045,220	0	0	0	0	371,382	na	\$0.889	0.79	27,173
N-GD108	Tankless Gas heater	New Gas	20	29,505,869	0	0	0	0	2,649,341	na	\$0.909	0.77	28,315
R-GH125	$\begin{aligned} & \text { Duct Sealing } \\ & \text { and AFUE 90+, } \\ & \text { Z } 4 \end{aligned}$	Replace Gas	20	6,291,314	994,013	0	0	0	600,793	na	\$0.990	0.75	4,056
R-GH113	Boiler to Polaris Combo radiant, Z 1-2	Retro Gas	45	113,329,411	0	0	0	0	6,155,848	na	\$1.066	0.71	25,757
RGW120	Window replace (U=.35), Z 1-2	Replace Gas	45	8,148,680	0	0	0	0	439,749	na	\$1.073	0.70	24,970
N-GH131	Window U=. 3 (Gas Z 3)	New Gas	45	12,598	0	0	0	0	665	na	\$1.097	0.69	70
N-A103	Estar Dishwasher	New	12	4,496,890	-1,088,996	2,582,221	374	313	11,016	\$0.146	\$1.148	0.64	118,339

Measure Code	Measure Description	Program	Average Lifetime	Total Incremental Cost	Total O\&M Impact (\$)	Total KWh Savings	Winter Peak Savings, kW	Summer Peak Savings, kW	Gas Savings Therms	Level Cost, \$/kWh	Level Cost, \$/th	BCR	No. Units
$\begin{aligned} & \mathrm{R}- \\ & \text { GW129 } \\ & \hline \end{aligned}$	Window, retro $\text { (U=.35), Z } 4$	Retro Gas	45	24,473,983	0	0	0	0	1,192,924	na	\$1.188	0.64	5,806
$\begin{aligned} & \mathrm{R}- \\ & \mathrm{GW} 124 \end{aligned}$	Window, retro $(\mathrm{U}=.35), \mathrm{Z} 3$	Retro Gas	45	4,334,273	0	0	0	0	202,650	na	\$1.239	0.61	1,144
N-GH136	$\begin{aligned} & \text { Window U=. } 3 \\ & (\text { Gas Z 4) } \end{aligned}$	New Gas	45	12,598	0	0	0	0	501	na	\$1.456	0.52	70
N-GH126	Window U=. 3 (Gas Z 1-2)	New Gas	45	82,326	0	0	0	0	2,924	na	\$1.631	0.46	450
$\begin{aligned} & \mathrm{R}- \\ & \mathrm{GW} 119 \end{aligned}$	Window, retro $(\mathrm{U}=.35), \mathrm{Z} \mathrm{1-2}$	Retro Gas	45	312,594,809	0	0	0	0	10,545,249	na	\$1.717	0.44	73,577
N-GH124	E* Insulation, Ducts, DHW, Lights (Gas Z 12)	New Gas	45	193,996,390	0	9,179,789	2,310	64	4,894,710	\$0.270	\$1.790	0.42	154,507
R-GD116	Wx Air Sealing, Z 4	Retro Gas	10	1,265,914	0	0	0	0	81,628	na	\$2.028	0.37	2,985
R-GH121	Duct Sealing and AFUE 90+, Z 1-2	Replace Gas	18	54,228,260	7,801,961	0	0	0	2,657,346	na	\$2.028	0.39	33,895
R-GD115	Wx Air Sealing, Z 3	Retro Gas	10	118,225	0	0	0	0	7,613	na	\$2.031	0.37	278
$\begin{aligned} & \text { R- } \\ & \text { GW131 } \\ & \hline \end{aligned}$	HRV, Z 4	Retro Gas	18	7,528,368	2,264,546	0	0	0	337,565	na	\$2.521	0.29	3,952
GW126	HRV, Z 3	Retro Gas	18	1,180,842	382,594	0	0	0	51,845	na	\$2.620	0.28	668
$\begin{aligned} & \mathrm{R}- \\ & \mathrm{GW} 121 \end{aligned}$	HRV, Z 1-2	Retro Gas	36	103,043,753	43,205,669	0	0	0	2,990,284	na	\$3.032	0.25	53,801
R-GD114	Wx Air Sealing, Z 1-2	Retro Gas	10	10,898,941	0	0	0	0	452,080	na	\$3.153	0.24	25,117
R-GD113	Solar hot water heater (50 gal) With gas backup.	Replace Gas	20	333,979,814	0	0	0	0	6,065,607	na	\$4.493	0.15	51,939
N-GD107	Solar hot water heater (50 gal) With gas backup.	New Gas	20	65,958,203	0	0	0	0	1,197,906	na	\$4.493	0.15	10,272

Appendix E

Supply Resource Alternatives

MODEL NAME	CATEGORY	OTHER CAT INFO	RECEIPT	DELIVERY PT(S)	PRICE INDEX	COMMODITY	DEMAND	BASEISWIN	DEALSTART	DEALENDDAT	MDQ IN DTHS	INDEX	FIXED
FIRM IFSUM	ANNUAL	EXISTING	SUMAS	NWP, GTN	IFERC SUMAS	YES		BASE	Pre-2011	3/31/2014	VARIABLE	\$ 0.0400	
FIRM IF RM	ANNUAL	EXISTING	ROCKIES	NWP, GTN	IFERC ROCKIES	YES		BASE	Pre-2011	3/31/2014	VARIABLE	\$ 0.0300	
FIRM NYM NIT	ANNUAL	EXISTING	AECO	NWP, GTN	NYMEX HH	YES		BASE	Pre-2011	2/28/2014	VARIABLE	\$ 0.0150	
FIRM CGP NIT	ANNUAL	EXISTING	AECO	NWP, GTN	AECO (CGPR)	YES		BASE	Pre-2011	3/31/2014	VARIABLE	\$ 0.0100	
FIRM FX NIT1	SEASONAL	EXISTING	AECO	NWP, GTN	FIXED			BASE	Pre-2011	2/28/2013	VARIABLE		\$ 4.6665
FIRM CGP ST2	SEASONAL	ExISTING	STATION 2	NWP, GTN	AECO (CGPR)	YES		BASE	Pre-2011	4/1/2013	VARIABLE	\$ 0.0467	
FIRM FX SUM	SEASONAL	EXISTING	SUMAS	NWP, GTN	FIXED			BASE	Pre-2011	10/31/2013	VARIABLE		\$ 5.0830
PEAK 1	PEAKING	EXISTING	CITYGATE	NWP	GD SUMAS	YES	0.05	SWING	Pre-2011	3/1/2012	15000	\$ 0.1800	
PEAK 2	PEAKING	EXISTING	CITYGATE	NWP	GD SUMAS			SWING	Pre-2011	4/1/2012	15000	FLAT	
PEAK 4	PEAKING	EXISTING	SUMAS	NWP	GD SUMAS	YES	0.03	SWING	Pre-2011	4/1/2012	5000	\$ 0.0300	
FIRM I STAN	SEASONAL	EXISTING	STANIFIELD	NWP, GTN	IFERC SUMAS	YES		SWING	Pre-2011	3/31/2014	VARIABLE	\$ (0.4700)	
PEAK 5	PEAKING	EXISTING	AECO	NWP, GTN	AECO (CGPR)	YES	0.1	SWING	Pre-2011	3/1/2011	5000	\$ 0.0200	
FIRM FX NIT2	SEASONAL	EXISTING	AECO	NWP, GTN	FIXED			SWING	Pre-2011	2/29/2012	VARIABLE		\$ 4.0630
FIRM FX ST2	SEASONAL	EXISTING	FIXED	NWP, GTN	FIXED			SWING	Pre-2011	12/1/2011	VARIABLE		\$ 5.1680
FIRM GD ST2	SEASONAL	EXISTING	STATION 2	NWP, GTN	GD SUMAS	YES		SWING	Pre-2011	4/1/2012	10000	\$ 0.0500	
FIRM FX RM2	SEASONAL	ExISTING	ROCKIES	NWP, GTN	FIXED			SWING	Pre-2011	3/31/2013	VARIABLE		\$ 4.6750
FIRM STR RM	ANNUAL	EXISTING	ROCKIES	NWP, GTN	FIXED IF IF RM < \$			BASE	Pre-2011	11/1/2014	1000-2500		
FIRM STR SUM	SEASONAL	EXISTING	SUMAS	NWP, GTN	IFSUM - 25 W/FLR			SWING	Pre-2011	3/1/2012	5000		
FIRM CG NIT	ANNUAL	EXISTING	CITYGATE	GTN	AECO (CGPR)	YES		BASE	Pre-2011	11/1/2014	VARIABLE	\$ 0.3000	
FIRM GD SUM	SEASONAL	EXISTING	SUMAS	NWP, GTN	GD SUMAS	YES		SWING	Pre-2011	10/31/2012	VARIABLE	\$ 0.0250	
FIRM CG SUM	SEASONAL	EXISTING	CITYGATE	NWP	IFERC SUMAS	YES		SWING	Pre-2011	3/1/2012	VARIABLE	\$ 0.4200	
FIRM SPT SUM	SEASONAL	RMIX	SUMAS	NWP, GTN	IFERC SUMAS	YES		SWING	11/1/2012	INCREMENTAL	VARIABLE		
FIRM SPT NIT	SEASONAL	RMIX	AECO	GTN	AECO (CGPR)	YES		SWING	11/1/2012	INCREMENTAL	VARIABLE		
FIRM SPT RM	SEASONAL	RMIX	ROCKIES	NWP, GTN	IFERC ROCKIES	YES		SWING	11/1/2012	INCREMENTAL	VARIABLE		
INCR SUM A	ANNUAL	RMIX	SUMAS	NWP, GTN	IFERC SUMAS	YES		BASE	11/1/2012	INCREMENTAL	VARIABLE	VARIABLE	
INCR RM A	ANNUAL	RMIX	ROCKIES	NWP, GTN	IFERC ROCKIES	YES		BASE	11/1/2012	INCREMENTAL	VARIABLE	VARIABLE	
INCR NIT A	ANNUAL	RMIX	AECO	GTN	AECO (CGPR)	YES		BASE	11/1/2012	INCREMENTAL	VARIABLE	VARIABLE	
INCR SUM S	SEASONAL	RMIX	SUMAS	NWP, GTN	IFERC SUMAS	YES		SWING	11/1/2012	INCREMENTAL	VARIABLE	VARIABLE	
INCR RM S	SEASONAL	RMIX	ROCKIES	NWP, GTN	IFERC ROCKIES	YES		SWING	11/1/2012	INCREMENTAL	VARIABLE	VARIABLE	
INCR NIT S	SEASONAL	RMIX	AECO	GTN	AECO (CGPR)	YES		SWING	11/1/2012	INCREMENTAL	VARIABLE	VARIABLE	
INCR ST2	SEASONAL	RMIX	STATION 2	NWP, GTN	GD SUMAS	YES		SWING	11/1/2012	INCREMENTAL	VARIABLE	VARIABLE	
INCR STRU SU	ANNUAL	RMIX	SUMAS	NWP, GTN	STRUCTURED			SWING	11/1/2012	INCREMENTAL	VARIABLE	VARIABLE	
INCR STRU RM	ANNUAL	RMIX	ROCKIES	NWP, GTN	STRUCTURED			SWING	11/1/2012	INCREMENTAL	VARIABLE	VARIABLE	
INCR STRU AE	ANNUAL	RMIX	AECO	GTN	STRUCTURED			SWING	11/1/2012	INCREMENTAL	VARIABLE	VARIABLE	
INCR SUM FX	ANNUAL	RMIX	SUMAS	NWP, GTN	FIXED			BASE	11/1/2012	INCREMENTAL	VARIABLE		
INCR RM FX	ANNUAL	RMIX	ROCKIES	NWP, GTN	FIXED			BASE	11/1/2012	INCREMENTAL	VARIABLE		
INCR NIT FX	ANNUAL	RMIX	AECO	GTN	FIXED			BASE	11/1/2012	INCREMENTAL	VARIABLE		
INCR MAL	SEASONAL	RMIX	MALIN	BACKHAULS NWP,	(MALIN	YES		SWING	11/1/2012	INCREMENTAL	VARIABLE	VARIABLE	
SAT LNG	SEASONAL	RMIX	ZONAL	ZONAL	NYMEX HH	YES		SWING	11/1/2012	INCREMENTAL	VARIABLE	VARIABLE	
IMP LNG NOR	SEASONAL	RMIX	PALOMAR	BACKHAULS NWP,	(NYMEX HH	YES		SWING	11/1/2015	INCREMENTAL	VARIABLE	VARIABLE	
IMP LNG SOR	SEASONAL	RMIX	PACIFIC CON	BACKHAULS NWP,	(NYMEX HH	YES		SWING	11/1/2016	INCREMENTAL	VARIABLE	VARIABLE	
SAT PROP	SEASONAL	RMIX	ZONAL	ZONAL	NYMEX HH	YES		SWING	11/1/2016	INCREMENTAL	VARIABLE	VARIABLE	
INCR CG NWP	SEASONAL	RMIX	CITYGATE	NWP	NYMEX HH	YES		SWING	11/1/2016	INCREMENTAL	VARIABLE	VARIABLE	
INCR CG GTN	SEASONAL	RMIX	CITYGATE	GTN	NYMEX HH	YES		SWING	11/1/2016	INCREMENTAL	VARIABLE	VARIABLE	

STORAGE	Model Name	Type	Location	Pipeline Transport Required	Evergreen	Start	Contract Expiration	Lead Time	Max Cap	WD MDQ	$\begin{aligned} & \text { Fuel } \operatorname{lnj} \text { < } \\ & 3 \% \end{aligned}$	SVDD	$\begin{array}{r} \hline \text { D2 RATE }> \\ \$ 0.05< \\ \$ 0.15 \\ \hline \end{array}$
STORAGE 1	JP-1	Undergound	Jackson Prairie	Yes	Yes	Pre-2011	2014	NA	604,351	16,789	YES	SGS	YES
STORAGE 2	JP-EXP	Undergound	Jackson Prairie	Yes	Yes	Partial access until 2012 when 350,000 is avail	2060	NA	300,000	30,000	YES	SGS	YES
STORAGE 3	LNG	LNG	Plymouth	Yes	Yes	Pre-2011	2014	NA	562,207	60,000	YES	SGS	YES
STORAGE 4	AECO STORAGE	Undergound	AECO	Yes	NA	2013	2032	NA	300,000	10,000	YES	AECO C STRG	YES
STORAGE 5	MIST STORAGE	Undergound	Mist	Yes	NA	2013	2032	NA	300,000	10,000	YES	MIST	YES
STORAGE 6	JPSURPLUS	Undergound	Jackson Prairie	Yes	Yes	2012	2032	NA	300,000	5,000	YES	SGS	YES

POTENTIAL ADDITIONAL PIPELINE TRANSPORT RESOURCES

Model Name	Start Date	End Date	Daily MDQ	Description	Cost Dths	Lead Time	Pipeline	RMIX MAX	RMIX MIN	VARIABLE < $\$.10$	FUEL < 3\%
INCR-GTN	Nov-12	Dec-31	TBD	AECO NIT, Foothills to Kingsgate	NOVA, Foothills, GTN		$\begin{array}{r} \text { NOVA, } \\ \text { Foothills, } \\ \text { GTN } \end{array}$	$\begin{array}{\|l\|} \hline \text { UP TO } \\ 50,000 \end{array}$		YES	YES
INCR-NWP	Nov-12	Dec-31	TBD	Sumas to WA and OR citygates	NWP Rate X 3		NWP	$\begin{aligned} & \hline \text { UP TO } \\ & 200,000 \end{aligned}$		YES	YES
		Nov-31									
INCR-MAL	Nov-12	Dec-31	TBD	Malin backhaul to Central OR and Stanfield Interconnect	GTN Rate	2 years?	GTN	$\begin{array}{\|l\|} \hline \text { UP TO } \\ 50,000 \end{array}$		YES	YES
BLUEBRDIGE	Nov-11	Dec-31	TBD	Stanfield and/or Stanfield Interconnect to l-5 Corridor	NWP Rate X 3	2 years	$\begin{array}{r} \text { NWP, } \\ \text { PALOMAR? } \end{array}$	$\begin{aligned} & \text { UP TO } \\ & 50,000 \end{aligned}$		YES	YES
RUBY XPORT	Nov-12	Dec-31	TBD	Opal Hub to Mailin	0.95	<2 years	RUBY	$\begin{aligned} & \hline \text { UP TO } \\ & 50,000 \\ & \hline \end{aligned}$		YES	YES
PALOMAR XPORT	Nov-15	Dec-31	TBD	Madras OR to Molalla OR (bidirectional)	NWP Rate X 3	> 3years	PALOMAR	$\begin{aligned} & \text { UP TO } \\ & 50,000 \end{aligned}$		YES	YES
PAC CONNECT	Nov-15	Dec-31	TBD	Jordona Cove OR to Malin	NWP Rate X 3	> 4 years	$\begin{array}{r} \text { PAC } \\ \text { CONNECT } \end{array}$	$\begin{array}{\|l\|} \hline \text { UP TO } \\ 50,000 \end{array}$		YES	YES

Assumes runs WITH evergreen and WITHOUT evergreen provisions

TRANSPORTATION AGREEMENTS

CONTRACT	TERMINATION	
DESCRIPTION	DATE	Dths/d
TF-1 Contract \#100002 April 31, 1991	4/30/2015	206123
Contract \#135384 (JP/Bremerton), March 26, 2007	10/31/2029	30000
Contract \#135558 (Sumas/Prtld), 4/1/2007)	4/30/2020	25400
Contract \#100134 January 15,1993	11/30/2015	330
Contract \#100149 February 15,1996	11/30/2015	75
Contract \#100150 May 15, 1996	11/30/2015	160
Contract \#100064 May 8, 1995	3/31/2013	1078
Weyer Release Contract \#132329 July 1, 2004	1/31/2016	5000
Contract \#139090 June 2, 2011	3/31/2052	27063
PARK AND BALANCE		
Clay Basin Park \& Loan \#135675	12/31/2098	
Jackson Prairie Park \& Loan \#131179	12/31/2098	
TI Contract \#100851 (May 1, 1994)	12/31/2098	
TF-2		
Contract \#100302 SGS-1 January 12, 1994	10/31/2014	2000
Contract \#100304 LS-1 (January 12, 1994)	10/31/2014	15000
Jackson Prairie Expansion Precident Agreement	10/31/2060	30000
GTN		
2003 Expansion, \#08844	10/31/2028	20380
Firm Transportation \#02812 (November 4, 1994)	11/1/2015	3600
Firm Transportation \#00179 (October 7, 1993)	10/31/2023	31335
Firm Transportation \#00152 (December 1, 1997)	10/31/2023	7446
NOVA AND FOOTHILLS		
2002 Service Agreement (CNG FS-2)	11/1/2017	3126
Service Agreement (ANG) September 11, 2001 (\#CNG FS-3)	10/31/2028	21500
Service Agreement (NOVA) September 4, 2001 (\#2003039348-1)	10/31/2028	21800
FS-1 Transportation (ANG) June 12, 1991 (CNG FS-1)	10/31/2023	7600
SPECTRA		
Westcoast Service Agreemenet January 3, 2002 (\#FI-2583-B-00)	10/31/2014	20000

	Cascade Henry Hub Medium Price Projection		Cascade Sumas Medium Price Forecast		Cascade Rockies Medium Price Forecast		Cascade AECO Medium Price Forecast		Cascade Malin Price Medium Forecast	
Jan-12	\$	4.20	\$	3.85	\$	3.75	\$	3.78	\$	4.09
Feb-12	\$	4.21	\$	3.86	\$	3.75	\$	3.77	\$	4.09
Mar-12	\$	4.17	\$	3.82	\$	3.69	\$	3.74	\$	4.03
Apr-12	\$	4.18	\$	3.79	\$	3.62	\$	3.71	\$	3.97
May-12	\$	4.28	\$	3.89	\$	3.72	\$	3.79	\$	4.05
Jun-12	\$	4.22	\$	3.84	\$	3.67	\$	3.71	\$	3.99
Jul-12	\$	4.25	\$	3.86	\$	3.69	\$	3.69	\$	4.05
Aug-12	\$	4.21	\$	3.82	\$	3.65	\$	3.66	\$	4.02
Sep-12	\$	4.15	\$	3.76	\$	3.59	\$	3.61	\$	3.94
Oct-12	\$	4.21	\$	3.82	\$	3.65	\$	3.70	\$	4.00
Nov-12	\$	4.30	\$	3.84	\$	3.80	\$	3.87	\$	4.30
Dec-12	\$	4.21	\$	3.74	\$	3.71	\$	3.75	\$	4.20
Jan-13	\$	5.00	\$	4.53	\$	4.50	\$	4.48	\$	4.99
Feb-13	\$	4.61	\$	4.14	\$	4.11	\$	4.09	\$	4.60
Mar-13	\$	4.51	\$	4.05	\$	4.01	\$	4.00	\$	4.51
Apr-13	\$	4.68	\$	4.25	\$	4.11	\$	4.18	\$	4.65
May-13	\$	4.75	\$	4.32	\$	4.17	\$	4.23	\$	4.72
Jun-13	\$	4.74	\$	4.31	\$	4.16	\$	4.18	\$	4.71
Jul-13	\$	4.76	\$	4.33	\$	4.19	\$	4.20	\$	4.73
Aug-13	\$	4.73	\$	4.30	\$	4.15	\$	4.13	\$	4.70
Sep-13	\$	4.69	\$	4.26	\$	4.12	\$	4.16	\$	4.66
Oct-13	\$	4.72	\$	4.29	\$	4.14	\$	4.16	\$	4.69
Nov-13	\$	4.75	\$	4.79	\$	4.25	\$	4.32	\$	4.69
Dec-13	\$	4.74	\$	4.78	\$	4.24	\$	4.26	\$	4.69
Jan-14	\$	5.01	\$	5.04	\$	4.50	\$	4.49	\$	4.95
Feb-14	\$	5.01	\$	5.04	\$	4.50	\$	4.49	\$	4.94
Mar-14	\$	4.62	\$	4.65	\$	4.11	\$	4.13	\$	4.48
Apr-14	\$	4.96	\$	4.48	\$	4.33	\$	4.48	\$	4.80
May-14	\$	5.01	\$	4.53	\$	4.38	\$	4.47	\$	4.78
Jun-14	\$	5.02	\$	4.38	\$	4.39	\$	4.44	\$	4.72
Jul-14	\$	5.04	\$	4.42	\$	4.41	\$	4.44	\$	4.71
Aug-14	\$	5.00	\$	4.39	\$	4.38	\$	4.40	\$	4.68
Sep-14	\$	4.94	\$	4.42	\$	4.31	\$	4.37	\$	4.74
Oct-14	\$	5.03	\$	4.51	\$	4.40	\$	4.47	\$	4.85
Nov-14	\$	5.04	\$	4.71	\$	4.47	\$	4.64	\$	4.93
Dec-14	\$	5.02	\$	4.95	\$	4.46	\$	4.61	\$	4.95
Jan-15	\$	5.09	\$	5.01	\$	4.82	\$	4.68	\$	5.01
Feb-15	\$	5.09	\$	5.00	\$	4.82	\$	4.68	\$	4.98
Mar-15	\$	4.98	\$	4.67	\$	4.71	\$	4.61	\$	4.80
Apr-15	\$	5.02	\$	4.55	\$	4.60	\$	4.49	\$	4.80
May-15	\$	5.10	\$	4.52	\$	4.68	\$	4.49	\$	4.80
Jun-15	\$	5.10	\$	4.39	\$	4.68	\$	4.42	\$	4.72
Jul-15	\$	5.12	\$	4.38	\$	4.70	\$	4.41	\$	4.71
Aug-15	\$	5.09	\$	4.39	\$	4.68	\$	4.36	\$	4.68
Sep-15	\$	5.01	\$	4.42	\$	4.60	\$	4.38	\$	4.72
Oct-15	\$	5.10	\$	4.52	\$	4.68	\$	4.47	\$	4.86
Nov-15	\$	5.07	\$	4.71	\$	4.74	\$	4.62	\$	4.96
Dec-15	\$	5.16	\$	4.99	\$	4.83	\$	4.63	\$	4.99
Jan-16	\$	5.25	\$	5.08	\$	5.02	\$	4.73	\$	5.07
Feb-16	\$	5.25	\$	5.07	\$	5.02	\$	4.72	\$	5.07
Mar-16	\$	5.07	\$	4.64	\$	4.78	\$	4.58	\$	4.82

	Cascade Henry Hub Medium Price Projection		Cascade Sumas Medium Price Forecast		Cascade Rockies Medium Price Forecast		Cascade AECO Medium Price Forecast		Cascade Malin Price Medium Forecast	
Apr-16	\$	5.19	\$	4.71	\$	4.90	\$	4.64	\$	4.94
May-16	\$	5.26	\$	4.70	\$	4.87	\$	4.66	\$	4.91
Jun-16	\$	5.29	\$	4.61	\$	4.79	\$	4.64	\$	4.86
Jul-16	\$	5.31	\$	4.57	\$	4.73	\$	4.59	\$	4.81
Aug-16	\$	5.25	\$	4.53	\$	4.67	\$	4.50	\$	4.75
Sep-16	\$	5.15	\$	4.54	\$	4.73	\$	4.49	\$	4.79
Oct-16	\$	5.22	\$	4.70	\$	4.89	\$	4.62	\$	4.94
Nov-16	\$	5.27	\$	4.83	\$	5.04	\$	4.73	\$	5.09
Dec-16	\$	5.28	\$	5.08	\$	5.03	\$	4.68	\$	5.08
Jan-17	\$	5.38	\$	5.18	\$	5.13	\$	4.78	\$	5.18
Feb-17	\$	5.39	\$	5.14	\$	5.08	\$	4.76	\$	5.13
Mar-17	\$	5.01	\$	4.54	\$	4.68	\$	4.48	\$	4.72
Apr-17	\$	5.35	\$	4.77	\$	4.95	\$	4.68	\$	5.00
May-17	\$	5.40	\$	4.70	\$	4.90	\$	4.67	\$	5.00
Jun-17	\$	5.40	\$	4.60	\$	4.83	\$	4.63	\$	4.94
Jul-17	\$	5.51	\$	4.62	\$	4.80	\$	4.60	\$	4.91
Aug-17	\$	5.39	\$	4.48	\$	4.67	\$	4.46	\$	4.78
Sep-17	\$	5.20	\$	4.50	\$	4.73	\$	4.46	\$	4.85
Oct-17	\$	5.36	\$	4.74	\$	4.96	\$	4.66	\$	5.08
Nov-17	\$	5.41	\$	4.87	\$	5.12	\$	4.76	\$	5.17
Dec-17	\$	5.42	\$	5.13	\$	5.10	\$	4.72	\$	5.15
Jan-18	\$	5.53	\$	5.23	\$	5.20	\$	4.83	\$	5.25
Feb-18	\$	5.53	\$	5.22	\$	5.19	\$	4.82	\$	5.24
Mar-18	\$	5.12	\$	4.59	\$	4.80	\$	4.52	\$	4.84
Apr-18	\$	5.47	\$	4.81	\$	5.08	\$	4.73	\$	5.12
May-18	\$	5.56	\$	4.76	\$	5.09	\$	4.73	\$	5.14
Jun-18	\$	5.58	\$	4.64	\$	5.00	\$	4.68	\$	5.05
Jul-18	\$	5.61	\$	4.63	\$	4.95	\$	4.62	\$	5.00
Aug-18	\$	5.53	\$	4.57	\$	4.85	\$	4.53	\$	4.93
Sep-18	\$	5.42	\$	4.60	\$	4.91	\$	4.54	\$	4.96
Oct-18	\$	5.44	\$	4.73	\$	5.07	\$	4.66	\$	5.11
Nov-18	\$	5.51	\$	4.92	\$	5.20	\$	4.81	\$	5.25
Dec-18	\$	5.57	\$	5.27	\$	5.23	\$	4.82	\$	5.28
Jan-19	\$	5.69	\$	5.37	\$	5.33	\$	4.93	\$	5.38
Feb-19	\$	5.69	\$	5.37	\$	5.33	\$	4.92	\$	5.38
Mar-19	\$	5.50	\$	5.23	\$	5.17	\$	4.86	\$	5.22
Apr-19	\$	5.65	\$	5.26	\$	5.22	\$	4.85	\$	5.26
May-19	\$	5.72	\$	5.23	\$	5.17	\$	4.87	\$	5.26
Jun-19	\$	5.74	\$	4.94	\$	5.08	\$	4.81	\$	5.17
Jul-19	\$	5.79	\$	4.88	\$	5.03	\$	4.75	\$	5.13
Aug-19	\$	5.69	\$	4.77	\$	4.92	\$	4.64	\$	5.03
Sep-19	\$	5.55	\$	4.80	\$	4.98	\$	4.65	\$	5.08
Oct-19	\$	5.57	\$	4.97	\$	5.18	\$	4.81	\$	5.27
Nov-19	\$	5.69	\$	5.40	\$	5.37	\$	4.98	\$	5.42
Dec-19	\$	5.76	\$	5.43	\$	5.39	\$	4.97	\$	5.44
Jan-20	\$	5.93	\$	5.54	\$	5.49	\$	5.08	\$	5.54
Feb-20	\$	5.84	\$	5.49	\$	5.42	\$	5.03	\$	5.48
Mar-20	\$	5.71	\$	5.35	\$	5.30	\$	5.02	\$	5.35
Apr-20	\$	5.82	\$	5.38	\$	5.32	\$	5.01	\$	5.42
May-20	\$	5.94	\$	5.17	\$	5.31	\$	5.04	\$	5.44
Jun-20	\$	5.93	\$	5.04	\$	5.20	\$	4.96	\$	5.33

	Cascade Henry Hub Medium Price Projection		Cascade Sumas Medium Price Forecast		Cascade Rockies Medium Price Forecast		Cascade AECO Medium Price Forecast		Cascade Malin Price Medium Forecast	
Jul-20	\$	5.98	\$	4.99	\$	5.14	\$	4.90	\$	5.27
Aug-20	\$	5.88	\$	4.91	\$	5.02	\$	4.77	\$	5.16
Sep-20	\$	5.72	\$	4.95	\$	5.08	\$	4.80	\$	5.22
Oct-20	\$	5.80	\$	5.13	\$	5.31	\$	4.98	\$	5.43
Nov-20	\$	5.93	\$	5.58	\$	5.52	\$	5.17	\$	5.58
Dec-20	\$	5.98	\$	5.53	\$	5.48	\$	5.11	\$	5.53
Jan-21	\$	6.15	\$	5.66	\$	5.60	\$	5.24	\$	5.65
Feb-21	\$	6.08	\$	5.60	\$	5.54	\$	5.19	\$	5.60
Mar-21	\$	5.97	\$	5.56	\$	5.47	\$	5.21	\$	5.56
Apr-21	\$	6.04	\$	5.46	\$	5.36	\$	5.09	\$	5.51
May-21	\$	6.15	\$	5.25	\$	5.32	\$	5.11	\$	5.48
Jun-21	\$	6.20	\$	5.19	\$	5.21	\$	5.09	\$	5.40
Jul-21	\$	6.18	\$	5.08	\$	5.10	\$	4.98	\$	5.31
Aug-21	\$	6.10	\$	5.00	\$	5.01	\$	4.88	\$	5.22
Sep-21	\$	5.94	\$	4.96	\$	5.06	\$	4.81	\$	5.23
Oct-21	\$	5.98	\$	5.17	\$	5.31	\$	5.02	\$	5.45
Nov-21	\$	6.15	\$	5.68	\$	5.59	\$	5.27	\$	5.68
Dec-21	\$	6.13	\$	5.63	\$	5.55	\$	5.21	\$	5.63
Jan-22	\$	6.13	\$	5.62	\$	5.52	\$	5.20	\$	5.59
Feb-22	\$	6.13	\$	5.61	\$	5.51	\$	5.19	\$	5.59
Mar-22	\$	5.77	\$	5.30	\$	5.17	\$	4.96	\$	5.27
Apr-22	\$	6.08	\$	5.39	\$	5.27	\$	5.05	\$	5.44
May-22	\$	6.19	\$	5.18	\$	5.27	\$	5.05	\$	5.41
Jun-22	\$	6.21	\$	5.14	\$	5.15	\$	5.05	\$	5.34
Jul-22	\$	6.23	\$	5.06	\$	5.06	\$	4.95	\$	5.25
Aug-22	\$	6.13	\$	4.96	\$	4.95	\$	4.84	\$	5.17
Sep-22	\$	5.87	\$	4.89	\$	4.94	\$	4.76	\$	5.16
Oct-22	\$	5.98	\$	5.20	\$	5.32	\$	5.04	\$	5.47
Nov-22	\$	6.19	\$	5.73	\$	5.59	\$	5.32	\$	5.74
Dec-22	\$	6.18	\$	5.67	\$	5.55	\$	5.25	\$	5.68
Jan-23	\$	6.32	\$	5.76	\$	5.61	\$	5.34	\$	5.72
Feb-23	\$	6.23	\$	5.71	\$	5.56	\$	5.29	\$	5.68
Mar-23	\$	6.02	\$	5.50	\$	5.35	\$	5.19	\$	5.49
Apr-23	\$	6.24	\$	5.50	\$	5.38	\$	5.18	\$	5.56
May-23	\$	6.36	\$	5.30	\$	5.37	\$	5.18	\$	5.53
Jun-23	\$	6.34	\$	5.27	\$	5.24	\$	5.17	\$	5.45
Jul-23	\$	6.40	\$	5.20	\$	5.16	\$	5.09	\$	5.38
Aug-23	\$	6.28	\$	5.09	\$	5.03	\$	4.96	\$	5.27
Sep-23	\$	5.96	\$	4.99	\$	4.99	\$	4.85	\$	5.26
Oct-23	\$	6.14	\$	5.35	\$	5.38	\$	5.19	\$	5.62
Nov-23	\$	6.34	\$	5.88	\$	5.66	\$	5.46	\$	5.89
Dec-23	\$	6.30	\$	5.81	\$	5.64	\$	5.39	\$	5.82
Jan-24	\$	6.42	\$	5.86	\$	5.66	\$	5.44	\$	5.82
Feb-24	\$	6.33	\$	5.81	\$	5.59	\$	5.39	\$	5.78
Mar-24	\$	5.94	\$	5.44	\$	5.21	\$	5.13	\$	5.42
Apr-24	\$	6.34	\$	5.70	\$	5.48	\$	5.37	\$	5.75
May-24	\$	6.43	\$	5.51	\$	5.47	\$	5.39	\$	5.74
Jun-24	\$	6.45	\$	5.39	\$	5.35	\$	5.29	\$	5.62
Jul-24	\$	6.51	\$	5.31	\$	5.27	\$	5.21	\$	5.55
Aug-24	\$	6.37	\$	5.18	\$	5.12	\$	5.06	\$	5.40
Sep-24	\$	6.22	\$	5.22	\$	5.16	\$	5.10	\$	5.45

	Cascade Henry Hub Medium Price Projection		Cascade Sumas Medium Price Forecast		Cascade Rockies Medium Price Forecast		Cascade AECO Medium Price Forecast		Cascade Malin Price Medium Forecast	
Oct-24	\$	6.18	\$	5.37	\$	5.36	\$	5.24	\$	5.64
Nov-24	\$	6.42	\$	5.93	\$	5.63	\$	5.51	\$	5.93
Dec-24	\$	6.42	\$	5.87	\$	5.67	\$	5.46	\$	5.88
Jan-25	\$	6.48	\$	5.89	\$	5.61	\$	5.47	\$	5.85
Feb-25	\$	6.41	\$	5.85	\$	5.56	\$	5.43	\$	5.82
Mar-25	\$	6.04	\$	5.51	\$	5.22	\$	5.21	\$	5.50
Apr-25	\$	6.39	\$	5.73	\$	5.48	\$	5.41	\$	5.79
May-25	\$	6.48	\$	5.55	\$	5.48	\$	5.42	\$	5.77
Jun-25	\$	6.54	\$	5.47	\$	5.39	\$	5.38	\$	5.69
Jul-25	\$	6.60	\$	5.37	\$	5.30	\$	5.27	\$	5.62
Aug-25	\$	6.44	\$	5.22	\$	5.13	\$	5.10	\$	5.45
Sep-25	\$	6.27	\$	5.24	\$	5.18	\$	5.12	\$	5.47
Oct-25	\$	6.24	\$	5.67	\$	5.40	\$	5.33	\$	5.72
Nov-25	\$	6.44	\$	6.01	\$	5.79	\$	5.61	\$	6.00
Dec-25	\$	6.55	\$	6.03	\$	5.92	\$	5.61	\$	6.01
Jan-26	\$	6.58	\$	6.05	\$	5.95	\$	5.63	\$	6.01
Feb-26	\$	6.58	\$	6.05	\$	5.95	\$	5.63	\$	6.01
Mar-26	\$	6.31	\$	5.84	\$	5.70	\$	5.55	\$	5.81
Apr-26	\$	6.51	\$	5.94	\$	5.86	\$	5.63	\$	5.97
May-26	\$	6.61	\$	5.81	\$	5.84	\$	5.69	\$	6.00
Jun-26	\$	6.69	\$	5.73	\$	5.75	\$	5.63	\$	5.92
Jul-26	\$	6.75	\$	5.63	\$	5.66	\$	5.52	\$	5.81
Aug-26	\$	6.58	\$	5.44	\$	5.48	\$	5.33	\$	5.63
Sep-26	\$	6.35	\$	5.48	\$	5.53	\$	5.35	\$	5.68
Oct-26	\$	6.46	\$	5.84	\$	5.84	\$	5.60	\$	5.95
Nov-26	\$	6.57	\$	6.16	\$	6.02	\$	5.79	\$	6.15
Dec-26	\$	6.71	\$	6.21	\$	6.08	\$	5.79	\$	6.17
Jan-27	\$	6.80	\$	6.29	\$	6.16	\$	5.87	\$	6.24
Feb-27	\$	6.80	\$	6.29	\$	6.16	\$	5.86	\$	6.23
Mar-27	\$	6.58	\$	6.14	\$	5.96	\$	5.85	\$	6.11
Apr-27	\$	6.75	\$	6.19	\$	6.07	\$	5.90	\$	6.23
May-27	\$	6.82	\$	6.05	\$	6.02	\$	5.92	\$	6.23
Jun-27	\$	6.91	\$	5.99	\$	5.95	\$	5.88	\$	6.16
Jul-27	\$	6.96	\$	5.87	\$	5.87	\$	5.75	\$	6.04
Aug-27	\$	6.80	\$	5.70	\$	5.70	\$	5.58	\$	5.87
Sep-27	\$	6.58	\$	5.88	\$	5.75	\$	5.60	\$	5.93
Oct-27	\$	6.67	\$	6.15	\$	6.01	\$	5.84	\$	6.19
Nov-27	\$	6.81	\$	6.42	\$	6.21	\$	6.01	\$	6.40
Dec-27	\$	6.88	\$	6.43	\$	6.22	\$	6.00	\$	6.39
Jan-28	\$	6.94	\$	6.48	\$	6.27	\$	6.04	\$	6.44
Feb-28	\$	6.94	\$	6.47	\$	6.26	\$	6.04	\$	6.43
Mar-28	\$	6.66	\$	6.19	\$	5.99	\$	5.89	\$	6.14
Apr-28	\$	6.85	\$	6.27	\$	6.12	\$	6.00	\$	6.31
May-28	\$	6.98	\$	6.18	\$	6.12	\$	6.06	\$	6.35
Jun-28	\$	7.07	\$	6.09	\$	6.04	\$	5.97	\$	6.26
Jul-28	\$	7.10	\$	5.97	\$	5.94	\$	5.84	\$	6.16
Aug-28	\$	6.94	\$	5.80	\$	5.76	\$	5.66	\$	5.99
Sep-28	\$	6.59	\$	5.81	\$	5.72	\$	5.66	\$	6.01
Oct-28	\$	6.82	\$	6.37	\$	6.10	\$	6.04	\$	6.40
Nov-28	\$	6.96	\$	6.60	\$	6.29	\$	6.21	\$	6.59
Dec-28	\$	7.01	\$	6.62	\$	6.27	\$	6.19	\$	6.60

	Cascade Henry Hub Medium Price Projection	Cascade Sumas Medium Price Forecast	Cascade Rockies Medium Price Forecast	Cascade AECO Medium Price Forecast	Cascade Malin Price Medium Forecast			
Jan-29	$\$$	6.98	$\$$	6.58	$\$$	6.21	$\$$	6.15
Feb-29	$\$$	6.98	$\$$	6.57	$\$$	6.21	$\$$	6.14
Mar-29	$\$$	6.62	$\$$	6.13	$\$$	5.84	$\$$	5.84
Apr-29	$\$$	6.87	$\$$	6.30	$\$$	6.07	$\$$	6.03
May-29	$\$$	7.01	$\$$	6.25	$\$$	6.11	$\$$	6.13
Jun-29	$\$$	7.14	$\$$	6.22	$\$$	6.03	$\$$	6.11

	Cascade Henry Hub Low Price Projection		Cascade Sumas Low Price Forecast		Cascade Rockies Low Price Forecast		Cascade AECO Low Price Forecast		Cascade Malin Price Low Forecast	
Jan-12	\$	3.95	\$	3.62	\$	3.53	\$	3.55	\$	3.84
Feb-12	\$	3.96	\$	3.63	\$	3.52	\$	3.55	\$	3.84
Mar-12	\$	3.92	\$	3.59	\$	3.47	\$	3.52	\$	3.79
Apr-12	\$	3.93	\$	3.56	\$	3.40	\$	3.49	\$	3.73
May-12	\$	4.02	\$	3.66	\$	3.50	\$	3.56	\$	3.80
Jun-12	\$	3.97	\$	3.61	\$	3.45	\$	3.49	\$	3.75
Jul-12	\$	3.99	\$	3.63	\$	3.47	\$	3.47	\$	3.81
Aug-12	\$	3.96	\$	3.59	\$	3.44	\$	3.44	\$	3.78
Sep-12	\$	3.90	\$	3.54	\$	3.38	\$	3.40	\$	3.70
Oct-12	\$	3.95	\$	3.59	\$	3.43	\$	3.48	\$	3.76
Nov-12	\$	4.04	\$	3.61	\$	3.57	\$	3.64	\$	4.04
Dec-12	\$	3.96	\$	3.52	\$	3.49	\$	3.52	\$	3.95
Jan-13	\$	4.70	\$	4.26	\$	4.23	\$	4.21	\$	4.70
Feb-13	\$	4.33	\$	3.89	\$	3.86	\$	3.85	\$	4.33
Mar-13	\$	4.24	\$	3.80	\$	3.77	\$	3.76	\$	4.24
Apr-13	\$	4.40	\$	4.00	\$	3.86	\$	3.93	\$	4.37
May-13	\$	4.46	\$	4.06	\$	3.92	\$	3.97	\$	4.43
Jun-13	\$	4.46	\$	4.05	\$	3.91	\$	3.93	\$	4.43
Jul-13	\$	4.48	\$	4.07	\$	3.93	\$	3.95	\$	4.45
Aug-13	\$	4.45	\$	4.04	\$	3.90	\$	3.89	\$	4.42
Sep-13	\$	4.41	\$	4.01	\$	3.87	\$	3.91	\$	4.38
Oct-13	\$	4.44	\$	4.03	\$	3.90	\$	3.91	\$	4.41
Nov-13	\$	4.47	\$	4.50	\$	3.99	\$	4.06	\$	4.41
Dec-13	\$	4.46	\$	4.49	\$	3.98	\$	4.00	\$	4.40
Jan-14	\$	4.71	\$	4.74	\$	4.23	\$	4.22	\$	4.65
Feb-14	\$	4.71	\$	4.73	\$	4.23	\$	4.22	\$	4.65
Mar-14	\$	4.34	\$	4.37	\$	3.86	\$	3.88	\$	4.21
Apr-14	\$	4.66	\$	4.21	\$	4.07	\$	4.21	\$	4.51
May-14	\$	4.71	\$	4.25	\$	4.12	\$	4.20	\$	4.49
Jun-14	\$	4.72	\$	4.12	\$	4.13	\$	4.18	\$	4.44
Jul-14	\$	4.73	\$	4.15	\$	4.14	\$	4.18	\$	4.43
Aug-14	\$	4.70	\$	4.12	\$	4.11	\$	4.14	\$	4.40
Sep-14	\$	4.64	\$	4.15	\$	4.05	\$	4.11	\$	4.45
Oct-14	\$	4.73	\$	4.24	\$	4.14	\$	4.20	\$	4.56
Nov-14	\$	4.74	\$	4.43	\$	4.20	\$	4.37	\$	4.63
Dec-14	\$	4.72	\$	4.65	\$	4.19	\$	4.34	\$	4.65
Jan-15	\$	4.79	\$	4.71	\$	4.53	\$	4.40	\$	4.71
Feb-15	\$	4.79	\$	4.70	\$	4.53	\$	4.40	\$	4.69
Mar-15	\$	4.68	\$	4.39	\$	4.43	\$	4.34	\$	4.52
Apr-15	\$	4.72	\$	4.28	\$	4.33	\$	4.22	\$	4.51
May-15	\$	4.80	\$	4.25	\$	4.40	\$	4.22	\$	4.51
Jun-15	\$	4.79	\$	4.13	\$	4.40	\$	4.16	\$	4.43
Jul-15	\$	4.81	\$	4.12	\$	4.42	\$	4.14	\$	4.42
Aug-15	\$	4.79	\$	4.12	\$	4.40	\$	4.10	\$	4.40
Sep-15	\$	4.71	\$	4.15	\$	4.32	\$	4.11	\$	4.44
Oct-15	\$	4.79	\$	4.25	\$	4.40	\$	4.20	\$	4.56
Nov-15	\$	4.77	\$	4.42	\$	4.46	\$	4.34	\$	4.67
Dec-15	\$	4.85	\$	4.69	\$	4.54	\$	4.36	\$	4.69
Jan-16	\$	4.94	\$	4.78	\$	4.72	\$	4.45	\$	4.77
Feb-16	\$	4.94	\$	4.77	\$	4.72	\$	4.44	\$	4.77
Mar-16	\$	4.76	\$	4.36	\$	4.49	\$	4.30	\$	4.54

| | Cascade
 Henry Hub
 Low Price
 Projection | Cascade
 Sumas Low
 Price Forecast | Cascade
 Rockies Low
 Price Forecast | Cascade
 AECO Low
 Price Forecast | Cascade Malin
 Price Low |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Frast | | | | | |

	Cascade Henry Hub Low Price Projection		Cascade Sumas Low Price Forecast		Cascade Rockies Low Price Forecast		Cascade AECO Low Price Forecast		Cascade Malin Price Low Forecast	
Jul-20	\$	5.62	\$	4.69	\$	4.83	\$	4.60	\$	4.95
Aug-20	\$	5.53	\$	4.61	\$	4.72	\$	4.49	\$	4.85
Sep-20	\$	5.38	\$	4.66	\$	4.78	\$	4.52	\$	4.91
Oct-20	\$	5.45	\$	4.83	\$	4.99	\$	4.68	\$	5.10
Nov-20	\$	5.57	\$	5.24	\$	5.19	\$	4.86	\$	5.24
Dec-20	\$	5.62	\$	5.20	\$	5.15	\$	4.80	\$	5.20
Jan-21	\$	5.78	\$	5.32	\$	5.26	\$	4.93	\$	5.31
Feb-21	\$	5.71	\$	5.27	\$	5.21	\$	4.88	\$	5.26
Mar-21	\$	5.61	\$	5.23	\$	5.14	\$	4.90	\$	5.23
Apr-21	\$	5.68	\$	5.13	\$	5.04	\$	4.79	\$	5.18
May-21	\$	5.78	\$	4.93	\$	5.01	\$	4.81	\$	5.15
Jun-21	\$	5.83	\$	4.88	\$	4.90	\$	4.78	\$	5.08
Jul-21	\$	5.81	\$	4.77	\$	4.80	\$	4.68	\$	4.99
Aug-21	\$	5.73	\$	4.70	\$	4.71	\$	4.59	\$	4.91
Sep-21	\$	5.58	\$	4.66	\$	4.76	\$	4.52	\$	4.91
Oct-21	\$	5.62	\$	4.86	\$	4.99	\$	4.72	\$	5.13
Nov-21	\$	5.78	\$	5.34	\$	5.25	\$	4.95	\$	5.34
Dec-21	\$	5.76	\$	5.29	\$	5.21	\$	4.89	\$	5.29
Jan-22	\$	5.76	\$	5.28	\$	5.19	\$	4.89	\$	5.25
Feb-22	\$	5.76	\$	5.27	\$	5.18	\$	4.88	\$	5.25
Mar-22	\$	5.42	\$	4.99	\$	4.86	\$	4.66	\$	4.96
Apr-22	\$	5.72	\$	5.06	\$	4.96	\$	4.75	\$	5.11
May-22	\$	5.82	\$	4.87	\$	4.95	\$	4.74	\$	5.08
Jun-22	\$	5.84	\$	4.83	\$	4.84	\$	4.74	\$	5.02
Jul-22	\$	5.85	\$	4.75	\$	4.76	\$	4.66	\$	4.94
Aug-22	\$	5.76	\$	4.66	\$	4.65	\$	4.55	\$	4.86
Sep-22	\$	5.52	\$	4.60	\$	4.65	\$	4.47	\$	4.85
Oct-22	\$	5.63	\$	4.88	\$	5.00	\$	4.74	\$	5.14
Nov-22	\$	5.82	\$	5.39	\$	5.25	\$	5.00	\$	5.39
Dec-22	\$	5.81	\$	5.33	\$	5.22	\$	4.94	\$	5.34
Jan-23	\$	5.94	\$	5.41	\$	5.27	\$	5.02	\$	5.38
Feb-23	\$	5.86	\$	5.37	\$	5.23	\$	4.98	\$	5.34
Mar-23	\$	5.66	\$	5.17	\$	5.03	\$	4.88	\$	5.16
Apr-23	\$	5.87	\$	5.17	\$	5.06	\$	4.87	\$	5.22
May-23	\$	5.97	\$	4.99	\$	5.05	\$	4.87	\$	5.19
Jun-23	\$	5.96	\$	4.95	\$	4.93	\$	4.86	\$	5.13
Jul-23	\$	6.01	\$	4.88	\$	4.85	\$	4.79	\$	5.05
Aug-23	\$	5.90	\$	4.78	\$	4.73	\$	4.66	\$	4.96
Sep-23	\$	5.60	\$	4.69	\$	4.69	\$	4.56	\$	4.94
Oct-23	\$	5.77	\$	5.03	\$	5.06	\$	4.88	\$	5.28
Nov-23	\$	5.96	\$	5.52	\$	5.32	\$	5.13	\$	5.54
Dec-23	\$	5.92	\$	5.46	\$	5.30	\$	5.07	\$	5.47
Jan-24	\$	6.03	\$	5.51	\$	5.32	\$	5.11	\$	5.47
Feb-24	\$	5.95	\$	5.46	\$	5.26	\$	5.07	\$	5.43
Mar-24	\$	5.58	\$	5.11	\$	4.90	\$	4.82	\$	5.10
Apr-24	\$	5.96	\$	5.35	\$	5.15	\$	5.05	\$	5.40
May-24	\$	6.05	\$	5.18	\$	5.14	\$	5.07	\$	5.39
Jun-24	\$	6.06	\$	5.06	\$	5.03	\$	4.97	\$	5.28
Jul-24	\$	6.11	\$	4.99	\$	4.96	\$	4.89	\$	5.22
Aug-24	\$	5.99	\$	4.87	\$	4.82	\$	4.76	\$	5.08
Sep-24	\$	5.85	\$	4.91	\$	4.85	\$	4.79	\$	5.12

	Cascade Henry Hub Low Price Projection		Cascade Sumas Low Price Forecast		Cascade Rockies Low Price Forecast		Cascade AECO Low Price Forecast		Cascade Malin Price Low Forecast	
Oct-24	\$	5.81	\$	5.05	\$	5.03	\$	4.92	\$	5.31
Nov-24	\$	6.03	\$	5.57	\$	5.29	\$	5.18	\$	5.57
Dec-24	\$	6.03	\$	5.52	\$	5.33	\$	5.13	\$	5.52
Jan-25	\$	6.09	\$	5.54	\$	5.27	\$	5.15	\$	5.50
Feb-25	\$	6.03	\$	5.50	\$	5.22	\$	5.11	\$	5.47
Mar-25	\$	5.67	\$	5.18	\$	4.91	\$	4.89	\$	5.17
Apr-25	\$	6.01	\$	5.39	\$	5.15	\$	5.09	\$	5.44
May-25	\$	6.09	\$	5.22	\$	5.15	\$	5.09	\$	5.42
Jun-25	\$	6.15	\$	5.14	\$	5.06	\$	5.06	\$	5.35
Jul-25	\$	6.20	\$	5.05	\$	4.98	\$	4.96	\$	5.28
Aug-25	\$	6.06	\$	4.91	\$	4.82	\$	4.80	\$	5.12
Sep-25	\$	5.89	\$	4.92	\$	4.87	\$	4.81	\$	5.14
Oct-25	\$	5.86	\$	5.33	\$	5.08	\$	5.01	\$	5.38
Nov-25	\$	6.05	\$	5.64	\$	5.44	\$	5.27	\$	5.64
Dec-25	\$	6.16	\$	5.67	\$	5.57	\$	5.28	\$	5.65
Jan-26	\$	6.19	\$	5.69	\$	5.59	\$	5.30	\$	5.65
Feb-26	\$	6.19	\$	5.68	\$	5.59	\$	5.29	\$	5.65
Mar-26	\$	5.93	\$	5.49	\$	5.36	\$	5.21	\$	5.46
Apr-26	\$	6.12	\$	5.58	\$	5.51	\$	5.29	\$	5.61
May-26	\$	6.22	\$	5.46	\$	5.49	\$	5.35	\$	5.64
Jun-26	\$	6.29	\$	5.39	\$	5.40	\$	5.29	\$	5.56
Jul-26	\$	6.35	\$	5.29	\$	5.32	\$	5.19	\$	5.46
Aug-26	\$	6.19	\$	5.12	\$	5.15	\$	5.01	\$	5.29
Sep-26	\$	5.97	\$	5.15	\$	5.20	\$	5.03	\$	5.34
Oct-26	\$	6.07	\$	5.49	\$	5.49	\$	5.26	\$	5.59
Nov-26	\$	6.18	\$	5.79	\$	5.66	\$	5.44	\$	5.78
Dec-26	\$	6.31	\$	5.84	\$	5.72	\$	5.44	\$	5.80
Jan-27	\$	6.39	\$	5.91	\$	5.79	\$	5.51	\$	5.86
Feb-27	\$	6.39	\$	5.91	\$	5.79	\$	5.51	\$	5.86
Mar-27	\$	6.18	\$	5.77	\$	5.60	\$	5.50	\$	5.74
Apr-27	\$	6.35	\$	5.82	\$	5.70	\$	5.55	\$	5.85
May-27	\$	6.41	\$	5.69	\$	5.66	\$	5.57	\$	5.86
Jun-27	\$	6.50	\$	5.63	\$	5.59	\$	5.53	\$	5.79
Jul-27	\$	6.54	\$	5.52	\$	5.52	\$	5.41	\$	5.68
Aug-27	\$	6.39	\$	5.36	\$	5.35	\$	5.24	\$	5.52
Sep-27	\$	6.18	\$	5.53	\$	5.41	\$	5.27	\$	5.57
Oct-27	\$	6.27	\$	5.79	\$	5.65	\$	5.49	\$	5.82
Nov-27	\$	6.40	\$	6.03	\$	5.84	\$	5.65	\$	6.01
Dec-27	\$	6.47	\$	6.04	\$	5.85	\$	5.64	\$	6.00
Jan-28	\$	6.52	\$	6.09	\$	5.89	\$	5.68	\$	6.06
Feb-28	\$	6.52	\$	6.08	\$	5.88	\$	5.67	\$	6.04
Mar-28	\$	6.26	\$	5.82	\$	5.63	\$	5.53	\$	5.77
Apr-28	\$	6.44	\$	5.90	\$	5.76	\$	5.64	\$	5.93
May-28	\$	6.56	\$	5.81	\$	5.76	\$	5.69	\$	5.97
Jun-28	\$	6.64	\$	5.72	\$	5.68	\$	5.61	\$	5.88
Jul-28	\$	6.67	\$	5.61	\$	5.58	\$	5.49	\$	5.79
Aug-28	\$	6.52	\$	5.45	\$	5.41	\$	5.32	\$	5.63
Sep-28	\$	6.20	\$	5.46	\$	5.38	\$	5.32	\$	5.65
Oct-28	\$	6.41	\$	5.98	\$	5.73	\$	5.68	\$	6.02
Nov-28	\$	6.54	\$	6.20	\$	5.92	\$	5.84	\$	6.20
Dec-28	\$	6.59	\$	6.22	\$	5.90	\$	5.81	\$	6.20

$\left.\begin{array}{|r|l|l|l|ll|l|l|}\hline & \begin{array}{l}\text { Cascade } \\ \text { Henry Hub } \\ \text { Low Price } \\ \text { Projection }\end{array} & \begin{array}{l}\text { Cascade } \\ \text { Sumas Low } \\ \text { Price Forecast }\end{array} & \begin{array}{l}\text { Cascade } \\ \text { Rockies Low } \\ \text { Price Forecast }\end{array} & \begin{array}{l}\text { Cascade } \\ \text { AECO Low } \\ \text { Price Forecast }\end{array} & \begin{array}{l}\text { Cascade Malin } \\ \text { Price Low }\end{array} \\ \hline \text { Forecast }\end{array}\right]$

	Cascade Henry Hub High Price Projection		Cascade Sumas High Price Forecast		Cascade Rockies High Price Forecast		Cascade AECO High Price Forecast		Cascade Malin Price High Forecast	
Jan-12	\$	4.41	\$	4.05	\$	3.94	\$	3.96	\$	4.29
Feb-12	\$	4.42	\$	4.06	\$	3.94	\$	3.96	\$	4.29
Mar-12	\$	4.38	\$	4.01	\$	3.87	\$	3.93	\$	4.23
Apr-12	\$	4.39	\$	3.98	\$	3.80	\$	3.90	\$	4.16
May-12	\$	4.49	\$	4.08	\$	3.91	\$	3.98	\$	4.25
Jun-12	\$	4.43	\$	4.03	\$	3.85	\$	3.89	\$	4.18
Jul-12	\$	4.46	\$	4.05	\$	3.87	\$	3.88	\$	4.25
Aug-12	\$	4.42	\$	4.02	\$	3.84	\$	3.84	\$	4.23
Sep-12	\$	4.36	\$	3.95	\$	3.77	\$	3.80	\$	4.14
Oct-12	\$	4.42	\$	4.01	\$	3.83	\$	3.89	\$	4.20
Nov-12	\$	4.52	\$	4.03	\$	3.99	\$	4.06	\$	4.51
Dec-12	\$	4.42	\$	3.93	\$	3.89	\$	3.94	\$	4.41
Jan-13	\$	5.25	\$	4.76	\$	4.72	\$	4.70	\$	5.24
Feb-13	\$	4.84	\$	4.35	\$	4.31	\$	4.30	\$	4.83
Mar-13	\$	4.74	\$	4.25	\$	4.21	\$	4.20	\$	4.73
Apr-13	\$	4.92	\$	4.47	\$	4.31	\$	4.38	\$	4.89
May-13	\$	4.98	\$	4.53	\$	4.38	\$	4.44	\$	4.95
Jun-13	\$	4.98	\$	4.53	\$	4.37	\$	4.39	\$	4.95
Jul-13	\$	5.00	\$	4.55	\$	4.40	\$	4.41	\$	4.97
Aug-13	\$	4.97	\$	4.51	\$	4.36	\$	4.34	\$	4.93
Sep-13	\$	4.93	\$	4.48	\$	4.32	\$	4.36	\$	4.90
Oct-13	\$	4.96	\$	4.51	\$	4.35	\$	4.37	\$	4.93
Nov-13	\$	4.99	\$	5.03	\$	4.46	\$	4.53	\$	4.92
Dec-13	\$	4.98	\$	5.02	\$	4.45	\$	4.47	\$	4.92
Jan-14	\$	5.26	\$	5.29	\$	4.73	\$	4.71	\$	5.19
Feb-14	\$	5.26	\$	5.29	\$	4.73	\$	4.72	\$	5.19
Mar-14	\$	4.85	\$	4.88	\$	4.32	\$	4.34	\$	4.71
Apr-14	\$	5.21	\$	4.70	\$	4.55	\$	4.70	\$	5.04
May-14	\$	5.26	\$	4.75	\$	4.60	\$	4.70	\$	5.02
Jun-14	\$	5.27	\$	4.60	\$	4.61	\$	4.67	\$	4.96
Jul-14	\$	5.29	\$	4.64	\$	4.63	\$	4.67	\$	4.94
Aug-14	\$	5.25	\$	4.60	\$	4.60	\$	4.62	\$	4.92
Sep-14	\$	5.18	\$	4.64	\$	4.52	\$	4.59	\$	4.97
Oct-14	\$	5.28	\$	4.73	\$	4.62	\$	4.69	\$	5.10
Nov-14	\$	5.29	\$	4.95	\$	4.69	\$	4.88	\$	5.17
Dec-14	\$	5.28	\$	5.19	\$	4.68	\$	4.84	\$	5.19
Jan-15	\$	5.35	\$	5.26	\$	5.06	\$	4.92	\$	5.26
Feb-15	\$	5.34	\$	5.25	\$	5.06	\$	4.91	\$	5.23
Mar-15	\$	5.23	\$	4.91	\$	4.95	\$	4.84	\$	5.04
Apr-15	\$	5.27	\$	4.78	\$	4.83	\$	4.71	\$	5.04
May-15	\$	5.36	\$	4.74	\$	4.92	\$	4.71	\$	5.04
Jun-15	\$	5.35	\$	4.61	\$	4.91	\$	4.65	\$	4.95
Jul-15	\$	5.37	\$	4.60	\$	4.93	\$	4.63	\$	4.94
Aug-15	\$	5.35	\$	4.61	\$	4.91	\$	4.58	\$	4.91
Sep-15	\$	5.26	\$	4.64	\$	4.83	\$	4.59	\$	4.96
Oct-15	\$	5.35	\$	4.75	\$	4.92	\$	4.70	\$	5.10
Nov-15	\$	5.32	\$	4.94	\$	4.98	\$	4.85	\$	5.21
Dec-15	\$	5.42	\$	5.24	\$	5.07	\$	4.87	\$	5.24
Jan-16	\$	5.51	\$	5.34	\$	5.27	\$	4.97	\$	5.32
Feb-16	\$	5.51	\$	5.33	\$	5.27	\$	4.96	\$	5.32
Mar-16	\$	5.32	\$	4.87	\$	5.02	\$	4.81	\$	5.07

	Cascade Henry Hub High Price Projection		Cascade Sumas High Price Forecast		Cascade Rockies High Price Forecast		Cascade AECO High Price Forecast		Cascade Malin Price High Forecast	
Apr-16	\$	5.45	\$	4.95	\$	5.15	\$	4.88	\$	5.19
May-16	\$	5.52	\$	4.93	\$	5.12	\$	4.89	\$	5.16
Jun-16	\$	5.56	\$	4.84	\$	5.03	\$	4.87	\$	5.11
Jul-16	\$	5.57	\$	4.80	\$	4.97	\$	4.82	\$	5.05
Aug-16	\$	5.51	\$	4.76	\$	4.90	\$	4.73	\$	4.99
Sep-16	\$	5.40	\$	4.77	\$	4.96	\$	4.71	\$	5.03
Oct-16	\$	5.49	\$	4.93	\$	5.14	\$	4.85	\$	5.19
Nov-16	\$	5.53	\$	5.07	\$	5.29	\$	4.97	\$	5.35
Dec-16	\$	5.55	\$	5.33	\$	5.28	\$	4.92	\$	5.34
Jan-17	\$	5.65	\$	5.44	\$	5.38	\$	5.01	\$	5.44
Feb-17	\$	5.66	\$	5.40	\$	5.33	\$	5.00	\$	5.39
Mar-17	\$	5.27	\$	4.77	\$	4.91	\$	4.71	\$	4.96
Apr-17	\$	5.61	\$	5.00	\$	5.20	\$	4.91	\$	5.25
May-17	\$	5.68	\$	4.94	\$	5.15	\$	4.90	\$	5.25
Jun-17	\$	5.67	\$	4.83	\$	5.07	\$	4.86	\$	5.18
Jul-17	\$	5.79	\$	4.85	\$	5.04	\$	4.83	\$	5.15
Aug-17	\$	5.66	\$	4.71	\$	4.90	\$	4.68	\$	5.02
Sep-17	\$	5.46	\$	4.72	\$	4.96	\$	4.68	\$	5.09
Oct-17	\$	5.63	\$	4.97	\$	5.21	\$	4.90	\$	5.33
Nov-17	\$	5.68	\$	5.12	\$	5.38	\$	5.00	\$	5.43
Dec-17	\$	5.69	\$	5.38	\$	5.35	\$	4.96	\$	5.40
Jan-18	\$	5.80	\$	5.49	\$	5.46	\$	5.07	\$	5.51
Feb-18	\$	5.80	\$	5.49	\$	5.45	\$	5.06	\$	5.50
Mar-18	\$	5.37	\$	4.82	\$	5.04	\$	4.74	\$	5.09
Apr-18	\$	5.74	\$	5.05	\$	5.34	\$	4.97	\$	5.38
May-18	\$	5.84	\$	5.00	\$	5.35	\$	4.97	\$	5.39
Jun-18	\$	5.86	\$	4.88	\$	5.25	\$	4.92	\$	5.30
Jul-18	\$	5.89	\$	4.86	\$	5.19	\$	4.85	\$	5.25
Aug-18	\$	5.80	\$	4.80	\$	5.10	\$	4.75	\$	5.18
Sep-18	\$	5.69	\$	4.83	\$	5.15	\$	4.76	\$	5.21
Oct-18	\$	5.72	\$	4.97	\$	5.32	\$	4.89	\$	5.36
Nov-18	\$	5.79	\$	5.17	\$	5.46	\$	5.05	\$	5.51
Dec-18	\$	5.85	\$	5.53	\$	5.49	\$	5.06	\$	5.54
Jan-19	\$	5.98	\$	5.64	\$	5.60	\$	5.17	\$	5.65
Feb-19	\$	5.97	\$	5.63	\$	5.59	\$	5.16	\$	5.64
Mar-19	\$	5.78	\$	5.49	\$	5.43	\$	5.10	\$	5.48
Apr-19	\$	5.94	\$	5.52	\$	5.48	\$	5.09	\$	5.52
May-19	\$	6.01	\$	5.49	\$	5.42	\$	5.12	\$	5.52
Jun-19	\$	6.03	\$	5.19	\$	5.33	\$	5.05	\$	5.43
Jul-19	\$	6.08	\$	5.13	\$	5.28	\$	4.99	\$	5.38
Aug-19	\$	5.97	\$	5.01	\$	5.17	\$	4.87	\$	5.29
Sep-19	\$	5.83	\$	5.03	\$	5.23	\$	4.88	\$	5.34
Oct-19	\$	5.85	\$	5.22	\$	5.44	\$	5.06	\$	5.53
Nov-19	\$	5.98	\$	5.67	\$	5.63	\$	5.23	\$	5.69
Dec-19	\$	6.05	\$	5.70	\$	5.65	\$	5.22	\$	5.71
Jan-20	\$	6.22	\$	5.82	\$	5.77	\$	5.33	\$	5.82
Feb-20	\$	6.13	\$	5.77	\$	5.70	\$	5.28	\$	5.75
Mar-20	\$	5.99	\$	5.62	\$	5.57	\$	5.27	\$	5.62
Apr-20	\$	6.11	\$	5.65	\$	5.58	\$	5.26	\$	5.69
May-20	\$	6.23	\$	5.43	\$	5.58	\$	5.29	\$	5.71
Jun-20	\$	6.23	\$	5.30	\$	5.46	\$	5.20	\$	5.60

	Cascade Henry Hub High Price Projection		Cascade Sumas High Price Forecast		Cascade Rockies High Price Forecast		Cascade AECO High Price Forecast		Cascade Malin Price High Forecast	
Jul-20	\$	6.28	\$	5.24	\$	5.39	\$	5.14	\$	5.53
Aug-20	\$	6.17	\$	5.15	\$	5.27	\$	5.01	\$	5.42
Sep-20	\$	6.01	\$	5.20	\$	5.34	\$	5.04	\$	5.48
Oct-20	\$	6.09	\$	5.39	\$	5.58	\$	5.23	\$	5.70
Nov-20	\$	6.23	\$	5.85	\$	5.80	\$	5.43	\$	5.85
Dec-20	\$	6.28	\$	5.81	\$	5.75	\$	5.37	\$	5.81
Jan-21	\$	6.46	\$	5.94	\$	5.88	\$	5.51	\$	5.93
Feb-21	\$	6.38	\$	5.88	\$	5.82	\$	5.45	\$	5.88
Mar-21	\$	6.27	\$	5.84	\$	5.74	\$	5.47	\$	5.84
Apr-21	\$	6.34	\$	5.73	\$	5.63	\$	5.35	\$	5.78
May-21	\$	6.46	\$	5.51	\$	5.59	\$	5.37	\$	5.75
Jun-21	\$	6.51	\$	5.45	\$	5.47	\$	5.34	\$	5.67
Jul-21	\$	6.49	\$	5.33	\$	5.36	\$	5.22	\$	5.57
Aug-21	\$	6.41	\$	5.25	\$	5.26	\$	5.12	\$	5.48
Sep-21	\$	6.24	\$	5.21	\$	5.32	\$	5.05	\$	5.49
Oct-21	\$	6.27	\$	5.43	\$	5.58	\$	5.27	\$	5.73
Nov-21	\$	6.46	\$	5.97	\$	5.86	\$	5.53	\$	5.97
Dec-21	\$	6.44	\$	5.91	\$	5.82	\$	5.47	\$	5.91
Jan-22	\$	6.44	\$	5.90	\$	5.80	\$	5.46	\$	5.87
Feb-22	\$	6.44	\$	5.89	\$	5.79	\$	5.45	\$	5.87
Mar-22	\$	6.05	\$	5.57	\$	5.43	\$	5.21	\$	5.54
Apr-22	\$	6.39	\$	5.66	\$	5.54	\$	5.31	\$	5.71
May-22	\$	6.50	\$	5.44	\$	5.53	\$	5.30	\$	5.68
Jun-22	\$	6.52	\$	5.40	\$	5.41	\$	5.30	\$	5.61
Jul-22	\$	6.54	\$	5.31	\$	5.32	\$	5.20	\$	5.51
Aug-22	\$	6.44	\$	5.21	\$	5.20	\$	5.08	\$	5.43
Sep-22	\$	6.16	\$	5.14	\$	5.19	\$	4.99	\$	5.42
Oct-22	\$	6.28	\$	5.46	\$	5.59	\$	5.30	\$	5.74
Nov-22	\$	6.50	\$	6.02	\$	5.87	\$	5.58	\$	6.02
Dec-22	\$	6.49	\$	5.96	\$	5.83	\$	5.51	\$	5.96
Jan-23	\$	6.64	\$	6.05	\$	5.89	\$	5.61	\$	6.01
Feb-23	\$	6.55	\$	6.00	\$	5.84	\$	5.56	\$	5.96
Mar-23	\$	6.32	\$	5.78	\$	5.62	\$	5.45	\$	5.76
Apr-23	\$	6.55	\$	5.78	\$	5.65	\$	5.44	\$	5.83
May-23	\$	6.67	\$	5.57	\$	5.64	\$	5.44	\$	5.80
Jun-23	\$	6.66	\$	5.53	\$	5.50	\$	5.43	\$	5.73
Jul-23	\$	6.72	\$	5.46	\$	5.42	\$	5.35	\$	5.65
Aug-23	\$	6.59	\$	5.34	\$	5.28	\$	5.21	\$	5.54
Sep-23	\$	6.26	\$	5.24	\$	5.24	\$	5.09	\$	5.52
Oct-23	\$	6.45	\$	5.62	\$	5.65	\$	5.45	\$	5.90
Nov-23	\$	6.66	\$	6.17	\$	5.95	\$	5.73	\$	6.18
Dec-23	\$	6.62	\$	6.10	\$	5.92	\$	5.66	\$	6.12
Jan-24	\$	6.74	\$	6.15	\$	5.94	\$	5.71	\$	6.11
Feb-24	\$	6.65	\$	6.10	\$	5.87	\$	5.66	\$	6.07
Mar-24	\$	6.23	\$	5.71	\$	5.47	\$	5.39	\$	5.69
Apr-24	\$	6.65	\$	5.98	\$	5.75	\$	5.64	\$	6.04
May-24	\$	6.76	\$	5.79	\$	5.74	\$	5.66	\$	6.02
Jun-24	\$	6.77	\$	5.65	\$	5.62	\$	5.56	\$	5.90
Jul-24	\$	6.83	\$	5.57	\$	5.54	\$	5.47	\$	5.83
Aug-24	\$	6.69	\$	5.44	\$	5.38	\$	5.31	\$	5.67
Sep-24	\$	6.53	\$	5.48	\$	5.42	\$	5.35	\$	5.72

	Cascade Henry Hub High Price Projection		Cascade Sumas High Price Forecast		Cascade Rockies High Price Forecast		Cascade AECO High Price Forecast		Cascade Malin Price High Forecast	
Oct-24	\$	6.48	\$	5.64	\$	5.62	\$	5.50	\$	5.93
Nov-24	\$	6.74	\$	6.22	\$	5.91	\$	5.79	\$	6.22
Dec-24	\$	6.74	\$	6.17	\$	5.95	\$	5.73	\$	6.17
Jan-25	\$	6.80	\$	6.18	\$	5.89	\$	5.75	\$	6.15
Feb-25	\$	6.73	\$	6.14	\$	5.84	\$	5.70	\$	6.11
Mar-25	\$	6.34	\$	5.79	\$	5.48	\$	5.47	\$	5.77
Apr-25	\$	6.71	\$	6.02	\$	5.75	\$	5.68	\$	6.08
May-25	\$	6.80	\$	5.83	\$	5.75	\$	5.69	\$	6.06
Jun-25	\$	6.87	\$	5.75	\$	5.66	\$	5.65	\$	5.98
Jul-25	\$	6.93	\$	5.64	\$	5.57	\$	5.54	\$	5.90
Aug-25	\$	6.76	\$	5.49	\$	5.39	\$	5.36	\$	5.72
Sep-25	\$	6.58	\$	5.50	\$	5.44	\$	5.37	\$	5.74
Oct-25	\$	6.55	\$	5.95	\$	5.67	\$	5.60	\$	6.01
Nov-25	\$	6.76	\$	6.31	\$	6.08	\$	5.89	\$	6.30
Dec-25	\$	6.88	\$	6.33	\$	6.22	\$	5.89	\$	6.31
Jan-26	\$	6.91	\$	6.35	\$	6.25	\$	5.92	\$	6.31
Feb-26	\$	6.91	\$	6.35	\$	6.25	\$	5.91	\$	6.31
Mar-26	\$	6.63	\$	6.13	\$	5.99	\$	5.82	\$	6.10
Apr-26	\$	6.83	\$	6.23	\$	6.15	\$	5.91	\$	6.27
May-26	\$	6.95	\$	6.10	\$	6.13	\$	5.97	\$	6.30
Jun-26	\$	7.02	\$	6.02	\$	6.04	\$	5.91	\$	6.21
Jul-26	\$	7.09	\$	5.91	\$	5.95	\$	5.79	\$	6.10
Aug-26	\$	6.91	\$	5.71	\$	5.75	\$	5.59	\$	5.91
Sep-26	\$	6.67	\$	5.75	\$	5.81	\$	5.62	\$	5.97
Oct-26	\$	6.78	\$	6.13	\$	6.13	\$	5.88	\$	6.25
Nov-26	\$	6.90	\$	6.47	\$	6.32	\$	6.08	\$	6.45
Dec-26	\$	7.05	\$	6.52	\$	6.39	\$	6.08	\$	6.48
Jan-27	\$	7.14	\$	6.60	\$	6.47	\$	6.16	\$	6.55
Feb-27	\$	7.14	\$	6.60	\$	6.47	\$	6.16	\$	6.55
Mar-27	\$	6.91	\$	6.45	\$	6.26	\$	6.14	\$	6.41
Apr-27	\$	7.09	\$	6.50	\$	6.37	\$	6.20	\$	6.54
May-27	\$	7.16	\$	6.36	\$	6.33	\$	6.22	\$	6.55
Jun-27	\$	7.26	\$	6.29	\$	6.25	\$	6.17	\$	6.47
Jul-27	\$	7.31	\$	6.17	\$	6.17	\$	6.04	\$	6.34
Aug-27	\$	7.14	\$	5.99	\$	5.98	\$	5.85	\$	6.16
Sep-27	\$	6.91	\$	6.18	\$	6.04	\$	5.88	\$	6.22
Oct-27	\$	7.01	\$	6.46	\$	6.31	\$	6.13	\$	6.50
Nov-27	\$	7.15	\$	6.74	\$	6.52	\$	6.31	\$	6.72
Dec-27	\$	7.23	\$	6.75	\$	6.53	\$	6.30	\$	6.71
Jan-28	\$	7.28	\$	6.80	\$	6.58	\$	6.35	\$	6.76
Feb-28	\$	7.28	\$	6.79	\$	6.57	\$	6.34	\$	6.75
Mar-28	\$	7.00	\$	6.50	\$	6.28	\$	6.18	\$	6.44
Apr-28	\$	7.19	\$	6.59	\$	6.43	\$	6.30	\$	6.62
May-28	\$	7.33	\$	6.49	\$	6.43	\$	6.36	\$	6.67
Jun-28	\$	7.42	\$	6.39	\$	6.34	\$	6.27	\$	6.57
Jul-28	\$	7.45	\$	6.27	\$	6.24	\$	6.13	\$	6.47
Aug-28	\$	7.28	\$	6.09	\$	6.05	\$	5.95	\$	6.29
Sep-28	\$	6.92	\$	6.10	\$	6.01	\$	5.95	\$	6.32
Oct-28	\$	7.16	\$	6.68	\$	6.41	\$	6.35	\$	6.72
Nov-28	\$	7.31	\$	6.93	\$	6.61	\$	6.52	\$	6.92
Dec-28	\$	7.36	\$	6.95	\$	6.59	\$	6.50	\$	6.93

	Cascade Henry Hub High Price Projection		Cascade Sumas High Price Forecast		Cascade Rockies High Price Forecast		Cascade AECO High Price Forecast		Cascade Malin Price High Forecast	
Jan-29	\$	7.33	\$	6.91	\$	6.52	\$	6.46	\$	6.84
Feb-29	\$	7.33	\$	6.90	\$	6.52	\$	6.45	\$	6.84
Mar-29	\$	6.95	\$	6.43	\$	6.13	\$	6.13	\$	6.37
Apr-29	\$	7.21	\$	6.62	\$	6.38	\$	6.33	\$	6.65
May-29	\$	7.36	\$	6.56	\$	6.41	\$	6.44	\$	6.74
Jun-29	\$	7.50	\$	6.53	\$	6.33	\$	6.41	\$	6.66
Jul-29	\$	7.52	\$	6.37	\$	6.21	\$	6.24	\$	6.52
Aug-29	\$	7.33	\$	6.16	\$	6.00	\$	6.03	\$	6.35
Sep-29	\$	7.07	\$	6.30	\$	6.01	\$	6.03	\$	6.35
Oct-29	\$	7.09	\$	6.61	\$	6.31	\$	6.30	\$	6.66
Nov-29	\$	7.31	\$	6.98	\$	6.56	\$	6.59	\$	6.97
Dec-29	\$	7.44	\$	7.07	\$	6.61	\$	6.61	\$	7.03
Jan-30	\$	7.42	\$	7.03	\$	6.57	\$	6.58	\$	6.96
Feb-30	\$	7.41	\$	7.03	\$	6.56	\$	6.57	\$	6.96
Mar-30	\$	7.03	\$	6.54	\$	6.14	\$	6.24	\$	6.48
Apr-30	\$	7.33	\$	6.73	\$	6.36	\$	6.51	\$	6.77
May-30	\$	7.46	\$	6.72	\$	6.39	\$	6.60	\$	6.82
Jun-30	\$	7.54	\$	6.65	\$	6.29	\$	6.52	\$	6.73
Jul-30	\$	7.60	\$	6.52	\$	6.23	\$	6.39	\$	6.63
Aug-30	\$	7.42	\$	6.32	\$	6.03	\$	6.18	\$	6.45
Sep-30	\$	7.19	\$	6.42	\$	6.03	\$	6.23	\$	6.48
Oct-30	\$	7.28	\$	6.74	\$	6.34	\$	6.47	\$	6.77
Nov-30	\$	7.42	\$	7.02	\$	6.54	\$	6.68	\$	7.00
Dec-30	\$	7.58	\$	7.14	\$	6.69	\$	6.71	\$	7.07
Jan-31	\$	7.59	\$	7.21	\$	6.75	\$	6.76	\$	7.14
Feb-31	\$	7.41	\$	7.03	\$	6.56	\$	6.57	\$	6.96
Mar-31	\$	7.03	\$	6.54	\$	6.14	\$	6.24	\$	6.48
Apr-31	\$	7.33	\$	6.73	\$	6.36	\$	6.51	\$	6.77
May-31	\$	7.46	\$	6.72	\$	6.39	\$	6.60	\$	6.82
Jun-31	\$	7.54	\$	6.65	\$	6.29	\$	6.52	\$	6.73
Jul-31	\$	7.60	\$	6.52	\$	6.23	\$	6.39	\$	6.63
Aug-31	\$	7.42	\$	6.32	\$	6.03	\$	6.18	\$	6.45
Sep-31	\$	7.19	\$	6.42	\$	6.03	\$	6.23	\$	6.48
Oct-31	\$	7.28	\$	6.74	\$	6.34	\$	6.47	\$	6.77
Nov-31	\$	7.42	\$	7.02	\$	6.54	\$	6.68	\$	7.00
Dec-31	\$	7.58	\$	7.14	\$	6.69	\$	6.71	\$	7.07

Appendix \mathbf{F}

Capacity Requirements \& Peak Day Planning

Zone 10	YEAR	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
	Zone Capacity	152	155	157	158	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167
	2011 IRP Forecast	99	99	99	100	100	100	101	101	101	102	102	102	102	103	103	103	104	104	104	104	104
	Excess/(Shortfall)	53	56	58	58	67	67	66	66	66	65	65	65	65	64	64	64	63	63	63	63	63
Zone 11	Zone Capacity	358	368	368	368	368	368	368	368	368	368	368	368	368	368	368	368	368	368	368	368	393
	2011 IRP Forecast	370	373	376	379	382	384	387	390	392	395	398	400	402	405	407	409	411	413	415	417	419
	Excess/(Shortfall)	(12)	(5)	(8)	(11)	(14)	(16)	(19)	(22)	(24)	(27)	(30)	(32)	(34)	(37)	(39)	(41)	(43)	(45)	(47)	(49)	(26)
Zone 20	Zone Capacity	592	723	730	736	769	769	769	769	769	769	769	769	769	769	769	769	769	769	769	769	769
	2011 IRP Forecast	461	473	485	502	519	537	556	574	593	613	633	654	674	696	717	740	762	785	808	829	853
	Excess/(Shortfall)	131	250	245	234	250	232	213	195	176	156	136	115	95	73	52	29	7	(16)	(39)	(60)	(84)
Zone 24	Zone Capacity	138	141	142	144	152	152	152	152	152	152	152	152	152	152	152	152	152	152	152	152	152
	2011 IRP Forecast	57	57	57	57	57	57	57	57	57	57	57	57	58	58	58	58	59	59	59	59	60
	Excess/(Shortfall)	81	84	85	87	95	95	95	95	95	95	95	95	94	94	94	94	93	93	93	93	92
Zone 26	Zone Capacity	476	484	489	494	518	518	518	518	518	518	518	518	518	518	518	518	518	518	518	518	518
	2011 IRP Forecast	81	80	80	80	81	82	82	83	84	85	85	86	87	88	89	90	91	92	92	93	94
	Excess/(Shortfall)	395	404	409	414	437	436	436	435	434	433	433	432	431	430	429	428	427	426	426	425	424
Zone 30-S	Zone Capacity	554	561	564	568	588	588	588	588	588	588	588	588	588	588	588	588	588	588	588	588	588
	2011 IRP Forecast	427	430	433	441	449	457	465	473	481	489	497	506	514	523	531	540	549	557	566	574	583
	Excess/(Shortfall)	127	131	131	127	139	131	123	115	107	99	91	82	74	65	57	48	39	31	22	14	5
Zone 30-W	Zone Capacity	1,005	1,104	1,115	1,127	1,184	1,184	1,184	1,184	1,184	1,184	1,184	1,184	1,184	1,184	1,184	1,184	1,184	1,184	1,184	1,184	1,184
	2011 IRP Forecast	1,205	1,225	1,244	1,275	1,306	1,337	1,369	1,400	1,432	1,464	1,497	1,529	1,562	1,595	1,628	1,662	1,695	1,729	1,763	1,794	1,828
	Excess/(Shortfall)	(200)	(121)	(129)	(148)	(122)	(153)	(185)	(216)	(248)	(280)	(313)	(345)	(378)	(411)	(444)	(478)	(511)	(545)	(579)	(610)	(644)
Zone GTN	Zone Capacity	512	512	512	512	512	512	512	512	512	512	512	512	512	512	512	512	512	512	512	512	512
	2011 IRP Forecast	581	584	588	599	610	622	634	646	658	670	683	696	709	722	735	749	763	777	791	803	818
	Excess/(Shortfall)	(69)	(72)	(76)	(87)	(98)	(110)	(122)	(134)	(146)	(158)	(171)	(184)	(197)	(210)	(223)	(237)	(251)	(265)	(279)	(291)	(306)
Zone ME-OR	Zone Capacity	244	309	312	315	329	329	329	329	329	329	329	329	329	329	329	329	329	329	329	329	329
	2011 IRP Forecast	200	204	208	213	218	222	227	231	235	239	243	247	251	255	258	262	265	268	271	273	276
	Excess/(Shortfall)	44	105	104	102	111	107	102	98	94	90	86	82	78	74	71	67	64	61	58	56	53
Zone ME-WA	Zone Capacity	128	130	131	133	140	140	140	140	140	140	140	140	140	140	140	140	140	140	140	140	140
	2011 IRP Forecast	163	165	167	169	171	173	175	177	178	180	182	184	185	187	189	190	191	193	194	195	196
	Excess/(Shortfall)	(35)	(35)	(36)	(36)	(31)	(33)	(35)	(37)	(38)	(40)	(42)	(44)	(45)	(47)	(49)	(50)	(51)	(53)	(54)	(55)	(56)

ZONE 10 Peak Day Demand \& Existing Capacity Resources
Medium Load Forecast

Note: NWP Capacity is net of Non-Core primary term capacity requirements

ZONE 11 Peak Day Demand \& Existing Capacity Resources Medium Load Forecast

Note: NWP Capacity is net of Non-Core primary term capacity requirements

ZONE 20 Peak Day Demand \& Existing Capacity Resources
Medium Load Forecast

Note: NWP Capacity is net of Non-Core primary term capacity requirements

ZONE 24 Peak Day Demand \& Existing Capacity Resources
Medium Load Forecast

Note: NWP Capacity is net of Non-Core primary term capacity requirements

ZONE 26 Peak Day Demand \& Existing Capacity Resources Medium Load Forecast

Note: NWP Capacity is net of Non-Core primary term capacity requirements

ZONE 30-S Peak Day Demand \& Existing Capacity Resources Medium Load Forecast

Note: NWP Capacity is net of Non-Core primary term capacity requirements

ZONE 30-W Peak Day Demand \& Existing Capacity Resources Medium Load Forecast

Note: NWP Capacity is net of Non-Core primary term capacity requirements

ZONE GTN Peak Day Demand \& Existing Capacity Resources Medium Load Forecast

\square Zone Capacity

ZONE ME-Oregon Peak Day Demand \& Existing Capacity Resources Medium Load Forecast

Note: NWP Capacity is net of Non-Core primary term capacity requirements

ZONE ME-Washington Peak Day Demand \& Existing Capacity Resources Medium Load Forecast

Note: NWP Capacity is net of Non-Core primary term capacity requirements

Appendix G-1

Weather Uncertainty Analysis \&
 Impact on Annual Loads

Monte-Carlo Simulation Results - Total System Demand Medium Growth Forecast

	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
High Growth-Cold Weather	311,605	313,519	319,994	324,372	332,658	341,318	348,119	353,238	362,048	369,064
HighGrowth-Avg weather	300,762	304,145	309,251	315,437	322,849	330,266	336,808	343,372	350,965	358,509
Medium 95\%-Max	309,663	311,037	316,175	319,348	326,354	333,956	339,326	343,420	350,880	356,573
Medium-Avg Weather	298,887	301,736	305,560	310,551	316,731	323,142	328,301	333,829	340,139	346,374
Medium expected high	301,659	303,180	307,978	311,877	318,494	325,237	330,932	335,490	341,961	348,258
Medium Load-Expected	293,656	295,323	299,780	304,406	310,633	316,518	322,539	327,560	333,041	339,944
Medium Expected Low	285,652	287,467	291,583	296,934	302,773	307,798	314,145	319,630	324,122	331,629
Medium 95\%-Min	277,649	279,610	283,386	289,463	294,912	299,079	305,752	311,699	315,203	323,314
Low Growth-Average Weather	295,999	297,532	300,764	305,019	310,410	315,745	320,195	324,613	329,935	335,139

	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
High Growth-Cold Weather	377,303	384,719	393,065	401,537	407,936	417,040	425,725	431,446	442,527	446,957
HighGrowth-Avg weather	365,246	371,740	379,756	389,006	396,263	403,745	412,136	419,888	427,466	435,251
Medium 95\%-Max	362,956	368,806	375,609	382,940	387,175	394,281	400,909	405,141	413,874	416,430
Medium-Avg Weather	351,358	356,364	362,891	370,990	376,096	381,712	388,112	394,288	399,789	405,524
Medium expected high	354,055	359,424	366,374	373,427	378,368	384,486	391,377	395,686	403,032	406,744
Medium Load-Expected	345,153	350,043	357,138	363,914	369,561	374,691	381,845	386,230	392,190	397,057
Medium Expected Low	336,251	340,661	347,903	354,400	360,754	364,896	372,313	376,775	381,348	387,370
Medium 95\%-Min	327,349	331,279	338,668	344,887	351,947	355,101	362,780	367,320	370,507	377,683
Low Growth-Average Weather	339,527	343,636	349,069	355,531	360,120	364,845	370,297	375,105	379,687	384,367

Draw	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1	286,560	285,833	296,696	306,322	300,326	306,097	320,239	336,173	331,257	350,913	342,228	347,660	361,889
2	299,482	295,907	305,852	305,134	306,412	323,306	335,207	335,246	322,712	353,309	345,292	361,683	365,105
3	303,990	313,496	293,554	311,093	310,480	333,872	335,623	324,234	353,102	331,176	344,121	362,570	343,498
4	288,121	284,952	291,673	303,599	307,063	305,420	319,492	333,117	345,283	351,394	336,710	356,983	365,098
5	289,702	297,717	289,032	299,377	320,613	315,085	314,440	329,419	338,111	340,915	342,962	358,324	353,237
6	303,164	297,424	312,410	311,242	309,587	324,350	319,541	330,649	342,670	328,554	347,468	361,215	352,427
7	293,451	293,685	291,625	306,432	303,592	324,763	310,587	322,151	332,299	338,603	351,983	356,582	341,751
8	289,880	290,079	306,788	297,836	308,495	321,500	321,851	327,194	340,917	347,744	331,296	358,413	342,868
9	284,162	288,127	288,333	299,359	297,226	310,590	321,651	329,190	322,084	327,397	336,918	357,327	353,819
10	284,670	291,819	295,837	305,367	324,627	315,228	322,004	317,259	348,085	327,939	337,624	343,245	361,783
11	293,846	285,169	299,089	294,455	303,988	313,656	305,154	331,600	319,590	332,797	338,132	331,355	340,338
12	295,422	293,006	293,962	293,522	304,488	310,050	318,423	311,283	338,575	330,849	346,265	341,601	353,256
13	309,911	301,652	312,203	319,060	309,082	330,314	321,978	333,341	334,839	348,356	345,819	353,533	363,185
14	295,951	302,209	291,640	315,424	310,998	317,398	341,167	328,533	337,323	350,962	332,326	364,503	365,663
15	303,002	299,976	304,694	307,804	308,593	318,949	321,608	322,857	355,512	332,398	372,488	359,320	350,512
16	294,926	298,968	297,096	297,542	319,236	313,403	330,961	323,715	324,281	337,304	368,783	360,662	356,590
17	295,231	292,591	304,065	291,772	300,021	316,272	311,384	328,422	330,410	321,187	337,098	338,918	348,752
18	304,054	305,708	298,862	311,721	307,082	315,111	311,496	321,615	328,100	346,902	341,368	364,944	371,099
19	295,057	308,985	314,639	309,687	318,682	317,783	316,742	335,905	329,462	343,833	348,553	345,457	353,348
20	290,193	301,733	316,584	317,851	310,830	304,867	327,085	333,257	328,632	359,437	357,515	336,995	358,801
21	306,248	299,536	304,458	302,513	324,248	328,257	328,009	312,033	341,298	331,884	341,527	367,984	354,881
22	286,544	293,019	299,871	309,030	301,380	306,590	324,564	323,696	320,455	330,129	337,135	341,421	364,960
23	294,945	302,751	305,052	306,693	331,669	316,627	344,565	338,162	346,087	344,094	351,904	340,336	362,131
24	302,848	297,538	301,882	310,408	312,107	319,235	330,419	327,432	329,992	344,640	350,114	358,619	350,894
25	293,753	309,615	297,821	298,900	315,606	330,885	319,394	335,935	336,868	349,079	338,509	353,896	351,357
26	279,553	300,912	290,272	308,754	311,729	325,337	322,155	324,293	319,942	337,773	343,400	362,694	370,361
27	288,121	292,960	281,602	303,491	317,998	311,300	322,697	315,786	323,721	333,401	335,104	340,646	343,605
28	284,945	293,289	310,771	305,812	316,102	326,836	329,611	327,001	331,491	349,362	338,465	341,866	363,701
29	296,924	297,903	302,477	308,583	319,161	324,696	334,583	333,297	344,774	338,289	352,347	363,996	365,081
30	282,902	304,306	304,589	294,252	315,556	305,858	319,512	328,806	329,931	334,054	347,040	356,530	363,041
31	296,284	294,126	302,419	311,561	312,905	326,581	333,389	336,379	319,991	359,417	340,967	348,961	371,260
32	293,200	293,783	286,401	306,391	304,982	307,923	317,743	331,922	330,664	325,241	334,894	366,304	368,457
33	290,740	311,051	292,382	294,182	317,277	325,294	332,491	342,061	316,823	345,326	352,398	349,993	367,467
34	290,340	286,826	305,075	304,874	307,405	299,715	304,131	311,515	328,305	325,992	332,528	345,943	343,002
35	289,021	305,432	295,082	313,572	319,830	323,146	318,118	327,254	332,065	341,006	337,153	356,120	352,860
36	306,753	295,899	296,324	317,776	318,921	329,041	328,011	331,839	345,582	348,841	343,182	368,833	363,491
37	297,038	294,141	295,091	306,178	314,892	332,206	323,686	316,428	323,238	341,961	334,989	356,257	365,494
38	313,446	306,642	300,065	302,563	297,278	312,212	333,631	338,322	333,452	344,371	338,163	357,500	370,427
39	296,333	290,268	287,705	300,942	316,164	327,485	311,603	323,692	328,311	341,129	338,031	345,282	344,620
40	303,312	296,937	302,041	308,609	303,484	324,160	330,855	347,317	328,850	339,141	341,747	360,735	351,880
41	286,930	285,849	312,216	305,828	322,816	313,761	315,730	331,456	344,211	353,744	346,524	336,097	356,882
42	286,087	296,917	291,660	296,631	307,244	309,109	309,316	331,811	335,255	335,667	350,645	350,790	358,764
43	294,175	308,310	295,249	299,628	323,115	318,768	335,766	323,110	341,309	351,533	355,787	358,620	368,712
44	291,406	286,646	297,875	301,506	302,908	326,043	318,255	331,625	331,183	349,104	325,633	336,817	368,058
45	278,645	300,874	303,389	303,062	294,858	315,862	319,854	329,761	331,315	343,829	360,071	350,967	368,543
46	286,288	283,606	305,342	307,106	311,467	305,364	301,805	312,969	321,223	331,302	339,081	353,363	350,956
47	281,591	291,250	308,189	314,777	300,763	324,899	318,014	319,450	329,668	339,799	351,859	333,531	372,737

Draw	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
48	300,223	298,373	299,233	302,112	316,473	320,179	326,685	328,654	346,034	342,729	362,481	353,127	358,154
49	290,446	296,708	292,938	313,239	316,157	313,965	331,282	315,195	327,253	335,019	347,406	347,534	369,113
50	310,482	290,747	298,709	312,150	323,741	311,048	329,555	321,281	328,958	347,329	338,706	352,380	375,646
51	290,931	304,217	299,228	312,915	309,098	316,880	311,625	329,648	340,433	340,142	351,050	351,524	371,100
52	294,771	286,083	305,469	301,543	296,072	307,383	328,238	331,871	318,051	357,685	351,104	353,383	356,031
53	295,253	302,713	318,544	301,662	311,013	340,630	339,587	336,667	332,844	329,519	355,047	360,165	372,053
54	295,897	292,231	301,700	299,324	300,789	319,050	319,307	306,337	331,427	327,126	341,521	339,237	351,410
55	294,227	289,905	301,042	295,278	294,977	308,946	308,882	314,074	338,454	336,355	331,767	349,801	351,702
56	287,951	290,713	300,142	291,991	306,249	306,775	322,165	320,034	326,564	334,776	339,240	347,174	346,141
57	286,839	287,333	304,979	295,872	303,908	321,411	315,620	319,653	332,587	344,921	345,621	356,537	351,008
58	285,562	284,355	302,218	299,482	311,122	318,589	314,814	323,690	319,887	322,231	344,146	343,089	352,363
59	304,754	281,960	288,105	298,769	322,232	311,526	315,465	334,205	330,995	335,019	344,201	354,104	361,386
60	306,510	284,226	313,602	312,252	313,368	321,791	313,342	326,080	328,550	341,439	353,118	364,425	359,261
61	289,505	306,509	295,338	300,813	307,316	315,433	327,542	313,144	340,696	322,466	346,594	343,126	370,560
62	282,948	302,277	304,273	314,299	310,730	313,131	318,520	335,847	338,237	330,451	333,050	355,679	361,228
63	297,168	298,269	299,218	308,036	304,409	314,835	332,203	326,448	326,150	337,250	357,735	347,662	356,566
64	277,543	298,691	296,571	298,055	299,328	315,089	316,758	324,570	341,253	329,261	341,165	346,837	367,310
65	299,070	294,976	292,878	299,734	318,970	309,542	329,075	338,264	334,726	338,836	347,810	347,935	353,787
66	288,954	296,152	297,800	299,867	301,399	312,185	331,288	324,438	333,276	333,284	345,986	349,545	361,874
67	296,378	290,273	295,308	306,497	324,638	320,800	319,144	331,531	336,143	347,916	346,797	364,338	362,569
68	280,431	290,836	296,646	301,808	307,683	317,366	321,561	323,629	334,058	341,312	342,709	341,526	358,279
69	300,119	304,423	299,334	300,039	318,730	318,981	321,466	335,325	327,546	343,983	355,328	349,931	361,182
70	280,126	292,340	292,006	302,654	323,294	316,358	309,770	332,802	322,271	333,098	342,045	338,623	341,484
71	289,043	300,060	295,884	298,911	309,133	307,773	319,647	330,224	336,477	349,598	338,904	358,445	371,309
72	285,522	285,275	298,574	301,596	319,572	314,977	310,949	330,411	331,175	340,437	344,861	353,048	359,722
73	298,127	304,122	295,024	297,992	317,340	303,964	329,872	318,444	330,174	331,287	321,810	338,424	358,587
74	292,993	290,508	297,426	294,345	310,416	323,426	311,711	327,246	345,426	333,067	344,061	360,849	351,884
75	280,761	300,401	294,538	313,236	315,155	306,544	321,247	330,190	325,483	345,375	339,799	362,028	357,571
76	295,952	287,830	297,732	308,598	316,865	313,493	316,675	330,141	345,114	342,763	364,093	348,235	359,245
77	300,793	299,604	299,012	307,328	299,881	335,654	335,728	330,887	338,125	352,962	357,559	359,576	371,008
78	290,915	293,450	289,704	302,945	295,607	302,683	325,663	320,960	332,008	327,316	335,327	352,896	334,750
79	285,809	295,994	305,402	307,420	305,912	299,640	320,827	323,640	313,483	344,580	339,979	334,742	356,277
80	305,912	293,991	302,134	300,802	297,641	331,114	324,968	323,628	324,958	333,709	352,629	356,641	354,264
81	288,198	296,680	310,719	309,135	311,384	318,640	319,650	333,699	331,988	342,377	346,272	349,710	362,807
82	294,161	292,725	298,429	311,155	308,066	301,609	320,499	332,227	316,408	338,957	332,883	336,045	337,913
83	292,864	286,737	302,769	308,161	316,899	304,207	319,594	337,095	323,977	340,273	344,002	336,984	335,772
84	295,050	302,932	299,780	313,378	299,628	326,476	335,788	333,475	336,448	345,632	333,215	344,361	361,206
85	287,382	286,801	291,922	303,101	300,127	301,237	324,298	325,925	340,117	339,122	341,133	362,554	349,811
86	290,515	305,532	294,264	306,221	310,927	310,872	331,972	322,587	345,450	344,566	360,195	352,540	358,856
87	287,388	283,789	307,075	298,320	307,600	318,226	321,388	335,155	331,003	335,538	339,149	348,877	373,024
88	297,901	272,883	297,599	304,221	323,066	305,348	327,193	321,104	332,073	321,060	341,547	341,694	349,903
89	301,237	307,376	297,576	302,596	305,753	316,304	340,454	335,900	347,290	334,861	363,596	340,511	361,179
90	284,157	295,675	297,562	291,452	304,207	317,850	318,337	328,381	322,667	333,787	337,500	329,473	361,027
91	301,677	283,623	297,742	310,087	299,109	315,870	308,555	314,944	312,914	336,665	335,098	356,215	347,541
92	293,433	291,010	289,662	290,966	315,906	306,494	304,212	323,628	333,368	337,919	357,927	336,981	342,611
93	294,106	300,039	303,531	300,505	303,441	322,310	316,804	326,460	323,613	350,278	346,239	352,523	355,888
94	295,652	302,566	303,544	302,228	316,950	309,291	310,748	322,275	331,015	332,807	351,793	353,291	351,479

Draw	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
95	301,577	296,452	309,203	313,527	314,707	332,494	330,927	322,084	332,643	349,494	341,478	351,043	355,605
96	304,623	296,384	290,983	311,707	306,463	317,785	325,946	336,120	349,901	333,766	350,372	353,608	358,023
97	289,682	292,693	295,174	304,109	315,193	301,540	311,402	322,037	329,292	333,269	349,876	339,860	346,742
98	287,411	292,903	305,196	298,217	316,151	309,467	317,887	340,997	330,527	347,052	343,069	352,752	355,689
99	312,399	297,515	322,371	305,279	310,935	317,957	324,487	331,115	340,709	349,311	343,846	355,242	374,264
100	292,631	306,844	303,960	312,718	306,035	311,366	334,994	330,968	339,201	342,375	335,413	337,732	363,867
101	284,163	290,407	301,024	313,586	312,075	315,493	333,974	344,777	334,951	338,099	360,876	353,241	358,492
102	303,213	304,676	300,145	302,836	310,829	301,729	325,013	324,360	328,287	349,792	336,782	356,527	364,342
103	294,943	296,292	304,217	302,258	300,632	313,165	315,874	329,656	350,995	339,072	344,801	332,902	351,569
104	289,259	292,985	289,654	303,319	305,313	327,201	329,941	325,979	344,606	355,274	368,988	350,030	368,377
105	305,321	299,836	306,024	306,537	313,052	329,820	323,158	335,871	333,402	354,110	342,593	354,334	366,032
106	286,760	299,986	299,005	295,472	306,694	317,985	329,781	307,044	319,781	314,567	335,153	333,910	338,265
107	291,508	302,159	301,623	309,607	305,310	325,401	324,243	333,922	333,504	352,662	360,622	344,183	361,101
108	292,988	295,868	302,496	312,243	308,855	316,032	330,764	318,076	333,204	338,870	354,131	352,666	369,760
109	295,293	296,896	284,292	317,494	302,981	318,568	309,998	325,931	327,116	335,586	357,035	349,323	345,763
110	290,854	308,090	304,640	304,999	301,188	321,294	323,132	336,724	343,172	356,285	347,795	367,686	369,538
111	290,390	285,182	291,263	300,456	310,396	311,037	317,966	322,455	315,667	348,035	342,353	338,798	341,682
112	286,937	296,624	294,648	299,410	309,711	304,669	318,159	313,635	330,427	341,213	343,803	352,352	359,158
113	307,432	304,077	302,485	290,795	318,123	318,361	326,504	326,207	345,042	344,716	346,105	349,426	362,034
114	293,001	308,810	308,903	306,492	325,003	331,280	320,409	338,955	344,836	345,594	353,064	351,763	361,549
115	298,185	292,904	296,311	302,259	318,413	313,186	311,050	325,540	343,955	345,098	342,271	340,128	348,422
116	286,497	276,744	288,971	298,819	294,645	315,587	324,964	333,116	334,107	343,741	344,586	341,369	341,067
117	284,385	297,942	289,520	316,053	303,709	312,829	329,989	323,115	332,622	342,263	344,536	364,222	358,692
118	296,257	286,079	299,817	311,683	305,377	325,982	319,572	342,115	342,247	347,497	350,319	351,190	379,797
119	296,187	294,659	297,942	306,340	314,515	314,792	328,194	324,456	320,530	343,688	344,424	354,856	352,827
120	292,131	295,982	283,174	306,660	302,302	310,924	310,507	332,484	338,036	336,731	334,060	344,148	355,659
121	282,260	304,330	295,187	310,523	307,264	308,149	320,637	330,584	319,186	345,121	339,912	351,630	354,679
122	288,241	284,296	285,273	308,158	310,730	312,010	326,473	322,697	326,577	332,552	343,853	351,997	367,886
123	276,067	291,637	297,021	306,073	309,679	313,176	312,743	316,551	319,575	338,635	347,682	339,485	358,263
124	281,599	282,288	294,434	290,568	306,164	303,609	320,030	323,519	332,240	321,743	334,508	339,258	345,811
125	294,277	295,672	295,972	312,323	310,517	314,995	334,708	322,463	338,073	349,770	349,836	355,226	360,056
126	289,504	299,046	308,865	300,745	296,190	320,767	331,564	314,391	324,633	336,034	353,358	343,539	358,476
127	293,333	306,836	314,915	315,763	319,075	318,692	335,271	329,723	352,034	330,465	362,286	346,283	359,303
128	303,633	298,242	309,422	310,910	314,262	315,591	323,497	343,526	339,976	347,549	345,576	367,174	378,469
129	292,116	295,345	303,149	299,142	315,491	333,641	327,865	321,973	339,104	353,511	357,703	352,051	361,795
130	275,245	284,556	295,518	294,371	324,619	316,253	324,277	337,461	338,741	330,678	338,441	357,005	361,428
131	285,899	290,484	291,394	290,893	310,647	312,353	306,722	331,669	330,975	329,542	347,236	346,349	352,485
132	295,848	298,938	308,812	326,573	315,894	333,695	336,567	323,762	341,222	339,709	339,682	360,939	365,666
133	292,414	303,645	286,909	291,804	294,375	298,650	314,972	324,541	327,649	331,998	356,684	349,979	353,163
134	282,630	284,691	274,833	298,959	297,984	299,009	320,546	326,829	334,428	340,979	333,910	337,988	339,726
135	307,143	311,461	308,763	300,166	306,400	326,377	324,426	325,671	317,451	337,971	352,453	354,710	355,051
136	298,445	284,196	313,578	299,673	315,678	310,606	311,245	321,805	343,711	338,411	342,423	347,506	354,628
137	295,114	284,626	306,758	311,975	300,968	320,920	321,169	331,232	334,210	335,694	330,224	350,384	352,850
138	298,857	303,974	293,811	306,922	315,504	317,279	327,947	322,658	312,849	336,926	339,364	354,993	352,165
139	277,681	293,304	287,674	296,776	313,819	302,051	308,212	312,861	330,289	329,938	326,760	344,795	347,561
140	290,215	293,376	298,730	305,766	314,026	318,063	312,971	327,987	331,973	331,174	342,769	347,487	369,223
141	289,059	286,060	301,141	294,122	315,755	309,482	324,858	320,024	321,886	331,301	337,329	347,209	346,453

Draw	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
142	307,569	306,687	316,125	306,987	318,564	319,112	335,075	321,777	338,148	340,997	356,507	364,158	363,957
143	306,032	309,621	308,423	304,405	314,152	324,503	324,456	336,210	326,121	352,294	354,508	357,958	356,689
144	286,192	288,084	309,016	296,381	314,852	325,525	335,632	341,492	340,962	326,186	337,768	355,265	355,833
145	280,894	284,478	313,707	290,622	316,613	318,713	326,058	328,526	344,841	337,955	357,044	360,647	353,862
146	285,727	284,649	300,644	291,102	306,950	302,033	312,871	320,524	318,637	341,159	333,554	341,912	345,577
147	295,643	298,121	294,848	307,532	322,394	318,223	333,459	336,934	336,094	348,868	345,881	347,627	368,644
148	302,326	301,540	311,454	309,015	315,097	315,699	330,509	343,902	327,640	346,492	343,000	344,609	367,582
149	295,371	297,178	312,204	301,586	320,469	308,777	320,791	321,930	328,504	346,992	343,918	348,676	353,530
150	292,419	296,215	285,497	307,964	299,594	295,926	315,709	321,605	327,815	331,090	340,047	328,990	358,306
151	288,219	284,772	300,248	306,940	305,992	312,735	324,829	318,879	325,661	320,721	330,354	349,674	358,840
152	291,915	288,832	309,054	312,895	307,061	303,416	321,499	319,410	341,779	339,504	342,195	334,715	360,825
153	300,839	300,781	289,997	287,980	299,616	307,014	308,386	322,364	324,147	330,452	343,177	338,094	362,224
154	290,753	313,322	309,688	316,309	304,693	320,258	334,134	344,141	332,570	346,001	350,059	355,765	349,136
155	301,180	300,910	299,081	307,239	311,006	320,413	333,147	329,562	341,083	338,661	347,893	358,259	344,506
156	282,815	288,809	294,551	299,672	294,796	317,581	320,675	321,846	326,959	332,470	343,579	343,863	346,033
157	295,460	286,599	291,989	299,545	315,052	312,567	315,075	326,822	342,367	338,594	353,731	343,632	354,736
158	299,275	292,999	303,093	320,086	310,952	335,192	330,369	335,564	345,353	344,478	344,413	365,608	367,070
159	286,705	292,780	296,939	297,890	308,447	302,655	319,612	323,637	335,059	330,169	343,499	348,188	332,516
160	304,895	299,014	316,946	315,059	305,821	315,996	320,031	328,565	332,755	344,776	345,901	357,359	362,898
161	298,147	304,723	295,443	299,903	304,730	315,258	318,179	315,965	332,028	349,408	345,734	336,681	350,193
162	299,539	289,799	307,449	308,628	304,350	326,544	327,226	335,934	333,490	348,005	339,988	350,076	350,639
163	309,305	313,141	292,491	304,234	304,413	321,283	334,002	321,362	325,161	348,206	346,061	350,035	342,456
164	306,917	288,807	314,318	318,037	314,036	312,543	324,841	329,175	339,990	343,157	348,922	341,767	352,675
165	305,745	295,282	309,675	315,746	330,073	335,565	310,920	337,961	337,337	343,385	350,223	340,966	346,922
166	293,593	292,480	296,874	312,488	318,061	315,828	327,640	339,044	342,513	335,534	336,349	353,601	358,063
167	285,708	288,416	293,470	310,480	321,451	320,308	337,445	325,220	326,811	345,290	349,250	335,156	356,112
168	301,836	295,322	296,981	302,729	312,736	322,576	324,460	325,038	328,968	339,285	330,699	351,540	352,471
169	296,576	302,198	308,227	305,683	311,725	331,251	323,970	321,689	337,223	332,570	344,227	358,422	351,895
170	301,426	296,355	300,524	299,788	314,896	326,250	316,858	344,906	335,871	345,043	334,492	354,105	369,898
171	294,893	303,460	298,054	302,313	306,084	304,056	313,027	314,523	331,432	338,608	344,414	344,664	374,094
172	295,556	302,004	301,835	320,005	322,744	324,035	326,811	320,616	335,044	343,743	348,321	352,231	357,021
173	288,197	295,270	287,064	303,490	309,431	309,388	318,408	326,526	328,798	334,618	343,696	342,951	348,619
174	300,579	284,152	319,048	310,529	316,002	328,266	320,844	349,809	337,127	342,637	345,004	377,094	376,320
175	303,682	298,006	295,725	319,315	314,522	317,986	325,615	336,291	340,854	350,411	337,895	350,090	349,904
176	290,279	291,336	308,184	299,053	310,154	321,475	320,770	338,467	347,926	337,318	347,878	330,202	364,841
177	274,007	279,298	294,931	285,077	312,789	307,091	318,001	330,593	330,025	323,439	343,821	348,539	348,200
178	308,367	311,460	301,517	304,145	317,619	332,141	330,062	323,144	346,027	336,606	349,365	354,396	353,861
179	296,874	285,669	305,531	322,164	304,265	318,715	314,279	335,894	357,781	349,558	345,314	346,621	361,576
180	298,907	297,569	305,980	293,981	317,778	321,933	328,396	336,281	344,003	349,399	343,647	342,570	356,143
181	304,770	301,095	314,005	300,866	326,817	320,956	331,861	330,464	330,547	351,170	360,860	338,556	356,671
182	302,534	288,220	303,024	304,676	303,556	314,589	317,277	315,342	341,558	346,342	351,792	353,353	352,479
183	290,273	284,030	295,690	313,347	312,529	321,372	323,722	328,490	324,898	338,905	344,324	333,145	345,420
184	284,575	285,085	306,114	311,160	315,207	309,612	319,764	332,811	327,727	345,532	336,731	348,927	359,039
185	284,540	296,678	308,696	309,864	304,881	320,551	331,087	325,724	335,996	341,970	328,814	347,487	350,619
186	293,579	292,654	291,198	304,399	312,471	297,923	331,556	326,028	326,609	350,970	340,509	358,999	372,966
187	289,728	286,390	291,688	300,083	310,769	321,248	317,850	320,895	325,910	342,138	345,346	334,352	343,618
188	290,539	295,248	292,053	299,694	318,902	313,314	317,175	323,016	320,841	342,664	361,629	350,664	365,654

Draw	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
189	304,990	291,048	304,458	305,449	327,998	311,417	337,360	319,901	336,929	333,707	359,763	362,562	355,197
190	286,679	297,117	284,033	289,550	300,454	308,413	315,144	336,593	344,873	339,186	340,609	346,781	353,411
191	293,033	295,791	306,065	301,272	307,273	321,355	330,571	328,095	346,013	336,707	362,042	356,728	365,021
192	282,313	288,199	291,634	295,626	296,413	316,314	304,824	318,423	313,425	338,693	330,106	343,026	360,900
193	306,615	302,492	280,086	302,397	317,764	311,124	322,431	328,911	342,217	351,836	354,729	376,187	345,261
194	308,480	302,674	304,104	300,596	303,663	315,672	314,576	320,198	324,122	332,498	341,918	342,968	343,386
195	286,196	311,586	298,459	303,142	326,706	313,943	327,969	332,776	327,885	341,577	359,218	352,866	359,910
196	293,670	296,268	312,067	308,232	316,034	331,231	319,363	325,932	342,794	340,121	358,823	370,284	354,637
197	298,101	300,141	294,337	303,423	307,772	314,225	311,251	329,164	324,841	332,333	363,094	349,919	357,048
198	295,006	285,040	287,577	290,278	306,094	322,926	314,698	319,668	318,431	330,226	352,082	341,648	352,673
199	296,508	282,524	303,336	287,698	309,504	317,883	319,023	322,035	334,327	338,071	330,283	328,240	361,979
200	286,317	292,949	302,620	305,970	312,620	328,229	335,446	335,192	331,514	342,963	336,830	356,155	353,203
Max	313,446	313,496	322,371	326,573	331,669	340,630	344,565	349,809	357,781	359,437	372,488	377,094	379,797
Min	274,007	272,883	274,833	285,077	294,375	295,926	301,805	306,337	312,849	314,567	321,810	328,240	332,516
Average	293,656	295,323	299,780	304,406	310,633	316,518	322,539	327,560	333,041	339,944	345,153	350,043	357,138

Draw	2025	2026	2027	2028	2029	2030	2031	20 Yr Total
1	370,414	370,483	373,536	370,047	372,861	388,555	401,280	6,819,369
2	356,802	373,527	378,277	364,822	396,898	389,491	391,256	6,905,720
3	370,219	377,069	384,842	372,310	388,432	387,139	413,139	6,953,959
4	373,530	365,488	366,260	372,706	389,625	370,638	368,902	6,796,054
5	366,787	358,244	369,422	373,155	378,084	383,226	397,189	6,815,041
6	373,959	361,523	376,903	377,996	404,353	383,090	416,467	6,934,991
7	366,764	365,603	366,862	377,781	389,873	395,675	409,879	6,839,941
8	370,020	368,490	381,635	379,288	395,369	408,351	395,406	6,883,418
9	362,488	363,432	374,452	372,684	366,613	383,863	390,077	6,729,793
10	366,435	375,653	394,900	383,504	371,366	387,280	394,235	6,848,862
11	365,547	365,216	361,921	393,366	378,571	394,459	398,249	6,746,498
12	375,412	381,728	359,293	384,025	367,483	393,258	378,111	6,770,012
13	375,050	362,359	376,583	406,493	382,679	405,185	400,260	6,991,882
14	373,120	375,650	369,926	396,570	382,437	385,255	403,588	6,940,646
15	373,232	369,102	384,209	395,169	397,278	398,169	394,970	6,969,843
16	368,866	378,314	372,254	385,171	386,781	393,352	394,606	6,902,811
17	350,886	375,882	360,558	381,852	378,035	380,275	399,565	6,743,176
18	378,321	375,359	382,272	370,268	391,244	388,406	388,645	6,902,577
19	357,101	362,619	386,163	394,289	389,233	407,303	416,974	6,951,815
20	369,237	370,384	381,216	377,890	393,918	408,245	403,163	6,947,832
21	360,871	384,929	385,355	387,455	384,291	379,477	394,690	6,919,941
22	351,414	373,364	362,824	384,390	383,145	394,370	386,879	6,775,182
23	365,293	358,707	385,013	391,139	390,310	384,685	413,759	6,973,922
24	376,622	382,776	367,743	385,441	373,647	401,441	399,186	6,922,981
25	357,514	385,580	388,161	399,229	383,708	396,243	380,270	6,922,323
26	358,515	371,295	380,865	369,947	385,876	390,030	392,942	6,846,644
27	354,849	358,067	372,915	387,087	388,802	368,580	383,593	6,724,326
28	366,045	375,350	382,387	388,189	383,047	402,631	406,956	6,923,856
29	372,471	376,174	369,941	384,380	408,649	389,952	417,562	7,001,240
30	380,574	374,621	392,976	381,216	372,222	370,830	388,075	6,846,891
31	357,010	369,562	377,577	400,605	388,758	398,491	391,470	6,937,714
32	353,759	374,683	375,404	381,292	391,542	390,173	380,779	6,815,537
33	350,325	382,752	375,116	386,279	396,160	385,839	399,150	6,913,104
34	359,202	347,386	365,924	382,339	391,564	380,498	396,174	6,708,740
35	373,520	373,358	366,984	385,327	384,493	393,686	407,714	6,895,741
36	367,030	369,371	359,910	391,664	398,630	401,205	390,326	6,972,630
37	362,555	343,903	371,247	372,801	380,166	382,622	389,671	6,804,564
38	361,034	368,316	379,027	389,096	389,443	416,707	412,697	6,964,395
39	379,276	361,481	367,232	381,638	380,290	400,936	401,846	6,824,264
40	375,366	372,224	378,248	386,819	381,189	404,195	399,889	6,936,998
41	372,877	364,501	386,018	381,724	383,114	391,281	415,855	6,907,414
42	351,696	363,281	363,483	378,452	378,988	375,557	391,144	6,762,498
43	355,716	388,565	385,561	386,518	387,823	402,904	391,180	6,972,349
44	365,605	365,568	361,892	383,480	383,645	390,677	401,798	6,819,722
45	379,240	379,106	390,023	388,203	382,907	396,983	410,942	6,928,433
46	358,642	377,643	376,343	372,464	378,548	392,185	413,155	6,778,854
47	363,316	373,089	366,954	378,773	380,456	394,843	409,406	6,853,360

Draw	2025	2026	2027	2028	2029	2030	2031	20 Yr Total
48	359,473	373,438	390,461	392,480	400,539	398,138	397,504	6,966,491
49	357,079	357,463	378,439	391,868	378,291	379,690	393,089	6,832,174
50	359,600	367,032	375,832	384,581	378,753	400,845	395,619	6,902,993
51	346,054	367,794	374,119	401,314	386,533	392,540	391,909	6,889,055
52	371,231	385,465	370,638	393,123	376,497	402,222	407,567	6,894,428
53	357,635	377,246	396,064	393,115	392,118	412,935	403,767	7,028,578
54	367,362	362,469	375,507	376,271	380,050	381,271	412,980	6,781,268
55	354,443	360,702	361,049	394,052	373,936	408,942	392,982	6,761,517
56	351,035	367,899	368,580	374,871	378,504	367,188	391,154	6,719,147
57	365,255	368,900	365,851	386,225	375,528	400,344	393,291	6,821,679
58	344,833	376,670	363,598	389,004	379,975	390,581	387,251	6,753,460
59	354,999	364,097	384,598	379,991	382,151	375,237	394,568	6,818,361
60	379,759	363,256	382,540	398,892	400,555	404,435	402,170	6,969,572
61	359,651	370,474	384,804	372,456	360,789	370,740	397,545	6,795,501
62	359,476	365,064	363,890	374,944	379,535	397,754	413,820	6,855,154
63	347,940	374,523	391,625	378,371	383,228	390,873	398,747	6,871,256
64	357,265	357,554	337,957	375,699	379,103	383,341	402,494	6,745,846
65	359,951	361,972	395,541	388,925	395,825	396,962	401,309	6,906,086
66	364,458	367,717	372,764	374,616	396,085	390,315	391,049	6,833,051
67	368,377	374,986	383,618	386,504	375,467	388,702	395,283	6,915,269
68	367,842	375,963	379,160	384,392	392,756	399,459	395,840	6,853,254
69	362,303	388,152	395,776	393,878	384,384	420,649	391,725	6,973,253
70	351,390	370,185	365,677	389,021	383,350	385,642	383,071	6,755,209
71	344,675	354,269	372,196	376,697	385,906	392,493	385,208	6,816,853
72	359,818	361,006	391,754	380,199	382,306	393,586	393,215	6,838,002
73	356,856	352,679	358,234	384,352	379,672	399,417	389,554	6,765,933
74	367,550	345,924	361,393	381,971	402,509	378,786	396,762	6,818,252
75	365,659	368,138	385,369	379,871	382,354	394,863	410,461	6,879,043
76	369,646	380,246	376,075	391,973	396,734	389,013	399,065	6,929,489
77	356,617	364,186	368,510	372,036	399,295	412,480	399,640	6,960,880
78	369,505	370,648	373,373	376,890	380,821	378,293	411,074	6,764,827
79	363,510	357,079	381,212	363,635	387,173	376,134	404,958	6,767,405
80	360,042	369,631	384,535	388,320	400,920	402,141	396,133	6,904,113
81	353,252	365,139	386,283	393,151	397,827	389,990	392,656	6,899,557
82	354,633	372,190	376,457	381,841	385,677	386,911	399,264	6,778,049
83	368,725	372,123	374,851	377,849	395,724	371,092	396,590	6,806,289
84	364,857	376,425	369,596	388,807	383,756	391,864	402,421	6,905,096
85	364,715	375,627	383,352	376,584	381,164	398,360	379,545	6,812,879
86	365,959	387,997	384,616	387,791	378,205	390,134	390,449	6,919,649
87	358,813	371,427	367,435	387,606	385,600	404,712	390,226	6,852,350
88	367,232	369,707	376,288	369,419	376,952	396,979	397,601	6,789,771
89	371,005	377,451	383,868	391,470	389,363	404,559	403,763	6,976,111
90	360,491	358,383	373,351	368,299	382,820	377,448	384,859	6,727,725
91	360,577	375,674	379,067	383,403	374,349	379,607	392,173	6,764,888
92	352,321	371,010	374,214	362,880	390,183	399,399	388,854	6,762,979
93	366,275	373,827	387,381	363,330	397,103	406,014	394,659	6,884,324
94	373,610	375,167	377,331	382,498	378,513	381,216	407,266	6,859,242

Draw	2025	2026	2027	2028	2029	2030	2031	20 Yr Total
95	351,601	378,373	384,856	378,881	383,478	402,284	395,411	6,926,121
96	372,925	376,220	379,509	382,879	424,321	420,041	393,738	6,985,313
97	346,252	365,100	370,556	355,478	391,436	382,588	397,612	6,739,891
98	369,659	368,117	380,587	381,579	386,133	406,296	407,581	6,897,270
99	368,923	384,988	374,930	398,480	397,375	392,770	399,958	7,002,854
100	364,661	372,934	381,719	386,665	390,973	393,235	409,752	6,918,042
101	373,842	369,476	374,288	395,404	382,808	382,539	386,312	6,905,827
102	369,709	389,888	371,812	391,619	384,499	380,996	401,932	6,898,986
103	367,750	362,614	355,569	387,742	393,059	391,209	392,614	6,826,930
104	348,220	369,604	374,511	374,551	383,232	396,429	412,312	6,909,787
105	362,601	372,970	377,979	386,118	408,928	387,869	409,129	6,975,685
106	360,043	353,868	351,556	369,111	386,688	383,131	382,400	6,671,200
107	364,970	375,942	370,235	388,702	377,348	376,409	414,371	6,913,822
108	366,170	366,620	367,789	387,646	387,263	384,493	384,226	6,870,158
109	345,149	371,837	370,707	384,054	377,360	392,386	414,311	6,822,084
110	370,268	380,581	379,313	388,629	392,831	384,052	407,707	6,978,777
111	354,293	352,339	363,038	370,558	375,489	390,316	393,919	6,715,632
112	356,436	373,526	375,466	363,190	379,377	390,407	396,283	6,785,432
113	375,949	376,618	373,676	390,858	389,782	410,587	395,169	6,953,947
114	378,857	375,756	387,862	386,136	387,488	401,372	406,780	7,013,911
115	370,781	374,993	379,311	366,944	376,817	402,608	395,405	6,844,581
116	358,032	371,144	378,152	370,259	391,681	371,297	386,788	6,751,565
117	358,807	385,381	378,403	373,543	397,764	381,266	403,226	6,878,268
118	365,265	366,358	367,052	393,922	403,010	393,803	414,012	6,961,353
119	363,288	363,961	359,047	385,367	396,452	398,120	381,907	6,841,552
120	368,414	361,666	377,675	365,584	404,261	379,590	390,635	6,790,623
121	357,722	370,963	362,448	399,815	375,685	374,942	396,560	6,807,598
122	359,300	353,044	359,069	387,416	373,577	386,232	373,943	6,753,323
123	357,756	355,436	382,437	371,913	382,178	386,783	397,403	6,760,492
124	357,739	376,077	372,868	361,446	388,958	383,752	400,324	6,716,935
125	371,748	364,068	374,773	378,713	382,899	405,487	404,551	6,916,128
126	354,901	350,006	376,375	377,735	378,369	384,043	385,125	6,783,666
127	379,604	379,433	368,533	383,539	390,388	401,020	397,774	6,984,270
128	375,761	376,628	378,673	399,478	383,134	402,287	408,058	7,021,844
129	362,392	377,276	388,732	404,202	391,315	377,666	417,107	6,971,578
130	355,753	368,821	367,162	381,432	389,946	386,468	399,358	6,827,532
131	366,317	357,402	370,449	373,859	386,946	387,534	398,065	6,767,218
132	357,504	371,351	389,433	379,284	382,392	395,870	394,136	6,957,276
133	362,091	375,608	363,429	373,473	387,702	392,815	383,046	6,764,948
134	343,892	365,173	357,094	375,888	381,186	385,596	398,148	6,679,489
135	367,925	366,463	379,807	374,227	377,223	395,142	392,618	6,881,449
136	381,875	361,234	376,473	384,346	393,966	377,936	410,025	6,867,761
137	379,656	375,613	364,927	392,884	391,410	394,551	410,105	6,885,270
138	362,680	366,779	366,861	386,605	379,246	396,905	395,708	6,838,034
139	342,307	364,959	349,680	367,892	380,411	376,921	398,548	6,652,439
140	366,297	379,578	368,029	394,688	405,483	393,981	403,039	6,894,853
141	350,769	365,870	386,617	372,185	378,925	395,943	405,263	6,780,250

Draw	2025	2026	2027	2028	2029	2030	2031	20 Yr Total
142	369,096	371,687	366,033	382,218	384,376	383,493	399,802	6,952,371
143	370,464	375,139	384,055	371,764	396,300	395,576	385,293	6,953,962
144	373,336	370,483	377,805	363,151	390,173	386,044	393,089	6,867,270
145	371,157	374,271	368,992	375,688	395,434	390,126	395,796	6,885,426
146	359,207	366,410	372,738	384,430	384,646	381,663	406,908	6,741,341
147	375,202	354,375	394,450	389,588	397,554	402,054	406,007	6,973,499
148	388,821	379,608	368,449	381,979	393,379	389,648	396,667	6,957,415
149	365,829	378,313	362,684	373,923	394,439	390,395	392,618	6,858,125
150	356,292	367,295	369,375	362,186	365,210	384,601	387,864	6,694,000
151	352,714	365,326	367,760	366,475	387,132	383,362	402,422	6,753,053
152	372,294	358,911	360,462	397,106	398,389	409,008	391,275	6,860,543
153	359,763	374,613	368,543	370,495	398,193	385,895	394,389	6,766,962
154	370,650	359,729	384,805	371,682	389,130	385,456	380,085	6,908,365
155	379,513	369,052	364,963	381,990	387,603	402,420	404,314	6,922,796
156	343,545	367,917	363,270	383,984	390,694	391,955	413,842	6,768,856
157	351,895	365,225	372,932	381,487	368,418	393,816	396,990	6,806,931
158	386,651	367,370	382,181	369,052	386,402	404,292	383,367	6,973,768
159	384,745	360,256	367,065	371,493	376,267	379,207	373,408	6,730,536
160	363,028	376,490	376,267	396,065	369,883	402,395	374,530	6,908,674
161	369,433	370,088	371,157	381,969	379,198	405,654	387,025	6,830,916
162	372,105	362,754	376,344	383,947	396,051	400,851	393,623	6,907,343
163	361,980	376,397	360,860	377,059	386,762	394,337	397,454	6,867,001
164	359,999	392,295	390,034	388,637	389,084	400,289	407,543	6,963,068
165	366,486	358,980	375,512	386,422	387,870	401,834	393,797	6,930,703
166	369,229	362,072	362,361	391,918	393,541	394,574	394,064	6,889,826
167	366,155	359,760	367,661	390,250	387,477	384,345	392,474	6,843,239
168	365,612	377,941	367,569	381,885	390,171	398,016	394,973	6,860,809
169	362,393	376,969	378,866	383,112	381,624	395,664	401,742	6,906,026
170	363,758	368,141	392,949	385,229	404,325	420,420	388,898	6,964,130
171	351,357	371,922	368,843	375,843	385,273	405,521	402,445	6,830,827
172	368,973	380,625	385,465	382,040	397,280	402,571	404,745	6,971,665
173	359,863	372,511	376,108	383,540	377,658	377,625	404,502	6,788,263
174	371,446	364,679	376,356	386,322	380,402	390,998	415,628	6,993,241
175	374,861	375,628	368,571	392,178	394,632	401,793	396,324	6,944,283
176	375,490	371,266	379,378	377,865	378,333	380,635	391,239	6,862,089
177	363,954	359,581	365,238	374,859	386,714	390,471	391,036	6,727,664
178	361,874	364,610	367,048	369,338	376,425	401,413	395,604	6,905,022
179	373,577	372,697	395,500	382,833	379,679	386,823	391,555	6,926,905
180	379,841	363,697	371,116	375,209	365,431	405,323	392,666	6,889,869
181	364,567	374,260	372,568	386,007	392,554	396,643	396,795	6,952,033
182	351,790	377,432	361,948	389,340	386,490	372,059	395,880	6,829,682
183	354,135	369,516	383,947	386,882	381,613	382,189	387,704	6,802,129
184	367,489	356,964	378,005	373,432	378,011	385,093	395,451	6,816,729
185	352,070	387,263	384,178	388,746	402,286	395,412	405,089	6,901,950
186	361,601	365,575	378,626	378,721	387,125	403,974	388,814	6,864,297
187	338,722	370,404	372,585	365,435	366,903	365,061	367,290	6,676,416
188	372,195	382,884	377,123	370,345	378,440	390,092	390,475	6,852,949

| Draw | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 20 Yr Total |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 189 | 375,689 | 370,663 | 373,182 | 383,518 | 409,472 | 405,957 | 403,780 | $6,973,041$ |
| 190 | 342,212 | 376,960 | 375,542 | 386,385 | 385,253 | 380,840 | 385,641 | $6,775,676$ |
| 191 | 350,043 | 371,855 | 375,074 | 387,652 | 401,218 | 404,251 | 390,629 | $6,930,688$ |
| 192 | 360,384 | 371,744 | 371,153 | 363,733 | 378,175 | 379,702 | 384,365 | $6,689,151$ |
| 193 | 370,903 | 362,869 | 387,382 | 394,736 | 399,064 | 403,575 | 396,473 | $6,957,054$ |
| 194 | 359,295 | 360,468 | 370,112 | 365,583 | 376,922 | 393,782 | 400,483 | $6,781,498$ |
| 195 | 378,455 | 361,156 | 367,822 | 377,182 | 393,964 | 397,607 | 417,010 | $6,935,430$ |
| 196 | 380,289 | 379,573 | 393,628 | 376,845 | 377,483 | 403,694 | 397,826 | $6,978,798$ |
| 197 | 371,279 | 357,691 | 367,958 | 391,576 | 381,874 | 402,653 | 401,385 | $6,860,065$ |
| 198 | 348,211 | 346,435 | 360,599 | 371,475 | 372,431 | 408,201 | 391,345 | $6,715,045$ |
| 199 | 356,749 | 353,183 | 376,767 | 394,746 | 381,276 | 377,155 | 392,106 | $6,763,396$ |
| 200 | 368,922 | 370,840 | 389,246 | 385,701 | 391,364 | 409,028 | 400,218 | $6,935,328$ |
| | | | | | | | | |
| Max | 388,821 | 392,295 | 396,064 | 406,493 | 424,321 | 420,649 | 417,562 | $7,028,578$ |
| Min | 338,722 | 343,903 | 337,957 | 355,478 | 360,789 | 365,061 | 367,290 | $6,652,439$ |
| Average | 363,914 | 369,561 | 374,691 | 381,845 | 386,230 | 392,190 | 397,057 | $6,861,221$ |

Appendix G-2

Price Uncertainty Analysis

NYMEX Annual Price Forecast

NYMEX ANNUAL AVERAGE PRICE

Draw

	2012			2013			2014		
	max	min	avg	max	min	avg	max	min	avg
1	\$6.21	\$2.57	\$4.12	\$8.08	\$2.57	\$5.01	\$8.34	\$3.29	\$5.64
2	\$8.36	\$2.57	\$4.88	\$8.23	\$2.57	\$6.09	\$8.13	\$2.57	\$6.50
3	\$6.57	\$2.49	\$4.42	\$6.36	\$2.49	\$4.65	\$8.54	\$3.47	\$5.20
4	\$6.87	\$2.54	\$4.13	\$8.15	\$2.54	\$5.13	\$8.15	\$2.54	\$5.13
5	\$5.89	\$2.52	\$4.66	\$9.91	\$3.38	\$4.94	\$10.74	\$2.53	\$5.15
6	\$6.49	\$2.49	\$4.45	\$8.77	\$2.49	\$5.06	\$8.26	\$2.49	\$5.71
7	\$6.11	\$2.54	\$4.23	\$7.45	\$2.54	\$5.36	\$9.05	\$2.54	\$5.91
8	\$7.75	\$2.57	\$4.67	\$7.84	\$2.57	\$4.26	\$8.93	\$3.25	\$5.69
9	\$7.05	\$2.76	\$4.69	\$8.31	\$2.54	\$5.15	\$5.86	\$3.14	\$5.06
0	\$7.11	\$2.75	\$4.97	\$8.53	\$2.49	\$5.23	\$9.15	\$2.49	\$5.22
	\$9.92	\$2.52	\$4.53	\$7.62	\$2.98	\$4.72	\$7.04	\$4.68	\$6.09
	\$7.15	\$2.52	\$3.97	\$6.69	\$2.52	\$4.96	\$7.28	\$2.56	\$4.50
3	\$8.21	\$2.57	\$4.59	\$9.37	\$2.57	\$5.53	\$7.76	\$2.57	\$4.60
	\$6.03	\$2.49	\$3.64	\$7.04	\$3.03	\$4.38	\$7.73	\$2.71	\$4.95
5	\$6.74	\$2.98	\$4.39	\$8.35	\$2.57	\$4.87	\$8.88	\$2.57	\$5.40
6	\$6.42	\$2.49	\$4.24	\$8.12	\$2.83	\$5.10	\$7.35	\$2.49	\$4.62
7	\$6.92	\$2.54	\$4.92	\$8.20	\$3.82	\$5.87	\$7.54	\$3.00	\$5.34
8	\$6.02	\$3.12	\$4.61	\$7.74	\$2.90	\$5.25	\$8.70	\$2.69	\$5.35
	\$7.76	\$2.49	\$5.21	\$7.47	\$2.49	\$4.97	\$7.91	\$2.49	\$5.30
	\$7.59	\$2.49	\$4.58	\$10.58	\$2.49	\$5.67	\$8.48	\$3.44	\$5.83
	\$8.79	\$2.54	\$4.70	\$6.32	\$2.54	\$4.43	\$7.89	\$2.54	\$5.50
	\$7.64	\$2.54	\$4.80	\$6.97	\$2.54	\$4.60	\$8.21	\$2.54	\$5.03
3	\$7.60	\$2.57	\$4.43	\$7.13	\$2.57	\$5.11	\$8.71	\$3.52	\$5.69
	\$7.56	\$2.76	\$5.01	\$8.22	\$2.57	\$4.28	\$8.20	\$3.81	\$5.88
5	\$6.21	\$2.49	\$3.74	\$5.84	\$2.49	\$3.85	\$7.65	\$2.49	\$5.04
	\$8.38	\$2.49	\$4.59	\$7.38	\$2.73	\$4.59	\$7.90	\$2.49	\$5.26
	\$7.97	\$2.52	\$4.50	\$9.34	\$2.52	\$5.36	\$8.65	\$2.52	\$5.57
	\$8.19	\$2.71	\$5.00	\$7.34	\$2.54	\$4.74	\$6.83	\$2.54	\$5.07
	\$6.46	\$2.63	\$4.43	\$5.79	\$3.15	\$4.51	\$6.52	\$3.41	\$5.25
0	\$7.40	\$2.95	\$5.23	\$9.21	\$3.62	\$5.80	\$10.16	\$3.32	\$6.62
	\$6.88	\$2.57	\$4.03	\$6.75	\$2.57	\$4.90	\$8.03	\$4.22	\$5.74
	\$7.51	\$2.52	\$4.15	\$10.02	\$2.52	\$5.22	\$8.58	\$3.57	\$5.70
	\$6.66	\$2.49	\$4.95	\$8.04	\$3.09	\$4.52	\$7.67	\$2.49	\$4.68
	\$6.64	\$2.54	\$4.31	\$5.95	\$2.54	\$4.47	\$6.98	\$2.64	\$5.64
	\$6.90	\$2.52	\$4.71	\$7.58	\$3.59	\$5.56	\$8.41	\$2.52	\$5.73
6	\$7.09	\$2.54	\$4.06	\$7.67	\$2.77	\$5.01	\$7.36	\$3.29	\$5.13
	\$6.42	\$2.54	\$4.21	\$8.58	\$3.25	\$5.53	\$7.52	\$2.59	\$4.94
	\$5.74	\$2.52	\$4.32	\$6.12	\$2.52	\$4.50	\$9.58	\$2.52	\$4.99
	\$6.73	\$2.52	\$4.52	\$8.31	\$2.52	\$5.02	\$8.76	\$2.88	\$5.62
	\$7.22	\$2.57	\$4.47	\$7.43	\$2.57	\$4.73	\$8.57	\$2.57	\$4.94
	\$7.17	\$2.57	\$4.11	\$7.59	\$2.66	\$4.76	\$7.57	\$2.69	\$5.25
	\$6.60	\$3.28	\$4.87	\$7.51	\$2.49	\$5.00	\$9.04	\$2.49	\$6.35
	\$6.06	\$2.49	\$3.85	\$9.75	\$2.49	\$5.06	\$8.14	\$2.70	\$5.53
	\$8.00	\$2.54	\$4.85	\$6.86	\$2.54	\$4.31	\$7.83	\$3.39	\$5.29
	\$7.68	\$2.57	\$4.51	\$8.26	\$2.57	\$4.93	\$9.16	\$2.57	\$5.31
	\$7.86	\$2.54	\$4.55	\$7.05	\$2.66	\$4.87	\$9.70	\$3.88	\$5.98
	\$7.36	\$3.25	\$5.03	\$9.64	\$3.94	\$6.12	\$6.86	\$2.93	\$4.94
	\$6.43	\$2.49	\$4.82	\$8.34	\$2.49	\$5.28	\$8.84	\$2.91	\$5.61
	\$6.78	\$2.82	\$4.38	\$9.85	\$2.57	\$5.72	\$8.06	\$2.57	\$5.47
	\$5.91	\$2.57	\$4.43	\$8.81	\$2.57	\$4.65	\$7.66	\$3.00	\$5.04
	\$8.34	\$2.57	\$4.61	\$7.65	\$2.57	\$5.14	\$6.94	\$3.97	\$5.40
2	\$7.93	\$2.52	\$4.63	\$7.38	\$2.82	\$4.98	\$9.57	\$2.52	\$6.12

			2012				2013			

			2012								

	2012			2013			2014		
Draw	max	min	avg	max	min	avg	max	min	avg
157	\$7.04	\$2.54	\$3.68	\$7.92	\$3.82	\$6.18	\$9.16	\$2.54	\$5.45
158	\$8.19	\$2.49	\$4.72	\$7.60	\$2.75	\$5.42	\$8.76	\$2.49	\$5.26
159	\$5.94	\$2.57	\$4.16	\$7.37	\$2.57	\$5.26	\$8.23	\$2.57	\$4.89
160	\$5.59	\$2.54	\$3.57	\$7.83	\$2.54	\$4.39	\$8.23	\$3.21	\$5.90
161	\$9.02	\$2.54	\$5.43	\$7.61	\$2.54	\$5.03	\$8.45	\$3.00	\$6.25
162	\$5.33	\$2.49	\$4.03	\$9.77	\$2.49	\$4.67	\$5.96	\$2.49	\$4.17
163	\$8.53	\$4.58	\$5.66	\$8.48	\$2.54	\$5.49	\$8.10	\$2.75	\$5.29
164	\$6.54	\$2.52	\$4.20	\$9.95	\$2.52	\$5.01	\$8.63	\$2.73	\$5.10
165	\$7.91	\$2.56	\$5.44	\$7.88	\$2.52	\$4.96	\$7.76	\$3.79	\$5.54
166	\$7.36	\$3.06	\$5.18	\$6.45	\$2.57	\$5.01	\$8.47	\$2.57	\$4.82
167	\$8.22	\$2.54	\$4.16	\$6.95	\$2.54	\$4.70	\$8.55	\$2.54	\$5.05
168	\$5.41	\$2.52	\$3.75	\$8.22	\$4.51	\$6.17	\$9.16	\$2.52	\$6.11
169	\$6.04	\$2.54	\$3.87	\$8.99	\$2.54	\$5.34	\$7.57	\$2.54	\$4.96
170	\$7.97	\$2.57	\$3.96	\$6.65	\$3.14	\$4.50	\$6.50	\$3.41	\$5.18
171	\$5.80	\$2.57	\$4.11	\$7.17	\$4.28	\$5.72	\$6.55	\$2.98	\$4.91
172	\$7.34	\$2.57	\$4.58	\$6.50	\$2.57	\$4.55	\$7.74	\$2.57	\$5.12
173	\$6.84	\$2.52	\$4.52	\$7.88	\$2.52	\$4.52	\$6.84	\$2.56	\$5.00
174	\$6.45	\$2.54	\$3.90	\$8.32	\$4.67	\$5.64	\$9.84	\$2.54	\$5.65
175	\$8.41	\$2.57	\$4.93	\$6.56	\$2.64	\$4.69	\$5.28	\$2.57	\$4.41
176	\$6.50	\$2.49	\$4.71	\$8.19	\$2.49	\$5.19	\$7.61	\$3.15	\$5.83
177	\$6.74	\$2.52	\$3.94	\$8.89	\$2.52	\$5.44	\$8.95	\$2.52	\$5.19
178	\$6.29	\$2.52	\$4.50	\$6.20	\$2.52	\$4.65	\$8.07	\$2.55	\$6.27
179	\$7.53	\$2.57	\$4.10	\$7.16	\$2.63	\$4.77	\$8.28	\$4.92	\$6.46
180	\$8.34	\$2.54	\$5.38	\$9.00	\$2.54	\$5.75	\$7.22	\$2.62	\$4.87
181	\$7.27	\$2.52	\$4.50	\$9.10	\$3.02	\$5.83	\$7.65	\$2.52	\$4.68
182	\$6.50	\$2.54	\$4.31	\$7.57	\$2.54	\$4.96	\$6.43	\$2.64	\$4.71
183	\$10.02	\$3.20	\$5.18	\$5.46	\$2.54	\$3.72	\$6.25	\$2.54	\$4.57
184	\$10.03	\$2.54	\$5.59	\$8.04	\$2.90	\$5.00	\$9.73	\$2.54	\$5.88
185	\$6.60	\$2.49	\$4.76	\$7.42	\$2.49	\$5.03	\$7.14	\$3.44	\$5.34
186	\$7.94	\$2.54	\$5.20	\$8.05	\$2.54	\$4.92	\$8.58	\$2.54	\$5.65
187	\$7.07	\$2.49	\$4.38	\$6.03	\$2.49	\$4.68	\$7.48	\$2.49	\$5.55
188	\$7.47	\$2.49	\$4.85	\$7.68	\$2.49	\$4.89	\$8.81	\$2.49	\$5.34
189	\$7.09	\$2.61	\$4.43	\$8.29	\$3.86	\$5.71	\$7.03	\$2.77	\$4.69
190	\$7.08	\$2.52	\$4.63	\$6.99	\$2.52	\$4.59	\$8.94	\$2.52	\$5.78
191	\$6.80	\$2.52	\$4.43	\$10.93	\$2.52	\$5.88	\$10.03	\$3.61	\$5.90
192	\$6.73	\$2.49	\$4.16	\$6.55	\$2.49	\$4.86	\$9.14	\$3.28	\$5.85
193	\$7.46	\$2.57	\$3.68	\$7.61	\$2.57	\$4.84	\$7.61	\$2.57	\$5.19
194	\$7.65	\$2.54	\$4.96	\$7.11	\$2.54	\$5.06	\$7.50	\$2.54	\$5.18
195	\$6.04	\$2.54	\$4.17	\$7.02	\$3.54	\$5.43	\$8.52	\$2.54	\$5.63
196	\$7.33	\$2.54	\$4.40	\$8.60	\$2.67	\$5.67	\$8.98	\$3.93	\$6.07
197	\$6.24	\$2.54	\$4.53	\$7.97	\$2.88	\$5.17	\$9.01	\$2.54	\$5.60
198	\$6.64	\$2.52	\$4.00	\$7.19	\$2.85	\$5.52	\$6.90	\$2.52	\$4.45
199	\$9.93	\$2.57	\$5.10	\$9.42	\$2.57	\$5.06	\$7.80	\$2.57	\$5.45
200	\$8.38	\$2.49	\$4.57	\$7.39	\$3.70	\$5.60	\$7.99	\$2.49	\$5.89
average	\$7.13	\$2.58	\$4.47	\$7.78	\$2.76	\$5.00	\$8.03	\$2.87	\$5.39
Max	\$10.03			\$11.09			\$10.74		
Avg			\$4.47			\$5.00			\$5.39
Min	\$2.49			\$2.49			\$2.49		
Range	7.54			8.60			8.25		

Draw

	2015			2016			2017		
	max	min	avg	max	min	avg	max	min	avg
	\$7.99	\$3.18	\$5.33	\$8.30	\$4.23	\$5.51	\$7.45	\$3.49	\$5.02
	\$8.30	\$5.13	\$6.60	\$9.86	\$2.57	\$5.95	\$8.19	\$2.57	\$4.97
	\$9.37	\$3.00	\$5.77	\$10.29	\$3.73	\$6.22	\$8.43	\$2.49	\$5.35
	\$7.69	\$3.13	\$5.03	\$9.08	\$3.17	\$5.94	\$8.51	\$2.54	\$4.95
	\$7.56	\$2.52	\$5.38	\$8.04	\$2.54	\$5.36	\$10.35	\$3.84	\$6.04
	\$9.60	\$3.70	\$6.38	\$8.20	\$2.49	\$5.30	\$7.59	\$2.73	\$5.18
	\$9.09	\$2.99	\$5.95	\$8.69	\$2.72	\$5.97	\$8.21	\$2.54	\$4.96
	\$7.89	\$2.57	\$5.17	\$8.34	\$3.37	\$5.51	\$8.78	\$2.57	\$5.61
	\$8.55	\$3.13	\$5.54	\$8.75	\$3.95	\$6.17	\$7.29	\$3.61	\$5.04
	\$7.33	\$2.49	\$5.21	\$7.12	\$2.49	\$5.06	\$8.40	\$3.69	\$6.17
	\$7.30	\$2.65	\$5.58	\$8.79	\$2.52	\$5.82	\$7.59	\$3.32	\$5.13
	\$8.11	\$4.33	\$5.60	\$9.68	\$2.52	\$5.56	\$8.27	\$3.33	\$5.74
	\$9.08	\$2.57	\$5.64	\$7.33	\$3.00	\$4.83	\$7.31	\$3.16	\$5.13
	\$7.99	\$3.04	\$5.47	\$6.89	\$3.78	\$5.60	\$7.44	\$2.49	\$5.22
	\$9.13	\$2.57	\$5.92	\$7.83	\$3.69	\$5.52	\$9.52	\$2.57	\$5.24
	\$8.06	\$2.49	\$5.96	\$8.83	\$2.72	\$6.48	\$8.07	\$2.49	\$5.78
	\$8.44	\$2.85	\$4.99	\$9.10	\$2.54	\$5.26	\$8.12	\$2.54	\$5.04
	\$7.44	\$3.82	\$5.73	\$9.81	\$2.49	\$6.13	\$7.95	\$2.49	\$5.67
	\$7.15	\$2.49	\$5.31	\$8.35	\$3.62	\$5.52	\$8.60	\$2.49	\$5.59
	\$7.55	\$2.56	\$5.33	\$9.74	\$3.26	\$5.97	\$9.05	\$2.49	\$4.91
	\$7.07	\$4.27	\$5.93	\$6.69	\$2.83	\$4.89	\$7.80	\$2.54	\$5.54
	\$9.30	\$3.46	\$6.32	\$7.84	\$3.56	\$5.74	\$8.49	\$3.92	\$5.93
	\$9.09	\$2.99	\$5.36	\$8.94	\$2.57	\$5.65	\$7.80	\$2.57	\$5.29
	\$10.59	\$3.24	\$6.17	\$6.77	\$3.82	\$5.68	\$7.21	\$2.57	\$5.00
	\$10.23	\$4.15	\$6.35	\$6.18	\$2.49	\$4.99	\$6.78	\$2.49	\$5.03
	\$7.52	\$3.13	\$5.51	\$8.49	\$3.33	\$6.17	\$8.25	\$2.72	\$5.94
	\$11.45	\$3.74	\$6.22	\$7.22	\$3.07	\$5.49	\$7.95	\$3.85	\$5.62
	\$7.85	\$2.54	\$5.44	\$6.35	\$2.73	\$5.04	\$8.59	\$2.54	\$5.69
	\$8.54	\$2.49	\$5.96	\$8.93	\$2.49	\$5.74	\$8.30	\$2.50	\$5.85
	\$8.91	\$2.57	\$5.26	\$9.36	\$3.36	\$6.27	\$8.54	\$2.57	\$5.45
	\$6.43	\$3.05	\$5.25	\$7.46	\$3.05	\$5.09	\$8.78	\$2.75	\$5.53
	\$8.54	\$4.23	\$6.30	\$8.18	\$3.95	\$5.65	\$7.58	\$2.52	\$4.88
	\$8.51	\$3.64	\$5.71	\$7.99	\$3.06	\$5.18	\$8.11	\$2.79	\$5.66
	\$7.22	\$3.35	\$5.21	\$7.50	\$2.54	\$5.23	\$9.97	\$3.16	\$5.37
	\$8.27	\$3.35	\$6.10	\$7.39	\$2.68	\$5.35	\$9.37	\$2.52	\$5.31
	\$8.96	\$2.78	\$5.97	\$8.32	\$2.54	\$5.04	\$9.85	\$3.38	\$6.07
	\$8.47	\$2.54	\$5.61	\$8.43	\$2.54	\$5.23	\$9.49	\$3.04	\$5.47
	\$8.12	\$3.44	\$5.67	\$8.33	\$3.02	\$5.45	\$6.84	\$3.82	\$5.34
	\$8.57	\$2.52	\$4.60	\$7.62	\$2.52	\$4.97	\$8.34	\$3.57	\$5.79
	\$7.43	\$3.84	\$5.75	\$7.90	\$3.62	\$5.52	\$8.14	\$3.35	\$5.20
	\$8.06	\$4.04	\$5.85	\$9.49	\$4.01	\$6.15	\$7.80	\$2.74	\$5.37
	\$8.24	\$4.02	\$6.20	\$7.87	\$2.49	\$5.40	\$6.44	\$2.49	\$4.75
	\$7.91	\$2.58	\$5.77	\$8.38	\$3.40	\$6.35	\$7.91	\$2.49	\$5.60
	\$8.39	\$3.85	\$6.09	\$7.38	\$3.16	\$5.04	\$7.83	\$3.23	\$5.50
	\$8.17	\$3.41	\$5.70	\$7.14	\$3.74	\$5.36	\$6.78	\$3.48	\$4.91
	\$9.34	\$2.83	\$5.30	\$8.00	\$3.82	\$5.96	\$8.13	\$2.54	\$5.26
	\$8.08	\$3.53	\$5.75	\$7.90	\$2.96	\$5.21	\$7.08	\$2.52	\$5.39
	\$10.17	\$2.49	\$5.70	\$7.68	\$2.85	\$5.27	\$8.43	\$3.08	\$5.39
	\$8.10	\$3.53	\$6.19	\$7.04	\$2.57	\$4.78	\$8.71	\$2.75	\$6.06
	\$7.42	\$2.57	\$4.87	\$8.34	\$2.57	\$5.45	\$7.92	\$3.54	\$5.43
	\$8.54	\$2.57	\$5.73	\$8.10	\$3.05	\$5.34	\$7.62	\$2.57	\$5.08
	\$9.67	\$2.52	\$6.07	\$9.27	\$2.78	\$6.21	\$8.48	\$3.54	\$5.41

			2015								

			2015								

	2015			2016			2017		
Draw	max	min	avg	max	min	avg	max	min	avg
157	\$8.81	\$2.54	\$5.76	\$9.12	\$3.33	\$5.70	\$9.38	\$3.91	\$5.89
158	\$9.68	\$2.49	\$5.52	\$6.78	\$4.10	\$5.58	\$6.76	\$2.49	\$5.00
159	\$7.24	\$2.57	\$5.21	\$8.45	\$2.57	\$5.75	\$7.37	\$2.57	\$4.86
160	\$6.96	\$2.54	\$4.96	\$7.96	\$3.16	\$4.87	\$8.46	\$2.54	\$5.47
161	\$8.69	\$2.54	\$5.62	\$9.68	\$2.54	\$5.46	\$8.54	\$2.54	\$6.20
162	\$8.97	\$3.40	\$5.83	\$7.01	\$2.49	\$5.04	\$7.21	\$2.49	\$5.07
163	\$6.85	\$2.54	\$4.71	\$7.07	\$2.54	\$4.79	\$8.85	\$2.94	\$5.41
164	\$8.97	\$2.59	\$5.72	\$7.81	\$2.52	\$5.42	\$9.11	\$2.52	\$6.24
165	\$7.72	\$2.52	\$5.51	\$8.15	\$3.22	\$6.00	\$7.21	\$3.46	\$5.89
166	\$7.99	\$3.38	\$5.75	\$8.35	\$2.57	\$5.23	\$8.57	\$2.57	\$5.24
167	\$7.81	\$2.54	\$5.75	\$9.27	\$2.54	\$5.79	\$7.10	\$2.54	\$5.18
168	\$6.13	\$2.59	\$4.82	\$9.03	\$4.37	\$6.26	\$8.29	\$2.75	\$5.47
169	\$9.39	\$2.54	\$5.74	\$7.09	\$3.00	\$4.80	\$9.59	\$2.93	\$5.68
170	\$8.09	\$2.57	\$5.19	\$8.92	\$2.57	\$5.40	\$7.17	\$3.53	\$5.10
171	\$8.03	\$4.79	\$6.10	\$8.59	\$2.86	\$5.61	\$7.31	\$3.57	\$5.36
172	\$7.47	\$3.51	\$5.16	\$9.17	\$2.57	\$5.69	\$6.87	\$2.57	\$4.88
173	\$8.17	\$3.55	\$5.92	\$8.56	\$3.91	\$5.95	\$6.87	\$2.52	\$4.85
174	\$9.53	\$2.54	\$5.70	\$8.77	\$2.54	\$5.59	\$6.99	\$2.54	\$5.23
175	\$9.08	\$4.37	\$5.94	\$9.02	\$3.77	\$6.43	\$6.54	\$3.36	\$5.32
176	\$8.35	\$2.49	\$5.36	\$7.02	\$3.50	\$5.15	\$7.88	\$2.49	\$5.25
177	\$7.53	\$2.52	\$4.82	\$9.33	\$2.88	\$5.93	\$8.32	\$2.52	\$5.33
178	\$8.11	\$2.52	\$5.75	\$7.31	\$4.49	\$5.81	\$7.08	\$2.52	\$4.79
179	\$7.79	\$2.57	\$6.06	\$8.17	\$4.16	\$6.00	\$9.27	\$2.60	\$5.57
180	\$8.39	\$2.54	\$6.10	\$8.42	\$2.54	\$5.57	\$8.43	\$2.54	\$5.02
181	\$8.28	\$3.03	\$5.65	\$10.30	\$2.52	\$6.44	\$7.59	\$3.85	\$5.50
182	\$8.39	\$2.54	\$5.02	\$8.66	\$2.54	\$4.68	\$8.07	\$2.54	\$5.26
183	\$9.46	\$3.63	\$5.74	\$8.56	\$2.54	\$5.02	\$8.15	\$2.54	\$5.11
184	\$7.27	\$4.23	\$5.95	\$10.16	\$2.54	\$5.67	\$8.73	\$2.54	\$5.07
185	\$9.10	\$3.93	\$6.24	\$7.73	\$2.49	\$5.16	\$7.98	\$2.67	\$5.50
186	\$10.43	\$2.54	\$5.69	\$10.31	\$2.54	\$6.08	\$8.58	\$4.08	\$5.66
187	\$8.95	\$2.71	\$5.56	\$8.03	\$2.49	\$5.32	\$7.88	\$2.49	\$5.55
188	\$7.29	\$2.49	\$5.10	\$8.40	\$3.67	\$5.69	\$8.66	\$2.96	\$5.09
189	\$6.84	\$4.22	\$5.23	\$8.12	\$2.57	\$5.17	\$7.23	\$2.57	\$5.32
190	\$7.36	\$2.52	\$5.23	\$7.55	\$2.72	\$5.08	\$7.54	\$2.52	\$4.69
191	\$9.76	\$3.69	\$5.33	\$8.17	\$3.03	\$5.74	\$8.33	\$2.52	\$5.84
192	\$7.69	\$2.49	\$4.92	\$6.68	\$3.60	\$4.91	\$8.24	\$2.57	\$5.95
193	\$9.34	\$3.88	\$6.08	\$8.83	\$3.06	\$5.88	\$8.19	\$2.57	\$5.32
194	\$8.59	\$4.22	\$6.31	\$7.50	\$2.54	\$5.08	\$7.79	\$2.54	\$5.73
195	\$7.97	\$2.54	\$5.09	\$8.08	\$2.54	\$5.94	\$9.94	\$5.08	\$6.48
196	\$7.99	\$2.54	\$5.31	\$7.65	\$2.54	\$5.83	\$6.45	\$2.54	\$4.76
197	\$7.10	\$3.61	\$5.68	\$7.74	\$3.93	\$5.21	\$11.44	\$2.54	\$6.00
198	\$8.54	\$2.54	\$6.31	\$10.26	\$2.52	\$5.36	\$8.51	\$3.32	\$5.41
199	\$7.39	\$2.57	\$5.63	\$9.30	\$2.57	\$6.27	\$7.57	\$3.07	\$5.62
200	\$8.76	\$3.09	\$5.67	\$8.87	\$3.20	\$6.12	\$9.55	\$3.17	\$6.13
average	\$8.41	\$3.06	\$5.63	\$8.27	\$2.97	\$5.45	\$8.20	\$2.91	\$5.48
Max	\$11.45			\$11.26			\$11.44		
Avg			\$5.63			\$5.45			\$5.48
Min	\$2.49			\$2.49			\$2.49		
Range	8.96			8.77			8.95		

Draw

	2018			2019			2020		
	max	min	avg	max	min	avg	max	min	avg
	\$9.20	\$2.57	\$5.19	\$8.22	\$5.16	\$6.27	\$7.66	\$2.96	\$5.27
	\$8.49	\$2.57	\$5.59	\$8.57	\$2.57	\$5.93	\$7.70	\$3.79	\$5.75
	\$7.97	\$4.73	\$6.11	\$9.26	\$3.46	\$5.75	\$9.59	\$3.01	\$5.26
	\$6.69	\$2.54	\$5.14	\$8.30	\$3.36	\$5.64	\$8.37	\$3.72	\$5.83
	\$7.75	\$2.81	\$5.47	\$7.91	\$2.52	\$5.68	\$8.02	\$3.93	\$6.11
6	\$8.36	\$3.88	\$5.98	\$7.57	\$2.49	\$5.99	\$9.53	\$3.53	\$6.61
	\$8.93	\$4.09	\$6.57	\$9.03	\$2.54	\$6.35	\$8.90	\$3.41	\$6.21
	\$8.66	\$3.35	\$6.20	\$11.40	\$3.30	\$6.28	\$9.55	\$2.71	\$5.76
	\$8.81	\$3.83	\$6.26	\$10.25	\$4.19	\$5.75	\$7.29	\$2.54	\$4.81
	\$7.94	\$2.83	\$5.95	\$8.10	\$3.86	\$6.18	\$8.28	\$3.09	\$5.68
	\$7.96	\$2.87	\$5.72	\$7.34	\$2.52	\$5.90	\$7.38	\$3.61	\$5.57
	\$9.76	\$3.30	\$6.28	\$7.77	\$2.61	\$5.53	\$7.96	\$2.52	\$4.80
	\$9.26	\$2.92	\$5.93	\$8.53	\$3.15	\$6.15	\$7.95	\$2.57	\$4.84
	\$8.16	\$2.76	\$5.75	\$7.08	\$2.49	\$5.22	\$8.03	\$2.49	\$4.89
	\$7.32	\$2.89	\$5.52	\$11.23	\$2.57	\$6.04	\$7.13	\$2.80	\$5.54
	\$7.56	\$4.37	\$5.93	\$7.59	\$2.49	\$5.58	\$10.19	\$2.49	\$5.54
	\$9.04	\$2.54	\$6.04	\$8.61	\$4.77	\$5.91	\$7.58	\$2.54	\$4.99
	\$9.66	\$2.49	\$5.57	\$10.20	\$4.02	\$6.07	\$9.73	\$3.62	\$6.01
	\$8.73	\$2.49	\$5.83	\$9.23	\$2.96	\$6.24	\$6.32	\$2.56	\$5.06
	\$6.86	\$3.75	\$5.65	\$9.13	\$3.84	\$5.79	\$7.15	\$3.25	\$5.56
	\$7.24	\$3.49	\$5.35	\$8.77	\$2.71	\$6.47	\$8.41	\$2.54	\$5.60
	\$10.24	\$4.48	\$5.99	\$9.51	\$3.55	\$5.93	\$8.77	\$3.14	\$5.41
	\$8.96	\$3.34	\$5.86	\$7.87	\$2.66	\$5.88	\$8.88	\$2.96	\$5.79
	\$7.29	\$3.07	\$5.97	\$9.93	\$2.74	\$6.42	\$8.21	\$4.01	\$5.90
	\$7.30	\$2.74	\$4.95	\$6.13	\$3.11	\$4.91	\$7.53	\$2.49	\$4.99
	\$9.20	\$3.99	\$5.82	\$8.25	\$3.17	\$5.53	\$7.87	\$2.49	\$4.90
	\$9.60	\$2.52	\$5.46	\$8.90	\$3.11	\$6.27	\$7.63	\$3.76	\$5.49
	\$7.88	\$2.54	\$5.24	\$8.86	\$3.39	\$5.93	\$8.11	\$3.02	\$5.60
	\$7.66	\$3.77	\$5.84	\$9.76	\$5.16	\$7.13	\$8.40	\$3.22	\$5.47
	\$9.40	\$2.57	\$5.74	\$9.61	\$3.86	\$6.42	\$7.35	\$3.49	\$5.54
	\$8.02	\$4.61	\$6.05	\$7.91	\$3.59	\$6.07	\$9.12	\$2.57	\$5.17
	\$7.40	\$2.52	\$5.16	\$7.22	\$3.54	\$5.50	\$8.55	\$2.52	\$5.42
	\$7.12	\$2.49	\$4.36	\$9.34	\$2.49	\$6.17	\$7.59	\$3.04	\$5.06
	\$8.72	\$4.08	\$5.41	\$6.87	\$2.54	\$4.86	\$9.00	\$2.54	\$5.08
	\$8.52	\$4.30	\$6.05	\$6.94	\$2.52	\$5.05	\$7.63	\$2.52	\$5.55
	\$9.60	\$2.77	\$6.41	\$7.45	\$3.14	\$4.80	\$8.45	\$2.54	\$5.23
	\$10.31	\$2.88	\$5.31	\$9.04	\$3.58	\$5.33	\$9.04	\$3.93	\$5.41
	\$6.67	\$2.71	\$5.24	\$8.69	\$2.95	\$5.89	\$7.33	\$2.56	\$6.03
	\$7.78	\$4.16	\$5.82	\$7.94	\$2.52	\$5.61	\$5.97	\$2.52	\$4.72
	\$7.19	\$3.29	\$5.02	\$8.54	\$3.84	\$5.66	\$7.79	\$2.57	\$5.15
	\$7.47	\$2.64	\$5.71	\$7.47	\$2.98	\$5.47	\$9.69	\$2.57	\$5.26
	\$6.35	\$2.49	\$4.77	\$8.68	\$2.49	\$5.40	\$7.17	\$2.82	\$5.10
	\$7.99	\$2.49	\$5.15	\$7.51	\$2.49	\$5.52	\$7.91	\$3.22	\$5.71
	\$7.55	\$2.54	\$5.65	\$8.78	\$4.28	\$6.38	\$8.54	\$3.65	\$6.37
	\$10.20	\$4.83	\$6.61	\$7.97	\$2.65	\$5.18	\$7.13	\$3.76	\$5.00
	\$8.43	\$2.75	\$5.98	\$8.66	\$3.33	\$5.53	\$7.90	\$3.08	\$5.99
	\$8.44	\$2.52	\$5.09	\$9.46	\$3.22	\$6.25	\$7.60	\$3.12	\$5.74
	\$8.33	\$2.49	\$5.47	\$6.63	\$3.42	\$5.61	\$7.03	\$3.29	\$5.34
	\$7.33	\$2.67	\$5.51	\$9.36	\$3.69	\$5.92	\$8.69	\$2.57	\$5.64
	\$7.11	\$3.04	\$5.55	\$10.12	\$3.90	\$5.91	\$8.58	\$3.39	\$6.66
	\$8.28	\$3.20	\$6.12	\$9.23	\$3.85	\$5.84	\$8.89	\$3.22	\$5.50
	\$7.31	\$2.87	\$5.60	\$8.07	\$2.52	\$6.00	\$7.63	\$2.52	\$4.81

			2018							

Draw

	2021			2022			2023		
	max	min	avg	max	min	avg	max	min	avg
	\$8.07	\$2.57	\$5.68	\$8.79	\$4.07	\$6.14	\$10.37	\$3.46	\$6.56
	\$10.47	\$4.08	\$5.82	\$8.05	\$3.69	\$6.17	\$8.21	\$3.62	\$6.40
	\$9.33	\$2.49	\$5.98	\$9.37	\$2.49	\$5.35	\$8.69	\$2.49	\$5.82
	\$8.28	\$3.76	\$5.98	\$8.42	\$2.54	\$5.66	\$7.48	\$4.03	\$5.66
	\$12.28	\$2.52	\$5.68	\$8.30	\$3.39	\$6.11	\$8.96	\$2.52	\$5.94
	\$8.65	\$3.71	\$6.07	\$8.97	\$2.68	\$5.46	\$7.55	\$3.33	\$5.93
	\$8.02	\$4.32	\$6.06	\$9.70	\$3.60	\$6.04	\$12.45	\$2.54	\$5.53
	\$8.00	\$2.57	\$5.24	\$7.78	\$2.57	\$5.24	\$9.42	\$2.57	\$6.04
	\$7.73	\$3.14	\$5.83	\$8.20	\$2.54	\$4.97	\$9.14	\$2.54	\$5.53
	\$8.55	\$2.66	\$6.30	\$7.58	\$4.05	\$5.65	\$10.26	\$3.96	\$6.40
	\$6.48	\$2.89	\$5.32	\$8.74	\$3.68	\$6.32	\$8.00	\$3.02	\$6.07
	\$8.80	\$2.81	\$5.71	\$9.84	\$3.19	\$6.36	\$9.81	\$4.91	\$7.31
	\$9.43	\$3.50	\$5.96	\$7.53	\$2.66	\$5.37	\$10.40	\$2.57	\$6.52
	\$7.68	\$2.92	\$5.50	\$9.54	\$2.49	\$5.82	\$8.00	\$3.46	\$5.63
	\$7.12	\$3.11	\$5.54	\$7.79	\$2.57	\$6.14	\$9.12	\$2.85	\$6.49
	\$8.82	\$3.81	\$6.13	\$7.41	\$3.51	\$5.54	\$8.77	\$3.35	\$5.88
	\$7.46	\$4.22	\$5.46	\$8.04	\$4.16	\$5.91	\$9.69	\$3.37	\$6.49
	\$7.87	\$2.49	\$5.57	\$8.57	\$4.28	\$6.03	\$9.31	\$3.88	\$6.06
	\$10.22	\$2.49	\$5.80	\$10.01	\$2.85	\$6.24	\$8.20	\$2.62	\$5.56
	\$7.68	\$3.26	\$5.17	\$8.53	\$4.04	\$5.91	\$8.53	\$3.40	\$5.72
	\$7.60	\$3.13	\$5.42	\$9.20	\$2.54	\$6.28	\$7.88	\$3.13	\$5.34
	\$7.61	\$4.68	\$6.12	\$7.75	\$4.16	\$5.88	\$7.88	\$2.77	\$5.36
	\$7.07	\$2.81	\$5.48	\$9.17	\$2.83	\$6.62	\$9.89	\$3.44	\$6.48
	\$8.16	\$3.12	\$6.20	\$7.40	\$2.57	\$5.31	\$7.89	\$3.52	\$6.08
	\$8.29	\$3.69	\$5.48	\$7.58	\$4.39	\$5.66	\$10.13	\$3.79	\$6.59
	\$10.16	\$4.07	\$5.97	\$8.09	\$3.20	\$5.70	\$9.06	\$3.42	\$6.11
	\$8.19	\$2.54	\$5.57	\$8.80	\$2.52	\$5.31	\$9.28	\$2.68	\$5.52
	\$7.17	\$2.54	\$5.12	\$7.86	\$3.40	\$5.39	\$9.21	\$4.56	\$6.50
	\$8.97	\$3.65	\$5.62	\$8.64	\$3.48	\$5.87	\$8.06	\$3.35	\$5.91
	\$10.07	\$4.27	\$6.16	\$10.60	\$2.57	\$5.44	\$8.29	\$2.57	\$5.81
	\$7.82	\$3.68	\$5.73	\$8.47	\$3.19	\$6.07	\$8.49	\$3.40	\$6.40
	\$8.19	\$3.83	\$6.44	\$8.26	\$3.19	\$5.78	\$9.91	\$4.31	\$6.56
	\$9.60	\$2.49	\$4.94	\$9.78	\$2.49	\$5.40	\$9.41	\$3.79	\$7.08
	\$8.22	\$4.71	\$6.45	\$9.93	\$2.75	\$5.71	\$8.52	\$3.57	\$6.01
	\$8.27	\$3.80	\$6.05	\$6.47	\$3.02	\$5.54	\$9.59	\$4.48	\$6.68
	\$8.39	\$2.69	\$4.89	\$7.92	\$2.96	\$5.60	\$8.37	\$2.82	\$6.08
	\$8.94	\$2.54	\$5.64	\$8.58	\$2.94	\$6.25	\$8.96	\$4.15	\$6.76
	\$9.64	\$2.52	\$5.87	\$8.26	\$4.42	\$5.76	\$9.43	\$3.12	\$5.90
	\$7.01	\$3.10	\$5.20	\$7.19	\$3.38	\$5.84	\$7.25	\$3.39	\$5.55
	\$9.48	\$2.57	\$5.50	\$8.34	\$2.57	\$5.85	\$9.51	\$2.57	\$6.75
	\$7.36	\$3.31	\$5.61	\$10.12	\$3.87	\$5.91	\$8.15	\$3.54	\$5.63
	\$7.72	\$2.49	\$5.65	\$8.21	\$2.91	\$6.29	\$9.99	\$3.76	\$6.31
	\$8.38	\$2.49	\$5.85	\$9.14	\$2.59	\$5.27	\$9.06	\$4.66	\$6.26
	\$9.18	\$3.09	\$5.99	\$7.39	\$2.54	\$5.53	\$8.42	\$2.54	\$5.80
	\$8.35	\$2.57	\$5.09	\$7.79	\$2.62	\$4.81	\$7.71	\$4.50	\$6.10
	\$9.83	\$3.43	\$6.11	\$8.16	\$2.54	\$5.75	\$8.75	\$4.20	\$6.30
	\$8.47	\$3.13	\$5.06	\$8.69	\$3.28	\$6.25	\$8.43	\$2.52	\$6.26
	\$7.87	\$2.49	\$5.87	\$9.20	\$5.15	\$6.55	\$11.61	\$3.76	\$7.07
	\$6.50	\$2.83	\$4.85	\$7.64	\$2.77	\$5.06	\$8.58	\$2.57	\$5.34
	\$8.01	\$2.57	\$5.63	\$8.83	\$2.57	\$5.48	\$7.32	\$3.81	\$5.54
	\$10.85	\$2.58	\$5.93	\$9.34	\$2.65	\$5.86	\$8.77	\$4.51	\$6.53
	\$7.92	\$5.10	\$6.36	\$8.29	\$4.05	\$5.73	\$8.15	\$4.45	\$6.13

			2021				2022			

	2021			2022			2023		
Draw	max	min	avg	max	min	avg	max	min	avg
157	\$8.79	\$2.54	\$5.95	\$9.99	\$2.61	\$6.45	\$9.45	\$3.25	\$6.16
158	\$6.52	\$2.89	\$4.50	\$9.78	\$3.09	\$6.46	\$9.35	\$2.49	\$6.06
159	\$10.22	\$3.03	\$6.75	\$10.25	\$4.11	\$6.81	\$9.33	\$3.18	\$6.26
160	\$8.91	\$3.02	\$5.10	\$8.25	\$2.70	\$6.06	\$7.12	\$2.54	\$5.06
161	\$5.85	\$3.33	\$4.67	\$9.13	\$2.81	\$6.61	\$8.77	\$4.93	\$6.43
162	\$8.72	\$3.17	\$5.57	\$10.66	\$2.49	\$6.33	\$8.95	\$3.37	\$6.10
163	\$7.97	\$2.54	\$5.44	\$7.28	\$3.18	\$5.25	\$7.96	\$2.74	\$4.66
164	\$7.70	\$2.52	\$5.94	\$8.36	\$3.87	\$5.97	\$9.13	\$2.52	\$5.86
165	\$8.49	\$3.37	\$5.78	\$8.71	\$2.52	\$6.61	\$8.41	\$4.54	\$7.29
166	\$7.51	\$2.82	\$4.94	\$9.26	\$2.57	\$5.99	\$9.28	\$3.22	\$6.15
167	\$8.50	\$2.54	\$5.11	\$8.87	\$3.50	\$6.26	\$9.16	\$3.16	\$6.27
168	\$8.29	\$3.04	\$5.48	\$10.05	\$2.52	\$5.64	\$8.50	\$2.52	\$5.59
169	\$7.71	\$2.71	\$5.36	\$8.80	\$3.81	\$5.75	\$8.51	\$3.81	\$6.38
170	\$7.33	\$2.73	\$5.34	\$10.13	\$5.16	\$7.07	\$9.65	\$2.57	\$5.97
171	\$8.15	\$3.65	\$5.83	\$9.47	\$2.97	\$6.43	\$8.57	\$5.05	\$6.27
172	\$6.99	\$3.28	\$5.17	\$9.96	\$3.16	\$5.68	\$10.50	\$4.09	\$6.20
173	\$10.26	\$3.66	\$5.72	\$7.83	\$3.32	\$5.88	\$8.35	\$3.12	\$5.46
174	\$9.11	\$4.28	\$5.66	\$10.05	\$4.47	\$7.04	\$9.68	\$4.08	\$6.74
175	\$7.90	\$2.96	\$5.70	\$7.09	\$3.68	\$5.60	\$9.09	\$4.46	\$6.60
176	\$8.80	\$2.49	\$6.44	\$9.26	\$3.39	\$6.49	\$9.35	\$3.07	\$5.84
177	\$9.52	\$2.52	\$5.58	\$8.81	\$3.10	\$5.55	\$9.98	\$4.74	\$6.44
178	\$7.92	\$2.52	\$5.68	\$7.76	\$2.52	\$5.34	\$8.63	\$3.17	\$6.18
179	\$9.11	\$2.57	\$5.23	\$9.20	\$2.57	\$5.44	\$9.43	\$3.58	\$6.51
180	\$8.10	\$2.68	\$5.84	\$7.24	\$2.77	\$5.23	\$7.03	\$5.32	\$6.18
181	\$9.35	\$2.52	\$5.47	\$8.58	\$3.21	\$5.92	\$8.86	\$2.93	\$6.06
182	\$7.44	\$2.54	\$4.85	\$8.60	\$2.85	\$5.63	\$9.13	\$2.88	\$5.48
183	\$11.71	\$4.73	\$7.39	\$9.23	\$3.21	\$6.20	\$8.53	\$3.33	\$6.08
184	\$6.57	\$2.87	\$5.20	\$8.88	\$2.85	\$5.48	\$9.18	\$4.61	\$6.30
185	\$9.35	\$3.22	\$5.77	\$7.52	\$2.49	\$5.47	\$9.78	\$2.49	\$5.91
186	\$8.20	\$3.31	\$5.73	\$10.10	\$3.78	\$5.84	\$7.40	\$2.54	\$5.02
187	\$10.14	\$4.12	\$5.79	\$8.82	\$3.42	\$5.98	\$6.31	\$2.87	\$4.49
188	\$7.81	\$3.73	\$6.18	\$11.28	\$4.84	\$6.56	\$9.13	\$3.58	\$5.67
189	\$7.65	\$2.57	\$5.12	\$9.45	\$2.57	\$6.65	\$8.18	\$2.58	\$6.17
190	\$6.56	\$2.52	\$4.67	\$8.28	\$3.43	\$5.83	\$9.39	\$2.65	\$5.25
191	\$8.75	\$3.01	\$5.64	\$8.70	\$2.52	\$5.17	\$9.49	\$3.26	\$6.13
192	\$8.51	\$2.49	\$5.33	\$7.84	\$3.67	\$5.54	\$8.20	\$5.20	\$6.38
193	\$7.25	\$3.14	\$4.96	\$7.78	\$2.57	\$5.16	\$7.90	\$3.29	\$6.28
194	\$8.62	\$2.54	\$5.65	\$8.11	\$4.17	\$5.79	\$7.35	\$2.85	\$5.52
195	\$7.85	\$3.47	\$6.21	\$8.04	\$2.54	\$5.31	\$8.95	\$4.01	\$7.01
196	\$8.84	\$2.54	\$5.20	\$7.92	\$3.10	\$5.10	\$7.24	\$3.39	\$5.55
197	\$9.07	\$2.78	\$5.26	\$7.32	\$3.89	\$5.89	\$9.59	\$3.01	\$6.24
198	\$8.18	\$3.82	\$6.14	\$7.79	\$3.27	\$5.30	\$9.41	\$3.06	\$6.47
199	\$7.99	\$3.40	\$6.10	\$6.81	\$3.10	\$4.95	\$9.19	\$3.18	\$6.08
200	\$8.82	\$2.49	\$5.85	\$8.40	\$3.86	\$5.72	\$8.28	\$3.85	\$5.87
average	\$8.35	\$3.13	\$5.66	\$8.64	\$3.21	\$5.83	\$8.79	\$3.46	\$6.06
Max	\$12.28			\$11.28			\$12.45		
Avg			\$5.66			\$5.83			\$6.06
Min	\$2.49			\$2.49			\$2.49		
Range	9.79			8.79			9.96		

Draw

	2024			2025			2026		
	max	min	avg	max	min	avg	max	min	avg
1	\$8.17	\$3.18	\$5.85	\$12.15	\$3.01	\$6.23	\$8.00	\$2.57	\$5.15
2	\$6.15	\$3.55	\$4.84	\$8.96	\$3.70	\$6.23	\$7.97	\$2.82	\$5.41
3	\$7.62	\$2.66	\$5.14	\$8.77	\$2.71	\$5.31	\$8.19	\$2.49	\$5.79
4	\$7.46	\$2.54	\$4.47	\$8.47	\$2.54	\$5.61	\$7.39	\$2.54	\$5.33
5	\$7.15	\$2.87	\$5.05	\$6.65	\$2.97	\$5.49	\$6.58	\$2.55	\$5.38
6	\$7.93	\$2.61	\$5.47	\$8.86	\$2.49	\$5.36	\$8.22	\$3.65	\$5.95
7	\$9.54	\$3.36	\$6.38	\$8.60	\$2.54	\$5.17	\$9.29	\$3.89	\$6.64
8	\$9.38	\$2.57	\$5.84	\$7.05	\$2.57	\$4.85	\$8.73	\$2.57	\$5.94
9	\$8.27	\$4.13	\$6.02	\$7.66	\$3.19	\$4.75	\$8.55	\$2.90	\$5.94
	\$8.69	\$2.49	\$5.95	\$9.09	\$3.81	\$6.37	\$8.98	\$3.51	\$6.42
	\$9.33	\$2.52	\$5.57	\$9.12	\$4.10	\$5.91	\$8.54	\$2.71	\$5.52
	\$7.89	\$2.52	\$5.80	\$6.31	\$3.32	\$5.02	\$8.74	\$3.39	\$5.96
	\$8.68	\$2.80	\$5.71	\$8.14	\$3.31	\$4.90	\$9.08	\$3.46	\$5.90
	\$9.10	\$2.81	\$6.02	\$7.32	\$2.53	\$5.27	\$7.64	\$3.87	\$5.65
	\$7.49	\$2.90	\$5.31	\$7.77	\$2.57	\$5.66	\$9.55	\$2.57	\$6.19
6	\$8.69	\$3.92	\$5.69	\$8.63	\$5.25	\$6.77	\$8.67	\$5.17	\$6.26
	\$8.84	\$3.08	\$6.09	\$7.54	\$2.54	\$5.44	\$8.34	\$2.54	\$5.35
	\$8.79	\$3.09	\$5.20	\$7.98	\$2.55	\$5.68	\$8.55	\$2.49	\$6.04
	\$9.66	\$2.49	\$6.18	\$7.92	\$2.81	\$5.48	\$7.17	\$2.99	\$5.28
	\$7.38	\$3.03	\$6.04	\$7.18	\$4.34	\$5.53	\$8.58	\$2.49	\$5.23
	\$8.91	\$5.00	\$6.69	\$9.40	\$2.54	\$6.37	\$6.92	\$3.49	\$5.24
	\$8.26	\$4.60	\$6.36	\$8.07	\$3.58	\$5.60	\$8.56	\$2.54	\$6.41
	\$8.74	\$3.22	\$6.05	\$7.75	\$2.57	\$5.59	\$7.13	\$3.68	\$5.72
	\$7.44	\$3.12	\$5.58	\$7.99	\$3.22	\$4.86	\$8.08	\$2.57	\$6.12
	\$8.35	\$2.49	\$5.60	\$7.41	\$2.63	\$5.27	\$7.79	\$2.49	\$5.03
	\$7.88	\$2.85	\$5.74	\$9.40	\$3.15	\$5.99	\$7.51	\$3.02	\$5.29
	\$6.21	\$3.25	\$4.77	\$7.66	\$2.52	\$4.37	\$9.66	\$2.52	\$6.15
	\$8.43	\$3.78	\$5.24	\$7.93	\$2.61	\$5.32	\$7.81	\$2.54	\$5.28
	\$7.97	\$2.49	\$5.49	\$8.32	\$3.00	\$5.67	\$8.63	\$4.50	\$6.22
	\$6.70	\$2.57	\$4.86	\$6.66	\$2.57	\$5.13	\$7.86	\$2.57	\$5.05
	\$8.45	\$3.62	\$6.30	\$8.55	\$2.57	\$5.72	\$8.50	\$2.57	\$5.54
	\$8.59	\$3.25	\$5.96	\$9.38	\$4.02	\$6.02	\$8.04	\$2.72	\$5.36
	\$8.97	\$3.18	\$5.73	\$8.90	\$3.20	\$5.11	\$9.70	\$3.43	\$6.41
	\$8.29	\$3.97	\$5.76	\$6.94	\$2.54	\$5.02	\$9.94	\$2.54	\$6.55
	\$8.15	\$3.70	\$6.33	\$9.34	\$3.20	\$6.24	\$9.05	\$3.74	\$6.69
	\$8.89	\$2.54	\$5.82	\$8.07	\$3.58	\$6.03	\$10.52	\$2.82	\$5.48
	\$8.73	\$3.33	\$5.93	\$7.87	\$3.21	\$5.10	\$7.89	\$2.81	\$6.03
	\$8.54	\$3.67	\$5.22	\$8.15	\$2.74	\$5.47	\$7.26	\$3.73	\$5.67
	\$8.23	\$3.21	\$5.39	\$6.81	\$2.89	\$5.43	\$9.62	\$2.52	\$5.86
	\$8.17	\$4.33	\$6.22	\$9.26	\$3.60	\$5.89	\$8.60	\$3.72	\$5.78
	\$7.66	\$3.29	\$5.46	\$9.86	\$4.13	\$6.21	\$6.88	\$3.61	\$5.18
	\$7.73	\$2.49	\$5.81	\$6.59	\$2.61	\$4.90	\$7.68	\$3.48	\$5.64
	\$8.25	\$4.43	\$6.07	\$7.25	\$2.79	\$5.16	\$9.27	\$4.54	\$6.61
	\$8.86	\$2.54	\$5.21	\$7.14	\$3.48	\$5.61	\$8.27	\$3.58	\$5.71
	\$9.01	\$3.13	\$5.90	\$7.42	\$4.12	\$5.87	\$8.15	\$2.57	\$5.07
	\$9.26	\$2.54	\$5.75	\$8.92	\$3.11	\$5.83	\$7.39	\$2.92	\$5.16
	\$10.50	\$2.52	\$5.75	\$7.42	\$3.09	\$5.16	\$8.81	\$3.18	\$5.82
	\$8.52	\$3.00	\$6.36	\$8.11	\$2.64	\$5.84	\$9.20	\$3.23	\$6.08
	\$8.38	\$3.87	\$6.20	\$8.01	\$2.95	\$5.47	\$6.30	\$3.22	\$4.92
	\$8.14	\$3.60	\$5.81	\$8.31	\$2.57	\$5.01	\$7.96	\$2.57	\$5.67
	\$9.02	\$3.08	\$5.96	\$10.03	\$2.57	\$5.50	\$8.38	\$2.67	\$5.56
	\$7.87	\$3.49	\$5.82	\$9.29	\$2.52	\$5.55	\$8.07	\$2.52	\$5.25

	2024			2025			2026		
Draw	max	min	avg	max	min	avg	max	min	avg
157	\$8.38	\$2.54	\$6.07	\$7.23	\$4.45	\$6.25	\$7.06	\$2.93	\$5.42
158	\$9.96	\$3.67	\$6.89	\$8.92	\$4.03	\$6.02	\$10.11	\$2.49	\$5.36
159	\$8.65	\$3.14	\$5.20	\$8.09	\$2.57	\$5.04	\$7.52	\$3.62	\$6.37
160	\$7.81	\$2.54	\$5.75	\$8.82	\$2.54	\$5.50	\$8.39	\$3.34	\$6.13
161	\$8.69	\$3.00	\$5.40	\$8.15	\$2.54	\$5.26	\$8.01	\$2.54	\$5.73
162	\$9.31	\$2.49	\$4.92	\$7.52	\$3.07	\$5.28	\$7.19	\$4.23	\$5.46
163	\$8.77	\$3.40	\$5.96	\$7.01	\$3.19	\$5.21	\$7.62	\$3.18	\$5.86
164	\$7.74	\$2.52	\$5.42	\$8.36	\$3.17	\$6.27	\$9.40	\$2.71	\$5.83
165	\$9.43	\$2.52	\$6.88	\$7.78	\$2.81	\$5.41	\$7.50	\$3.01	\$6.04
166	\$6.95	\$2.96	\$4.81	\$9.57	\$3.75	\$6.23	\$9.11	\$2.57	\$6.11
167	\$8.92	\$2.92	\$5.93	\$9.04	\$2.56	\$5.95	\$8.57	\$2.94	\$5.91
168	\$7.36	\$4.47	\$6.29	\$9.81	\$2.52	\$6.18	\$7.97	\$2.52	\$5.41
169	\$7.23	\$2.54	\$5.15	\$7.96	\$3.31	\$5.46	\$8.97	\$3.37	\$5.72
170	\$7.58	\$3.30	\$5.75	\$9.00	\$2.57	\$5.24	\$8.04	\$2.57	\$5.48
171	\$9.66	\$3.82	\$5.64	\$7.24	\$2.57	\$4.87	\$7.61	\$3.36	\$4.93
172	\$7.25	\$3.45	\$5.44	\$9.02	\$4.93	\$6.08	\$9.31	\$3.65	\$6.14
173	\$9.92	\$2.72	\$5.82	\$7.67	\$2.52	\$5.69	\$8.93	\$2.52	\$6.25
174	\$8.61	\$2.54	\$6.02	\$7.65	\$2.54	\$5.02	\$8.91	\$3.12	\$6.12
175	\$9.25	\$2.57	\$5.89	\$9.62	\$2.95	\$5.32	\$6.84	\$2.95	\$5.45
176	\$10.38	\$3.98	\$6.41	\$6.72	\$2.49	\$5.08	\$6.97	\$3.72	\$5.08
177	\$6.45	\$4.28	\$5.46	\$9.36	\$2.71	\$5.35	\$9.14	\$3.30	\$6.23
178	\$10.46	\$2.75	\$6.28	\$7.63	\$3.70	\$5.18	\$7.49	\$3.26	\$5.63
179	\$8.55	\$3.36	\$6.35	\$8.63	\$2.57	\$5.07	\$9.71	\$2.57	\$5.43
180	\$9.60	\$2.98	\$5.49	\$7.83	\$2.54	\$5.29	\$7.97	\$3.52	\$5.64
181	\$9.25	\$2.88	\$5.82	\$7.63	\$2.78	\$4.99	\$8.99	\$2.52	\$6.28
182	\$8.85	\$4.22	\$6.04	\$7.06	\$3.57	\$5.44	\$7.86	\$2.72	\$5.69
183	\$8.50	\$2.54	\$4.91	\$8.33	\$3.97	\$5.83	\$7.44	\$2.54	\$4.97
184	\$8.67	\$2.54	\$5.90	\$8.35	\$4.67	\$6.54	\$8.90	\$2.71	\$5.83
185	\$7.71	\$3.08	\$5.44	\$7.31	\$3.05	\$5.19	\$9.63	\$2.49	\$6.14
186	\$8.35	\$2.76	\$5.44	\$8.02	\$2.54	\$5.66	\$8.58	\$2.96	\$5.15
187	\$9.22	\$2.49	\$5.37	\$8.49	\$2.96	\$5.34	\$7.99	\$2.79	\$6.40
188	\$7.85	\$3.66	\$5.53	\$8.34	\$2.76	\$5.74	\$7.98	\$3.22	\$6.14
189	\$9.49	\$5.14	\$6.29	\$7.64	\$3.70	\$5.27	\$9.96	\$2.57	\$5.08
190	\$9.68	\$3.65	\$6.18	\$9.27	\$2.52	\$5.71	\$7.53	\$4.95	\$5.86
191	\$8.59	\$2.52	\$4.32	\$8.36	\$2.52	\$5.30	\$9.94	\$4.13	\$6.72
192	\$8.35	\$3.17	\$5.50	\$10.06	\$4.09	\$6.37	\$9.28	\$4.24	\$6.96
193	\$7.98	\$2.57	\$5.04	\$8.10	\$2.57	\$4.84	\$8.64	\$3.64	\$5.87
194	\$7.46	\$2.84	\$5.94	\$6.91	\$3.70	\$5.56	\$10.13	\$2.54	\$5.08
195	\$8.89	\$2.54	\$5.54	\$6.64	\$2.54	\$4.57	\$8.47	\$2.67	\$5.98
196	\$7.76	\$2.55	\$5.68	\$8.07	\$3.92	\$5.70	\$8.21	\$2.75	\$6.30
197	\$7.89	\$2.54	\$5.45	\$7.30	\$2.54	\$4.90	\$8.37	\$4.17	\$5.73
198	\$7.64	\$2.52	\$5.20	\$7.67	\$2.52	\$4.56	\$8.65	\$2.52	\$5.01
199	\$7.09	\$4.71	\$5.90	\$7.28	\$2.73	\$4.99	\$9.14	\$2.57	\$5.69
200	\$8.05	\$2.89	\$5.46	\$7.79	\$2.80	\$5.65	\$9.06	\$3.14	\$6.37
average	\$8.36	\$3.09	\$5.66	\$8.20	\$3.08	\$5.52	\$8.45	\$3.16	\$5.75
Max	\$11.30			\$12.15			\$11.17		
Avg			\$5.66			\$5.52			\$5.75
Min	2.490364			\$2.49			\$2.49		
Range	8.812318			9.66			8.68		

Draw

			2027				2028			

			2027								

			2027							

Draw	2030			2031		
	max	min	avg	max	min	avg
1	\$9.33	\$4.02	\$6.21	\$8.61	\$5.10	\$6.28
2	\$9.33	\$5.50	\$7.01	\$8.84	\$3.12	\$6.09
3	\$8.45	\$2.84	\$5.31	\$10.10	\$4.25	\$7.32
4	\$8.66	\$2.99	\$5.52	\$8.18	\$3.72	\$6.03
5	\$7.63	\$3.67	\$6.00	\$8.99	\$3.52	\$5.42
6	\$8.13	\$3.24	\$5.51	\$9.41	\$3.25	\$6.30
7	\$9.44	\$3.42	\$6.37	\$8.26	\$4.06	\$6.18
8	\$9.16	\$2.74	\$5.89	\$9.64	\$2.76	\$6.06
9	\$8.41	\$2.95	\$6.50	\$9.20	\$2.54	\$5.59
10	\$10.31	\$5.42	\$7.33	\$8.63	\$2.49	\$5.96
11	\$7.12	\$3.76	\$5.64	\$7.78	\$3.24	\$5.96
12	\$8.85	\$2.83	\$5.68	\$9.23	\$2.75	\$6.74
13	\$9.23	\$3.28	\$6.20	\$8.97	\$4.69	\$6.17
14	\$8.39	\$3.50	\$5.95	\$8.25	\$3.77	\$6.16
15	\$8.45	\$2.57	\$6.07	\$10.21	\$2.80	\$6.46
16	\$9.07	\$4.29	\$6.22	\$9.93	\$3.51	\$6.69
17	\$9.81	\$4.34	\$6.39	\$9.28	\$5.21	\$7.40
18	\$9.58	\$3.47	\$5.65	\$8.50	\$3.01	\$6.33
19	\$6.91	\$3.84	\$5.60	\$9.02	\$5.10	\$7.02
20	\$9.26	\$4.06	\$6.48	\$9.42	\$4.89	\$7.01
21	\$7.75	\$3.68	\$5.54	\$7.99	\$3.16	\$5.70
22	\$8.24	\$2.54	\$6.01	\$8.82	\$3.70	\$6.55
23	\$9.24	\$3.84	\$6.24	\$11.25	\$2.57	\$6.49
24	\$9.94	\$4.46	\$6.56	\$7.70	\$3.43	\$5.77
25	\$9.06	\$4.65	\$6.66	\$8.00	\$3.05	\$5.82
26	\$9.66	\$3.47	\$6.84	\$8.02	\$2.80	\$6.09
27	\$9.26	\$2.52	\$5.09	\$11.49	\$4.21	\$6.19
28	\$8.71	\$2.54	\$5.62	\$9.55	\$2.54	\$6.12
29	\$8.33	\$3.60	\$6.26	\$6.90	\$3.92	\$5.60
30	\$8.40	\$3.86	\$6.03	\$8.15	\$3.48	\$5.82
31	\$8.63	\$4.51	\$7.18	\$7.90	\$3.59	\$6.23
32	\$10.75	\$3.28	\$6.30	\$8.57	\$3.40	\$6.28
33	\$8.60	\$2.80	\$5.88	\$8.26	\$3.48	\$5.94
34	\$8.14	\$3.66	\$5.86	\$9.31	\$3.83	\$6.38
35	\$10.60	\$3.57	\$6.43	\$10.03	\$3.56	\$6.14
36	\$8.92	\$4.39	\$6.26	\$10.96	\$2.54	\$6.84
37	\$7.66	\$3.40	\$6.40	\$8.79	\$3.68	\$6.18
38	\$9.52	\$4.11	\$6.30	\$9.27	\$4.77	\$6.87
39	\$8.95	\$3.04	\$6.30	\$7.88	\$2.82	\$5.91
40	\$7.49	\$2.63	\$5.54	\$10.33	\$3.91	\$7.30
41	\$9.57	\$3.82	\$6.22	\$9.96	\$2.57	\$5.68
42	\$7.33	\$2.73	\$5.03	\$7.29	\$2.49	\$5.60
43	\$8.24	\$3.54	\$5.65	\$8.36	\$3.41	\$6.43
44	\$8.00	\$3.49	\$5.57	\$7.36	\$2.54	\$5.56
45	\$7.85	\$2.57	\$5.82	\$7.62	\$4.35	\$5.77
46	\$8.71	\$2.65	\$6.27	\$10.69	\$4.14	\$7.53
47	\$9.65	\$3.52	\$6.17	\$12.53	\$4.12	\$6.90
48	\$9.03	\$3.37	\$6.59	\$8.10	\$2.72	\$5.91
49	\$8.83	\$2.64	\$5.84	\$10.55	\$5.06	\$6.53
50	\$7.81	\$3.48	\$5.58	\$9.67	\$2.57	\$6.26
51	\$9.13	\$4.34	\$6.07	\$9.96	\$3.67	\$5.99
52	\$8.88	\$3.12	\$5.67	\$8.76	\$4.21	\$6.22

Draw	2030			2031		
	max	min	avg	max	min	avg
53	\$8.25	\$3.70	\$6.47	\$9.12	\$4.60	\$6.43
54	\$8.81	\$4.02	\$6.18	\$7.79	\$2.54	\$5.37
55	\$8.16	\$2.57	\$5.51	\$7.33	\$3.52	\$5.11
56	\$8.97	\$4.23	\$6.17	\$7.89	\$3.43	\$5.89
57	\$8.55	\$3.15	\$6.42	\$7.42	\$4.12	\$6.08
58	\$8.99	\$3.97	\$6.21	\$7.27	\$4.07	\$6.33
59	\$8.80	\$3.88	\$5.83	\$8.91	\$2.93	\$6.12
60	\$8.70	\$4.19	\$6.13	\$8.23	\$2.93	\$6.10
61	\$9.01	\$3.68	\$6.28	\$9.16	\$4.47	\$6.52
62	\$8.73	\$4.88	\$6.74	\$6.84	\$2.91	\$5.34
63	\$10.81	\$4.20	\$7.21	\$8.83	\$3.56	\$6.40
64	\$9.82	\$3.48	\$6.21	\$9.33	\$3.74	\$6.43
65	\$8.52	\$4.23	\$5.88	\$8.70	\$4.00	\$5.77
66	\$7.41	\$3.14	\$5.67	\$9.87	\$2.87	\$6.21
67	\$9.55	\$3.43	\$6.26	\$8.28	\$3.67	\$6.62
68	\$8.72	\$4.06	\$6.50	\$8.42	\$4.90	\$6.65
69	\$8.56	\$2.89	\$5.43	\$8.50	\$3.21	\$6.20
70	\$7.34	\$2.49	\$4.62	\$8.72	\$3.57	\$5.61
71	\$10.38	\$3.02	\$6.11	\$8.08	\$3.20	\$6.07
72	\$9.03	\$2.87	\$6.64	\$8.34	\$4.26	\$6.30
73	\$9.04	\$4.19	\$5.85	\$9.07	\$2.64	\$6.33
74	\$9.43	\$2.52	\$5.69	\$9.14	\$3.63	\$6.31
75	\$7.81	\$4.04	\$5.74	\$8.65	\$5.07	\$6.80
76	\$8.89	\$3.12	\$6.51	\$8.12	\$4.30	\$6.87
77	\$8.51	\$3.95	\$6.25	\$8.93	\$2.49	\$5.55
78	\$9.50	\$3.96	\$6.50	\$10.69	\$4.83	\$7.23
79	\$8.22	\$4.54	\$6.36	\$7.51	\$2.49	\$5.21
80	\$9.02	\$4.29	\$6.27	\$10.27	\$3.02	\$5.56
81	\$7.98	\$3.51	\$6.16	\$11.70	\$4.88	\$7.05
82	\$10.49	\$2.52	\$5.91	\$8.76	\$4.09	\$6.75
83	\$10.48	\$4.64	\$6.91	\$8.02	\$2.54	\$6.17
84	\$8.19	\$2.71	\$6.02	\$8.17	\$3.24	\$5.63
85	\$9.04	\$2.88	\$6.31	\$8.33	\$2.54	\$6.09
86	\$9.20	\$2.52	\$5.60	\$11.16	\$2.52	\$7.05
87	\$7.87	\$3.43	\$6.02	\$9.85	\$3.93	\$6.40
88	\$9.58	\$3.14	\$6.07	\$10.90	\$2.69	\$6.21
89	\$8.98	\$3.70	\$6.81	\$7.29	\$4.08	\$6.53
90	\$9.29	\$3.80	\$6.61	\$8.07	\$3.43	\$6.31
91	\$8.89	\$2.52	\$6.23	\$10.01	\$2.52	\$6.01
92	\$10.20	\$3.52	\$6.83	\$7.20	\$5.07	\$6.33
93	\$7.01	\$3.08	\$5.83	\$8.88	\$3.73	\$5.91
94	\$9.73	\$2.97	\$5.69	\$9.58	\$4.43	\$7.21
95	\$8.16	\$3.42	\$5.47	\$8.24	\$4.67	\$6.67
96	\$9.17	\$4.89	\$6.58	\$8.29	\$3.68	\$6.31
97	\$9.97	\$3.59	\$6.74	\$8.15	\$5.51	\$6.56
98	\$9.73	\$3.73	\$6.20	\$9.63	\$4.63	\$6.57
99	\$9.32	\$2.52	\$6.29	\$7.92	\$3.50	\$6.38
100	\$8.68	\$2.54	\$5.19	\$10.31	\$2.84	\$6.21
101	\$7.58	\$3.98	\$5.57	\$9.13	\$3.34	\$5.98
102	\$8.51	\$4.02	\$6.45	\$7.94	\$2.77	\$5.04
103	\$8.48	\$2.62	\$5.21	\$10.38	\$4.40	\$7.27
104	\$8.85	\$3.40	\$5.89	\$9.34	\$2.92	\$6.28

Draw	2030			2031		
	max	min	avg	max	min	avg
105	\$7.71	\$3.70	\$5.66	\$9.23	\$4.38	\$6.29
106	\$9.34	\$3.37	\$6.48	\$8.81	\$2.87	\$5.92
107	\$9.55	\$2.56	\$5.22	\$9.47	\$4.38	\$6.72
108	\$7.63	\$2.76	\$5.18	\$12.04	\$5.41	\$7.22
109	\$7.77	\$4.47	\$5.65	\$8.33	\$4.51	\$6.60
110	\$9.47	\$3.06	\$6.24	\$9.55	\$3.03	\$5.73
111	\$8.59	\$2.52	\$6.44	\$7.60	\$3.23	\$6.23
112	\$8.89	\$2.92	\$6.03	\$9.81	\$3.10	\$6.35
113	\$9.43	\$3.07	\$6.25	\$8.73	\$4.69	\$6.64
114	\$7.82	\$3.76	\$5.92	\$8.61	\$3.73	\$6.34
115	\$7.75	\$2.60	\$5.67	\$9.50	\$2.49	\$6.49
116	\$8.94	\$3.78	\$6.14	\$9.12	\$2.49	\$6.02
117	\$9.39	\$2.57	\$6.40	\$9.04	\$3.97	\$6.56
118	\$10.96	\$4.50	\$6.58	\$9.57	\$4.31	\$6.51
119	\$9.32	\$4.73	\$7.35	\$7.66	\$2.52	\$5.99
120	\$10.44	\$4.44	\$7.26	\$7.47	\$3.48	\$5.79
121	\$8.52	\$2.57	\$5.11	\$9.70	\$4.20	\$6.31
122	\$10.59	\$3.30	\$7.14	\$8.54	\$4.26	\$6.38
123	\$8.75	\$2.57	\$5.69	\$7.17	\$2.59	\$4.91
124	\$10.20	\$4.47	\$7.01	\$11.19	\$4.58	\$7.09
125	\$8.67	\$3.50	\$6.55	\$10.64	\$3.91	\$6.65
126	\$8.78	\$2.63	\$5.55	\$10.03	\$4.85	\$6.56
127	\$7.83	\$2.52	\$5.51	\$10.19	\$4.12	\$6.47
128	\$7.96	\$3.66	\$6.20	\$9.08	\$2.64	\$6.52
129	\$8.27	\$3.57	\$6.47	\$7.89	\$3.28	\$5.89
130	\$7.83	\$2.57	\$5.71	\$9.27	\$3.58	\$6.27
131	\$8.54	\$3.46	\$5.96	\$8.97	\$3.21	\$6.24
132	\$8.64	\$4.31	\$6.54	\$8.77	\$3.43	\$6.32
133	\$9.23	\$2.99	\$6.38	\$10.05	\$2.85	\$6.21
134	\$8.46	\$2.55	\$5.96	\$8.06	\$2.58	\$5.60
135	\$8.46	\$3.86	\$6.55	\$8.93	\$4.71	\$6.37
136	\$10.77	\$4.18	\$6.36	\$8.57	\$4.11	\$5.71
137	\$9.21	\$4.60	\$6.90	\$10.18	\$3.13	\$6.29
138	\$9.16	\$2.49	\$5.58	\$8.43	\$2.49	\$6.22
139	\$7.13	\$3.02	\$5.45	\$8.14	\$4.81	\$6.57
140	\$8.11	\$3.43	\$5.30	\$8.63	\$3.49	\$5.89
141	\$9.22	\$2.92	\$5.90	\$9.46	\$4.54	\$6.19
142	\$9.32	\$2.73	\$6.16	\$8.65	\$3.05	\$5.54
143	\$8.44	\$2.93	\$6.08	\$8.47	\$2.76	\$6.07
144	\$8.62	\$2.57	\$5.85	\$8.17	\$3.16	\$5.93
145	\$7.68	\$3.48	\$6.15	\$7.73	\$3.29	\$6.12
146	\$8.66	\$3.44	\$5.83	\$8.74	\$2.52	\$6.31
147	\$9.87	\$3.61	\$6.47	\$9.04	\$3.01	\$5.97
148	\$10.91	\$2.92	\$6.78	\$7.80	\$4.04	\$6.18
149	\$9.22	\$2.75	\$6.25	\$8.20	\$3.05	\$6.21
150	\$8.06	\$3.24	\$5.48	\$8.04	\$3.59	\$6.40
151	\$7.69	\$2.73	\$5.49	\$9.20	\$2.52	\$6.88
152	\$8.21	\$4.10	\$6.23	\$7.25	\$3.44	\$5.29
153	\$10.17	\$3.47	\$6.54	\$7.66	\$3.75	\$5.40
154	\$9.11	\$2.52	\$5.48	\$8.40	\$4.45	\$6.11
155	\$8.67	\$2.54	\$5.63	\$9.35	\$3.84	\$6.51
156	\$7.02	\$2.52	\$5.09	\$9.13	\$2.52	\$6.11

	2030			2031		
Draw	max	min	avg	max	min	avg
157	\$9.48	\$2.92	\$6.35	\$10.35	\$4.20	\$7.21
158	\$8.95	\$4.22	\$6.28	\$7.95	\$3.35	\$6.29
159	\$7.73	\$3.04	\$5.73	\$9.50	\$2.57	\$6.66
160	\$10.11	\$2.54	\$6.22	\$8.14	\$2.54	\$5.92
161	\$6.83	\$3.45	\$5.77	\$8.67	\$3.37	\$6.52
162	\$8.86	\$3.83	\$5.62	\$8.03	\$3.35	\$5.41
163	\$9.12	\$4.27	\$6.12	\$8.29	\$3.05	\$5.30
164	\$10.27	\$4.93	\$7.28	\$11.38	\$4.76	\$6.99
165	\$7.39	\$3.38	\$5.34	\$10.62	\$3.89	\$6.90
166	\$7.81	\$3.59	\$5.65	\$8.53	\$4.15	\$5.90
167	\$8.86	\$4.15	\$6.27	\$8.11	\$3.72	\$5.92
168	\$6.90	\$3.59	\$5.69	\$8.19	\$2.67	\$5.58
169	\$9.93	\$4.08	\$6.35	\$8.10	\$4.60	\$5.84
170	\$9.77	\$3.11	\$6.59	\$8.40	\$3.38	\$6.72
171	\$9.88	\$3.98	\$6.60	\$8.20	\$3.45	\$5.60
172	\$8.81	\$3.69	\$6.58	\$7.30	\$3.08	\$5.44
173	\$11.46	\$4.57	\$7.41	\$8.33	\$2.63	\$5.62
174	\$6.91	\$2.54	\$5.23	\$9.58	\$3.05	\$6.31
175	\$9.04	\$2.57	\$6.60	\$9.50	\$4.12	\$6.85
176	\$11.34	\$3.44	\$5.94	\$8.98	\$3.33	\$6.40
177	\$10.12	\$3.25	\$6.37	\$8.91	\$3.13	\$6.52
178	\$7.42	\$2.52	\$5.51	\$8.00	\$4.83	\$6.23
179	\$10.79	\$3.70	\$5.92	\$7.54	\$3.00	\$5.78
180	\$8.74	\$3.57	\$5.82	\$8.65	\$2.56	\$5.46
181	\$7.95	\$2.83	\$6.08	\$7.74	\$4.15	\$6.32
182	\$8.33	\$3.46	\$6.25	\$7.85	\$4.89	\$6.47
183	\$8.30	\$3.11	\$6.36	\$8.09	\$2.54	\$5.80
184	\$8.13	\$2.78	\$5.27	\$8.63	\$4.12	\$6.07
185	\$8.56	\$3.71	\$5.82	\$8.15	\$3.86	\$6.58
186	\$8.18	\$4.16	\$6.25	\$8.34	\$4.40	\$5.83
187	\$9.76	\$4.79	\$6.39	\$8.47	\$4.05	\$6.50
188	\$8.25	\$2.95	\$5.84	\$7.03	\$4.15	\$5.52
189	\$8.79	\$2.57	\$5.25	\$7.19	\$3.83	\$5.32
190	\$8.81	\$2.52	\$5.46	\$8.60	\$4.49	\$6.39
191	\$9.95	\$3.06	\$5.72	\$7.68	\$2.93	\$5.67
192	\$8.81	\$4.31	\$6.22	\$9.88	\$2.49	\$6.35
193	\$8.46	\$3.14	\$6.48	\$9.34	\$3.43	\$6.37
194	\$9.35	\$2.54	\$6.00	\$9.98	\$3.04	\$6.28
195	\$9.42	\$2.66	\$6.78	\$8.28	\$2.54	\$5.45
196	\$10.04	\$2.78	\$6.66	\$8.93	\$3.52	\$6.91
197	\$8.54	\$2.54	\$6.13	\$7.76	\$4.96	\$6.02
198	\$8.01	\$2.52	\$5.80	\$8.64	\$3.84	\$5.87
199	\$8.25	\$2.57	\$6.16	\$9.82	\$4.52	\$6.85
200	\$8.45	\$4.48	\$6.70	\$10.66	\$2.49	\$6.02
average	\$8.85	\$3.41	\$6.09	\$8.85	\$3.57	\$6.22
Max	\$11.46			\$12.53		
Avg			\$6.09			\$6.22
Min	\$2.49			\$2.49		
Range	8.97			10.04		

Appendix H

Avoided Cost Calculations

PRELIMIINARY AVOIDED COST ESTIMATES
 BASECASE - MEDIUM FORECAST - AVERAGE WEATHER 45 YEAR RESOURCE SUMMARY COSTS - MELDED COST PER THERM

Conservation Credit \% attempts to recognize non-quantifiable benefits associated with conservation, including benefits of price certainty \& hedge against future carbon costs

PRELIMIINARY AVOIDED COST ESTIMATES
BASECASE - MEDIUM FORECAST - AVERAGE WEATHER-With Carbon 1 Scenario
45 YEAR RESOURCE SUMMARY COSTS - MELDED COST PER THERM

	YEAR	IRP ANNUAL PORTFOLIO COST PER THERM (PV)*		NOMINAL COST PER THERM		RESOURCE PORTFOLIO COST - \% CHANGE	PV OF RESOURCE PORTFOLIO COST/THERM		Non- Energy Benefits $\%$ 5%	PORTFOLIO COSTS INCLUDING CONSERVATION CREDIT		COST- EFFECTIVENESS LIMIT
2011	1	\$	0.58	\$	0.62		\$	0.58		\$	0.61	
2012	2	\$	0.58	\$	0.67	7.5\%	\$	1.16	5\%	\$	1.22	
2013	3	\$	0.57	\$	0.71	5.7\%	\$	1.73	5\%	\$	1.82	
2014	4	\$	0.58	\$	0.78	10.1\%	\$	2.32	5\%	\$	2.43	
2015	5	\$	0.56	\$	0.81	4.9\%	\$	2.89	7.5\%	\$	3.11	
2016	6	\$	0.52	\$	0.81	-0.1\%	\$	3.43	7.5\%	\$	3.68	
2017	7	\$	0.54	\$	0.91	-0.6\%	\$	3.98	7.5\%	\$	4.28	\$0.7173
2018	8	\$	0.51	\$	0.93	2.4\%	\$	4.51	7.5\%	\$	4.85	
2019	9	\$	0.49	\$	0.96	2.0\%	\$	5.01	7.5\%	\$	5.39	
2020	10	\$	0.45	\$	0.94	-2.8\%	\$	5.48	10.0\%	\$	6.02	\$0.7491
2021	11	\$	0.42	\$	0.94	-0.1\%	\$	5.91	10\%	\$	6.50	
2022	12	\$	0.40	\$	0.98	3.1\%	\$	6.33	10\%	\$	6.96	
2023	13	\$	0.39	\$	1.02	3.9\%	\$	6.74	10\%	\$	7.41	
2024	14	\$	0.35	\$	0.99	-4.6\%	\$	7.10	10\%	\$	7.81	
2025	15	\$	0.32	\$	0.97	-3.4\%	\$	7.44	12.5\%	\$	8.37	
2026	16	\$	0.30	\$	1.00	2.6\%	\$	7.76	12.5\%	\$	8.73	
2027	17	\$	0.29	\$	1.02	1.4\%	\$	8.07	12.5\%	\$	9.08	
2028	18	\$	0.28	\$	1.05	2.4\%	\$	8.37	12.5\%	\$	9.41	
2029	19	\$	0.26	\$	1.08	1.3\%	\$	8.65	12.5\%	\$	9.73	
2030	20	\$	0.25	\$	1.10	1.7\%	\$	8.92	12.5\%	\$	10.03	\$0.7493
2031	21	\$	0.24	\$	1.14	2.6\%	\$	9.18	15\%	\$	10.55	
2032	22	\$	0.23	\$	1.19	2.6\%	\$	9.43	15\%	\$	10.84	
2033	23	\$	0.22	\$	1.23	2.6\%	\$	9.67	15\%	\$	11.12	
2034	24	\$	0.21	\$	1.27	2.6\%	\$	9.90	15\%	\$	11.38	
2035	25	\$	0.21	\$	1.32	2.6\%	\$	10.12	15\%	\$	11.64	
2036	26	\$	0.20	\$	1.37	2.6\%	\$	10.34	17.5\%	\$	12.15	
2037	27	\$	0.19	\$	1.41	2.6\%	\$	10.55	17.5\%	\$	12.39	
2038	28	\$	0.18	\$	1.46	2.6\%	\$	10.74	17.5\%	\$	12.62	
2039	29	\$	0.18	\$	1.50	2.6\%	\$	10.93	17.5\%	\$	12.85	
2040	30	\$	0.17	\$	1.55	2.6\%	\$	11.12	17.5\%	\$	13.06	\$0.7710
2041	31	\$	0.16	\$	1.60	2.6\%	\$	11.29	20\%	\$	13.55	
2042	32	\$	0.15	\$	1.65	2.6\%	\$	11.46	20\%	\$	13.75	
2043	33	\$	0.15	\$	1.70	2.6\%	\$	11.62	20\%	\$	13.94	
2044	34	\$	0.14	\$	1.75	2.6\%	\$	11.77	20\%	\$	14.13	
2045	35	\$	0.14	\$	1.81	2.6\%	\$	11.92	20\%	\$	14.30	
2046	36	\$	0.13	\$	1.86	2.6\%	\$	12.06	20\%	\$	14.47	
2047	37	\$	0.12	\$	1.92	2.6\%	\$	12.20	20\%	\$	14.63	
2048	38	\$	0.12	\$	1.98	2.6\%	\$	12.33	20\%	\$	14.79	
2049	39	\$	0.11	\$	2.04	2.6\%	\$	12.45	20\%	\$	14.94	
2050	40	\$	0.11	\$	2.11	2.6\%	\$	12.57	20\%	\$	15.08	
2051	41	\$	0.10	\$	2.17	2.6\%	\$	12.68	20\%	\$	15.22	
2052	42	\$	0.10	\$	2.24	2.6\%	\$	12.79	20\%	\$	15.35	
2053	43	\$	0.10	\$	2.31	2.6\%	\$	12.90	20\%	\$	15.48	
2054	44	\$	0.09	\$	2.38	2.6\%	\$	13.00	20\%	\$	15.60	
2055												
					29836							
Cascade's Long Term Real Discount Rate:						4.170\%						
IRP Discount Rate =						7.234\%						
Years 21-45 Escalation =						2.60\% (EIA Inflation Rate)						

Conservation Credit \% attempts to recognize non-quantifiable benefits associated with conservation, including benefits of price certainty \& hedge against future carbon costs Carbon estimated \$15/ton, applies to Natural Gas 2016

PRELIMIINARY AVOIDED COST ESTIMATES
BASECASE - MEDIUM FORECAST - AVERAGE WEATHER- With Carbon 2 scenario 45 YEAR RESOURCE SUMMARY COSTS - MELDED COST PER THERM

	YEAR	IRP ANNUAL PORTFOLIO COST PER THERM (PV)*		NOMINAL COST PER THERM		RESOURCE PORTFOLIO COST - \% CHANGE	PV OF RESOURCE PORTFOLIO COST/THERM		NonEnergy Benefits \%	PORTFOLIO COSTS INCLUDING CONSERVATION CREDIT		COST- EFFECTIVENESS LIMIT
2011	1	\$	0.58	\$	0.62		\$	0.58	10\%	\$	0.64	
2012	2	\$	0.58	\$	0.67	7.5\%	\$	1.16	10\%	\$	1.27	
2013	3	\$	0.57	\$	0.71	5.7\%	\$	1.73	10\%	\$	1.90	
2014	4	\$	0.58	\$	0.78	10.1\%	\$	2.32	10\%	\$	2.55	
2015	5	\$	0.56	\$	0.81	4.9\%	\$	2.89	10\%	\$	3.18	
2016	6	\$	0.52	\$	0.81	-0.1\%	\$	3.43	10\%	\$	3.77	
2017	7	\$	0.55	\$	0.81	-0.6\%	+	4.00	10\%	\$	4.40	\$0.7370
2018	8	\$	0.53	\$	0.83	2.4\%	\$	4.54	10\%	\$	5.00	
2019	9	\$	0.50	\$	0.85	2.0\%	\$	5.06	10\%	\$	5.57	
2020	10	\$	0.46	\$	0.82	-2.8\%	+	5.54	10\%	\$	6.10	\$0.7581
2021	11	\$	0.43	\$	0.82	-0.1\%	\$	5.99	10\%	\$	6.59	
2022	12	\$	0.42	\$	0.85	3.1\%	\$	6.43	10\%	\$	7.07	
2023	13	\$	0.40	\$	0.88	3.9\%	\$	6.85	10\%	\$	7.54	
2024	14	\$	0.36	\$	0.84	-4.6\%	\$	7.23	10\%	\$	7.96	
2025	15	\$	0.33	\$	0.81	-3.4\%	\$	7.59	10\%	\$	8.34	
2026	16	\$	0.32	\$	0.83	2.6\%	\$	7.92	10\%	\$	8.72	
2027	17	\$	0.30	\$	0.84	1.4\%	\$	8.25	10\%	\$	9.07	
2028	18	\$	0.29	\$	0.86	2.4\%	\$	8.56	10\%	\$	9.41	
2029	19	\$	0.28	\$	0.87	1.3\%	\$	8.86	10\%	\$	9.74	
2030	20	\$	0.26	\$	0.89	1.7\%	\$	9.14	10\%	\$	10.05	\$0.7510
2031	21	\$	0.25	\$	0.92	2.6\%	\$	9.41	10\%	\$	10.36	
2032	22	\$	0.25	\$	0.94	2.6\%	\$	9.68	10\%	\$	10.65	
2033	23	\$	0.24	\$	0.97	2.6\%	\$	9.94	10\%	\$	10.93	
2034	24	\$	0.23	\$	1.00	2.6\%	\$	10.18	10\%	\$	11.20	
2035	25	\$	0.22	\$	1.03	2.6\%	\$	10.42	10\%	\$	11.46	
2036	26	\$	0.21	\$	1.06	2.6\%	\$	10.65	10\%	\$	11.72	
2037	27	\$	0.20	\$	1.09	2.6\%	\$	10.87	10\%	\$	11.96	
2038	28	\$	0.20	\$	1.13	2.6\%	\$	11.08	10\%	\$	12.19	
2039	29	\$	0.19	\$	1.16	2.6\%	\$	11.29	10\%	\$	12.41	
2040	30	\$	0.18	\$	1.20	2.6\%	\$	11.48	10\%	\$	12.63	\$0.7455
2041	31	\$	0.17	\$	1.23	2.6\%	\$	11.67	10\%	\$	12.83	
2042	32	\$	0.16	\$	1.27	2.6\%	\$	11.85	10\%	\$	13.03	
2043	33	\$	0.16	\$	1.31	2.6\%	\$	12.02	10\%	\$	13.22	
2044	34	\$	0.15	\$	1.35	2.6\%	\$	12.18	10\%	\$	13.40	
2045	35	\$	0.14	\$	1.39	2.6\%	\$	12.34	10\%	\$	13.58	
2046	36	\$	0.14	\$	1.43	2.6\%	\$	12.49	10\%	\$	13.74	
2047	37	\$	0.13	\$	1.47	2.6\%	\$	12.64	10\%	\$	13.90	
2048	38	\$	0.13	\$	1.51	2.6\%	\$	12.78	10\%	\$	14.06	
2049	39	\$	0.12	\$	1.56	2.6\%	\$	12.91	10\%	\$	14.20	
2050	40	\$	0.12	\$	1.61	2.6\%	\$	13.04	10\%	\$	14.34	
2051	41	\$	0.11	\$	1.65	2.6\%	\$	13.16	10\%	\$	14.48	
2052	42	\$	0.11	\$	1.70	2.6\%	\$	13.28	10\%	\$	14.61	
2053	43	\$	0.10	\$	1.76	2.6\%	\$	13.39	10\%	\$	14.73	
2054	44	\$	0.10	\$	1.81	2.6\%	\$	13.50	10\%	\$	14.85	
2055												
Cascade's Long Term Real Discount Rate:						4.170\%						
IRP Discount Rate =						7.234\%						
		Years 21-45 Escalation $=$				2.60\%	(E	Rate)				

Conservation Credit \% attempts to recognize non-quantifiable benefits associated with conservation, including benefits of price certainty \& hedge against future carbon costs Carbon estimated \$20/ton, applies to Natural Gas 2016

PRELIMIINARY AVOIDED COST ESTIMATES
BASECASE - MEDIUM FORECAST - AVERAGE WEATHER-With Carbon 3 Scenario 45 YEAR RESOURCE SUMMARY COSTS - MELDED COST PER THERM

Conservation Credit \% attempts to recognize non-quantifiable benefits associated with conservation, including benefits of price certainty \& hedge against future carbon costs Carbon estimated \$30/ton, applies to Natural Gas 2016

Appendix I

Action Plan Progress Report

2008 IRP 2-Year Action Plan Progress

Action Item 1: In continuing efforts to create a more accurate load forecast, Cascade will research the viability of expanding the detail of the data by determining therm usage per customer per degree day by customer class (residential, commercial, etc.) along with the non-heat sensitive baseload usage. This is largely dependent upon the capabilities of the Company's new Customer Information System which is currently anticipated to "Go-Live" during mid-2009.

Progress:

Cascade continues to evaluate the ability to determine use/customer/degree day by customer class. At this time, the Company has not been able to fully assess the capabilities associated with the new Customer Information System and the ability to extract detailed usage data by customer class since the new Customer Information System only became operational on July 1, 2010.

Action Item 2: Cascade will continue to monitor outside determinants of natural gas usage, such as legislative building code changes and electrical "Direct Use" campaigns as they are determined to significantly affect the Company's forecast.
a. Cascade will analyze the potential impact of Puget Sound Energy's Direct Use campaign on customer usage in Washington by June 2010.

Progress:

Cascade has remained active in monitoring external developments at the state and national level which carry potential impacts to customer usage within our service territory. In Oregon, legislation passed in 2009 which required improvements to commercial building by $15-25 \%$ over existing code. These new code requirements took effect in Fall 2010. This will likely further reduce the anticipated load growth in the commercial/industrial sector. On the Washington side, changes to the Washington Residential and Commercial building codes which were initially scheduled to go into effect on July 1, 2010 but have since been delayed until October 29, 2010 and there is the potential for a further delay until April 1, 2011. Currently, only Puget Sound Energy has a Direct Use campaign that has the potential to impact Cascade's customer usage. To-date, the Company has seen little impact on the Company's load.

Action Item 3: The Company continues to explore the incorporation of price elasticity in future forecasts of demand. The integration of this variable in future models will be dependent upon the practicality of its application and significance of its effect.

Progress:

Cascade continues to explore the incorporation of price elasticity in development of its demand forecast. To-date, the Company has not found the data to be statistically valid and therefore has not incorporated this variable in its model. The Company will continue to review this information and will revisit with the development of the upcoming plan.

Action Item 4: Cascade will continue to monitor the effectiveness of the Oregon Public Purpose Fund to ensure the funds are adequate to capture significant portions of achievable therm savings in Oregon. If it is determined that an increase in this Fund will create a subsequent increase in therm savings, the Company will move to act appropriately.
a. Oregon's incremental annual therm savings targets for the 2009 and 2010 period are 282,657 and 329,937 therms respectively. Estimated spending to achieve the therm savings targets outlined above are \$1,494,000 and \$1,746,000 respectively.

Progress:

Cascade continues to work closely with the Energy Trust of Oregon, keeping closely apprised on both their establishment of annual therm savings targets and determination of needed funds to acquire those therm savings. As reported by the ETO in their 2010 report to the commission, the 2009 therm savings achievements were . ETO's 2011 budget for Cascade is $\$ 2,497,836$ to deliver its projected annual savings of 391,754 therms (Cascade's IRP target). ETO entered 2011 with $\$ 526,412$ in carryover funds from the 2010 program year. Public purpose funding from Cascade was estimated to be around $\$ 886,000$. On paper, this would leave ETO short of funding for program year 2011 by around $\$ 1,085,000$ - again leaving nothing toward the 5 percent reserve that ETO prefers to enter into each new program year with. In this case, the 2011 planning reserve is an additional $\$ 124,892$, or 5 percent of the $\$ 2,497,836$ budget.

On August 3, 2011, the Commission approved in Order No. 11-285 Cascade's request for authorization to defer incremental funding of Public Purpose Funding payable to ETO to support conservation. This order granted Cascade authorization to defer an amount of funding of up to $\$ 1,300,000$. This additional deferred funding would enable Cascade to be able to adequately fund ETO's planned budget needs for 2011 and provide a sufficient cash reserve at the end of the year. As of July 31, 2011, ETO reports that their year-todate fully loaded program expenses for Cascade are $\$ 1,013,323$. This figure is about 15 percent below budget.

However, it appears that ETO will easily exceed its 2010 expenditure levels during the 2011 program year. It is hoped and expected that ETO can make up any expenditure shortfalls, and corresponding therm savings, by the end of 2011. However, Cascade will be working closely with ETO staff toward the end of the year to most effectively calibrate the final provision of deferred funding so as not to provide an excess of funding should the expenditures finish below budget for 2011. ETO is currently in the process of developing utility budgets for 2012. Part of the discussion and analysis about 2012 budgets revolve around potential Oregon Business Energy Tax Credit (BETC)-related mitigation impacts that go beyond the 2011 BETC mitigation process currently underway. The current 2012 "Base Case" budget for Cascade is \$2,757,540 which may be subject to some adjustment as we continue to go through the budget development process. The current 2012 "Mitigation" budget for Cascade is $\$ 2,923,625$ which is also subject to adjustment before the end of the year. Assuming that Cascade is given authorization to increase public purpose fund collections as outlined in this proposal, there will still be a need for additional deferred funding during 2012. Cascade will then make the application for re-authorization of deferred accounting treatment later in 2012 as the ETO budget becomes firm and the actual program expenditures become known.

Action Item 5: The Company will continue to follow and analyze the impacts of the Western Climate Initiative and proposed carbon legislation at both the state and federal level as they pertain to natural gas conservation, as well as other such acts that may arise from these efforts. The Company will continue to monitor the timing and the costs associated with carbon legislation and analyze the impacts on the Company's overall portfolio costs. As specific carbon legislation is passed, the Company will update its avoided cost calculations, conservation potential and make modifications to its DSM incentive programs as necessary.
a. The Company is evaluating the potential costs associated with the Waxman/Markey legislation and estimating the impacts on its resource portfolio.

Progress:

Cascade continues to follow closely both potential federal and state level legislation associated with Greenhouse Gas Legislation. Although the proposed legislation has been stalled, the Company continues to review and assess the potential impacts associated with the Kerry/Lieberman bill, which was the latest climate change proposal at the federal level.

Action Item 6: The Company will continue to monitor the cost effectiveness of existing conservation measures and emerging technologies to ensure that the current mix of measures included in the Washington Conservation program is appropriate. Areas for further analysis include the impacts associated with modifications to building codes
along with the cost effectiveness of newer technologies such the next generation of high efficiency water heaters (. 70 EF) and high-efficiency hybrid heat pumps. The applicability of these measures within Cascade's service territory will be analyzed and the Company's Conservation Incentive Program will be modified as necessary.

Progress:

Cascade continues to monitor the viability of .70 conventional water heaters and other emerging technologies in order to assess their applicability to our Washington service territory. If, and when, such measures become market available, we will take steps to include them in our Washington conservation portfolio. In Oregon, Cascade works closely with the Energy Trust of Oregon to ensure that the therm savings targets are achieved and strongly encourages their efforts to pursue innovative and emerging gas conservation technologies such as next generation water heaters and high efficiency natural gas heat pumps.

Action Item 7: The Company will continue to work with its Conservation Advisory Group, its third party vendors and its Low income weatherization network to ensure that the therm savings targets identified in the plan are met.
a. As outlined above, the Company's targeted therm savings for Oregon for the 2009 and 2010 period are 282,657 and 329,937 therms respectively.

Progress:

As noted earlier in this document, the ETO indicated a 2010 therm savings achievement for Cascade's service territory in the amount of 367,875 , just shy of their annual goal for that year, but above their IRP target for the same timeframe. Spending was $\$ 1.3$ million, a notable reduction from their initial estimates. The ETO estimates that that their 2011 achievements will be on par with their existing target therms and are expected to be achievable despite economic conditions and the ETO's significant downward revisions to 20 year therm savings potential for the Company.

Cascade continues to work closely with its Oregon Low Income Advisory Group to better understand the capacity of the WAP (Weatherization Assistance Program) to serve Cascade homes and evaluate strategies designed to maintain active Agency participation in the program. Program modifications discussed with the Advisory Group and implemented in 2010 included an extension of the OLIEC program to incorporate rebates for high efficiency natural gas water heaters, and allow participation by nonprofit entities engaged in providing affordable, energy-efficient housing for low-income individuals. Cascade will continue its efforts to identify opportunities to utilize the available OLIEC funds in a manner that achieves the greatest amount of cost-effective therm savings at homes occupied by low-income households. From January $1^{\text {st }}$ through December 31, 2010, 132 homes have been weatherized in Oregon with an annual cumulative savings of 21,168 therms and with $\$ 261,057.66$ provided in rebates. This
represents a significant growth in program participation and low-income CNGC households served during the calendar year. Through September, 2011, Cascade's Oregon Low Income Energy Conservation Program (OLIEC) has served 36 homes and achieved a savings figure of approximately 4,953 therms with a total expenditure of approximately $\$ 60,256$. This is slightly lower than the achievement numbers from the same time in the prior year, reflecting the impending expiration of the ARRA monies, but still a significant upward improvement from the previous level of savings to CNGC low income households.

Action Item 8: The Company will continue to update its distribution system analysis to reflect the impacts of conservation. The Company will continue to target its conservation acquisition efforts in those areas where potential distribution constraints have been identified in the hope that some of those investments maybe delayed.
a. The Company will work with the Energy Trust to ensure that conservation acquisition efforts are targeted to central Oregon and Hermiston area.
b. The Company will update its Oregon distribution analysis during Summer 2009 to re-assess the reinforcement requirements during the 2010 to 2013 period in light of the current recession and actual conservation achievements in 2008 and 2009 by the Energy Trust.

Progress:

The Company continues to promote conservation and focuses attention on those areas identified as having distribution system constraints. The Company is currently updating its models and anticipates that a number of anticipated reinforcement needs may be delayed due to changes in the long term load forecast as a result of both increases in conservation achievements and improvement to building codes.

Action Item 9: Cascade will continue to evaluate gas supply resources on an ongoing basis including supplies of varying lengths (base, swing, peaking) and pricing alternatives. We will continue to analyze the uncertainties associated with volatile supply and demand relationships and will closely monitor and participate in industry discussions regarding diminishing Canadian gas exports. Of particular concern to us are changing conditions on Northwest Pipeline. As our principle upstream pipeline, Northwest Pipeline is a displacement pipeline dependent upon receiving large amounts of Canadian natural gas exports. The risk associated with reduced Canadian exports is a significant concern and therefore it is critical for Cascade to continuously look for opportunities to improve our supply/capacity diversification.

Progress:

The Company continues to examine the various supply side alternatives available on an on-going basis. The Canadian export outlook has brightened somewhat since acknowledgment of the 2008 IRP. While the levels of exports have
decreased due to increased demand in Canada, the prolific shale gas plays, such as Horn River, are expected to ensure that adequate Canadian supplies are available to the Pacific Northwest. Additionally, shale gas plays on the east coast are limiting some of the needs for the western supplies along with increased production in both the Rockies and the Horn River basin in Northern BC/Alberta provide a rosier supply picture than just 2 years ago. As a result, there is little concern that the supplies will be available for the foreseeable future. However, the Company will continue to monitor activities and participate in industry task forces on the various Canadian pipelines to encourage supply availability and price liquidity at important transaction points for our service territory such as Station 2, Sumas, and AECO.

Action Item 10: The Company will continue to monitor the proposed pipeline expansion projects to access more supplies out of the Rockies. As cost estimates change, the Company will analyze those resources under consideration to determine if modifications to the preferred portfolio are necessary.
a. The Company participated in the initial Open Season associated with the Sunstone/Blue Bridge pipeline in 2008
b. Update analysis completed and response from CNG Board due late Summer 2009

Progress:
The Company continues to evaluate incremental pipeline capacity proposals that would bring additional Rockies supplies to Cascade's service territory. Two major developments have occurred since acknowledgement of the plan that may impact the resources selections identified in the preferred portfolio. First of all, in fall 2009, Northwest Pipeline announced that it was abandoning its proposed Sunstone pipeline project due to a lack of participation in the open seasons. It appears that going forward Ruby is likely to be the new pipeline from the west with service to Malin operational as early as March 2011 and it also appears that GTN is considering firm backhaul capabilities to move the additional supplies to the Pacific Northwest and the Company continues to evaluate this as option to provide supply diversity to the Company's Central Oregon service territory. On the other side, the need for incremental capacity to serve the Company's central Oregon load has been delayed due to the Central Oregon load forecast being closer to the Low Load forecast than the medium forecast as originally anticipated. As identified earlier, the Palomar, Blue Bridge and Pacific Connector projects do not look to move forward. However, we have found that Ruby Pipeline combined with GTN backhaul represents a reasonable way to improve diversity of supply to Oregon (utilizing Rockies supplies) and providing additional operational flexibility.

Action Item 11: Continue to refine our specific peak day resource acquisition action plans to address anticipated capacity shortfalls on the Wenatchee and Shelton laterals. Possible solutions include Satellite LNG or pipeline looping to meet the growing requirements of the firm core load. Specifically, the Company will further analyze issues such as determination of project siting issues and risks, project cost estimates, and construction/acquisition lead times.

Progress:

Cascade has continued to monitor and develop plans to address anticipated shortfalls on both the Wenatchee and Shelton Laterals. Since acknowledgement of the plan, the Company has addressed shortfalls on the Shelton lateral as a result of a gate station upgrade and the acquisition of vintage capacity on Northwest Pipeline through a long-term release. To address anticipated shortfalls on the Wenatchee lateral, the Company has notified non-core customers that it will recall the long-term released capacity at the end of the primary term. The returned capacity will allow the Company to meet peak loads through the 2020 period. Additionally, the Company continues to evaluate shortterm peaking solutions such as satellite LNG/peak shaving facilities and a propane air plant to address concerns on this lateral.

Action Item 12: The Company will continue to explore options to incorporate BioGas into its portfolio, as specific projects are identified in our service territory. Price, location and gas quality considerations of the BioGas supply.will be evaluated.

Progress:

No specific BNG projects have materialized within the Company's service territory. As those opportunities arise, they will be evaluated for inclusion in the Company's portfolio.

Action Item 13: The Company will continue to monitor proposed LNG import facilities as information becomes available and will evaluate the various options that, if built, could be used to meet core requirements. Issues to monitor include specific cost, the availability of pipeline capacity and project timing.

Progress:

Cascade continues to monitor LNG import facility proposals, however, it appears that it is highly unlikely that any will be sited in the Northwest due to both the complex environmental issues and the competition for those supplies from other higher priced markets.

Action Item 14: The Company will continue to monitor the futures market for price trends and will evaluate the effectiveness of its risk management policy.

Progress:

The Company continues to monitor price trends and evaluates the effectiveness of its risk management policy. Since completion of the Company's 2008 IRP, the forward price curves for natural gas have stabilized considerably. A combination of factors (contango market and economic outlook) have led the Company to modify its hedging strategy for the near-term to hedge less supplies and leave more at the market.

[^0]: ${ }^{1}$ It should be noted that, in rare instances, a combination of pipeline capacity constraints, excess supply, and high storage levels can lead to unusual spikes in natural gas prices during the summer months, as witnessed during 2008, when natural gas prices soared to \$13 per MMBtu in early July 2008.

[^1]:

 \begin{tabular}{llllllllllllllllllllllll}

 2014 \& 0.68% \& 0.46% \& 1.26% \& 1.03% \& 0.56% \& 1.02% \& 1.34% \& 0.76% \& 0.70% \& 0.87% \& 0.61% \& 0.50% \& 1.06% \& 0.74% \& 0.24% \& 0.91% \& 0.70% \& 1.06% \& 1.10% \& 0.71% \& 0.38% \& 1.16% \& 0.52%

 \hline

 \&

 2014 \& 0.68% \& 0.46% \& 1.26% \& 1.03% \& 0.56% \& 1.02% \& 1.34% \& 0.76% \& 0.70% \& 0.87% \& 0.61% \& 0.50% \& 1.06% \& 0.74% \& 0.24% \& 0.91% \& 0.70% \& 1.06% \& 1.10% \& 0.71% \& 0.38% \& 1.16% \& 0.52%

 2015 \& 0.66% \& 0.46% \& 1.26% \& 1.03% \& 0.56% \& 1.05% \& 1.34% \& 0.72% \& 0.71% \& 0.87% \& 0.61% \& 0.44% \& 1.05% \& 0.74% \& 0.23% \& 0.89% \& 0.73% \& 1.05% \& 1.10% \& 0.70% \& 0.39% \& 1.15% \& 0.51%

 \hline

 \& 2016 \& 0.69% \& 0.43% \& 1.26% \& 1.01% \& 0.55% \& 1.04% \& 1.34% \& 0.75% \& 0.69% \& 0.86% \& 0.60% \& 0.51% \& 1.05% \& 0.75% \& 0.24% \& 0.90% \& 0.75% \& 1.05% \& 1.10% \& 0.69% \& 0.38%

 \hline
 \end{tabular}

 | 2029 | 0.67% | 0.42% | 1.21% | 0.95% | 0.46% | 1.10% | 1.32% | 0.69% | 0.65% | 0.84% | 0.54% | 0.44% | 1.01% | 0.78% | 0.21% | 0.83% | 0.66% | 1.01% | 1.08% | 0.64% | 0.34% | 1.09% | 0.46% |
 | :--- |

 | 2031 | 0.65% | 0.41% | 1.21% | 0.94% | 0.44% | 1.12% | 1.32% | 0.68% | 0.65% | 0.83% | 0.53% | 0.42% | 1.00% | 0.79% | 0.22% | 0.82% | 0.64% | 1.01% | 1.07% | 0.62% | 0.34% | 1.08% | 0.45% |
 | :--- |

 $\begin{array}{llllllllllllllllllllllllll} & \end{array}$

[^2]:

 \begin{tabular}{|lllllllllllllllllllllllllll}
 \&

 2014 \& 0.47% \& 0.68% \& 0.33% \& 0.36% \& 0.44% \& 0.52% \& 0.68% \& 0.49% \& 0.30% \& 0.06% \& 0.28% \& 0.58% \& 0.62% \& 0.48% \& 0.46% \& 0.73% \& 0.35% \& 0.40% \& 0.35% \& 0.10% \& 0.58% \& 0.39% \& 0.56% \& 0.49%

 \hline 20.53% \& 0.71% \& 0.53% \& 0.31% \& 0.10% \& 0.31% \& 0.60% \& 0.63% \& 0.50% \& 0.49% \& 0.74% \& 0.36% \& 0.43% \& 0.38% \& 0.12% \& 0.59% \& 0.41% \& 0.58% \& 0.50%

 \hline

 \&

 2014 \& 0.49% \& 0.70% \& 0.36% \& 0.47% \& 0.53% \& 0.71% \& 0.53% \& 0.31% \& 0.10% \& 0.31% \& 0.60% \& 0.63% \& 0.50% \& 0.49% \& 0.74% \& 0.36% \& 0.43% \& 0.38% \& 0.12% \& 0.59% \& 0.41% \& 0.58% \& 0.50%

 2015 \& 0.51% \& 0.71% \& 0.39% \& 0.50% \& 0.55% \& 0.74% \& 0.56% \& 0.33% \& 0.13% \& 0.33% \& 0.62% \& 0.65% \& 0.52% \& 0.51% \& 0.79% \& 0.38% \& 0.43% \& 0.41% \& 0.15% \& 0.61% \& 0.43% \& 0.60% \& 0.52%

 \hline

 2016 \& 0.54% \& 0.73% \& 0.42% \& 0.52% \& 0.57% \& 0.77% \& 0.60% \& 0.35% \& 0.16% \& 0.36% \& 0.64% \& 0.65% \& 0.52% \& 0.51% \& 0.79% \& 0.38% \& 0.43% \& 0.41% \& 0.15% \& 0.61% \& 0.43% \& 0.60% \& 0.52%

 \hline

 2016 \& 0.54% \& 0.73% \& 0.42% \& 0.52% \& 0.57% \& 0.77% \& 0.60% \& 0.35% \& 0.16% \& 0.36% \& 0.64% \& 0.67% \& 0.54% \& 0.53% \& 0.79% \& 0.41% \& 0.47% \& 0.43% \& 0.18% \& 0.63% \& 0.45% \& 0.63%

 0.554%

 \hline 2017 \& 0.55% \& 0.75% \& 0.45% \& 0.54% \& 0.58% \& 0.85% \& 0.64% \& 0.37% \& 0.18% \& 0.38% \& 0.66% \& 0.69% \& 0.56% \& 0.55% \& 0.80% \& 0.43% \& 0.48% \& 0.46% \& 0.21% \& 0.65% \& 0.47% \& 0.64%

 \hline
 \end{tabular} $\begin{array}{lllllllllllllllllllllllll} & \end{array}$

 \begin{tabular}{llllllllllllllllllllllll}
 2021 \& 0.64% \& 0.80% \& 0.55% \& 0.61% \& 0.64% \& 0.91% \& 0.75% \& 0.44% \& 0.29% \& 0.47% \& 0.72% \& 0.77% \& 0.63% \& 0.63% \& 0.88% \& 0.52% \& 0.55% \& 0.55% \& 0.32% \& 0.71% \& 0.53% \& 0.71% \& 0.61%

 \hline

 2022 \& 0.64% \& 0.81% \& 0.57% \& 0.62% \& 0.65% \& 0.93% \& 0.78% \& 0.44% \& 0.29% \& 0.47% \& 0.72% \& 0.77% \& 0.63% \& 0.63% \& 0.88% \& 0.52% \& 0.55% \& 0.55% \& 0.39% \& 0.73% \& 0.78% \& 0.64%

 \hline

 2023 \& 0.67% \& 0.82% \& 0.59% \& 0.64% \& 0.66% \& 0.95% \& 0.81% \& 0.47% \& 0.33% \& 0.51% \& 0.75% \& 0.80% \& 0.66% \& 0.66% \& 0.92% \& 0.56% \& 0.58% \& 0.60% \& 0.37% \& 0.74% \& 0.56% \& 0.74% \& 0.64%

 \hline
 \end{tabular}

 | 2029 | 0.76% | 0.89% | 0.71% | 0.72% | 0.72% | 1.09% | 0.94% | 0.57% | 0.45% | 0.62% | 0.82% | 0.89% | 0.75% | 0.76% | 0.98% | 0.66% | 0.65% | 0.71% | 0.50% | 0.82% | 0.63% | 0.83% | 0.70% |
 | :--- |

 | 2031 | 0.79% | 0.91% | 0.73% | 0.74% | 0.74% | 1.12% | 0.98% | 0.59% | 0.48% | 0.64% | 0.84% | 0.91% | 0.77% | 0.78% | 0.99% | 0.68% | 0.68% | 0.74% | 0.54% | 0.83% | 0.65% | 0.85% | 0.72% |
 | :--- |

 \begin{tabular}{|lllllllllllllllllllllllll}
 2033 \& 0.80% \& 0.92% \& 0.76% \& 0.76% \& 0.75% \& 1.15% \& 1.01% \& 0.61% \& 0.51% \& 0.67% \& 0.85% \& 0.93% \& 0.79% \& 0.80% \& 1.03% \& 0.71% \& 0.69% \& 0.77% \& 0.57% \& 0.85% \& 0.66% \& 0.86% \& 0.73%

 \hline

 \& $1.0 .35 \%$ \& 0.62% \& 0.52% \& 0.68% \& 0.86% \& 0.94% \& 0.80% \& 0.81% \& 1.03% \& 0.72% \& 0.70% \& 0.78% \& 0.59% \& 0.86% \& 0.67% \& 0.87% \& 0.74%

 \hline 2034 \& 0.81% \& 0.92% \& 0.77% \& 0.77% \& 0.75% \& 1.16% \& 1.03% \& 0.79% \& 0.78% \& 0.76% \& 1.18% \& 1.04% \& 0.63% \& 0.53% \& 0.69% \& 0.86% \& 0.95% \& 0.81% \& 0.82% \& 1.03% \& 0.73% \& 0.71% \& 0.79% \& 0.61% \& 0.87% \& 0.68% \& 0.89%

 \hline
 \end{tabular}

[^3]:

[^4]:

[^5]: | 2011 | 1.75% | 1.52% | 2.26% | 2.09% | 0.58% | 1.87% | 1.34% | 1.80% | 1.70% | 1.92% | 1.66% | 1.39% | 2.11% | 1.73% | 1.17% | 1.96% | 1.78% | 1.06% | 2.14% | 1.76% |
 | :--- |
 | 2012 | 0.66% | 0.47% | 1.27% | 1.04% | 0.58% | 1.02% | 1.34% | 0.76% | 0.71% | 0.88% | 0.62% | 0.51% | 1.06% | 0.73% | 0.24% | 0.91% | 0.76% | 1.06% | 1.10% | 0.71% |

 \begin{tabular}{llllllllllllllllllllllll}

 2014 \& 0.68% \& 0.46% \& 1.26% \& 1.03% \& 0.56% \& 1.02% \& 1.34% \& 0.76% \& 0.70% \& 0.87% \& 0.61% \& 0.50% \& 1.06% \& 0.74% \& 0.24% \& 0.91% \& 0.70% \& 1.06% \& 1.10% \& 0.71% \& 0.38% \& 1.16% \& 0.52%

 \hline

 \&

 2014 \& 0.68% \& 0.46% \& 1.26% \& 1.03% \& 0.56% \& 1.02% \& 1.34% \& 0.76% \& 0.70% \& 0.87% \& 0.61% \& 0.50% \& 1.06% \& 0.74% \& 0.24% \& 0.91% \& 0.70% \& 1.06% \& 1.10% \& 0.71% \& 0.38% \& 1.16% \& 0.52%

 2015 \& 0.66% \& 0.46% \& 1.26% \& 1.03% \& 0.56% \& 1.05% \& 1.34% \& 0.72% \& 0.71% \& 0.87% \& 0.61% \& 0.44% \& 1.05% \& 0.74% \& 0.23% \& 0.89% \& 0.73% \& 1.05% \& 1.10% \& 0.70% \& 0.39% \& 1.15% \& 0.51%

 \hline

 2016 \& 0.69% \& 0.43% \& 1.26% \& 1.01% \& 0.55% \& 1.04% \& 1.34% \& 0.75% \& 0.69% \& 0.86% \& 0.60% \& 0.51% \& 1.05% \& 0.75% \& 0.24% \& 0.90% \& 0.75% \& 1.05% \& 1.10% \& 0.69% \& 0.38% \& 1.15%

 \hline
 \end{tabular}

 | 2023 | 0.67% | 0.42% | 1.23% | 0.98% | 0.50% | 1.10% | 1.33% | 0.71% | 0.67% | 0.85% | 0.57% | 0.44% | 1.03% | 0.77% | 0.21% | 0.86% | 0.68% | 1.03% | 1.09% | 0.67% | 0.36% | 1.12% | 0.48% |
 | :--- |

 | 2029 | 0.67% | 0.42% | 1.21% | 0.95% | 0.46% | 1.10% | 1.32% | 0.69% | 0.65% | 0.84% | 0.54% | 0.44% | 1.01% | 0.78% | 0.21% | 0.83% | 0.66% | 1.01% | 1.08% | 0.64% | 0.34% | 1.09% | 0.46% |
 | :--- |

 | 2031 | 0.65% | 0.41% | 1.21% | 0.94% | 0.44% | 1.12% | 1.32% | 0.68% | 0.65% | 0.83% | 0.53% | 0.42% | 1.00% | 0.79% | 0.22% | 0.82% | 0.64% | 1.01% | 1.07% | 0.62% | 0.34% | 1.08% | 0.45% |
 | :--- |

 $\begin{array}{llllllllllllllllllllllllll} & \end{array}$

[^6]:

 \begin{tabular}{|lllllllllllllllllllllllllll}
 \&

 2014 \& 0.47% \& 0.68% \& 0.33% \& 0.36% \& 0.44% \& 0.52% \& 0.68% \& 0.49% \& 0.30% \& 0.06% \& 0.28% \& 0.58% \& 0.62% \& 0.48% \& 0.46% \& 0.73% \& 0.35% \& 0.40% \& 0.35% \& 0.10% \& 0.58% \& 0.39% \& 0.56% \& 0.49%

 \hline 20.53% \& 0.71% \& 0.53% \& 0.31% \& 0.10% \& 0.31% \& 0.60% \& 0.63% \& 0.50% \& 0.49% \& 0.74% \& 0.36% \& 0.43% \& 0.38% \& 0.12% \& 0.59% \& 0.41% \& 0.58% \& 0.50%

 \hline

 \&

 2014 \& 0.49% \& 0.70% \& 0.36% \& 0.47% \& 0.53% \& 0.71% \& 0.53% \& 0.31% \& 0.10% \& 0.31% \& 0.60% \& 0.63% \& 0.50% \& 0.49% \& 0.74% \& 0.36% \& 0.43% \& 0.38% \& 0.12% \& 0.59% \& 0.41% \& 0.58% \& 0.50%

 2015 \& 0.51% \& 0.71% \& 0.39% \& 0.50% \& 0.55% \& 0.74% \& 0.56% \& 0.33% \& 0.13% \& 0.33% \& 0.62% \& 0.65% \& 0.52% \& 0.51% \& 0.79% \& 0.38% \& 0.43% \& 0.41% \& 0.15% \& 0.61% \& 0.43% \& 0.60% \& 0.52%

 \hline

 2016 \& 0.54% \& 0.73% \& 0.42% \& 0.52% \& 0.57% \& 0.77% \& 0.60% \& 0.35% \& 0.16% \& 0.36% \& 0.64% \& 0.65% \& 0.52% \& 0.51% \& 0.79% \& 0.38% \& 0.43% \& 0.41% \& 0.15% \& 0.61% \& 0.43% \& 0.60% \& 0.52%

 \hline

 2016 \& 0.54% \& 0.73% \& 0.42% \& 0.52% \& 0.57% \& 0.77% \& 0.60% \& 0.35% \& 0.16% \& 0.36% \& 0.64% \& 0.67% \& 0.54% \& 0.53% \& 0.79% \& 0.41% \& 0.47% \& 0.43% \& 0.18% \& 0.63% \& 0.45% \& 0.63%

 0.554%

 \hline 2017 \& 0.55% \& 0.75% \& 0.45% \& 0.54% \& 0.58% \& 0.85% \& 0.64% \& 0.37% \& 0.18% \& 0.38% \& 0.66% \& 0.69% \& 0.56% \& 0.55% \& 0.80% \& 0.43% \& 0.48% \& 0.46% \& 0.21% \& 0.65% \& 0.47% \& 0.64%

 \hline
 \end{tabular} $\begin{array}{lllllllllllllllllllllllll} & \end{array}$

 \begin{tabular}{lllllllllllllllllllllllllll}
 2021 \& 0.64% \& 0.80% \& 0.55% \& 0.61% \& 0.64% \& 0.91% \& 0.75% \& 0.44% \& 0.29% \& 0.47% \& 0.72% \& 0.77% \& 0.63% \& 0.63% \& 0.88% \& 0.52% \& 0.55% \& 0.55% \& 0.32% \& 0.71% \& 0.53% \& 0.71% \& 0.61%

 \hline

 2022 \& 0.64% \& 0.80% \& 0.55% \& 0.61% \& 0.64% \& 0.91% \& 0.75% \& 0.44% \& 0.29% \& 0.47% \& 0.72% \& 0.77% \& 0.63% \& 0.63% \& 0.88% \& 0.52% \& 0.55% \& 0.55% \& 0.32% \& 0.71% \& 0.53% \& 0.71% \& 0.61%

 \hline
 \end{tabular}

 | 2029 | 0.76% | 0.89% | 0.71% | 0.72% | 0.72% | 1.09% | 0.94% | 0.57% | 0.45% | 0.62% | 0.82% | 0.89% | 0.75% | 0.76% | 0.98% | 0.66% | 0.65% | 0.71% | 0.50% | 0.82% | 0.63% | 0.83% | 0.70% |
 | :--- |

 | 2031 | 0.79% | 0.91% | 0.73% | 0.74% | 0.74% | 1.12% | 0.98% | 0.59% | 0.48% | 0.64% | 0.84% | 0.91% | 0.77% | 0.78% | 0.99% | 0.68% | 0.68% | 0.74% | 0.54% | 0.83% | 0.65% | 0.85% | 0.72% |
 | :--- |

 \begin{tabular}{|lllllllllllllllllllllllll}
 2033 \& 0.80% \& 0.92% \& 0.76% \& 0.76% \& 0.75% \& 1.15% \& 1.01% \& 0.61% \& 0.51% \& 0.67% \& 0.85% \& 0.93% \& 0.79% \& 0.80% \& 1.03% \& 0.71% \& 0.69% \& 0.77% \& 0.57% \& 0.85% \& 0.66% \& 0.86% \& 0.73%

 \hline

 \& $1.0 .35 \%$ \& 0.62% \& 0.52% \& 0.68% \& 0.86% \& 0.94% \& 0.80% \& 0.81% \& 1.03% \& 0.72% \& 0.70% \& 0.78% \& 0.59% \& 0.86% \& 0.67% \& 0.87% \& 0.74%

 \hline 2034 \& 0.81% \& 0.92% \& 0.77% \& 0.77% \& 0.75% \& 1.16% \& 1.03% \& 0.79% \& 0.78% \& 0.76% \& 1.18% \& 1.04% \& 0.63% \& 0.53% \& 0.69% \& 0.86% \& 0.95% \& 0.81% \& 0.82% \& 1.03% \& 0.73% \& 0.71% \& 0.79% \& 0.61% \& 0.87% \& 0.68% \& 0.89%

 \hline
 \end{tabular}

[^7]: \square Zone Capacity

 - 2011 IRP Forecast

[^8]:

[^9]:

[^10]: ${ }^{1}$ Electric measure savings are quantified in average MW as well as peak MW savings for summer and winter heavy demand periods. Gas savings are quantified in annual therms.

[^11]: ${ }^{2}$ A retrofit situation is where working equipment might be replaced with more efficient equipment primarily for energy savings purposes.

